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The potential of using 
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Salmonella Dublin causes severe illness in cattle and humans and can persistently 
infect cattle herds for years despite comprehensive control efforts. Bacteriophages 
are viruses that specifically kill bacteria. This paper reviews existing research and 
discusses the clinical challenges, applications, and research gaps that need to 
be addressed to explore the potential of bacteriophages in controlling Salmonella 
Dublin in cattle herds. Phages targeting Salmonella Dublin have not been systematically 
isolated for phage therapy applications. However, a few phages infecting Salmonella 
Dublin have been identified and characterized, showing promising survival in 
conditions relevant to feed and cattle. Still, detailed information about receptors, 
host range, phage resistance, and co-evolution of phages targeting Salmonella 
Dublin is lacking, but is essential for rational cocktail design. The advantages of 
phage therapy include its high specificity and narrow host range, which leaves the 
beneficial microbiota of the animal unharmed. The high clonality of Salmonella 
Dublin within a geographic area can inform the design of targeted phage treatments 
for different regions. Although the intracellular nature of Salmonella Dublin 
presents a challenge, phages have been shown to internalize at varying rates 
depending on their size and type. In conclusion, bacteriophages show promise 
against Salmonella Dublin, but the development of specific, well-characterized 
phages and optimized administration approaches is necessary for phage therapy 
to realize its full potential.
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Introduction

Salmonella enterica subspecies enterica serotype Dublin (Salmonella Dublin) is one of 
many serotypes of the Salmonella genus, belonging to the Enterobacteriaceae family. Salmonella 
infections occur worldwide and in various species, including humans, cattle, pigs, birds, and 
reptiles. Most serotypes of Salmonella enterica have a broad host range; however, some 
serotypes, including Salmonella Dublin, exhibit host adaptation to bovine animals, causing 
more severe disease than non-adapted serotypes (Holschbach and Peek, 2018; Quinn et al., 
2011). Salmonella Dublin is challenging due to its persistence in cattle herds (Kudirkiene et al., 
2020; Ministeriet for Fødevarer LoF, 2022), its zoonotic potential, causing high mortality in 
humans (Helms et al., 2003; Do Amarante et al., 2025), and the substantial economic losses 
associated with infection in cattle herds (Nielsen et al., 2013). Despite ongoing eradication 
programs and biosecurity measures, Salmonella Dublin remains a persistent issue (Kudirkiene 
et al., 2020; Ministeriet for Fødevarer LoF, 2022). Furthermore, some countries are facing 
problems with multidrug-resistant strains of Salmonella Dublin, which complicates 
antimicrobial treatment (Eyler et al., 2020; Paudyal et al., 2019; Harvey et al., 2017), thus 
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increasing interest in alternative solutions, especially with the 
emergence of antibiotic-resistant strains (Do Amarante et al., 2025). 
Bacteriophages, viruses that target and kill their host bacteria as part 
of their life cycle, offer promising alternatives to antibiotics. 
Historically, phages have been used therapeutically in humans and 
animals, but this practice was discontinued in Western countries after 
antibiotics became widespread. As antimicrobial resistance becomes 
a greater concern, interest in phage therapy has grown (Loponte 
et al., 2021).

In this review, we  (i) summarize the pathogenesis and 
epidemiology of Salmonella Dublin, (ii) assess current knowledge of 
phages against this serotype, (iii) examine strategies for phage cocktail 
design, including modern molecular tools, (iv) evaluate challenges 
related to stability and administration in cattle, and (v) highlight key 
gaps and future research directions.

