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Background: Type 2 diabetes mellitus (T2DM) is a public health challenge that
urgently needs to be addressed globally. Short-chain fatty acids (SCFAs), as
metabolic products of gut microbiota, have increasingly attracted attention for
their role in the pathogenesis of T2DM. This study employs bibliometric and
visual analysis methods, aiming to systematically depict the knowledge structure,
research hotspots, and future directions in this field.
Method: We screened 965 publications on SCFAs and T2DM from the Scopus
and Web of Science Core Collection databases. Visual analysis was conducted
by using tools such as VOSviewer and CiteSpace.
Result: Since 2016 publications in this field have increased rapidly. China leads in
publication volume, while the United States plays a central role in collaboration
and academic influence. Key contributors include Max Nieuwdorp and Fredrik
Bäckhed. King’s College London shows strong academic impact, and Nature
is the most influential journal. Keyword analysis highlights the importance of
“gut microbiota,” “metabolomics,” “microbial metabolism,” “insulin resistance,”
and “dietary intervention.” These topics suggest future research will focus on
signaling pathways, personalized nutrition, and microbial interventions.
Conclusions: The current research focuses on a deep exploration of the role
and mechanism of SCFAs in T2DM, and it aims to transition from basic research
to clinical research. In terms of application, clinical workers are shifting from
macroscopic dietary intervention to more precise dietary formulation strategies.
The development of technologies such as metabolomics is expected to provide
more powerful support for basic research and promote further progress in
this field.

KEYWORDS

short-chain fatty acids, type 2 diabetes, gut microbiota, metabolomics, microbial
metabolism, dietary intervention, bibliometric analysis

1 Introduction

T2DM is a chronic metabolic disorder that has become a significant
global public health issue (Danaei et al., 2011). It is defined by hyperglycemia,
insulin resistance, and low-grade inflammation, predominantly impacting the
metabolism of glucose, lipids, and proteins. This chronic metabolic imbalance
is believed to arise from the interplay of genetic and environmental variables,
encompassing diet, lifestyle, and gut flora. According to credible sources,
approximately 828 million adults worldwide were estimated to have diabetes in 2022,
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the vast majority being type 2 diabetes, with prevalence increasing
markedly in both men and women compared with 1990 (Zhou
et al., 2024). Numerous consequences, such as kidney failure,
neuropathy, and cardiovascular disease, are closely linked to T2DM
(Stratton, 2000; Lu et al., 2024). Not only does it severely reduce
patients’ quality of life and increase their economic burden, but it
also imposes enormous pressure on the medical system (Cannon
et al., 2018).

In the past few years, there has been a surge in the number
of studies that have emphasized the importance of the intestinal
microbiota and its metabolites in the development of T2DM
(Canfora et al., 2019; Hosomi et al., 2022). SCFAs represent one of
the principal metabolites of the gut microbiota, consisting primarily
of acetate, propionate, and butyrate. They are generated under
the anaerobic conditions of the intestine through the microbial
fermentation of fermentable carbohydrates such as dietary fiber,
resistant starch, and oligosaccharides (Cummings et al., 1987).
Current studies suggest that SCFAs regulate host metabolism
through multiple pathways and thereby influence the progression
of T2DM (Lin et al., 2012; Yamashita et al., 2007). On one
hand, SCFAs tend to activate specific G protein-coupled receptors
(GPCRs) (Li et al., 2018), trigger intestinal L cells to generate
GLP-1 and PYY (Tolhurst et al., 2012), increase the production
of insulin, and improve insulin sensitivity (Drucker, 2018). On
the other hand, they help to maintain the intestinal barrier’s
effectiveness (Kelly et al., 2015) and successfully lessen intestinal
endotoxin leaks into the circulation, which lowers the systemic
inflammatory response (Zhang and Mo, 2023). Moreover, the gut’s
pH can drop due to SCFAs generation, establishing an acidic milieu
that is detrimental to pathogenic bacteria while promoting the
proliferation of beneficial bacteria, thus aiding in the preservation
of long-term metabolic equilibrium (Den Besten et al., 2013). These
mechanisms collectively demonstrate the pivotal role of SCFAs in
regulating T2DM (Mukhopadhya and Louis, 2025; Pham et al.,
2024).

The number of studies on SCFAs and T2DM continues
to increase. However, previous studies have not systematically
summarized global trends, core hotspots, or evolving directions
in this field. Bibliometric analysis, by evaluating publication
output, collaboration networks, and keyword co-occurrence, can
reveal the knowledge structure and emerging frontiers of a
research domain (Jiang et al., 2023). In medical research, this
approach has been extensively employed to identify prevalent
research trends and offer recommendations for future paths (Ganti
et al., 2025). Therefore, this study combines bibliometric and
visualization strategies for performing a system evaluation of
publications on SCFAs and T2DM from 1995 to 2024 to provide
researchers with a macroscopic perspective and evidence to inform
future investigations.

2 Methods

2.1 Sources of information and search
methods

The WoSCC and Scopus databases were the sources of
information for these publications. The search was conducted on

TABLE 1 Search strategies and results for each database.

Databases Search strategies

Scopus #1 TITLE-ABS-KEY = (“short-chain fatty acid∗” OR “short
chain fatty acid∗” OR “fatty acids, volatile” OR “volatile fatty
acid∗” OR “SCFA∗”)

#2 TITLE-ABS-KEY = (“Diabetes Mellitus, Type 2” OR
“Diabetes Mellitus, Type II” OR “Diabetes Mellitus,
Non-insulin Dependent” OR “Type 2 Diabetes Mellitus” OR
“Non-insulin Dependent Diabetes Mellitus” OR “Type 2
Diabetes” OR “Diabetes, Type 2” OR “T2DM”)

#3 Document Type = Article or Review

#4 Language = English

#5 PY = (1995–2024)

#6 #1 AND #2 AND #3 AND #4 AND #5

#7 #6 NOT TITLE-ABS-KEY = (“type 1 diabet∗” OR T1DM
OR “gestational diabet∗”)

Web of science
core collection

#1 TS = (“short-chain fatty acid∗” OR “short chain fatty
acid∗” OR “fatty acids, volatile” OR “volatile fatty acid∗” OR
“SCFA∗”)

#2 TS = (“Diabetes Mellitus, Type 2” OR “Diabetes Mellitus,
Type II” OR “Diabetes Mellitus, Non-insulin Dependent”
OR “Type 2 Diabetes Mellitus” OR “Non-insulin Dependent
Diabetes Mellitus” OR “Type 2 Diabetes” OR “Diabetes,
Type 2” OR “T2DM”)

#3 Document Type = Article or Review Article

#4 Language = English

#5 PY = (1995–2024)

#6 #1 AND #2 AND #3 AND #4 AND #5

#7 #6 NOT TS = (“type 1 diabet∗” OR T1DM OR
“gestational diabet∗”)

May 10, 2025. The main search terms included SCFAs and T2DM,
along with related free-text terms. Table 1 describes each database’s
unique search approach. The search encompassed publications
published from January 1, 1995, until December 31, 2024. Figure 1
illustrates the comprehensive screening process.

