& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY

Hongjun Chen,

Chinese Academy of Agricultural Sciences,
China

REVIEWED BY
Jiangiang Ye,
Yangzhou University, China
Haijin Liu,
Northwest AGF University Hospital, China
*CORRESPONDENCE
Jingyue Bao
baojingyue@cahec.cn
Zhiliang Wang
wangzhiliang@cahec.cn

These authors have contributed equally to
this work

RECEIVED 02 September 2025
ACCEPTED 27 October 2025
PUBLISHED 21 November 2025

CITATION

Bao J, Jiang R, Wang S, Wang Q, Xu J, Zhao Y,

Liu Y, Li L, Wang X and Wang Z (2025)
Genomic characterization and evolution
analysis of peste des petits ruminants virus in
China from 2007 to 2024.

Front. Microbiol. 16:1697536.

doi: 10.3389/fmicb.2025.1697536

COPYRIGHT

© 2025 Bao, Jiang, Wang, Wang, Xu, Zhao,
Liu, Li, Wang and Wang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Microbiology

Frontiers in Microbiology

TYPE Original Research
PUBLISHED 21 November 2025
pol 10.3389/fmicb.2025.1697536

Genomic characterization and
evolution analysis of peste des
petits ruminants virus in China
from 2007 to 2024

Jingyue Bao'*, Ruiying Jiang*?!, Shujuan Wang®,
Qinghua Wang?, Jiao Xu?, Yunling Zhao?, Yutian Liu?, Lin Li?,
Xiaohua Wang! and Zhiliang Wang'*

!China Animal Health and Epidemiology Center, Qingdao, China, 2College of Wildlife and Protected
Area, Northeast Forestry University, Harbin, China

Peste des petits ruminants (PPR) is a highly contagious and lethal disease, primarily
affecting sheep, goats, and wild small ruminants. Genomic characterization and
evolutionary analysis of the circulating PPR virus (PPRV) strains can provide valuable
information for the implementation of efficient control measures. In this study,
we generated 28 novel PPRYV full-length genome sequences from clinical samples
collected during 28 PPR outbreaks in livestock and wildlife hosts across 15 provinces
in China from 2014 to 2021. These genome sequences were compared with 135
published PPRV genome sequences, 37 of which were collected from China. The
evolutionary rate of the PPRV genome was estimated to be 6.70 x 10~* nucleotide
substitutions per site per year. The predominant PPRV lineage IV can be divided
into seven clades, demonstrating the temporal and spatial correlation. PPRV in
China from 2007 to 2008 and 2013 to 2024 were grouped into two distinct genetic
clades in lineage 1V, indicating two independent incursions of the disease in 2007
and 2013. The PPRV in China from 2013 to 2024 shared a common ancestor with
a strain from the UAE and evolved into four distinct genetic clusters, which did not
exhibit distinct temporal, spatial, and host correlation. We used PPRV/XJYL/2013 as
the reference genome, and 997 single-nucleotide variations (SNVs) were identified
in PPRV genomes in China from 2013 to 2024. A total of five single-nucleotide
variations, located in the 3’ leader, 5" untranslated region (UTR) of the F gene, H
cds, and L cds, were identified as anchor mutations, which defined the genetic
clusters of PPRV during this period. One site in the H gene and five sites in the
L gene were identified under positive selection. Our study provides significant
insights into the molecular epidemiology, evolution, and transmission of PPRV,
which will support the development of effective strategies for PPR control and
eradication.

KEYWORDS

peste des petits ruminants virus, lineage IV, genomic epidemiology, evolution,
phylogenetic analysis

1 Introduction

Peste des petits ruminants (PPR) is a highly contagious and lethal viral disease that infects
sheep, goats, and wild small ruminants. PPR was first reported in Cote d’Ivoire in 1942. Since
then, it has been reported in Africa, Asia, the Middle East, and, recently, in Europe
(Donduashvili et al., 2018). PPR has severely impacted the development of the sustainable
small ruminant industry, seriously affecting the livelihoods, food security, and nutrition of
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small-scale farmers and pastoralists. The annual global impacts of PPR
have been estimated between US$1.4 billion and US$2.1 billion (Jones
et al,, 2016). The Food and Agriculture Organization of the United
Nations (FAO) and the World Organisation for Animal Health
(WOAH) have officially launched a global program to eradicate PPR
by 2030 (FAO, WOAH, 2022; OIE, FAO, 2015).