Salmonella Dublin pathogenesis and 
epidemiology

The clinical manifestations of Salmonella Dublin infections in 
cattle are fever, pneumonia, sepsis, and cause enteric and reproductive 
diseases (Holschbach and Peek, 2018; Quinn et al., 2011; Nielsen, 
2013). Thus, in addition to gastroenteritis, in-utero infections of 
bovine fetuses often result in abortions (Nielsen, 2013). The most 
common transmission route of Salmonella Dublin in cattle herds is 
ingesting contaminated food, water, or milk. In exceptional 
circumstances, the airways and conjunctiva can function as a portal 
of entry (Nielsen, 2013). Once ingested, Salmonella Dublin rapidly 
adheres to the intestinal mucosal cells and invades into enterocytes in 
the terminal jejunal and ileal mucosa (Quinn et al., 2011; Nielsen, 
2013). Initial adhesion is more likely if the gastrointestinal microbiota 
is abnormal, compromised, or underdeveloped (Holschbach and Peek, 
2018). Genes associated with cattle-specific adaptation are linked to 
the cell surface and proteins involved in DNA metabolism and 
catalytic activities (Merkushova et al., 2023), acquired through gene 
deletions or horizontal gene transfer into their genome (Singh, 2013). 
While initial cell adhesion is crucial for Salmonella Dublin to infect 
cattle, the infection can become systemic by entering macrophages 
and draining the local lymph nodes, enabling it to reach the lymph 
and bloodstream and cause bacteremia. Salmonella Dublin can survive 
and replicate in various tissue types within the host, including 
macrophages, thereby shielding itself from host defenses (Nielsen, 
2013) and antibiotics (Nielsen et  al., 2004). It generally favors 
lymphoid tissues, invading through M-cells, and is mainly found in 
Peyer’s patches and mesenteric lymph nodes (Holschbach and Peek, 
2018). This may contribute to Salmonella Dublin’s persistence in cattle 
herds, as carrier animals harbor a chronic infection in lymph nodes 
and internal organs, leading to ongoing or periodic bacterial shedding 
into the environment. Such carriers complicate eradication efforts by 
serving as hidden sources of infection and may underestimate the 
prevalence of Salmonella Dublin (Nielsen, 2013; Nielsen et al., 2004). 
Risk factors for becoming a carrier include age, time since calving, 
season, and herd prevalence, with the highest risk observed in herds 
experiencing clinical outbreaks and in herds with low prevalence. This 
is possibly due to lower shedding, thus exposing the animals to lower 
doses, evading the immune response, and hindering disease 
elimination (Nielsen et al., 2004).

The core genome of Salmonella Dublin strains exhibits a highly 
region-specific population structure (Fenske et al., 2019). Interestingly, 
there is a clear geographic separation between different clades (Fenske 
et al., 2019), and strains from the same locations often display high 
clonality (Do Amarante et  al., 2025; Fenske et  al., 2019), as 
demonstrated in two studies analyzing genomic data of Salmonella 
Dublin in Denmark. The Danish Salmonella Dublin population 
consisted of two major genetically distinct clades and one small cluster 
(Kudirkiene et  al., 2020; Leekitcharoenphon et  al., 2023). Closely 
related strains are often found within the same herd or in herds linked 
epidemiologically over several years. This indicates that herds that test 
positive tend to stay infected with the same strain. The clades are 
geographically specific and unique to the Danish cattle population. Sia 
et al. (2025) analyzed 1,303 Salmonella Dublin genomes and found 
that distinct evolutionary lineages were strongly associated with 
geography, antimicrobial resistance profiles, and plasmid types. 
Similar results were found in other studies in other regions, like in the 
U. S., thus suggesting regional adaptation and clonality (Fenske 
et al., 2019).

Bacteriophages as alternatives to 
antimicrobials

Bacteriophages (phages) are viruses that depend on bacteria to 
reproduce and complete their life cycle. In lytic phages, used for 
various applications, the phage’s life cycle consists of the specific 
binding to a bacterial host, the replication and expression of phage 
genes directing the bacterial metabolism to produce phages, and the 
release of new phages (Loponte et al., 2021; Gencay and Brøndsted, 
2019). As bacteria-killing agents, phages can be used as alternatives to 
antimicrobials. Furthermore, their high specificity makes them ideal 
antimicrobials against highly clonal pathogens such as Salmonella 
Dublin. Literature describing phages specifically targeting Salmonella 
Dublin is sparsely described (Chandra et  al., 2011; Gencay et  al., 
2019), but phages infecting other Salmonella serotypes have been 
isolated and described more thoroughly in the literature.