2.2 Literature screening and data extraction

Records from Scopus were exported as complete entries in CSV
format, while records exported from WoSCC were obtained as
“complete records and cited references” in plain text format. All the
data was downloaded in a single day to maintain consistency. Two
researchers (ZLK and JRS) independently screened the literature.
They reviewed titles, abstracts, and references, then cross-checked
all included studies.

Inclusion criteria: (1) Research type: Publicly published
original research articles (Article) or systematic reviews/review
articles (Review) (2) Research Object/Topic: The research must
simultaneously involve the following two core contents: ① Research
related to SCFAs, such as their levels, metabolism, or mechanisms
of action ② Human studies, animal models, or cellular mechanism
studies related to T2DM. (3) Language: English. (4) Publication
period: January 1, 1995, to December 31, 2024.
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FIGURE 1

Schematic of data collection and screening.

Exclusion criteria for publications: (1) Publication type:
Exclude conference abstracts, editorials, letters, reviews, book
chapters, and other non-research or non-review literature. (2)
Literature not related to the research content, for example: ① The
application of SCFAs in non-biomedical fields such as ruminant
nutrition, wastewater treatment, and industrial fermentation ②

Type 1 diabetes, gestational diabetes, or other types of diabetes,
and T2DM have not been clearly distinguished or discussed. ③

SCFAs have not been directly measured or discussed. Studies that
only briefly mention “gut microbiota” or “dietary fiber” (3) cannot
obtain the full text of the literature.

2.3 Data analysis

Bibliometric analysis employs mathematical and statistical
methods. This method is considered a quantitative analysis
methodology that reveals the hotspots and present condition of a
study topic while forecasting its future development. This approach
enables a comprehensive assessment of research trajectories across
several aspects, among them research hotspots, networks of
collaboration, and temporal trends (Barrington et al., 2023).

R-Studio is used to plot the annual growth trend of publications
(Aria and Cuccurullo, 2017), and SCImago Graphica (version
1.0.39) is used to analyze the scientific research output and
cooperation pattern of countries and regions (Hassan-Montero
et al., 2022). VOSviewer (version 1.6.20) is dedicated to building
and measuring co-occurrence/collaboration/co-citation networks
(country, institution, journal, author, keyword co-occurrence) and
outputting overlay views (Van Eck and Waltman, 2010); CiteSpace
(version 6.3.R1) is used for keyword burst analysis (Chen, 2004);
Pajek only performs layout and beautification on the large-scale
network exported by VOSviewer, without changing any weights or
metrics, to enhance the readability of the image (Chen et al., 2025).

3 Results

3.1 Annual publication trends

Figure 2 shows the changing trends of the annual and
cumulative publication volumes in this field from 1995 to
2024, which can be divided into three stages: (1) The start-up
period (1995–2009): The output was relatively small; (2) Initial
growth period (2010–2014): Output steadily increased; (3) Rapid
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FIGURE 2

The annual and cumulative publication number from 1995 to 2024.

TABLE 2 Top 10 countries/regions by publication volume.

Rank Label Documents n = 965 Citations CPP Total link strength

1 China 407 (42.18%) 20,587 50.58 64

2 USA 135 (13.99%) 15,766 116.79 86

3 Netherlands 53 (5.49%) 12,300 232.08 55

4 UK 50 (5.18%) 8,824 176.48 58

5 Australia 40 (4.15%) 2,770 69.25 35

6 Spain 38 (3.94%) 5,830 153.42 50

7 Canada 36 (3.73%) 4,678 129.94 18

8 Italy 36 (3.73%) 3,429 95.25 29

9 Sweden 34 (3.52%) 9,288 273.18 40

10 Germany 32 (3.32%) 7,143 223.22 38

expansion period (2015–2024): Witness explosive growth. The two
linear regression models in the figure describe the overall average
situation of historical data, corresponding to “annual articles” and
“cumulative articles,” respectively. Here, y represents the number of
articles published annually or the cumulative total of articles up to a
certain year, and x represents the year. The linear regression model
for the annual publication volume is y = 5.2547x−10531. The
coefficient of determination is R² = 0.6772. The linear regression
model of the cumulative publication volume is y = 26.788x−53697,
and the coefficient of determination is R² = 0.6269. This field saw
a major rise in research over the last 10 years. The upward trend is
expected to continue.

3.2 Country and regional analysis

Publications on T2DM and SCFAs come from 75 different
countries. Table 2 lists the 10 nations in the world that
produce the largest quantities. China ranked first with 407

papers (42.18%), followed by the United States with 135 papers
(13.99%) and the Netherlands with 53 papers (5.49%). The
United Kingdom and Australia ranked fourth and fifth, with 50
papers (5.18%) and 40 papers (4.15%), respectively. In terms of
total citation counts, China leads with 20,587 citations, followed
by the United States with 15,766 and the Netherlands with
12,300. Regarding the intensity of international cooperation,
the United States ranks first with a total link strength of 86,
followed by China with 64 and the United Kingdom with 58.
Finally, in terms of citations per publication (CPP), Sweden ranks
first, with the Netherlands and Germany in second and third
place, respectively.

Figure 3A shows the international collaboration network
generated with VOSviewer. Each node represents a country
or region, with node size weighted by publication volume.
The thickness of the connecting lines indicates the strength
of collaboration. The visualization uses publication volume
(documents) as the weighting parameter, while the color scale
reflects the average citation impact of each country. Lighter
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FIGURE 3

Country/region visual analysis. (A) Country/region co-authorship of publication and citation overlay map. (B) World map of countries/regions’
distribution in this field.
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TABLE 3 Top 10 authors by publication volume.

