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Phosphate-solubilizing fungi (PSF) are commonly employed in the bioremediation
of lead contamination through the production of organic acids. However, the
secretion of organic acids by PSF is typically affected by various environmental
factors. This study investigated the Pb removal process by typical PSF A. niger and
P. chrysogenum under different Mn?* concentrations (0—-30 mg/L). The different
concentrations of Mn?* can significantly influence the Pb toxicity tolerance of
PSF. PSF A. niger exhibits a stable Pb removal ratio of >99% under different Mn?*
concentrations, much higher than P. chrysogenum <90%. The high concentrations
of Mn?* (15 and 30 mg/L) both inhibited the secretion of organic acids by A.
niger and P. chrysogenum. However, 7.5 mg/L Mn?* can significantly increase the
secretion of oxalic acid by A. niger and promote the formation of lead oxalate
and pyromorphite. Only 2.25% Pb?* is released again from the immobilized Pb
minerals. Meanwhile, PSF has the highest pyruvate dehydrogenase (PDH) enzyme
activities of 31.53 and 17.23 nmol/min/g in 7.5 mg/L Mn?* treatment. Compared
with P. chrysogenum, A. niger is more effective in removing and stabilizing Pb
cations. Controlling the appropriate Mn?* concentration can further improve the
Pb bioremediation by PSF.

KEYWORDS

phosphate-solubilizing microorganisms, heavy metals, Pb remediation, organic acid,
manganese

1 Introduction

Lead (Pb) is widely recognized as a hazardous heavy metal, primarily due to the increased
human activities such as mining, battery manufacturing, and paint utilization (Naik et al.,
2013). The world’s most severe pollution issues are directly attributed to Pb (Raj and Das,
2023). In recent decades, more than 783,000 tons of Pb contaminants have been produced
annually worldwide (Singh et al., 2003). As a persistent environmental contaminant, Pb in the
environment has a long-term persistence and can cause high toxicity for organisms (Ozdemir
et al., 2004; Naik et al., 2013; Zeng et al., 2017). Therefore, reducing the toxicity of Pb
contamination in the environment is necessary and requires great attention in the future.

Bioremediation is an efficient pathway in reducing Pb contamination toxicity in the
environment (Liang and Gadd, 2017). Compared with physical and chemical pathway,
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microbial remediation is more economical and environmentally
friendly (Meng et al., 2024). Microorganisms can produce metabolites
such as organic acids and extracellular polymeric substances (EPS) to
immobilize Pb cantions (Priyadarshanee and Das, 2024). Additionally,
the structure of cell waslls in microorganisms can also adsorb Pb
cantions (Wang et al., 2019). For example, the fungal of Aspergillus
niger (A. niger) can reduce more than 90% Pb cantions via the organic
acid secretion and biosorption (Tian et al., 2019; Jalili et al., 2020).
Meanwhile, the secretion of EPS from A. niger can also reduce Pb
cantions concentration from 1,000 mg/L to 52.4 mg/L via the
formation of EPS-Pb (Chen et al., 2018). Therefore, the microbial
remediation of Pb exhibits considerable potential and merits
further investigation.

Phosphate-solubilizing fungi (PSF) have been widely applied in
Pb remediation. On the one hand, PSF exhibit a higher secretion of
organic acids (e.g., oxalic acid, malic acid, citric acid, etc.) than other
microorganisms (Coutinho et al., 2012; Sturm et al., 2015; Chowdhury
etal, 2017). On the other hand, PSF typically has a a higher tolerance
to Pb roxicity, which can maintaining organic acid secretion even at
more than 1,000 mg/L Pb concentration (Huang et al., 2023). These
organic acids can react or chelate with Pb cantions to form insoluble
Pb minerals (e.g., lead oxalate), hence reducing the Pb concentration
(Rhee et al., 2012). More importantly, these secreted organic acids can
also dissolve insoluble phosphate (e.g., fluorapatite, FAp) and release
phosphorus (P) (Echeverria et al., 2024). The released P can also react
with Pb to form highly insoluble Pb minerals of pyromorphite
(Pbyy(PO,)6F,) (Park and Bolan, 2013). Hence, the PSF of Aspergillus
niger is typically regarded as the leading candidate in Pb remediation,
especially combined with FAp (Qiu et al., 2021).

