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Phosphate-solubilizing fungi (PSF) are commonly employed in the bioremediation 
of lead contamination through the production of organic acids. However, the 
secretion of organic acids by PSF is typically affected by various environmental 
factors. This study investigated the Pb removal process by typical PSF A. niger and 
P. chrysogenum under different Mn2+ concentrations (0–30 mg/L). The different 
concentrations of Mn2+ can significantly influence the Pb toxicity tolerance of 
PSF. PSF A. niger exhibits a stable Pb removal ratio of >99% under different Mn2+ 
concentrations, much higher than P. chrysogenum <90%. The high concentrations 
of Mn2+ (15 and 30 mg/L) both inhibited the secretion of organic acids by A. 
niger and P. chrysogenum. However, 7.5 mg/L Mn2+ can significantly increase the 
secretion of oxalic acid by A. niger and promote the formation of lead oxalate 
and pyromorphite. Only 2.25% Pb2+ is released again from the immobilized Pb 
minerals. Meanwhile, PSF has the highest pyruvate dehydrogenase (PDH) enzyme 
activities of 31.53 and 17.23 nmol/min/g in 7.5 mg/L Mn2+ treatment. Compared 
with P. chrysogenum, A. niger is more effective in removing and stabilizing Pb 
cations. Controlling the appropriate Mn2+ concentration can further improve the 
Pb bioremediation by PSF.
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1 Introduction

Lead (Pb) is widely recognized as a hazardous heavy metal, primarily due to the increased 
human activities such as mining, battery manufacturing, and paint utilization (Naik et al., 
2013). The world’s most severe pollution issues are directly attributed to Pb (Raj and Das, 
2023). In recent decades, more than 783,000 tons of Pb contaminants have been produced 
annually worldwide (Singh et al., 2003). As a persistent environmental contaminant, Pb in the 
environment has a long-term persistence and can cause high toxicity for organisms (Ozdemir 
et  al., 2004; Naik et  al., 2013; Zeng et  al., 2017). Therefore, reducing the toxicity of Pb 
contamination in the environment is necessary and requires great attention in the future.

Bioremediation is an efficient pathway in reducing Pb contamination toxicity in the 
environment (Liang and Gadd, 2017). Compared with physical and chemical pathway, 
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microbial remediation is more economical and environmentally 
friendly (Meng et al., 2024). Microorganisms can produce metabolites 
such as organic acids and extracellular polymeric substances (EPS) to 
immobilize Pb cantions (Priyadarshanee and Das, 2024). Additionally, 
the structure of cell waslls in microorganisms can also adsorb Pb 
cantions (Wang et al., 2019). For example, the fungal of Aspergillus 
niger (A. niger) can reduce more than 90% Pb cantions via the organic 
acid secretion and biosorption (Tian et al., 2019; Jalili et al., 2020). 
Meanwhile, the secretion of EPS from A. niger can also reduce Pb 
cantions concentration from 1,000 mg/L to 52.4 mg/L via the 
formation of EPS-Pb (Chen et al., 2018). Therefore, the microbial 
remediation of Pb exhibits considerable potential and merits 
further investigation.

Phosphate-solubilizing fungi (PSF) have been widely applied in 
Pb remediation. On the one hand, PSF exhibit a higher secretion of 
organic acids (e.g., oxalic acid, malic acid, citric acid, etc.) than other 
microorganisms (Coutinho et al., 2012; Sturm et al., 2015; Chowdhury 
et al., 2017). On the other hand, PSF typically has a a higher tolerance 
to Pb roxicity, which can maintaining organic acid secretion even at 
more than 1,000 mg/L Pb concentration (Huang et al., 2023). These 
organic acids can react or chelate with Pb cantions to form insoluble 
Pb minerals (e.g., lead oxalate), hence reducing the Pb concentration 
(Rhee et al., 2012). More importantly, these secreted organic acids can 
also dissolve insoluble phosphate (e.g., fluorapatite, FAp) and release 
phosphorus (P) (Echeverria et al., 2024). The released P can also react 
with Pb to form highly insoluble Pb minerals of pyromorphite 
(Pb10(PO4)6F2) (Park and Bolan, 2013). Hence, the PSF of Aspergillus 
niger is typically regarded as the leading candidate in Pb remediation, 
especially combined with FAp (Qiu et al., 2021).