PPR is caused by the PPR virus (PPRV), a member of the genus
Morbillivirus in the family Paramyxoviridae. The genome of PPRV
is a non-segmented negative-strand RNA molecule of length 15,948
or 15,954 nucleotides (nt), encoding the nucleoprotein (N),
phosphoprotein (P), matrix protein (M), fusion protein (F),
hemagglutinin protein (H), and polymerase or large protein (L)
(Bailey et al., 2005; Bao et al., 2014). The P transcription unit also
encodes two non-structural proteins: C and V. Phylogenetic
analysis based on the partial sequence of the N gene (255 nt region,
nucleotide site 1,360-1,614 of the PPRV genome) or the F gene
(322 nt region, nucleotide site 5,779-6,100 of the PPRV genome)
has classified PPRV into four lineages (Kwiatek et al., 2007; Shaila
et al., 1996). Lineages I and II contained viruses from Africa;
lineage III included viruses from the Arabian Peninsula and Africa;
and lineage IV viruses were obtained from Asia and the Middle
East & Africa. In recent years, lineage IV viruses have dominated
Africa, Asia, the Middle East, and Eastern European regions.
However, why lineage IV is more widespread than the others
remains unclear.

Genomic epidemiological analyses based on full-genome sequences
of the virus have provided valuable information for interpreting field
epidemiology data and implementing efficient control measures (Guo
et al., 2025; Nyathi et al., 2024). The evolutionary dynamics of PPRV
have been studied to understand the origin of PPRV lineages (Mahapatra
et al,, 2021; Muniraju et al., 2014). Genomic evolutionary analysis of
PPRV in wildlife highlighted its dynamics at the livestock-wildlife
interface in Mongolia (Benfield et al, 2021). Comparative genomic
analysis revealed varying evolutionary dynamics between lineages IT and
IV (Courcelle et al., 2024). In addition, genomic epidemiology analysis
has been used to trace the evolution of PPRV in China from 2013 to
2014, in Israel from 1993 to 2014, and in Bangladesh from 2008 to 2020
(Bao et al., 2017; Clarke et al., 2017; Nooruzzaman et al., 2021). Large-
scale, detailed, and up-to-date studies on the genomic epidemiology and
evolutionary dynamics of PPRV lineage IV are urgently required to
address the challenges hindering global PPR eradication efforts.

In China, the first incursion of PPR was recorded in 2007 in the
Xizang province, which persisted until 2010 and faded thereafter (Wang
et al., 2009). Molecular phylogenetic analysis of partial N and F gene
sequences showed that the 2007 PPRV Chinese strains belonged to
lineage IV, forming a cluster with the strains collected in India, Nepal,
Bhutan, and Bangladesh. PPR was reintroduced in the Xinjiang province
of China in 2013, spreading across the country. It has sporadically
resurfaced in the country ever since (Banyard et al., 2014; Wu et al,,
2016). Molecular phylogenetic analysis shows that the PPRV strains
detected in China in 2013 clustered within a distinct clade of lineage IV
with strains obtained from Tajikistan, Kazakhstan, and Mongolia.
In-depth evolutionary analysis of full-length genome sequences has
classified 25 PPRYV strains from China (2013-2014) into five distinct
clusters (Bao et al, 2017). A few genome sequences have been
characterized for PPRV strains collected in China from 2018 to 2024 (Li
etal, 2019; Li et al,, 2021; Xu et al., 2024). However, the evolutionary
dynamics of PPRV lineage IV from 2014 to 2024 remain unknown.
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PPRV infection of wildlife in China has been reported in bharal
(Pseudois nayaur) (Bao et al., 2011), ibex (Capra ibex) (Li et al.,
2017; Xia et al., 20165 Zhu et al., 2016), argali sheep (Ovis ammon)
(Lietal., 2017), goitered gazelle (Gazella subgutturosa) (Li et al.,
2017), and Przewalski’s gazelle (Procapra przewalskii) (Li et al.,
2019). The partial N or F gene sequences or genome sequences of
PPRYV strains from these wildlife species have also been reported
in the country. However, the evolutionary dynamics of PPRV at the
livestock-wildlife interface in the country are yet to be studied.