Host range and phage resistance 
development

Essential for selecting phages for applications is their host range, 
e.g., the breadth of bacterial strains the phage can infect and thus kill. 
Many phages have a narrow host range, meaning they are only efficient 
against a small subset of the diversity of the target bacteria. Statistical 
analysis of phenotypic and genetic data on a collection of phages 
infecting Salmonella showed that the phage genus and the bacterial 
receptor are the two major determinants of host range (Gencay et al., 
2019). Phage genome analysis allows the determination of the genus 
and analysis of the phage receptor-binding protein, which interacts 
with the bacterial receptor and thus influences the host range. Such 
bacterial receptors include components on the Salmonella surface, like 
outer membrane proteins, and carbohydrates, such as 
lipopolysaccharide (LPS). While literature on receptors of Salmonella 
Dublin phages is limited, phages infecting other Salmonella serotypes 
use membrane proteins such as BtuB, TolC, OmpC, and various parts 
of LPS as receptors (Gao et  al., 2022; Martinez-Soto et  al., 2024). 
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Examining the co-evolutionary dynamics of Salmonella Enteritidis 
and lytic phages showed a strong linear correlation between resistance 
and phage adsorption, highlighting receptor mutations as the primary 
reason for phage resistance development (Chen et al., 2024; Barron-
Montenegro et al., 2022). However, phages can evolve to overcome 
bacterial resistance by gene mutations related to the tail proteins 
responsible for phage binding to receptors, indicating counter-
resistance development in the phage (Barron-Montenegro et al., 2022).

Impact on the microbiota and safety

An advantage of the high specificity and narrow host range of 
phages is that, unlike broad-spectrum antimicrobials, they selectively 
target the pathogen while leaving the surrounding commensal 
microbiota largely unaffected (Palma and Qi, 2024). A healthy rumen 
microbiota is central to the welfare and productivity of cattle. The 
microbial population in the rumen is responsible for the fermentative 
digestion that provides cattle with energy and protein. The interplay 
of the microbiota comprising diverse microbes, including bacteria, 
fungi, protozoa, and phages, creates a complex ecosystem (Tardiolo 
et al., 2025; Herdt, 2020a; Herdt, 2020b), and disruption may have 
significant consequences for the animal, underlining the advantage of 
phages which selectively target a specific pathogen while sparing 
beneficial microbiota, unlike broad-spectrum antimicrobials (Bardina 
et al., 2012; Alomari et al., 2021). Notably, a study concluded that a 
Salmonella phage cocktail did not affect the microbiota of the 
gastrointestinal tract of pigs (Thanki et  al., 2022). Furthermore, a 
comprehensive diversity of phages has been identified in the ruminant 
gastrointestinal tract, with most being lytic with a narrow host range 
(Wu et al., 2024). This natural occurrence of phages in the ruminant 
gastrointestinal tract suggests that phage therapy is ecologically 
compatible with the host and supports its safety, as therapeutic 
applications would build on microbial interactions that already exist 
in the environment. Studies have identified a diverse phage community 
in the ruminant gastrointestinal tract. While some reports suggest that 
lytic phages with a narrow host range dominate (Wu et al., 2024), 
others found that lysogenic phages may outnumber the lytic phages 
(Klieve et  al., 1996; Berg Miller et  al., 2012). This discrepancy 
highlights the need for more systematic characterization of the rumen 
virome. Still, in either case, the consistent presence of phages indicates 
that they are a natural and ecologically integrated component of the 
rumen microbiota and may be considered safe.