Oxalic acid primarily facilitates the bioremediation of Pb by PSF 
via the formation of insoluble Pb mineral crystals, both around cell 
walls and in the external medium (Rhee et al., 2012; Osorio and Habte, 
2013). Meanwhile, oxalic acid can also effectively promote the release 
of P from insoluble phosphate (Kpomblekou-A and Tabatabai, 2003). 
On the one hand, oxalic acid has the highest acidity constant 
(pKa1 = 1.25 and pKa2 = 4.27) compared with other organic acids such 
as citric acid (Palmieri et al., 2019). On the other hand, oxalic acid also 
has a higher chelating ability with metal cations (e.g., Pb2+, Ca2+, and 
Mg2+) due to its conjugated structure (Gadd, 1999). Therefore, 
promoting the secretion of oxalic acid is an effective strategy to 
enhance the Pb remediation by PSF.

Metal cation is essential to achieve the high secretion of organic 
acid by PSF (Li et al., 2017; Walaszczyk et al., 2018; Huang et al., 2023). 
However, the different metal cations concentration would affect the 
secretion of organic acid by PSF. Supply of divalent cations (e.g., Ca2+, 
Cu2+, etc.) can favor the secretion of organic acid by PSF, but 
influenced by the growth-limiting concentration (Palmieri et  al., 
2019). As a co-factor, the supply of Mn2+ can change the secretion of 
organic acid via the tricarboxylic acid (TCA) cycle, especially for 
oxalic acid (Ruijter et al., 1999). Oxalic acid is the primary pathway in 
Pb remediation by PSF. Therefore, the concentration of Mn2+ could 
also significantly affect the Pb remediation by PSF theoretically. 
However, there is insufficient research to confirm the importance and 
role of Mn2+ in Pb remediation by PSF.

This study aimed to investigate the effect of Mn2+ on Pb 
remediation by the PSF Aspergillus niger and Penicillium chrysogenum 
under the addition of fluorapatite (FAp). The capacity of P release 
from FAp between these two fungi was also investigated. The pH in 

the medium was measured by a pH meter. The oxalic acid 
concentration was measured by high-performance liquid 
chromatography (HPLC). The Pb and P concentrations in the solution 
were measured by inductively coupled plasma-optical emission 
spectrometry (ICP-OES). The resulting minerals were characterized 
by X-ray diffraction (XRD). The Pb in the mycelium was extracted by 
Toxicity Characteristic Leaching Procedure (TCLP).

2 Materials and methods

2.1 Fungal strains preparation

Aspergillus niger (A. niger) (CGMCC No. 23272) and Penicillium 
chrysogenum (P. chrysogenum) (CGMCC No. 23271) were isolated 
from the maize rhizosphere soil located in Suzhou, China (33°41′N, 
117°5′E) (Wang et al., 2023; Feng et al., 2025). The Potato Dextrose 
Agar (PDA) medium was used to collect the spores for these two 
fungi. After 5 days of incubation at 28 °C, the formed fungal spores 
on the medium were drenched with sterile water using a fine artist’s 
brush. Subsequently, the mixture was filtered through a triple-layer 
sterile cheesecloth to remove mycelial fragments. Finally, a 0.85% 
sterile saline dilution was used and adjusted to 107 cfu/mL using 
a hemocytometer.

2.2 Pb remediation by A. niger and 
P. chrysogenum under different Mn2+ 
conditions

The Pb(NO3)2 powder (Xilong Scientific Ltd.) was used as the Pb 
contamination in solution. The initial Pb concentration in the medium 
was 1,000 mg/L. MnCl2·4H2O (Macklin Inc.) was used as the source 
of Mn2+. For A. niger (ANG) and P. chrysogenum (PCH), five Mn2+ 
treatments were performed, i.e., 0 mg/L Mn2+, 3.75 mg/L Mn2+, 
7.5 mg/L Mn2+, 15 mg/L Mn2+, and 30 mg/L Mn2+. Prior to the 
incubation process, 0.16 g of Pb(NO₃)₂ powder and 0.5 g of 
fluorapatite (FAp) were individually introduced into 150 mL 
Erlenmeyer flasks containing 100 mL of PDB medium. Then, 1 mL of 
A. niger and P. chrysogenum suspensions was added to each treatment, 
respectively. These flasks were incubated at 180 rpm and 28 °C under 
sterile conditions with the Parafilm (BS-QM-003, Biosharp) seals. 
After a 7-day incubation period, the PDB medium was collected and 
filtered through a 0.45 μm polyethersulfone (PES) membrane. The 
filtrates were collected for organic acids, pH, P concentration, and Pb 
content analysis. The centrifugal precipitates were collected to detect 
the enzyme activity. Meanwhile, the precipitates were also dried at 
55 °C for 24 h to determine the dry biomass, XRD, and SEM analysis.