In this study, we generated 28 novel PPRV full-length genome
sequences from clinical samples collected during 28 PPR outbreaks in
livestock and wildlife hosts in China from 2014 to 2021. We assessed
the genetic diversity of these sequences and other published PPRV
genomes obtained in the country. In addition, we conducted
phylogenetic analysis to study the evolutionary dynamics of PPRV in
livestock and at the livestock-wildlife interface between 2007 and
2024. Moreover, we investigated the single-nucleotide variations
(SNVs) in PPRV genomes to identify the anchor mutations that define
the genetic clusters of PPRV in China.

2 Materials and methods
2.1 Genome sequencing

PPRV genome sequences were obtained from tissue samples of
infected animals, collected from 28 PPR outbreaks in 15 provinces across
China from 2014 to 2021. Viral RNA was extracted and used directly for
viral genome sequencing. A total of 14 pairs of oligonucleotide primers
were used to amplify the 14 overlapping fragments by reverse
transcription-polymerase chain reaction (PCR), as previously described
(Bao etal., 2014). The PCR products were purified and sequenced with
an ABI 3730XL genome sequencer (Applied Biosystems, USA).

2.2 Genome sequences alignment and
recombination analysis

All PPRV genome sequences in the NCBI Nucleotide database were
obtained on 22 July 2024. The detailed information for each sequence,
including country, host, and collection date, was extracted and added
to the dataset. Vaccine strains were not included in this study. The
MAFFT software (version 7.475) was used to perform genome sequence
alignment and determine the nucleotide sequence similarity (Katoh
et al,, 2002). The RDP software (version 4.101) was used to analyze
recombination with seven different recombination detection methods
(RDP, GENECONYV, BootScan, MaxChi, Chimaera, SiScan, and 3Seq)
(Martin et al., 2015). The window size was set to 200, with all other
settings at default values. Events identified by at least five out of the
seven different detection algorithms with a p-value cutoft of 0.01 were
considered true recombinant events. The TempEst software was used to
assess the temporal signal of the sequence dataset (Rambaut et al.,, 2016).

2.3 Phylogenetic analysis

Time-scaled phylogenies of PPRV were reconstructed using the
Bayesian Markov Chain Monte Carlo (MCMC) methods in the
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BEAST package v1.8.2 (Drummond et al., 2012). JModelTest software
(v2.1.10) was used to select the most appropriate substitution models
(Darriba et al., 2012). The GTR + I + G substitution model under a
lognormal uncorrelated relaxed clock model with a coalescent
constant size model was used to analyze the dataset. The MCMC
chains of 4 x 10® generations were run for the analysis and sampled
every 40,000 generations. The Maximum-clade credibility (MCC)
trees were generated using TreeAnnotator v1.10.4 with a burn-in rate
of 10%. The convergence was examined using Tracer software v1.7,
where all parameters yielded an effective sample size (ESS) greater
than 200. FigTree v1.4.2 was used to summarize the phylogenies.

2.4 Phylogenetic network analysis

The genome PPRV/XJYL/2013, which was collected during the
first outbreak of PPR in Xinjiang province, China, in November 2013,
was selected as the reference genome. All the single-nucleotide
variations (SNVs) along the genome sequences of PPRV from 2013 to
2024 were extracted from the aligned dataset and listed in a matrix. All
the extracted SNVs were used to conduct phylogenetic network
analysis with the Network software (version 10.2) (Bandelt et al., 1999).
The median-joining network and the Steiner algorithms were applied.
The network plot was manually adjusted for better visualization.