Rank Author Documents Country/Region Institutions Citations

1 Max Nieuwdorp 17 Netherlands University of Amsterdam 2,355

2 Wei Chen 8 China Jiangnan University 509

3 Jielun Hu 8 China Nanchang University 817

4 Medha Priyadarshini 8 USA University of Illinois Chicago 369

5 Bin Liu 7 China Fujian Agriculture and Forestry
University

176

6 Valentina Tremaroli 7 Sweden University of Gothenburg 5,208

7 Xinhua Xiao 7 China Peking Union Medical College
Hospital

283

8 Hao Zhang 7 China Jiangnan University 379

9 Qian Zhang 7 China Peking Union Medical College
Hospital

274

10 Fredrik Bäckhed 6 Sweden University of Gothenburg 7,753

colors indicate higher average citation influence. Figure 3B further
illustrates the global co-occurrence of countries and regions. The
results show that this research topic is distributed worldwide,
reflecting broad international attention and participation.

3.3 Author analysis

Research on T2DM and SCFAs has been provided by 5,147
authors overall. The top 10 most productive authors’ publication
and citation statistics were gathered in Table 3, who collectively
published 82 papers. As shown in Figure 4A, nodes represent
authors, and the size of nodes represents the number of published
articles. Dutch scholar Max Nieuwdorp ranked first with 17
publications. Chinese scholars Wei Chen and Jielun Hu, along with
U.S. scholar Medha Priyadarshini, each published eight papers,
tying for second place. Among the top 10 prolific authors, six
were from China, which shows the remarkable activity of Chinese
scholars in this field.

The frequency of citations is a crucial indicator for assessing
an author’s impact. This survey revealed 75 writers with more than
1,000 citations, with Table 4 displaying the 10 most often cited
experts. Swedish scholar Fredrik Bäckhed leads with 7,753 citations,
indicating significant academic influence; Valentina Tremaroli of
the same institution ranked second with 5,208 citations. Austrian
scholar Herbert Tilg and Dutch scholar Max Nieuwdorp ranked
third and fourth with 2,448 and 2,355 times respectively. Notably,
Max Nieuwdorp and Valentina Tremaroli appear on both the most-
productive and most-cited lists, underscoring their significant
contributions to this field.

3.4 Institutional analysis

A total of 1,303 institutions’ relevant publications were
retrieved in this study (Figure 4B). Each node represents an
institution, with node size indicating the number of published

articles and color scales reflecting the average citations per article.
Lighter colors denote higher average citation impact. In terms of
the number of published articles (Table 5), Nanchang University of
China ranked first with 20 articles, followed closely by University
of Amsterdam of the Netherlands with 19 articles. In terms of
academic influence, King’s College London in the UK has the
highest citation count, with a total of 3,369 citations, followed
by the University of Amsterdam in the Netherlands with 3,191
citations (Table 6). The University of Amsterdam not only ranks
second in the number of published papers, but also performs
outstandingly in citation influence, indicating that it has both
output and influence in this field.

It is notable that the University of Amsterdam, Shanghai Jiao
Tong University, and University of Groningen appear both among
the top 10 institutions by publications and the top 10 institutions
by citations. This shows that these institutions have outstanding
overall strength in the field.

3.5 Journal analysis

During the past nearly 30 years, research on SCFAs and T2DM
has been published across 398 journals. A network representation
of these journals can be seen in Figure 5, nodes represent journals,
node size indicates the number of published articles, and color
scales reflect the average number of citations per article for each
journal. The lighter the color, the higher the average citation
influence of the research.

Table 7 enumerates the 10 journals with the highest number
of publications. In terms of publication volume, the journal
Nutrients ranked first with 51 papers (H-index = 75), followed by
Frontiers in Endocrinology with 31 papers (H-index = 52) and
Food & Function with 30 papers (H-index = 53). These three
journals also ranked among the highest in total link strength,
indicating their strong academic cohesion and influence within
the field.
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FIGURE 4

(A) Map visualizing author co-occurrence. (B) Organization of publication and citation overlay map.

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1697421
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fmicb.2025.1697421

TABLE 4 Top 10 authors by citation rate.

Rank Author Citations Documents Country/Region Institutions

1 Fredrik Bäckhed 7,753 6 Sweden University of Gothenburg

2 Valentina Tremaroli 5,208 7 Sweden University of Gothenburg

3 Herbert Tilg 2,448 5 Austria Medical University of Innsbruck

4 Max Nieuwdorp 2,355 17 Netherlands University of Amsterdam

5 Koen Venema 2,106 5 Netherlands Maastricht University

6 Willem Meindert de Vos 1,939 4 Netherlands Wageningen University

7 Edward C. Deehan 1,854 3 Canada University of Alberta

8 Kassem Makki 1,843 1 Sweden University of Gothenburg

9 Jens W. Walter 1,843 1 Ireland University College Cork

10 Nathalie M. Delzenne 1,816 4 Belgium Université catholique de Louvain

TABLE 5 Top 10 institutions by publication volume.

Rank Organization Documents Citations Total link strength Country

1 Nanchang University 20 1,342 10 China

2 University of Amsterdam 19 3,191 28 Netherlands

3 Jiangnan University 14 585 32 China

4 Shanghai Jiao Tong University 12 2,967 23 China

5 Monash University 11 1,070 23 Australia

6 Beijing University of Chinese
Medicine

11 898 12 China

7 Zhengzhou University 11 164 18 China

8 Fujian Agriculture and Forestry
University

9 670 16 China

9 University of Groningen 8 2,891 23 Netherlands

10 Chengdu University of Traditional
Chinese Medicine

8 271 9 China

In terms of citation impact (Table 8), Nature published only
three papers but received 7,003 citations, with 2,334 references
annually for each article, ranking first. Nutrients ranked second,
with 51 papers accumulating 5,617 citations (an average of 110
citations per paper). Gut ranked third, with four papers receiving
2,605 citations (an average of 651 citations per paper). Science
contributed only two papers but achieved 2,430 citations (an
average of 1,215 citations per paper).

3.6 Keyword analysis

Key words reflect the main idea and core content of
publications. Through co-occurrence and cluster analysis of key
words, the distribution of research topics, field hotspots, and
frontier directions can be revealed (Zhong et al., 2022). Figure 6A
shows nodes representing keywords, with node size indicating
the frequency of keyword occurrence. Table 9 presents the top 20
keywords of Co-occurrence Frequency, among which the most
common keyword is “SCFAs” (n = 726), “type 2 diabetes” (n =
709), and “gut microbiota” (n = 663), which together represent

the central themes of this field. Other high-frequency keywords
included “glucose” (n = 386), “metabolism” (n = 352), “obesity”
(n = 350), “gut microbiome” (n = 317), “insulin resistance” (n =
281), “diet” (n = 269), and “inflammation” (n = 230).