2.3 TPLC-Pb extracted from mycelium

The available Pb concentration leached from immobilized Pb 
minerals was tested by the TCLP method. The formed preceptaties 
with mycelium were mixed with the extraction solution (1:20) and 
shaken at 180 rpm for 18 ± 2 h at room temperature. The mixture was 
centrifuged, and the Pb concentration in the supernatant was 
measured by ICP-OES (Feng et al., 2025).
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2.4 Enzyme activity assay

Using Pyruvate dehydrogenase (PDH) and citrate synthase (CS) 
activity assay kits (Comin Biotechnology Co., Ltd., Suzhou, China) to 
determine the enzyme activities from filtered fungal mycelium. 
Exhaustive methods refer to previous research (Tian et al., 2021).

2.5 Instrumentation

Using a pH meter (FE20, Mettler Toledo, Columbus, OH, 
United States) to determine the medium pH value. The concentration 
of P and Pb was analyzed by ICP-OES (PerkinElmer Avio 200, 
United  States). Before the test, the filtrate was diluted 10 times. 
Calibration curves were prepared at concentrations of 1, 5, 10, 20, 50, 
and 100 mg/L using P and Pb standards (Feng et al., 2025).

The secretion of oxalic acid was determined by HPLC (Agilent 
1200, Agilent Technologies, Santa Clara, CA, United  States). The 
mobile phase included 2.5 wt‰ potassium dihydrogen phosphate 
(KH2PO4) and methanol (CH3OH) in a ratio of 99:1. The HPLC 
column temperature was 30 °C. Phosphoric acid was used to adjust 
the pH of KH2PO4 to 2.8 at a rate of 1 mL/min. Standard solutions of 
oxalic acid were diluted to concentrations of 1,500, 1,000, 500, 200, 
100, 50, and 0 mg/L (Su et al., 2019).

The XRD analysis of precipitates was performed by D/Max-2500 
X-ray diffraction (Rigaku Corporation, Tokyo, Japan, Cu-K; 36 kV; 
20 mA; scanning from 5 to 60 at a speed of 4/s). Prior to XRD analysis, 
the filtered dry precipitates were ground in a planetary ball mill (Mitr 
YXQM, Changsha Mitrcn Instrument Equipment Co., Ltd., Changsha, 
China). The ground material was then passed through a 100-mesh 
sieve. Finally, using the MDI Jade 6.5 software to detect the results of 
XRD precipitation for phase identification.

2.6 Statistical analysis

Each experiment was replicated three times. The mean and 
standard deviation of each treatment were calculated and reported. 

Tukey’s honestly significant difference test (p < 0.05) was used to 
identify the significant differences among the treatments by one-way 
ANOVA. Before conducting one-way ANOVA, the data were tested 
for homogeneity of variance and normality using the Shapiro–Wilk 
and Levene tests. The data were analyzed statistically with SPSS 
26.0 software.

3 Results

3.1 Fungal dry biomass and pH value in 
medium

After 7 days of incubation, the fungal dry biomass in 0 and 
3.75 mg/L Mn2+ treatments was 1.07 and 1.12 g (Figure  1A). In 
7.5 mg/L Mn2+ treatment, the fungal dry biomass significantly 
increased to 1.26 g (Figure 1A). In 15 and 30 mg/L Mn2+ treatments, 
the fungal dry biomass decreased to 1.08 g and 1.10 g, respectively, 
(Figure 1A). For P. chrysogenum, the fungal dry biomass showed a 
lower value compared with A. niger, i.e., 0.80, 0.85, 0.78, 0.77, and 
0.76 g in each Mn2+ concentration conditions after 7 days of incubation 
(Figure 1A).

The initial medium pH value is 6.5. After 7 days of incubation, the 
medium pH value in A. niger under 0, 3.75, 7.5, 15, and 30 mg/L Mn2+ 
treatments decreased to 3.27, 3.14, 2.86, 2.95, and 3.07, respectively 
(Figure 1B). For P. chrysogenum, the medium pH value showed a 
higher pH value compared to A. niger, i.e., ranged from 6.16 to 6.90 
under different Mn2+ concentration, suggesting the lower secretion of 
organic acids from P. chrysogenum (Figure 1B).