2.5 Detection of selection pressures

Positive selection in the dataset was detected using single
likelihood ancestor counting (SLAC), fixed effects likelihood (FEL),
mixed effects model of evolution (MEME), and fast unconstrained
Bayesian approximation (FUBAR) with the Hyphy software
(Kosakovsky Pond and Frost, 2005). When identified by at least two
algorithms, sites were considered under positive selection.

10.3389/fmicb.2025.1697536

3 Results
3.1 The genomic diversity of PPRV in China

For this study, we obtained 28 PPRV full-length genome sequences
from 28 outbreaks in 15 Chinese provinces from April 2014 to
February 2021 (Supplementary Table S1). These genomes were
collected from sheep or goats (23 genomes), bharals (2), goitered
gazelles (2), or Siberian ibex (1). All the sequences shared an identical
length of 15,954 nt. To investigate the genomic diversity of PPRV in
China, these genomes were combined with 30 Chinese PPRV genomes
previously obtained in our laboratory and 7 Chinese PPRV genomes
submitted to the NCBI Nucleotide database by other laboratories
(Supplementary Table S1). In total, 65 PPRV full-length genome
sequences, representing 65 PPRV outbreaks in 23 provinces in China
from 2007 to 2024, were used for further analysis (Figure 1A).

Pairwise sequence similarity was calculated to investigate the
genome-wide diversity of PPRV in China. The overall genome-wide
sequence similarity of PPRV strains from 2007 to 2024 varied by 96.5
to 100% (Figure 1B). As expected, the PPRV strains obtained from
China during 2007-2008 displayed a lower sequence similarity (96.5-
97.3%) to the strains collected between 2013 and 2024. The sequence
similarity among PPRV strains isolated between 2007 and 2008
ranged from 99.8 to 100% and that among strains isolated between
2013 and 2024 ranged from 98.5 to 100%.

3.2 Phylogenetic analysis of PPRV in China
from 2007 to 2024

For phylogenetic analysis, 106 PPRYV field strain genome sequences
from other countries were retrieved from the NCBI nucleotide
database on 22 July 2024. In total, eight sequences (KR828814.1,
KJ867541.1, KY967609.1, OK274213.1, OR286481.1, KY967608.1,

Legend
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FIGURE 1

Geographic distribution and sequence similarity of PPRV genome sequences in China. (A) Location of infected farms where the PPR viruses were
collected and sequenced. Domestic cases are represented by circles, wildlife cases are represented by triangles, and red represents cases sequenced in
this study. (B) Sequence similarity matrix plot of PPRV genome sequences in China. The level of identity of pairwise genome sequences is indicated by
different colors. Dark red represents 100% identity, and blue represents lower identity.
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MW960272.1, and KR261805.1) with signatures of recombination by
at least five of the seven different detection algorithms were extracted
(p <0.01) (Supplementary Table S2). The curated dataset of 98 PPRV
strains was combined with 65 PPRV genomes from China to create a
set of 163 PPRV genome sequences for further phylogenetic analysis
(Supplementary Table S1). These genomes were obtained from 10
countries in Asia (107 genomes) and 21 countries in Africa (56
genomes) from 1969 to 2024 (Supplementary Figure S1). Sheep or
goats (144 genomes), bharals (4), goitered gazelles (3), Mongolian
saiga (2), Siberian ibex (2), Barbary sheep (1), wild goat (1), Nubian
ibex (1), dorcas gazelle (1), mountain gazelle (1), and Przewalski’s
gazelle (1) acted as the host for these PPRV genomes.