We generated a keyword co-occurrence map using VOSviewer
and refined the layout in Pajek to improve visual clarity. This
process identified six clusters. As shown in Figure 7A, each node
represents a keyword. The node size indicates the frequency
of the keyword, and different colors mark different thematic
clusters. The themes were identified through an integrated
analysis of the most frequent and most central keywords within
each cluster. The yellow cluster highlighted the core of the
research field, focusing on dietary interventions involving SCFAs
in relation to T2DM.Keywords include “diet,” “whole grain,”
“low fat diet,” “fruit,” “fermentation,” and “sugar intake.” The
green cluster focuses on gut microbiota and microbiology,
examining their roles in SCFAs production and T2DM. Keywords
include “bacteroides,” “firmicutes,” “lactobacillus,” “ruminococcus,”
“probiotics” and “synbiotics.” The Red Cluster focuses on SCFAs
regulating T2DM-related signaling pathways. Keywords include
“ffar3,” “glp-1,” “insulin,” “leptin,” “interleukin 6,” and “signal
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TABLE 6 Top 10 institutions by citation rate.

Rank Organization Documents Citations Total link strength Country

1 King’s College London 4 3,369 29 UK

2 University of Amsterdam 19 3,191 28 Netherlands

3 Maastricht University 7 3,074 16 Netherlands

4 Shanghai Jiao Tong University 12 2,967 23 China

5 University of Groningen 8 2,891 23 Netherlands

6 Medical University of Innsbruck 5 2,448 13 Austria

7 Katholieke Universiteit Leuven 2 2,239 23 Belgium

8 Wageningen University & Research 6 2,036 11 Netherlands

9 King Abdulaziz university 4 2,020 22 Saudi Arabia

10 University of Copenhagen 6 1,948 26 Denmark

FIGURE 5

An overlay visualization of the number of journal citations.

transduction.” The blue cluster (middle right) focused on animal
experiments investigating the function of SCFAs in glucose
metabolism. Keywords include “animal experiment,” “mouse,”
“rat,” “streptozotocin,” and “correlation analysis.” The Purple
Research Group has examined the impact of acetate, propionate,
and butyrate, which are specific SCFAs, on T2DM. Keywords
include “acetic acid,” “butyric acid,” “propanoic acid,” “intestinal
mucosa,” “permeability,” and “zonulin.” The light-blue cluster

(far left) concentrated on metabolomics approaches, underscoring
their importance in elucidating the relationship between SCFAs
and T2DM.Core keywords include “metabolomics” and common
small-molecule analytes in metabolomics, such as “amino acid,”
“acylcarnitine,” “leucine,” and “taurine.”

By overlaying time on the keyword clustering map, we
analyzed changes in research directions within the field. Figure 7B
shows the average publication year of keywords. The color
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TABLE 7 Top 10 journals by publication volume.

Rank Journal Documents Citations Total link strength IF2024 H-Index

1 Nutrients 51 5,617 117 5 75

2 Frontiers in Endocrinology 31 1,026 74 4.6 52

3 Food & Function 30 1,188 89 5.4 53

4 International Journal of
Biological Macromolecules

27 851 24 8.5 101

5 International Journal of
Molecular Sciences

23 1,794 38 4.9 114

6 Frontiers in Microbiology 18 1,142 45 4.5 88

7 Frontiers in Nutrition 16 423 36 5.1 –

8 Frontiers in Immunology 13 1,278 12 5.9 84

9 Food Research International 13 576 30 8 134

10 Journal of Functional Foods 12 388 37 4 63

TABLE 8 Top 10 journals by citation rate.

Rank Journal Citations Documents Total link strength IF2024 H-Index

1 Nature 7,003 3 52 48.5 1,096

2 Nutrients 5,617 51 117 5 75

3 Gut 2,605 4 12 25.8 262

4 Science 2,430 2 51 45.8 1,058

5 Cell Host & Microbe 2,049 3 11 18.7 147

6 British Journal of Nutrition 1,971 9 51 3 166

7 International Journal of
Molecular Sciences

1,794 23 38 4.9 114

8 Nature Reviews
Endocrinology

1,661 5 20 40 116

9 Nature Medicine 1,573 2 40 50 497

10 Circulation Research 1,286 1 2 16.2 306

of each node represents the average year when the keyword
became a research hotspot. Blue indicates earlier occurrence,
while yellow indicates more recent occurrence. In the early
stage (blue nodes), keywords such as “acylcarnitine,” “unsaturated
fatty acid,” “acetate,” “ffar3,” “colon,” and “fatty acid oxidation.”
During the early-to-middle transitional stage (blue-green nodes),
keywords such as “diet,” “obesity,” “cell,” “taurine,” “Sprague Dawley
rat,” and “whole grain.” In the middle stage (green nodes),
keywords such as “acetic acid,” “glp-1,” “insulin,” “leptin,” “lipolysis,”
“metabolic disorder,” “microbiology,” “scfas,” “type 2 diabetes,”
“glucose,” and “protein expression.” In the later stage (yellow–red
nodes), keywords such as “bifidobacterium bifidum,” “systematic
review,” “animal experiment,” “streptozocin,” “synbiotics,” and
“correlation analysis.”

Burst keyword analysis can reveal the emergence, development,
and decline of research hotspots and help researchers identify
emerging fields, frontier directions, and future trends (Li, 2017).
As shown in Figure 6B, the red bar chart to the right of each
keyword indicates the duration of the outbreak for that keyword.
The figure displays 20 burst keywords in studies of SCFAs and

T2DM. The keyword “gastrointestinal tract” exhibited the strongest
burst intensity (Strength = 14.58), followed by “obesity” (Strength
= 13.68) and “fermentation” (Strength = 9.02). “Glucose tolerance”
is the keyword with the highest continuous attention.

3.7 Citation analysis

A total of 20,131 references were cited among the 965 included
publications, with 44 of those citations occurring more than 20
times. Table 10 enumerates the 10 most co-cited references in the
domain of SCFAs and T2DM, comprising nine research articles
and one review, with co-citation counts ranging from 37 to 90. As
shown in Figure 8A, each node represents a publication. The size
of a node reflects the number of citations. The larger the node,
the higher the number of citations and the greater the influence.
The lines connecting nodes indicate the co-citation relationship.
The most frequently co-cited reference was a scholarly paper in
Nature by Qin et al. (2012) (impact factor 48.5), which was co-cited
90 times.
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FIGURE 6

(A) Map visualizing keyword co-occurrence. (B) Top 20 view of keywords bursts analysis.