3.2 Secretion of oxalic acid and citric acid 
by A. niger and P. chrysogenum

In 0 mg/L Mn2+ treatment, the concentration of oxalic acid 
secreted by A. niger was 436.87 mg/L (Figure 2A). Meanwhile, the 
oxalic acid concentration gradually increased to 807.01 mg/L in 
3.75 mg/L Mn2+ treatment and reached to the highest value of 

FIGURE 1

Dry biomass (A) and pH value (B) of Aspergillus niger and Penicillium chrysogenum in different Mn2+ conditions after 7 days of incubation. Standard 
deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey’s honest significant difference test 
(p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.
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1310.16 mg/L in 7.5 mg/L Mn2+ treatment (Figure 2A). In 15 and 
30 mg/L Mn2+ treatments, the secretion of oxalic acid remained the 
downward tendency (Figure 2A). For P. chrysogenum, the oxalic acid 
concentration was 144.12 mg/L in 0 mg/L Mn2+ treatment (Figure 2A). 
In 3.75, 7.5, 15, and 30 mg/L Mn2+ treatments, the oxalic acid secreted 
by P. chrysogenum was also shown a low value, ranging from 11.03 to 
68.79 mg/L (Figure 2A).

Unlike oxalic acid, the citric acid secreted by A. niger in 
7.5 mg/L Mn2+ treatment had the lowest value of 647.05 mg/L 
(Figure  2B). In 0 mg/L Mn2+ treatment, the citric acid 
concentration had the highest value of 1,268 mg/L (Figure 2B). 
Meanwhile, citric acid gradually decreased to 1004.40 mg/L in 
3.75 mg/L Mn2+ treatment (Figure  2B). In addition, the 
concentrations of citric acid remained the upward tendency in 15 
and 30 mg/L Mn2+ treatment (Figure 2B). For P. chrysogenum, the 
citric acid concentration was 709.52 mg/L without Mn2+ after 
7 days of incubation. With the Mn2+ concentration increased to 
3.75, 7.5, 15, and 30 mg/L, the secretion of citric acid by 
P. chrysogenum increased to 845.38, 1022.75, 1152.82, and 
1355.10 mg/L, respectively (Figure 2B).

3.3 P concentration in the medium

The P concentration in A. niger medium without Mn2+ addition 
(0 mg/L) was 421.53 mg/L (Figure 3A). In 3.75 and 7.5 mg/L Mn2+ 
treatments, the content of P increased to 469.95 and 563.27 mg/L, 
respectively (Figure 3A). In 15 and 30 mg/L Mn2+ treatments, the P 
concentration decreased to 483.79 and 436.14 mg/L, respectively 
(Figure 3A). For P. chrysogenum, the P was hardly released from FAp. 
The highest P content was 13.38 mg/L in 3.75 mg/ L Mn2+ treatment 
(Figure 3A). In other Mn2+ treatments, the P content ranged from 6.08 
to 6.56 mg/L (Figure 3A). Compared with P. chrysogenum, A. niger is 
more efficient in the release of P from FAp, i.e., more than 40% P 
release rate by A. niger vs. less than 5% P release rate by P. chrysogenum 
(Figure 3B).

3.4 Pb remediation by A. niger and 
P. chrysogenum under different Mn2+ 
conditions

After 7 days of incubation, the Pb concentration in each Mn2+ 
treatments was significantly decreased from 1,000 mg/L to 8.00, 6.59, 
4.94, 5.80, and 6.40 mg/L in A. niger, respectively (Figure 4A). However, 
the Pb contents in different Mn2+ treatments with P. chrysogenum had 
about 10 times than A. niger (Figure 4A). The Pb concentration in 
P. chrysogenum under different Mn2+ treatment ranged from 93.31 to 
168.17 mg/L after 7 days of incubation (Figure 4A).