Root-to-tip regression analysis was employed to assess the
temporal signal from the alignment of 163 PPRV genome sequences
sampled between 1969 and 2024. The analysis highlighted a strong
association between genetic distance and sampling date, with a
correlation coeflicient of 0.8812 and a coefficient of determination (R?)
of 0.7765 (Supplementary Figure S2). The time-resolved phylogenetic
analysis of 163 PPRV genome sequences indicated that their mean
evolutionary rate was estimated to be 6.70x 10™* nucleotide
substitutions per site per year (95% highest posterior density [95%
HPD], 5.63 x 107% 7.87 x 107 Figure 2). In addition, the time-resolved
phylogenetic analysis of 115 PPRV lineage IV genome sequences
indicated their mean evolutionary rate was 7.54 x 10~ nucleotide
substitutions per site per year (95% highest posterior density [95%
HPD], 5.98 x 107% 9.12 x 107*). The root age of all the lineage [V PPRV
genomes was estimated to be December 1966 (95% HPD, March 1937-
May 1984). The 115 PPRV lineage IV strains clustered into seven clades
showing temporal and spatial correlation, which were designated clades
4.1-4.7 (Figure 3). The time to the most recent common ancestry
(TMRCA) of the different clades of lineage IV PPRV ranged from April
1982 to April 2008 (Table 1). PPRV strains from 2007 to 2008 and 2013
to 2024 in China were grouped into clade 4.6 and clade 4.7, respectively.

Monophyletic grouping of all sequences in clade 4.6 was strongly
supported (100% posterior probability). The TMRCA of clade 4.6 was
estimated to be April 2001 (95% HPD: April 1997-May 2004). In clade
4.6, all four PPRV genomes in China (2007-2008) shared a single origin
and had a common ancestor with a cluster of two PPRV strains collected
from Bangladesh between 2008 and 2017. Clade 4.6 also included a
cluster of six strains from India (2014-2016) and a singleton of a strain
from the UAE in 2018. Clade 4.6 was inferred to have originated in
Bangladesh, with strong support (100% root state posterior probability).
In addition, monophyletic grouping of all the sequences in clade 4.7 was
strongly supported (100% posterior probability). The TMRCA of clade
4.7 was dated to June 2002 (95% HPD: February 1996-March 2008). In
clade 4.7, all the PPRV genomes in China (2013-2024) and Mongolia
(2016-2017) shared a single origin (sub-clade 4.7.1) and a common
ancestor with a PPRV strain from the UAE in 2021 (sub-clade 4.7.2).
The latest divergence of PPRV sub-clade 4.7.2 was 7.5 years earlier than
the TMRCA of sub-clade 4.7.1. The country of origin for clade 4.7 was
inferred UAE with high support (100% root state posterior probability).

3.3 Subgroup divergence of PPRV in China
from 2013 to 2024

Time-resolved phylogenetic analysis was performed for all 61
PPRV genomes from China (2013-2024). Sequences collected from
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23 different provinces in China from 2013 to 2024 were divided into
four distinct clusters, designated cluster 4.7.1a-4.7.1d (Figure 4):
cluster 4.7.1a contained two early strains, China/XJLY/2013 and
China/NX/2014; cluster 4.7.1b included 36 strains collected from 2013
to 2024; and cluster 4.7.1c included 21 strains collected from 2014 to
2016. The monophyletic grouping of cluster 4.7.1d was strongly
supported. It contained two PPRV strains collected from goitered
gazelle in Xinjiang province between March 2016 and March 2017
(99.92% posterior probability).

All the PPRV strains in clusters 4.7.1a, 4.7.1b, and 4.7.1c shared a
single origin, which dated back to January 2011 (95% HPD, May 2008;
March 2012). However, the latest divergence of PPRV from cluster
4.7.1d to the common ancestor of clusters 4.7.1a, 4.7.1b, and 4.7.1c
dated back to December 2009 (95% HPD, January 2002; March 2012),
which was 13 months earlier than the TMRCA of the common
ancestor of clusters 4.7.1a, 4.7.1b, and 4.7.1c. The cluster 4.7.1b strains
emerged in 2013 and were sampled every year until 2024, except 2019
and 2021 (Figure 5E). The cluster 4.7.1c strains emerged in 2014 and
faded after 2016. It is indicated that PPRV cluster 4.7.1b has been the
temporally dominant cluster in China. PPRV strains from different
years are interspersed in cluster 4.7.1b or cluster 4.7.1¢c, with no
distinct temporal correlation among the strains in each cluster.