Developing efficient and safe phage 
cocktails

Phages are commonly isolated from environments where their 
bacterial hosts thrive, such as wastewater, sewage, and retail meat. 
While no phage cocktail specific to Salmonella Dublin has been 
developed, phages lysing this serovar were previously used for 
Salmonella subtyping (Smith, 1951; Lilleengen, 1950). Furthermore, 
candidates targeting different Salmonella enterica serotypes have been 
described (Martinez-Soto et al., 2024; Cortes-Ortega et al., 2024; Tao 
et al., 2021; Zheng et al., 2024; Wang et al., 2022; Zhu et al., 2022; Park 
et al., 2022; Rivera et al., 2018). To ensure safety and efficacy, only 
strictly lytic phages are selected, and genome analysis is used to 

exclude phages carrying undesirable traits, including genes encoding 
toxins, antibiotic resistance, or proteins implicated in horizontal gene 
transfer or allergic reactions (Gill and Hyman, 2010). Because 
individual phages typically have a narrow host range and bacteria can 
develop resistance, therapeutic applications rely on combining phages 
that recognize different receptors. For example, a phage cocktail 
consisting of five taxonomically diverse phages, targeting four different 
receptors: the O-antigen on LPS, BtuB, OmpC, and the core 
carbohydrates of LPS, effectively prevented resistance development in 
Salmonella Enteritidis (Martinez-Soto et al., 2024). Similarly, another 
study proved that a phage cocktail composed of phages utilizing 
different receptors delays the emergence of resistance compared to 
single phages (Gao et al., 2022). Importantly, developing resistance to 
multi-receptor cocktails often comes with fitness costs, such as an 
increased susceptibility to certain antibiotics (Gao et al., 2022). No 
cocktails exist for S. Dublin, but strategies from other Salmonella 
serotypes provide a framework for design, now strengthened by 
modern molecular tools, which can optimize phage cocktails. Here, 
tail fiber engineering by gene swapping allows phages to infect new 
hosts (Ando et al., 2015), CRISPR-Cas-assisted editing enables precise 
genome modifications (Martel and Moineau, 2014), and directed 
evolution can broaden host range (Lin et al., 2025).

Phage stability

For a phage cocktail to be efficient, the individual phages must 
survive the physiological conditions during applications, such as 
adverse temperatures and pH. Temperature is relevant for applications, 
storage, and production of phage cocktails. For example, a two-phage 
cocktail survived pelleting used in feed production, showing that 
phages may be administered to feed for prophylactic use, like vitamins 
are today (Thanki et al., 2022). Phage titers were stable in feed at 4 °C, 
whereas they reduced over time in feed at barn temperatures (10 and 
25 °C) and −20 °C (Thanki et al., 2022). For therapeutic application 
in cattle, phages should be stable at the animal body temperature of 38 
to 40.5 °C (Terra and Reynolds, 2020). Among the Salmonella Dublin 
phages characterized in literature, all except MSP1, for which no data 
are available on stability at 4 °C, are stable between 4 °C and 37 °C, 
indicating good prospects for use in cattle (Table 1). Two phages are 
stable at 50 °C, while the remaining exhibit a decline in viability at this 
temperature. Depending on the application, the pH levels at different 
anatomical sites are also relevant for phage viability. The highest 
stability among the phages was at pH 5–8 (Zheng et al., 2024; Wang 
et al., 2022; Zhu et al., 2022; Park et al., 2022) (Table 1), which would 
enable it to survive in the bovine venous blood and rumen, represented 
by pH levels between 7.31–7.53 and 5.56–5.56, respectively (Herdt, 
2020a; Herdt, 2020b). While the breadth of stability varies between 
phages, all the phages tested at a pH below 3 showed low viability, thus 
only causing challenges if the phages reach the abomasum, having a 
pH of 2 (Herdt, 2020a; Herdt, 2020b).