The TCLP-Pb concentration in A. niger with 0, 3.75, 7.5, 15, 
30 mg/L Mn2+ treatments were 36.23, 31.47, 22.43, 25.39, and 
28.09 mg/L after 7 days of incubation, respectively (Figure 4B). For 
P. chrysogenum, the TCLP-Pb concentration under different Mn2+ 
treatments showed a higher value of 50.10, 55.20, 63.77, 67.06, and 
75.71 mg/L (Figure 4B). Meanwhile, the Pb removal ratio in A. niger 
was much higher than P. chrysogenum under different Mn2+ treatments, 
i.e., 99.1 to 99.5% vs. 83.1 to 90.7% (Figure 4C). In addition, the ratio 
of TCLP-Pb/immobilized Pb between A. niger and P. chrysogenum in 
0, 3.75, 7.5, 15, 30 mg/L Mn2+ treatments was 3.65, 3.17, 2.25, 2.55, 2.83 
and 5.27%, 5.84, 6.81, 7.19, 8.19%, respectively (Figure 4D).

3.5 Enzyme activity in A. niger and 
P. chrysogenum under different Mn2+ 
conditions

The enzyme activity of pyruvate dehydrogenase (PDH) in both 
A. niger and P. chrysogenum initially increased and then decreased as 
the Mn2+ concentration increased from 0 to 30 mg/L (Figure 5A). In 
7.5 mg/L Mn2+ treatment, A. niger and P. chrysogenum showed the 
highest enzyme activity, i.e., 31.53 and 17.23 nmol/min/g, respectively 
(Figure 5A). In 0, 3.75, 15, and 30 mg/L Mn2+ treatments, the PDH 
activity in A. niger and P. chrysogenum ranged from 4.13 ~ 19.57 and 
3.90 ~ 11.57 nmol/min/g, respectively (Figure  5A). For citrate 

FIGURE 2

Oxalic acid (A) and citric acid content (B) Aspergillus niger and Penicillium chrysogenum in different Mn2+ conditions after 7 days of incubation. 
Standard deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey’s honest significant difference 
test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.

https://doi.org/10.3389/fmicb.2025.1696000
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al.� 10.3389/fmicb.2025.1696000

Frontiers in Microbiology 05 frontiersin.org

synthase (CS) enzyme activity, P. chrysogenum showed a similar trend 
with PDH, i.e., reached the highest value of 66.77 nmol/min/g in 
7.5 mg/L Mn2+ treatment and ranged from 39.90 to 60.27 nmol/min/g 

(Figure 5B). The CS enzyme activity in A. niger under 0, 3.75, 15, and 
30 mg/L Mn2+ treatments were 38.40, 39.90, 30.20, 28.10, and 
35.60 mg/L, respectively (Figure 5B).

FIGURE 3

P concentration (A) and P release rate (B) of Aspergillus niger and Penicillium chrysogenum in different Mn2+ conditions after 7 days of incubation. 
Standard deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey’s honest significant difference 
test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.

FIGURE 4

Pb2+ content in solution (A), TCLP-Pb concentration (B), Pb removal ratio (C), and TCLP-Pb/removed Pb ratio (D) of Aspergillus niger and Penicillium 
chrysogenum in different Mn2+ conditions after 7 days of incubation. Standard deviations are shown with N = 3. The significant differences across 
treatments were carried out using Tukey’s honest significant difference test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium 
chrysogenum.
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3.6 XRD analysis and mineral peak area 
ratio

XRD patterns showed the Pb mineralization by A. niger and 
P. chrysogenum at Mn2+ concentrations of 0, 3.75, 7.5, 15, and 
30 mg/L (Figure  6). The peaks located at 24.32° and 31.74° 
represent the minerals of lead oxalate (LO) and fluoropyromorphite 
(FAL) (Chen et al., 2019). In A. niger treatment, the peaks of LO 
and FAL were clearly observed at 3.75, 7.5, 15, and 30 mg/L Mn2+ 
concentrations (Figure 6A). For P. chrysogenum, the peaks of LO 
and FAL were also observed (Figure 6B). The peak area ratios of 
minerals between A. niger and P. chrysogenum are shown in 
Figure 7. For A. niger, the area ratio of LM (LO + FAL)/FAp was 
much higher than P. chrysogenum, i.e., 3.46 ~ 4.77 vs. 0.09 ~ 0.23 
(Figure 7A). Under different Mn2+ treatments, the peak area ratios 
of LO/FAp were 2.30, 2.31, 2.88, 2.73, and 2.51 in A. niger, much 
higher than 0.033, 0.054, 0.031, 0.030, and 0.005 in P. chrysogenum 
(Figure 7B). Meanwhile, the peak area ratios of FAL/FAp in A. niger 
also higher than P. chrysogenum, i.e., 0.35, 0.49, 0.66, 0.48, and 0.33 
vs. 0.04, 0.0550, 0.046, 0.033, and 0.032 (Figure 7C). The peak area 
ratios of LO/LM were 0.93, 0.82, 0.73, 0.83, and 0.87 in A. niger, 
while in P. chrysogenum was only 0.35, 0.27, 0.34, 0.38, and 0.44 
(Figure 7D). The peak area ratios of FAL/LM were 0.54, 0.65, 0.66, 
0.61, 0.55  in A. niger and 0.06, 0.17, 0.26, 0.16, 0.12  in 
P. chrysogenum (Figure 7E). The XRD peak area ratio of LO and 
FAL formed in A. niger were 2.64, 3.03, 2.14, 2.18, 1.95 and 8.56, 
3.76, 2.48, 3.74, 4.43 times than P. chrysogenum, respectively 
(Figure 7F).