The geographical distribution of PPRV from China (2013-2024)
was further investigated. Clusters 4.7.1a and 4.7.1d strains were
collected only from Xinjiang province (Figures 5A-D). Cluster 4.7.1b
strains were found to be widely distributed across 19 provinces,
covering all seven geographic regions in the country (Figure 5B).
Cluster 4.7.1c strains were collected from 12 provinces across five
geographic regions, with no sample from Northeast China or
Northwest China (Figure 5C). Samples from different provinces
intermixed in clusters 4.7.1b and 4.7.1c, with no sign of within-
province or within-region clustering. For instance, a strain collected
in Xizang province in 2024 was most closely related to a strain
collected in Shaanxi province in 2020.

The distribution of PPRV sequences at the livestock-wildlife
interface was further investigated. Except for the monophyletic
grouping of two strains from the goitered gazelle in Xinjiang into
cluster 4.7.1d, all the other 5 wildlife strains were grouped into cluster
4.7.1b (Figure 5F). In cluster 4.7.1b, it was of interest that a strain from
bharal in Xizang in 2021 was grouped with a strain from bharal in
Qinghai in 2021 with strong support (100% posterior probability).
However, the other 3 sequences from wildlife were interspersed with
those from sheep or goats. For instance, a strain from Siberian ibex in
Xinjiang in 2016 was grouped with a strain from a goat in Jiangsu in
2015 with strong support. A strain from Przewalski’s gazelle in Gansu
in 2018 was grouped with a strain from a goat in Guangxi in 2016 with
strong support. The PPRV China/XZ/2024 from bharal in Xizang in
2024 was most closely related to a strain from a goat sampled in
Shaanxi in July 2020 (100% posterior probability).

3.4 Identification of anchor mutations in
PPRV genomes collected in China from
2013 to 2024

To trace the occurrence and possible fixation of mutations
during the evolution of PPRV in China from 2013 to 2024,
we investigated the single-nucleotide variations (SNVs) in PPRV
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genomes. A total of 997 SNVs were identified and listed in a matrix
(Figure 6A). Five SNV were identified as anchor mutations, which
were fixed in all sequences in the corresponding clusters. The gene
location and codon position of each anchor mutation were displayed
(Figure 6B). The distribution of amino acid changes of each anchor

Frontiers in Microbiology

mutation was also investigated (Figure 6C). Sequences in cluster
4.7.1a shared one non-synonymous mutation, C8644T (C1313T/
Pro438Leu in H gene). Sequences in cluster 4.7.1b were distinguished
from other clusters by two mutations (T101C and T107C) in the 3
leader region of the genome. Cluster 4.7.1c was defined by one
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non-synonymous mutation (T15125C) in the L gene (T5832C/
Tyr1944) and one mutation (A7200G) in the 5 UTR region of

the F gene.
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Median-joining phylogenetic network was constructed based on
SNVs to explore the evolutionary relationship of PPRV in China from

2013 to 2024. In total, four clusters were identified mutationally
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TABLE 1 Estimated TMRCA for different clades of the lineage IV PPRV phylogeny.
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branching from a single common node (Figure 7). The putative ancestor
of cluster 4.7.1a was derived from the common node by one anchor
mutation (C8644T), and the putative ancestor of cluster 4.7.1b was
derived by two anchor mutations—T101C and T107C. Furthermore,
the putative ancestor of cluster 4.7.1c was derived from the common

Frontiers in Microbiology

node by two anchor mutations—A7200G and T15125C. Mutational
branches in clusters 4.7.1b and 4.7.1c formed star-like radiation
topology, indicating a single origin and the expansion of strains in the
cluster. Expansion of long branches in cluster 4.7.1b suggested that it
was the dominant circulating cluster in China in recent years.
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3.5 Measure of selection pressures in
lineage IV PPRV genomes

Site-specific selection pressures were measured as the ratio of
non-synonymous (dN) to synonymous (dS) nucleotide substitutions per
site to infer sites subjected to positive selection in the coding sequences
of the H and L genes. Using a posterior probability of 0.95 for FUBAR,
one site in the L gene was identified as under positive selection. Using
the default threshold of significance of p < 0.1, one site in the H gene and
five sites in the L gene were identified using the MEME and FEL
methods. Amino acid 438 in the H gene was identified as under positive
selection by both MEME and FEL methods (Supplementary Table S3).