Clinical considerations

In clinical settings, it’s crucial to consider the intended outcome 
and method of administration when introducing new technology or 
medication. Different administration routes offer unique benefits and 
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drawbacks for phage applications and therapy. Among others, 
successful application routes described in literature include 
intravenous (Loponte et  al., 2021), topical (Kim et  al., 2024), 
intraperitoneal (Gao et al., 2022; Sun et al., 2025), and oral (Thanki 
et al., 2022; Tao et al., 2021). The choice of administration route will 
depend on the infection site, practicalities such as storage, and the end 
goal of treatment. Successful phage therapy was demonstrated by 
enhanced survival rates of mice infected with Salmonella Typhimurium 
after treatment with phage ZK22 (Sun et al., 2025). Also, prophylactic 
administration of feed pellets containing a two-phage cocktail caused 
a significant reduction in Salmonella colonization in the gut and fecal 
shedding of piglets (Thanki et al., 2022). However, phage cocktails are 
not always successful, as one study describes how the intradermal 
inoculation of a phage cocktail against Salmonella Montevideo was 
followed by successful delivery to lymph nodes. Despite high efficiency 
in vitro, the expected reduction in Salmonella levels was not proven, 
possibly due to internalization in bacterial cells like macrophages, 
leading to a loss of phage viability (Wottlin et al., 2022).

Salmonella Dublin’s intracellular survival complicates therapy as 
the phages must cross the host cell membrane; however, some phages 
can do so. For example, a lytic Salmonella-phage isolated from 
wastewater samples in China was shown to lyse intracellular 
Salmonella in macrophages (Tao et al., 2021). Furthermore, T4 phages 
can be taken up by mammalian cells and most remain active after 
internalization (Bichet et al., 2021). However, the internalization rate 

varies depending on size and phage genus (Bichet et al., 2021; Fajardo-
Lubian and Venturini, 2023). Novel strategies to optimize the 
efficiency of phages against Salmonella and other intracellular bacteria 
are being developed, including but not limited to nanocapping (Meng 
et al., 2022), engineering of phages (Fajardo-Lubian and Venturini, 
2023; Zhao et  al., 2023), synergetic combination with antibiotics 
(Fajardo-Lubian and Venturini, 2023), and liposome formulations 
(Fajardo-Lubian and Venturini, 2023; Yan et al., 2021; Colom et al., 
2015). The latter may help overcome the stability and 
internationalization in mammalian tissues.

Discussion

As the threat of antibiotic resistance increases, the need for 
alternative solutions like phages grows. Applying phage cocktails to 
treat Salmonella Dublin infections could reduce mortality and 
morbidity rates, helping farmers to mitigate significant economic 
losses (Nielsen et  al., 2013). When used prophylactically, phage 
applications may limit the appearance of new clinical cases and ensure 
that infected animals shed fewer bacteria. This will also reduce the 
prevalence of carriers by eliminating the low concentration of 
Salmonella Dublin, which represents a risk factor for developing 
carrier animals (Nielsen et  al., 2004). Used for decontaminating 
carcasses, meat, or milk, phages could minimize the risk of Salmonella 

TABLE 1  Characteristics of phages infecting and killing Salmonella Dublin.

Phage Isolation site Taxonomy Phage stability Phage stability

Temperature (°C) pH

4 25 37 50 <3 3 4 5 6 7 8 9 10 11 11< References

SP154 Raw sewage from 

a poultry farm 

Zhangjiagang City, 

China

Family: 

Schittoviridae

Genus: Ithacavirus

+ + + − − − − + + + + + + − − Zheng et al. 

(2024)

SP76 Domestic sewage 

in a sewage 

treatment plant 

Nanjing, China

Family: 

Demerecviridae

Subfamily: 

Markadamsvirinae

+ + + − − + + + + + + + + − − Wang et al. 

(2022)

PHB12 Sewage from pig 

farms in Hubei 

province, China

Family: 

Straboviridae

Subfamily: 

Tevenvirinae

Genus: RB69virus

+ + + + ND + + + + + + + − − − Zhu et al. (2022)

MSP1 Mix of 

environmental 

samples from 

poultry meat, 

feces, organs, soil 

and sewage, South 

Korea

Family: 

Demerecviridae

Genus: 

Epseptimavirus

ND + + + − − + + + + + + + − − Park et al. 