3.7 SEM analysis

SEM images of Aspergillus niger (7.5 mg/L Mn2+) and Penicillium 
chrysogenum (3.75 mg/L Mn2+) after 7 days of incubation were shown 
in Figure 8. Aspergillus niger exhibited robust growth after 7 days, 
characterized by significant mycelial development encapsulated with 
calcium oxalate, lead oxalate, and fluoropyromorphite (Figures 8A,B). 
Similarly, in the presence of Penicillium chrysogenum, the culture 

displayed the presence of calcium oxalate, lead oxalate, and 
fluoropyromorphite around the ruptured Penicillium chrysogenum 
(Figures  8C,D). These findings indicated that the ability of both 
Aspergillus niger and Penicillium chrysogenum can dissolve FAp and 
promote Pb immobilization.

4 Discussion

Bioremediation is a high-efficiency and low-cost pathway for Pb 
remediation (Dang et al., 2018; Feng et al., 2022; Guan et al., 2024). 
This research shows that both A. niger and P. chrysogenum can tolerate 
a high Pb toxicity (1,000 mg/L) and remove more than 83% Pb2+ in 
the solution (Figure 4). Especially for A. niger, the combination of FAp 
removed more than 99.3% Pb2+, not only higher than P. chrysogenum, 
but also more efficient than other fungi, e.g., red yeast combine 
calcium phosphate remove 90.64% Pb2+ (Feng et al., 2022; Tian et al., 
2022). Meanwhile, the Pb immobilized by A. niger is more stable than 
P. chrysogenum. In A. niger, less than 3.7% Pb2+ can be re-released 
from the immobilized Pb minerals, much lower than the 5.3–8.2% 
observed in P. chrysogenum (Figure 4). Therefore, A. niger is more 
efficient in Pb remediation compared with P. chrysogenum.

Organic acid plays a key role in Pb remediation by PSF and FAp, 
determined the efficiency of Pb immobilization (Li et al., 2016; Meng 
et al., 2022). Our research indicates that the secretion of oxalic acid in 
A. niger is 5–10 times higher than in P. chrysogenum (Figure 2). Previous 
research confirmed that A. niger has a stronger ability to secrete oxalic 
acid compared to other PSF, such as Penicillium oxalicum (Tian et al., 
2019; Tian et al., 2024). Therefore, oxalic acid would not be the primary 
mechanism for P. chrysogenum in Pb immobilization. In addition, the 
dry biomass of P. chrysogenum was also much lower than A. niger, i.e., 
0.76–0.85 g vs. 1.07–1.26 g (Figure 1B). In other words, a 1,000 mg/L Pb 
concentration inhibits the growth of P. chrysogenum and its secretion of 
oxalic acid. Hence, the other process like bioadsorption may dominated 
the Pb immobilization by P. chrysogenum. Compared with other organic 
acid (e.g., citric acid), oxalic acid has a higher acidity constants 
(pKa = 1.25) and chelating capacity than other organic acid (Li et al., 
2016; Palmieri et al., 2019). Thus, A. niger has a higher Pb removal ratio 

FIGURE 5

Pyruvate dehydrogenase (PDH) enzyme activities (A) and citrate synthase (CS) enzyme activities (B) of Aspergillus niger and Penicillium chrysogenum in 
different Mn2+ conditions after 7 days of incubation. Standard deviations are shown with N = 3. The significant differences across treatments were 
carried out using Tukey’s honest significant difference test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.
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than P. chrysogenum, i.e., 99% vs. ~90% (Figure 4). Previous research has 
demonstrated that the secretion of oxalic acid by PSF primarily drives 
the dissolution of phosphate and the remediation of Pb (Jiang et al., 
2020). Especially for PSF, enhancing the immobilization capacity of Pb 
can be  achieved by promoting the secretion of oxalic acid (Tian 
et al., 2023).