Across all publications, 84 articles received more than 200
citations. Table 11 lists the top ten most cited works, including
three articles and seven reviews. Figure 8B shows the node size,

which reflects the citation frequency of the publication. The larger
the node, the higher the number of citations and the greater the
impact, the largest node corresponds to the review by Tremaroli
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TABLE 9 Top 20 keywords of co-occurrence frequency.

Rank Keyword Occurrences Total link
strength

1 SCFAs 726 18,440

2 type 2 diabetes 709 18,349

3 gut microbiota 663 16,179

4 glucose 386 11,728

5 metabolism 352 10,481

6 obesity 350 9,193

7 gut microbiome 317 10,015

8 insulin resistance 281 8,458

9 diet 269 6,811

10 inflammation 230 6,438

11 glucose blood level 195 7,567

12 probiotics 179 5,652

14 microbiology 151 5,084

15 mouse 150 5,410

16 dysbiosis 147 5,141

17 GLP-1 146 4,662

18 animal experiment 130 5,547

19 lipid metabolism 127 5,187

20 insulin sensitivity 126 4,286

published in Nature (Tremaroli and Bäckhed, 2012), which has
been cited 3,689 times, ranking first in Table 10 with an impact
factor of 48.5. The second and third positions are occupied by
the reviews authored by Makki et al. (2018) and Sonnenburg and
Bäckhed (2016), with 1,843 and 1,749 citations, respectively.

4 Discussion

4.1 General information

This study uses bibliometric methods to analyze research
related to SCFAs and T2DM, and it can be observed that
researchers’ attention to this field has increased year by year in
recent years. In the initial stage, the research mainly focused on the
substrate metabolism related to SCFAs in T2DM, such as resistant
starch and high fiber diet (Alles et al., 1999; Wolever et al., 2002).
During the early stage, research gradually turned to how dietary
interventions affect the production of SCFAs and to exploring their
mechanisms in the development of T2DM (Tolhurst et al., 2012;
Cornall et al., 2013). After 2015, the development of technologies
such as metabolomics accelerated publication growth (Clish, 2015),
accompanied by a surge of animal experiments and clinical trials.
These studies explored the preventive and therapeutic effects of
SCFAs or their precursors, such as dietary fiber and prebiotics, on

T2DM, with growing attention to individual variability (Vliex et al.,
2024; Zhang et al., 2020).

China has the largest number of publications, while the
United States shows the highest total link strength. Both countries
have made important contributions to this research field. It is
worth noting that, in terms of average citations per paper, which
reflect the average impact of research, European countries such
as Sweden and the Netherlands perform better. Several factors
may contribute to this. On the one hand, these countries have
infrastructure such as large cohorts and microbiome sample banks,
which supports high quality empirical research. For example, the
Dutch Microbiome Project is a large-scale study on the function
of gut microbiota (Gacesa et al., 2022). These achievements are
the result of long-term accumulation. This also indicates that
research in this field started earlier in these countries, and their
publications have had more time to accumulate citations. On the
other hand, since English is the main language in these countries
and their publications are often in open access or top journals,
their work is more easily noticed and cited by the international
academic community.

Dutch scholar Max Nieuwdorp and Swedish scholar Fredrik
Bäckhed were identified as the most productive and the most
frequently cited authors, respectively. Nieuwdorp has focused on
the relationship between gut microbiota and various diseases,
emphasizing the regulatory role of SCFAs in human health (Baars
et al., 2024; Kullberg et al., 2025). Medha Priyadarshini and
Jielun Hu concentrated on SCFAs receptors (FFAR2/3, GPR109A)
and their roles in glucose metabolism, intestinal barrier function,
and inflammation (Priyadarshini et al., 2016; Nie et al., 2020).
Xinhua Xiao and Qian Zhang investigated the mechanisms of
drug-mediated modulation of gut microbiota (Guo et al., 2025;
Ding et al., 2022). Wei Chen and Hao Zhang explored probiotics
and functional foods (Zhu et al., 2025), while Bin Liu focused on
dietary polysaccharides and hepatic pathways in improving insulin
resistance and lipid metabolism (Lee et al., 2024).

We found that the highly cited scholars mainly concentrate
their research interests in the following areas. Fredrik Bäckhed,
Valentina Tremaroli, Herbert Tilg, and Max Nieuwdorp focus
on animal experiments, human intervention studies, and review
analyses, seeking to elucidate the processes by which gut microbiota
influence host metabolism (Tremaroli and Bäckhed, 2012; De
Vos et al., 2022; Wu et al., 2017). Edward C. Deehan, Kassem
Makki, Jens Walter, Nathalie M. Delzenne, and Koen Venema
primarily investigate how dietary fibers and prebiotics enhance
SCFAs production, with particular attention to their applications
in nutritional interventions and metabolic regulation (Den Besten
et al., 2013; Makki et al., 2018; Seethaler et al., 2022; Yang et al.,
2013). Willem M. de Vos emphasizes the identification of key
functional bacteria and their translational applications, which have
advanced the practical implementation of microbiome research
findings (Zhang et al., 2024).

From the perspective of institutional distribution, seven of
the top 10 institutions by publication volume are from China,
highlighting the contribution of Chinese institutions in this field.
Among the top 10 institutions by citation count, four are from
the Netherlands, reflecting the strong academic influence of Dutch
institutions in this area. Among the top 10 journals in terms of
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FIGURE 7

(A) Keywords clustering visualization. (B) Keywords intensity visualization timing overlay.

publication volume, five focus on food science and nutrition, two
on molecular biology, and the remaining three belong to the fields
of endocrinology, microbiology, and immunology, respectively.

These journals have a strong disciplinary correlation with each
other, reflecting the interdisciplinary characteristics of this research
topic. And although Nature and Science have published relatively
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TABLE 10 Top 10 references by co-cited.