(2022)

+ A survival rate above 60% or no discernible reduction in phage titer after 60 min for phages SP154, SP76, PHB12 and 2 h for phage MSP1. Phage titer and survival rate were determined by 
counting surviving phages by the double-layer agar plate method after incubation at the temperatures and pH-levels depicted above.
− A survival rate below 60% in phage titer after 60 min for phages SP154, SP76, PHB12 and 2 h for phage MSP1. Phage titer and survival rate were determined by counting surviving phages by 
the double-layer agar plate method after incubation at the temperatures and pH-levels depicted above.
ND, Not determined.
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Dublin spreading from cattle to humans as a foodborne pathogen. 
Combining these with the directions described in the legislation, for 
example, the Danish eradication program (Ministeriet for Fødevarer 
LoF, 2022), would significantly contribute to eradication efforts in 
cattle herds, and a general decrease in contamination in food will lead 
to fewer human cases.

Yet, all these benefits rely on the development of efficient phage 
cocktails. While the literature specifically addressing S. Dublin is 
limited, many studies have focused on other serotypes, such as 
Salmonella Enteritidis (Chen et al., 2024; Barron-Montenegro et al., 
2022), and different animal hosts (Thanki et al., 2022; Sun et al., 2025). 
Interestingly, recently described broad-spectrum phages like SP154 
and MSP1 could lyse multiple serotypes, including S. Dublin (Zheng 
et al., 2024; Park et al., 2022), highlighting that some phages may cross 
serotype boundaries. Whether such phages or those characterized in 
other systems can be applied effectively against S. Dublin remains 
uncertain, as differences in phage receptors, epidemiology, and disease 
dynamics may influence their activity. Nonetheless, findings from 
related serotypes provide valuable insights into phage-host interaction 
and coevolution that can guide the rational design of phage cocktails 
targeting Salmonella Dublin.

The formulation and application of an efficient phage cocktail 
should ideally be guided by thorough clinical considerations about 
the physiological conditions in the animal, specific properties of the 
bacteria, and practical concerns such as production and storage. 
Different key aspects of stability are relevant, depending on the use of 
the phage cocktail. If the cocktail is applied to meat, carcasses, or 
other products to limit zoonotic transmission in the food chain, the 
phages should be stable at temperatures in abattoirs and refrigeration, 
as found for all the reviewed phages tested at these temperatures 
(Zheng et al., 2024; Wang et al., 2022; Zhu et al., 2022; Park et al., 
2022), If the cocktail will be  used in animals as a therapeutic or 
prophylactic agent, the chosen phages should be stable at the animal’s 
normal body temperature. All the investigated phages were stable at 
37 °C (Zheng et al., 2024; Wang et al., 2022; Zhu et al., 2022; Park 
et al., 2022), suggesting their potential use in mammals. Considering 
that cattle have a slightly higher body temperature (Terra and 
Reynolds, 2020), it would be helpful to measure stability at the exact 
temperature for use in cattle. Mainly because some phages showed a 
steep decline in viability at the following measuring point (50 °C) 
(Zheng et  al., 2024; Wang et  al., 2022), and even more so, if the 
cocktail is intended for use in animals with clinical symptoms of 
salmonellosis, such as high fever. Another critical aspect of 
environmental stability is the survival rate of phages at different pH 
levels. The highest survival rates were between pH 5–8 (Zheng et al., 
2024; Wang et al., 2022; Zhu et al., 2022; Park et al., 2022), which 
aligns well with the conditions found in the rumen and cattle blood 
(Herdt, 2020a; Herdt, 2020b; Terra and Reynolds, 2020), which looks 
promising for clinical use. Yet, the low viability of the phages at a pH 
below 3 may complicate oral administration due to the low pH in the 
abomasum, the final stomach compartment in cattle (Herdt, 2020a; 
Herdt, 2020b). Currently, methods to alleviate this challenge are being 
developed and tested. For instance, it has been shown that 
bacteriophages encapsulated in liposomes, spherical vesicles 
consisting of one or more phospholipid bilayers, were less prone to 
acid damage and had a longer intestinal retention time than 

non-encapsulated phages (Yan et al., 2021; Colom et al., 2015). When 
tested against Salmonella infection in a broiler model, the 
encapsulation increased the protection of the phages (Colom 
et al., 2015).