The oxalic acid secretion by PSF would also influence the stability 
of the removed Pb minerals (Wang et al., 2016; Feng et al., 2025). In 
Pb bioremediation, the stability of immobilized Pb is usually depended 
on the formed Pb minerals (Feng et al., 2025). In this research, both 

XRD patterns and SEM images confirmed the formation of LO and 
FAL in both A. niger and P. chrysogenum (Figures 6, 8). However, 
A. niger shows a higher stability of immobilized Pb compared to 
P. chrysogenum (Figure 4). Due to the high secretion of oxalic acid, 
A. niger is more effective in forming Pb minerals when combined with 
FAp (Mendes et al., 2020). The secreted oxalic acid not only forms 
insoluble LO by chelating with Pb (Equation 1) but also facilitates the 
release of P from phosphate and reacts with Pb to create highly 
insoluble fluoropyromorphite (Equations 2, 3) (Ma and Rao, 1999; 
Tian et al., 2023). The formed Pb minerals of LO and FAL by PSF 

FIGURE 6

XRD patterns of Aspergillus niger (A) and Penicillium chrysogenum (B) under different Mn2+ concentrations after 7 days of incubation.

FIGURE 7

Peak area ratio of Pb minerals of Aspergillus niger and Penicillium chrysogenum in different Mn2+ conditions after 7 days of incubation. (A–E) Peak area 
ratio of LM/FAp, LO/FAp, FAL/FAp, LO/LM, and FAL/LM between ANG and PCH. (F) The peak area ratio between ANG and PCH in the formed LO and 
FAL. LO, lead oxalate; FAp, fluorapatite; FAL, fluoropyromorphite; LM, lead minerals (LO + FAL); ANG, Aspergillus niger; PCH, Penicillium chrysogenum.
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demonstrated the Pb immobilization and contributed to its stability 
(Giammar et al., 2008; Ahemad, 2015; Feng et al., 2025).

	
+ + ⇔2 –2

2 4 2 4Pb C O PbC O 	 (1)

	
( ) + + − −+ ⇔ + +2

5 4 2 43Ca PO F 6H 5Ca 3H PO F
	 (2)

	
( )+ − − ++ + ⇔ +2

2 4 5 4 35Pb 3H PO F Pb PO F 6H
	 (3)

Meanwhile, the XRD peak area ratio shows that the Pb minerals 
of LO and FAL formed in A. niger are ~2 and ~4 times than 
P. chrysogenum, respectively (Figure 7). LO and FAL are the primary 
pathways in Pb immobilization using the combination of PSF and 
FAp, which have a low solubility (Li et al., 2016; Tian et al., 2019). 

Therefore, the different oxalic acid secretion significantly changed the 
stability of the removed Pb between A. niger and P. chrysogenum 
(Figure 4).

Metal cations can significantly influence the the secretion of 
organic acids by fungi (Behera, 2020). The addition of metal cations 
(Ca2+, Mg2+, and Mn2+, etc.) not only affects the growth of PSF but also 
influences the secretion of oxalic acid (Kobayashi et al., 2014; Geng 
et  al., 2022). In this research, the addition of Mn2+ significantly 
changed the secretion of organic acid between A. niger and 
P. chrysogenum (Figure 2). For A. niger, low Mn2+ concentrations (0 
and 3.75 mg/L) and high Mn2+ concentrations (15 and 30 mg/L) both 
limited oxalic acid secretion but enhanced citric acid secretion 
(Figure 2). In contrast, the high Mn2+ concentrations stimulated the 
secretion of citric acid in P. chrysogenum (Figure 2). These differences 
in organic acid secretion can also alter the Pb immobilization capacity 
of PSF (Tian et al., 2019). Our research indicates that the addition of 

FIGURE 8

SEM and EDS mapping images of Aspergillus niger and Penicillium chrysogenum after 7 days of incubation. (A,B) A. niger + Pb + FAp. (C,D) P. 
chrysogenum + Pb + FAp. LO, lead oxalate; CO, calcium oxalate; FAp, fluorapatite; FAL, fluoropyromorphite.
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Mn2+ enhances the secretion of oxalic acid by A. niger and citric acid 
by P. chrysogenum, respectively. Compared to P. chrysogenum, A. niger 
is more effective in Pb remediation across various Mn2+ concentrations.