Rank First author Journal Title Publication
type

Citations IF2024

1 Junjie Qin Nature A metagenome-wide association study of gut
microbiota in type 2 diabetes

Article 90 48.5

2 Fredrik H. Karlsson Nature Gut metagenome in European women with
normal, impaired and diabetic glucose control

Article 56 48.5

3 Nadja Larsen Plos one Gut microbiota in human adults with type 2
diabetes differs from non-diabetic adults

Article 45 2.6

4 Liping Zhao Science Gut bacteria selectively promoted by dietary fibers
alleviate type 2 diabetes

Article 44 45.8

5 Ara Koh Cell From Dietary Fiber to Host Physiology:
Short-Chain Fatty Acids as Key Bacterial
Metabolites

Review 41 42.5

6 Gwen Tolhurst Diabetes Short-chain fatty acids stimulate glucagon-like
peptide-1 secretion via the G-protein-coupled
receptor FFAR2

Article 40 7.5

7 Zhanguo Gao Diabetes Butyrate improves insulin sensitivity and increases
energy expenditure in mice

Article 39 7.5

8 Peter J. Turnbaugh Nature An obesity-associated gut microbiome with
increased capacity for energy harvest

Article 39 48.5

9 Patrice D. Cani Diabetes Changes in gut microbiota control metabolic
endotoxemia-induced inflammation in high-fat
diet-induced obesity and diabetes in mice

Article 38 7.5

10 Patrice D. Cani Diabetes Metabolic endotoxemia initiates obesity and
insulin resistance

Article 37 7.5

few papers in this field, their high citation rates highlight their
leading academic influence.

Co-citation analysis of references facilitates the rapid
accumulation of domain knowledge and helps identify research
dynamics. In this study, the top 10 most frequently cited 10
references were further analyzed and categorized into four groups
based on their research content. (1) Population-based observational
studies: Larsen et al. (2010) utilized 16S pyrosequencing and qPCR
in Danish adult males, revealing a substantial integration of the
relative number of particular bacterial phyla and plasma glucose
concentrations. Qin et al. (2012) used shotgun metagenomic
sequencing in Chinese adults and found gut microbiota dysbiosis
in T2DM patients, distinguished by a significant decrease in
bacteria that produce butyrate. Karlsson et al. (2013) investigated
European women and, through metagenomic clustering (MGCs),
reported heightened prevalence of Lactobacillus and diminished
prevalence of Clostridium in people with T2DM. (2) Clinical
dietary intervention studies: Zhao et al. intervened in Chinese
T2DM patients through a high-fiber diet, combined with fecal
microbiota transplantation experiments, revealed an increase
in 15 SCFA-producing bacterial strains. These changes were
closely associated with reductions in HbA1c, elevations in
GLP-1 and PYY, and improvements in glycemic control (Zhao
et al., 2018). (3) Mechanistic studies: Tolhurst et al. (2012)
conducted experimental studies incorporating wild-type mice
and FFAR2/FFAR3 knockout mice. They demonstrated that
acetate, propionate, and butyrate promote GLP-1 secretion via
FFAR2/3, thereby influencing glucose metabolism. Gao et al.
(2009) supplemented butyrate in mice subjected to a high-fat

diet and discovered that it enhanced energy expenditure and
improved insulin sensitivity. Cani et al. (2007, 2008), through
mouse experiments, revealed that bacterial lipopolysaccharide
(LPS) levels were closely associated with inflammation, metabolic
disturbances, and endotoxemia. Turnbaugh et al. (2006) compared
obese and lean mice, demonstrating that concentrations of acetate
and butyrate were markedly increased in the cecum of fat mice. (4)
Review studies: Koh et al. (2016) offered an in-depth investigation
of the origins and targets of SCFAs, emphasizing that butyrate
and propionate can suppress histone deacetylases (HDACs) to
modulate gene transcription. SCFAs can also directly activate
GPCRs, thereby modulating multiple signaling pathways and host
physiological functions.

We further analyzed the top 10 most cited publications and
found that their research themes were primarily centered on
diet mediating the microbiota, generating SCFAs, and regulating
the chain of metabolic processes and associated mechanisms.
Diet composition and microbial metabolism: Tremaroli and
Bäckhed (2012); Makki et al. (2018); Sonnenburg and Bäckhed
(2016); Zhao et al. (2018) focused on the influence of dietary
structure on gut microbiota and metabolic outcomes, providing
theoretical support for the dietary fiber-driven modulation of
SCFAs production Mechanistic insights: De Vos et al. (2022) and
Tang et al. (2017) systematically described the mechanisms of
SCFAs in T2DM, indicating that SCFAs activate GPR41/43 to
promote the production of PYY and GLP-1, consequently affecting
hunger, energy metabolism, and insulin release. Prebiotics and
gut environment: Roberfroid et al. (2010) emphasized the health
effects of prebiotics, noting that fermentable fibers can alter the gut
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FIGURE 8

(A) Co-citation analysis cited reference. (B) Map visualizing cited publications.

environment (e.g., reduce fecal pH) and modulate the SCFA profile.
Drugs and microbiota remodeling: Forslund et al. (2015) and
Wu et al. (2017) reported that metformin and other medications

reshape the gut microbiota, with part of their metabolic effects
mediated through alterations in community structure. Microbiota
composition and disease associations: Magne et al. (2020) analyzed
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TABLE 11 Top 10 publications by citations.

Rank First author Journal Title Publication
type

Citations IF2024

1 Valentina Tremaroli Nature Functional interactions between the gut
microbiota and host metabolism

Review 3,689 48.5

2 Kassem Makki Cell Host and
Microbe

The impact of dietary fiber on gut microbiota in
host health and disease

Review 1,843 18.7

3 Justin L.
Sonnenburg

Nature Diet–microbiota interactions as moderators of
human metabolism

Review 1,749 48.5

4 Liping Zhao Science Gut bacteria selectively promoted by dietary fibers
alleviate type 2 diabetes

Article 1,633 49.5

5 Kristofer Forslund Nature Disentangling type 2 diabetes and metformin
treatment signatures in the human gut microbiota

Article 1,565 48.5

6 Fabien Magne Nutrients TheFirmicutes/Bacteroidetes ratio, a relevant
marker of gut dysbiosis in obese patients?

Review 1,556 5

7 Marcel Roberfroid British Journal of
Nutrition

Prebiotic effects: metabolic and health benefits Review 1,514 3

8 Willem M. de Vos Gut Gut microbiome and health: mechanistic insights Review 1,502 25.8

9 Hao Wu Nature Medicine Metformin alters the gut microbiome of
individuals with treatment-naive type 2 diabetes,
contributing to the therapeutic effects of the drug

Article 1,296 50

10 Wai Hong Wilson
Tang

Circulation
Research

Gut microbiota in cardiovascular health and
disease

Review 1,286 16.2

the correlation between gut microbial makeup and disease
progression, emphasizing how varying community patterns may
influence the onset of metabolic problems.