4 Discussion

Our estimation of the evolutionary rate of 163 PPRV genomes
collected between 1969 and 2024 is 6.70 x 10™* nucleotide substitutions

Frontiers in Microbiology

per site per year (95% HPD, 5.63 x 107% 7.87 x 10™*), which is
consistent with previous studies (Supplementary Table S4) (Benfield
etal, 2021; Clarke et al., 2017; Courcelle et al., 2024; Mahapatra et al.,
2021). The evolutionary rate of 115 PPRV lineage IV genomes
collected from Africa and Asia between 1994 and 2024 was estimated
as 7.54 x 107" nucleotide substitutions per site per year (95% HPD,
5.98 x 107% 9.12 x 10~*), which is slightly faster than that of all other
PPRYV lineages. The widespread circulation of lineage IV PPRV in
Africa and Asia, mass vaccination, large population of sheep and
goats, and the inadequate biosecurity measures in the sheep and goat
industries of Africa and Asia may have accelerated the evolution of the
virus. The median TMRCA for lineage IV PPRV was estimated to
be 1966 (95% HPD, March 1937-May 1984), which is equivalent to
previous estimates (Supplementary Table S5) (Benfield et al., 2021;
Clarke et al., 2017; Courcelle et al., 2024; Mahapatra et al., 2021).
This study supports that the PPRV clade 4.6 in China (2007-
2008) shared a common origin with strains from India and
Bangladesh, dating back to April 2001. However, we were unable to
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ascribe its country of origin due to a data gap for these countries,
which are not represented by PPRV genome sequences or have a
limited number of published PPRV genome sequences. Previous
molecular phylogenetic analysis on N and F partial sequences also
illustrated that Chinese PPRV strains from 2007 to 2008 were most
closely related to the strains collected in India during 1999-2015,
Nepal during 2005-2016, Bhutan in 2010, and Bangladesh during
2008-2017 (Kumar et al., 2014; Nooruzzaman et al., 2021). Among
these countries, PPRV genome sequences from Nepal and Bhutan are
not publicly available, and the Bangladesh PPRV genome sequence
from 2001 to 2017 is unpublished. Moreover, the genome sequences
of PPRV in India between 2001 and 2017 are limited. Prior studies
demonstrated that sequencing a higher number of PPRV samples can
dramatically improve the resolution of PPRV phylogenetic structure
and enable finer molecular dating of PPRV (Bao et al., 2017).
Information on other genome sequences of PPRV strains circulating
in South Asia will likely improve our knowledge of the molecular
epidemiology of PPRV clade 4.6 in the region. Despite the elimination
of PPRV clade 4.6 in Tibet, China, after the last outbreak in 2010,
understanding the evolutionary dynamics of PPRV in South Asia will
help allocate the risk of re-incursion of PPRV clade 4.6 into China.

Frontiers in Microbiology

The study concluded that PPRV in China (2013-2024) clustered
with five strains from Mongolia (2016-2017) and one strain from the
UAE in 2021 into a distinct clade (clade 4.7), sharing a common
ancestor dating back to 2002. The molecular phylogenetic analysis
based on N and F partial sequences showed that the PPRV 2013-2024
strains in China were most closely related to strains obtained in Iran
from 2014 to 2016, Pakistan from 2010 to 2014, Tajikistan in 2004, and
Kazakhstan in 2014 (Kock et al., 2015; Marashi et al., 2017; Shahriari
etal, 2019; Wu et al., 2016). It is well demonstrated that PPRV clade
4.7 has been circulating in the region since the 2000s. However, efforts
to investigate the transmission route of PPRV clade 4.7 from the UAE
to China were hindered by the lack of PPRV genome sequence in the
Middle East and Central Asia. Knowledge of genome sequences of
PPRV strains from Central Asia will improve our understanding of
the transmission patterns of PPRV clade 4.7 in the region.