Mn2+ has been demonstrated to be the co-factor that alters the 
secretion of organic acids by fungi (Arvieu et al., 2003). Moderate 
amounts of Mn2+ can promote the growth of fungi and improve their 
resistance to different environmental stresses (Berovic et al., 2006; 
Fekete et al., 2022). In contrast, the deficiency or excess Mn2+ would 
also inhibit fungal growth and alter metabolic pathways (Pinzari et al., 
2018). In A. niger and P. chrysogenum, the fungal growth and organic 
acid secretion are different under different Mn2+ concentrations. This 
difference could be attributed to the physiological traits and metabolic 
pathways of the two fungi (Huang et al., 2013). In addition, differences 
in metabolic pathways and gene expression between these two fungi 
further influence their response and adaptation mechanisms to Mn2+ 
(Carrasco et  al., 2011; Xie et  al., 2018). A. niger has strong 
environmental adaptability and stress resistance and can survive and 
reproduce in a variety of environmental conditions (Qiu et al., 2021). 
P. chrysogenum is sensitive to environmental conditions and 
vulnerable to external factors, e.g., pH value, phosphate source, etc. 
(Bodini et al., 2011; Wang et al., 2023). Our previous research has 
confirmed that the pH > 5.5 condition could decrease the stability of 
Pb immobilization (Feng et al., 2025). Notably, all of the pH value in 
P. chrysogenum under different Mn2+ concentrations exceeded 6 
(pH > 6), which might explain the lower Pb remove ratio and stability 
of immobilized Pb.

The tricarboxylic acid (TCA) cycle is the main pathway for organic 
acid secretion in PSF, determining both the quantity and types of 
secreted acids (Mäkelä et al., 2010; Beatrice et al., 2022). First, pyruvate 
dehydrogenase (PDH) catalyzes the conversion of pyruvate to 
acetyl-CoA, thereby facilitating the production of organic acids in the 
TCA cycle (Mattevi et al., 1992; Dutton and Evans, 1996). Meanwhile, 
citrate synthase (CS) catalyzes the synthesis of citric acid in PSF 
(Alekseev et al., 2017; Behera, 2020). The enzyme activity regulated the 
secretion of organic acids, as well as the phosphate solubilization and 
Pb remediation facilitated by PSF (Schmalenberger et al., 2015; Feng 
et al., 2022). Our research also indicates that the PDH activity in A. niger 
is higher than P. chrysogenum (Figure 5). Meanwhile, the activity of CS 
enzyme in P. chrysogenum is much higher than in A. niger, which aligns 
with the higher secretion of citric acid (Figure 5). In addition, metal 
cations can influence the organic acid secretion by affecting the enzyme 
activity. Fe3+ can regulate CS enzyme activity and enhance the secretion 
of citric acid by PSF (Hao et al., 2021; Wang et al., 2023). Similarly, the 
7.5 mg/L Mn2+ can significantly increase the PDH enzyme activity in 
A. niger and P. chrysogenum (Figure 5A). Meanwhile, the 7.5 mg/L Mn2+ 
can also significantly increase the CS enzyme activity in P. chrysogenum 
(Figure 5A). Therefore, controlling the Mn2+ concentration is important 
for regulating the metabolism of organic acid and Pb remediation in PSF.

5 Conclusion

The combination of PSF A. niger and P. chrysogenum with FAp can 
effectively remove Pb cations via the formation of stable Pb minerals. 
Oxalic acid secreted by A. niger and P. chrysogenum plays a dominate 
role in Pb removal. Notably, A. niger exhibits a higher oxalic acid 
secretion compared to P. chrysogenum, which enhances the formation 
of insoluble lead oxalate and pyromorphite. An optimal Mn2+ 
concentration (7.5 mg/L) significantly stimulates oxalic acid secretion 

by A. niger, hence accelerating FAp dissolution and promoting 
pyromorphite formation. However, suboptimal (≤7.5 mg/L) or 
excessive (15–30 mg/L) Mn2+ concentrations reduce the stability of Pb 
immobilization by A. niger. In summary, A. niger is more effective 
than P. chrysogenum in Pb remediation, and an appropriately regulated 
Mn2+ concentration further enhances its Pb removal capacity.
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