For Salmonella Dublin, the intracellular nature is of some concern 
for treatment therapy. However, phages were shown to internalize with 
variation in the rate by size and phage type (Bichet et al., 2021). This 
property would be beneficial to test before including a bacteriophage 
in a cocktail against Salmonella Dublin. A low internalization rate may 
require considering application and optimization strategies to 
be developed and implemented as part of the treatment (Meng et al., 
2022; Zhao et al., 2023; Yan et al., 2021; Colom et al., 2015). Research 
on rumen microbiota suggests that using a bacteriophage cocktail in 
pigs does not harm their digestive microbial communities (Alomari 
et al., 2021; Thanki et al., 2022). Yet, it is essential to recognize the 
differences between monogastric animals like pigs and ruminants 
such as cattle. Still, the narrow host range of phages, combined with 
the presence of lytic phages in the gastrointestinal tract of ruminants, 
indicates minimal risk to rumen health. This distinction sets phage 
therapy apart from traditional antibiotics, making it a promising 
alternative that may offer unique benefits.

Interestingly, the high clonality of Salmonella Dublin within a 
geographic area (Kudirkiene et  al., 2020; Fenske et  al., 2019; 
Leekitcharoenphon et al., 2023) poses an excellent opportunity for 
phage treatment, as phages may be able to infect an extensive host 
range if isolated for a specific region. Other considerations are 
essential for developing an efficient phage cocktail. For instance, the 
development of bacterial resistance (Barron-Montenegro et al., 2022; 
Chaturongakul and Ounjai, 2014) to phages may pose a problem for 
the efficacy of phage therapy, and, while it has shown that this 
resistance can come at a cost for the bacteria (Gao et al., 2022; Chen 
et al., 2024), it is still uncertain how this development would affect 
grand scale use and whether it is possible to anticipate and counteract 
this. More knowledge about phages, such as their specific receptors, 
could deepen the understanding of resistance and allow us to create 
phage cocktails that safeguard against resistance. Other aspects of 
phage therapy would be beneficial to explore further, including but 
not limited to the pharmacokinetics of phage cocktails, specific 
receptors of individual phages, the most efficient dosages and 
administration methods, and the development of solid manufacturing 
processes. As the basis of knowledge about phages grows, so does the 
potential of their use.

Conclusion

Despite ongoing eradication efforts, Salmonella Dublin is a 
zoonotic bacterium that causes severe human infections and 
significant economic losses in the agricultural sector. Phage cocktails 
may support eradication programs by targeting and killing Salmonella 
Dublin. Cocktails have already been successfully developed and tested 
against other serotypes of Salmonella. By screening for receptors and 
designing cocktails that focus on complementary interactions, 
effective phage cocktails can be  created with minimal risk of 
developing resistance. This resistance may be  linked to increased 
susceptibility to other phages or antibiotics.
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Certain clinical conditions associated with Salmonella Dublin 
infections could affect the effectiveness of phage cocktails. However, 
these challenges can be addressed through careful selection of phages, 
appropriate storage methods, application techniques, encapsulation, 
and newly developed optimization strategies for phage therapy. To fully 
harness the potential of bacteriophages in combating Salmonella 
Dublin, the production and application of these cocktails should rely 
on a thorough understanding of each phage’s characteristics and their 
interactions with hosts and the environment. Research in this area 
could promote the design of efficient and safe phage cocktails to 
combat Salmonella Dublin, ultimately benefiting humans and animals.
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