The research in the above-mentioned hotspot literature mainly
focuses on dietary interventions, such as increasing dietary
fiber intake or supplementing with probiotics, to regulate the
composition and function of the gut microbiota and promote
the production of key metabolites such as SCFAs. Acting as
core signaling molecules, SCFAs activate GPCRs and inhibit
HDACs, thereby regulating the host’s hormone secretion, glucose
and lipid metabolism, and inflammatory responses. This series
of studies, from population observation, clinical intervention to
molecular mechanism, jointly confirmed the key role of SCFAs in
regulating T2DM.

4.2 Research hotspots

Keyword analysis can reveal the research hotspots of the
discipline and reflect the knowledge structure. We summarize the
research hotspots in the field by interpreting these six clusters,
which are summarized into three parts, they are, respectively the
generation of SCFAs, the research on the mechanism of SCFAs
mediating T2DM, and the application of omics technology.

4.2.1 Generation of SCFAs
The core of the yellow cluster, “dietary intervention,”

and the core of the green cluster, “gut microbiota,” jointly
constitute the regulatory axis of SCFAs generation. Research
indicates that high-fiber dietary patterns, exemplified by the
Mediterranean diet, can significantly increase SCFA levels, enhance
intestinal barrier integrity, and diminish plasma concentrations

of lipopolysaccharide-binding protein, thereby contributing to
the regulation of T2DM onset and progression (Seethaler et al.,
2022; Salamone et al., 2021). These studies point the way to
the modulation of T2DM through dietary promotion of SCFAs
production. At the same time, the production of SCFAs is closely
related to the composition of gut microbiota, and enhancing the
beneficial bacteria that produce SCFAs in the gut helps maintain
host metabolic homeostasis (Antony et al., 2023). Supplementing
with probiotics or prebiotics can increase the abundance of
beneficial bacteria such as Lactobacillus and Bifidobacterium
in the gut, thereby raising SCFAs levels (Li et al., 2021). In
recent studies, “prebiotics” can serve as a key dietary factor.
By promoting the growth of probiotics and optimizing the
intestinal environment, they can increase the production of SCFAs
such as acetic acid and butyric acid, playing a crucial role in
improving insulin secretion and regulating appetite (Kume et al.,
2018; Baba et al., 2025) The core of this process is “microbial
metabolism,” which refers to the gut microbiota producing a
variety of bioactive products, including SCFAs, by breaking down
substrates such as dietary fiber and prebiotics (Baba et al., 2025;
Myhrstad et al., 2020). Emerging research hotspots further focus
on specific functional bacteria, such as Akkermansia muciniphila
within the Verrucomicrobia phylum, which can produce acetate
and propionate to enhance the gut barrier (De Vos, 2017; He
et al., 2023). And the genus Ruminococcus, which is positively
correlated with dietary fiber intake, has main metabolic products of
butyric acid and propionic acid, which are crucial for maintaining
energy metabolism (Yang et al., 2013; Van-Wehle and Vital,
2024). The production of SCFAs depends on the supply of
dietary substrates and the metabolic activity of the gut microbiota.
In terms of diet, particularly the intake of high fiber and
prebiotics, it can influence SCFAs production by shaping the
gut ecosystem.
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4.2.2 Research on the mechanism of SCFAs
mediating T2DM

The red cluster focuses on SCFAs that regulate T2DM related
signaling pathways. SCFAs can act as compounds to activate various
GPCRs, including GPR41/FFAR3 and GPR43/FFAR2 (Brown et al.,
2003). These receptors are widely expressed in enteroendocrine
cells, pancreatic β-cells, adipose tissue, liver, and immune cells.
Upon activation, they stimulate the secretion of gastrointestinal
hormones, including GLP-1 and PYY, thereby increasing insulin
release, inhibiting glucagon secretion, and improving glucose
homeostasis (Kimura et al., 2014; González Hernández et al., 2019).
Meanwhile, the purple cluster focuses on mechanistic studies of
specific SCFAs, such as acetate, propionate, and butyrate. Acetate
has been shown to activate the AMPK pathway, thereby promoting
energy metabolism and lipid oxidation, and improving energy
balance (Frost et al., 2014). Propionic acid can act as a substrate
for gluconeogenesis to regulate glucose homeostasis (Todesco et al.,
1991) and participate in lipid metabolism by inhibiting HMG-
CoA reductase (Lin et al., 1995). Butyrate is essential for the
protection of the intestinal barrier, contributing to the integrity
of the intestinal epithelium and the tightness of its connections,
which reduces endotoxin translocation into the bloodstream,
decreases inflammation and improves insulin sensitivity (Xu et al.,
2018). In addition, butyrate promotes peripherally induced Treg
cell differentiation, enhances immune tolerance, and attenuates
pancreatic inflammation (Hao et al., 2021). These findings
emphasize the multiple roles of different types of SCFAs in energy
metabolism, glucose and lipid homeostasis, intestinal barrier,
and immune regulation, and provide a theoretical basis and
research direction for intervening in T2DM by targeting SCFAs
mechanisms. Meanwhile, the effectiveness of these mechanisms
is mainly verified through animal experiments, as shown by blue
clustering. A meta-analysis of SCFAs intervention in a diabetic
mouse model showed that butyrate could reduce triglyceride (TG),
total cholesterol (TC), and fasting blood glucose (FBG) levels in
T2DM mice (Zheng et al., 2024). Overall, the related studies mainly
explored the deep mechanism through animal models, and found
that SCFAs can effectively regulate the onset and progression of
T2DM through the physiological regulatory network of multi-level
and multi-targets. At the signal transduction level, SCFAs regulates
the release of enteroendocrine hormones (such as GLP-1 and PYY),
insulin secretion and inflammatory response by activating GPCRs.
At the metabolic level, they are involved in energy homeostasis and
lipid metabolism, promote glucose utilization and improve insulin
sensitivity. At the same time, SCFAs can maintain the integrity of
the intestinal barrier, reduce endotoxin translocation, and inhibit
chronic low-grade inflammation; its immunoregulatory effects can
also promote the differentiation of anti-inflammatory cells and
restore metabolic homeostasis.