The 13-month time span between the divergence of cluster 4.7.1d
and the common ancestor of the other 4.7.1 clusters suggests that their
incursions are unlikely to have occurred in the same period. Previous
studies have established that PPRV was first introduced into the Yili
region of Xinjiang province in 2013 (Wu et al., 2016). However, the
origin and transboundary transmission route of this incursion remain
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Phylogenetic network of PPRV genomes in China from 2013 to 2024. The network was constructed from the SNVs in the genome sequences. Circle
nodes represented PPRV strains, which were proportional to the number of taxa. Each notch on the links represents a mutation event. Blank dots
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unclear. This study highlights that the two PPR outbreaks in goitered
gazelles in the Akesu region of Xinjiang province in 2016 and 2017
may have been caused by another unnoticed incursion. This suggests
that goitered gazelles might play an important role in the transboundary
transmission of PPR in the region. Goitered gazelle (G. subgutturosa)
is widely distributed in the Middle East, Central Asia, and West China
and Mongolia, where PPRV-associated outbreaks have been widely
reported among these ruminants. In 2001, at least 1,500 wild goats and
gazelles (G. subgutturosa), exhibiting clinical signs similar to those
caused by PPRYV infection, died in Kavir National Park in Iran (Marashi
et al., 2017). During the winters of 2005/2006 and 2008/2009, PPRV
infection in rhim gazelle (G. subgutturosa marica) and other wild
ruminants in the UAE was confirmed (Kinne et al., 2010). The outbreak
of PPR in goitered gazelle (G. subgutturosa) and other wild ungulates
in Mongolia was laboratory-confirmed in December 2016 (Benfield
et al., 2021). The cross-border movements of goitered gazelles may
have facilitated the transboundary transmission of PPR from the
neighboring countries into the Xinjiang province in China. This
finding highlights the significance of intensified surveillance for PPR
in wildlife in border regions for early detection of a PPR outbreak.
This is the first study to identify anchor mutations and help define
PPRYV genetic clusters in China. The genomic regions harboring these
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anchor mutations have been determined, including the 3 leader region,
5 UTR of the F gene, and the H and L genes. These anchor mutations
can serve as candidate molecular markers for genetic characterization
of PPRYV circulating in China and help trace the transmission of this
virus in the country. The mutations in these genomic regions might
be vital to the adaptation of PPRV to the large population of sheep and
goats in China. In vitro experiments suggest that one mutation in the
leader region of the PPRV genome affects virus replication (Eloiflin
etal., 2019). The H protein plays a significant role in mediating the entry
of PPRV virion particles into the cell and triggering an effective humoral
response, which supplements protection against PPRV (Gaur et al.,
2024; Rojas et al., 2018). It has been demonstrated that the long M-F
UTR of the measles virus controls virus replication and
cytopathogenicity (Takeda et al., 2005). The function of F-H UTR
remains unclear. The L protein of the Morbillivirus genus is a
multifunctional catalytic protein that transcribes and replicates the viral
genomic RNA. It also performs mRNA capping, methylation, and
polyadenylation (Ansari et al., 2019). The effects of these anchor
mutations on the viral antigenicity, transmissibility, and pathogenicity
of PPRV need to be further investigated.

Our study enhanced the understanding of PPRV evolutionary
dynamics. It verified a strong monophyletic relationship among all
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PPRV genome sequences from China between 2013 and 2024,
which share a common ancestor with one strain from the
UAE. Through phylogenetic analysis, we identified four different
genetic clusters of PPRV in China between 2013 and 2024, with
one cluster being the predominant lineage. Moreover, we identified
five anchor mutations that define these PPRV genetic clusters in
China between 2013 and 2024. This study serves as a valuable
example of how genomic epidemiology can be used to trace the
evolution of PPRV. Such efforts will play an important role in
helping develop effective strategies for PPR control and global
eradication initiatives.
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