4.2.3 Omics technologies and applications of
SCFAs in T2DM

The light blue cluster reveals the central role of metabolomics
as a cutting-edge technology in advancing research in this field.
Analytical techniques represented by gas chromatography–
mass spectrometry (GC-MS) and liquid chromatography–mass

spectrometry (LC-MS) provide essential technical support for
the precise quantification of SCFAs and other metabolites,
as well as for elucidating the complex interactions between
the gut microbiota and the host (Saha et al., 2021; Llauradó
et al., 2025). Untargeted metabolomics is also widely applied
to explore the roles of microbial metabolites in metabolic
diseases. For example, some researchers have revealed the
mechanism by which fecal microbiota transplantation improves
T2DM mouse models through an integrated study combining
untargeted metabolomics and 16S rRNA analysis (Yang et al.,
2023). With technological advancements, research hotspots
are gradually shifting from the macroscopic “phylum” level
toward analyses at the functional genus and species levels.
Integrated analyses combining metabolomics, metagenomics,
and transcriptomics have enabled researchers to focus on specific
beneficial microbial communities.

4.3 Clinical translation and future trend
analysis

In recent years, multiple studies have shown from different
levels that interventions surrounding SCFAs production may
provide new pathways for the management of T2DM. A clinical
trial found that the combination of probiotics and metformin
can reshape the fecal microbiome composition of patients with
T2DM, especially by increasing the abundance of various SCFAs-
producing bacteria. Meanwhile, their combination significantly
enhances the hypoglycemic effect and increases insulin secretion,
improving pancreatic function (Chen et al., 2023). A randomized
crossover trial showed that short-term supplementation with
multivitamins and minerals, at doses near recommended levels,
also altered the gut microbiota composition and metabolite profile
in healthy adults, characterized by increased levels of SCFAs such
as propionate and butyrate. It is worth noting that this effect is
not determined solely by the supplement but is influenced by
the individual’s existing dietary structure (Mckirdy et al., 2025).
In terms of dietary intervention, the high-fiber diet proposed by
the researchers can significantly improve the SCFAs level in feces
and simultaneously improve clinical outcomes such as HbA1c,
fasting blood sugar and insulin resistance; at the same time, the
study also identified a group of core strains that produce acetic
acid and butyric acid. Based on this, the researcher proposed
the concept of “ecological therapy”: by restoring or promoting
the abundance of SCFAs producing bacteria and rebalancing the
intestinal microecology, the metabolic health of the host can be
improved. The research also pointed out that personalized nutrition
strategies can be utilized to specifically cultivate highly active
SCFAs producers into “ecosystem service providers (ESP),” with
the aim of managing T2DM more effectively (Zhao et al., 2018).
In addition to nutritional and microbiota intervention, delivery
technology is also expanding the clinical application possibilities
of SCFAs. Researchers have developed the oral multifunctional
carrier system “nano-in-microparticles,” which uses supercritical
emulsion extraction to co-encapsulate butyric acid and propionic
acid for targeted release in the colon. The findings of this study
represent an innovative approach, providing a new perspective for
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the clinical use of SCFAs to mediate T2DM (Carvalho et al., 2025).
In population studies, heterogeneity should also be considered. A
randomized, double-blind, placebo-controlled, crossover clinical
trial showed that short-term high-dose inulin increased SCFAs
production in both young and older adults, with a more
pronounced rise in butyrate. However, the increase in older adults
was relatively limited (Kirschner et al., 2025). Consistent with this,
the analysis of nine types of SCFAs producing bacteria genera
found that their abundance significantly decreased with the aging
process of the human body, and there was no significant difference
between men and women (Wu et al., 2024). In addition, there are
systematic differences in the composition of basic microbiota and
dietary habits among different regions and populations (such as
the East and the West, tropical/temperate zones, and urban and
rural areas), which will significantly affect the generation potential
and intervention response of SCFAs. Therefore, an effective SCFAs
intervention strategy in one population may not achieve the same
effect in another (Sheng et al., 2024).

Taken together, SCFAs related interventions have certain
advantages in clinical applications, and there are multiple pathways
to enhance the production of SCFAs in vivo, with the sources
relying mainly on dietary fiber, prebiotics, or probiotics, with a
high degree of safety and acceptability. However, clinical translation
still faces many challenges, including marked interindividual
differences across populations, issues of tolerance and absorption
with direct SCFAs supplementation, and the lack of evidence
from large-scale, long-term randomized controlled trials. In the
future, with the advancement of multi-omics technologies and
personalized medicine, SCFAs-related interventions are expected
to find broader application in precision nutrition and combined
strategies. This may drive a shift from general dietary guidelines
to individualized nutrition management, offering new pathways for
T2DM management and public health improvement.

4.4 Limitations

(1) This study was analyzed based on data from two databases,
WoSCC and Scopus, so other database-related research may be
missed. Future research should be included in databases such
as PubMed and Embase to minimize biases caused by database
selection and increase coverage. (2) Both WOSCC and Scopus
primarily index high-impact, English-language international
journals, so non-English research may be excluded. In future
studies, we recommend developing bibliometric tools with
multilingual analysis capabilities to address these shortcomings.
(3) This research analysis mainly focuses on articles and reviews,
and excludes other types of publications such as conference
papers, book chapters, etc., which may ignore the potential
important research results. Future research should integrate these
diverse literature types to build a more complete and dynamic
view of domain development. (4) The citation rate of articles
is usually influenced by multiple factors such as self-citations.
Future research should conduct longitudinal tracking of relevant
citations to assess their effectiveness. (5) This study has a certain
time lag in the literature; the latest research may not have been
cited or included. In the future, the most recent literature can be

incorporated to update the development status of the field, thereby
providing a more comprehensive depiction of its evolutionary
panorama. (6) By leveraging the unique advantages of different
tools (CiteSpace, VOSviewer), we obtain a more comprehensive
picture of the research field. However, a methodological limitation
is that we did not systematically cross-validate multiple tools
with different core algorithms, so the specific results may exhibit
slight variations. Although we observed a high consistency in
the major research themes at the macro level across analyses
using different tools, future research should more systematically
compare the effects of different algorithms on bibliometric results
to enhance the robustness of the conclusions. (7) This study is
based on published scientific literature, but it is undeniable that
we did not consider publication bias. The proportion of positive
findings in the literature is too high. This bias should be reduced in
future research.

5 Conclusion

This study systematically analyzed the development trends,
current hotspots, and future directions of research on SCFAs related
to T2DM. The results help researchers understand the knowledge
structure in this field and provide a reference for future studies.

In the future, for researchers, combining modern technologies
such as metabolomics and metagenomics with multidisciplinary
approaches from nutrition, microbiology, and endocrinology can
be used to more deeply elucidate the specific mechanisms by which
SCFAs improve T2DM. For clinical practice, optimizing SCFAs-
based interventions and developing individualized treatment
strategies that consider patients’ ethnicity, age, and gender
differences is expected to bring better clinical outcomes.
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