Oxalic acid primarily facilitates the bioremediation of Pb by PSF
via the formation of insoluble Pb mineral crystals, both around cell
walls and in the external medium (Rhee et al., 2012; Osorio and Habte,
2013). Meanwhile, oxalic acid can also effectively promote the release
of P from insoluble phosphate (Kpomblekou-A and Tabatabai, 2003).
On the one hand, oxalic acid has the highest acidity constant
(pK.; = 1.25 and pK,, = 4.27) compared with other organic acids such
as citric acid (Palmieri et al., 2019). On the other hand, oxalic acid also
has a higher chelating ability with metal cations (e.g., Pb**, Ca*, and
Mg?) due to its conjugated structure (Gadd, 1999). Therefore,
promoting the secretion of oxalic acid is an effective strategy to
enhance the Pb remediation by PSE

Metal cation is essential to achieve the high secretion of organic
acid by PSF (Li et al., 2017; Walaszczyk et al., 2018; Huang et al., 2023).
However, the different metal cations concentration would affect the
secretion of organic acid by PSE Supply of divalent cations (e.g., Ca*',
Cu?, etc.) can favor the secretion of organic acid by PSE but
influenced by the growth-limiting concentration (Palmieri et al.,
2019). As a co-factor, the supply of Mn** can change the secretion of
organic acid via the tricarboxylic acid (TCA) cycle, especially for
oxalic acid (Ruijter et al., 1999). Oxalic acid is the primary pathway in
Pb remediation by PSE. Therefore, the concentration of Mn** could
also significantly affect the Pb remediation by PSF theoretically.
However, there is insufficient research to confirm the importance and
role of Mn** in Pb remediation by PSE.

This study aimed to investigate the effect of Mn** on Pb
remediation by the PSF Aspergillus niger and Penicillium chrysogenum
under the addition of fluorapatite (FAp). The capacity of P release
from FAp between these two fungi was also investigated. The pH in
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the medium was measured by a pH meter. The oxalic acid

concentration was measured by high-performance liquid
chromatography (HPLC). The Pb and P concentrations in the solution
were measured by inductively coupled plasma-optical emission
spectrometry (ICP-OES). The resulting minerals were characterized
by X-ray diffraction (XRD). The Pb in the mycelium was extracted by

Toxicity Characteristic Leaching Procedure (TCLP).

2 Materials and methods
2.1 Fungal strains preparation

Aspergillus niger (A. niger) (CGMCC No. 23272) and Penicillium
chrysogenum (P. chrysogenum) (CGMCC No. 23271) were isolated
from the maize rhizosphere soil located in Suzhou, China (33°41'N,
117°5’E) (Wang et al., 2023; Feng et al., 2025). The Potato Dextrose
Agar (PDA) medium was used to collect the spores for these two
fungi. After 5 days of incubation at 28 °C, the formed fungal spores
on the medium were drenched with sterile water using a fine artist’s
brush. Subsequently, the mixture was filtered through a triple-layer
sterile cheesecloth to remove mycelial fragments. Finally, a 0.85%
sterile saline dilution was used and adjusted to 107 cfu/mL using
a hemocytometer.

2.2 Pb remediation by A. niger and
P. chrysogenum under different Mn?*
conditions

The Pb(NO;), powder (Xilong Scientific Ltd.) was used as the Pb
contamination in solution. The initial Pb concentration in the medium
was 1,000 mg/L. MnCl,-4H,0 (Macklin Inc.) was used as the source
of Mn?*. For A. niger (ANG) and P. chrysogenum (PCH), five Mn**
treatments were performed, ie., 0 mg/L Mn?, 3.75 mg/L Mn*,
7.5 mg/L Mn*, 15 mg/L Mn?*, and 30 mg/L Mn?". Prior to the
incubation process, 0.16g of Pb(NOs), powder and 0.5g of
fluorapatite (FAp) were individually introduced into 150 mL
Erlenmeyer flasks containing 100 mL of PDB medium. Then, 1 mL of
A. niger and P. chrysogenum suspensions was added to each treatment,
respectively. These flasks were incubated at 180 rpm and 28 °C under
sterile conditions with the Parafilm (BS-QM-003, Biosharp) seals.
After a 7-day incubation period, the PDB medium was collected and
filtered through a 0.45 pm polyethersulfone (PES) membrane. The
filtrates were collected for organic acids, pH, P concentration, and Pb
content analysis. The centrifugal precipitates were collected to detect
the enzyme activity. Meanwhile, the precipitates were also dried at
55 °C for 24 h to determine the dry biomass, XRD, and SEM analysis.

2.3 TPLC-Pb extracted from mycelium

The available Pb concentration leached from immobilized Pb
minerals was tested by the TCLP method. The formed preceptaties
with mycelium were mixed with the extraction solution (1:20) and
shaken at 180 rpm for 18 + 2 h at room temperature. The mixture was
centrifuged, and the Pb concentration in the supernatant was
measured by ICP-OES (Feng et al., 2025).
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2.4 Enzyme activity assay

Using Pyruvate dehydrogenase (PDH) and citrate synthase (CS)
activity assay kits (Comin Biotechnology Co., Ltd., Suzhou, China) to
determine the enzyme activities from filtered fungal mycelium.
Exhaustive methods refer to previous research (Tian et al., 2021).

2.5 Instrumentation

Using a pH meter (FE20, Mettler Toledo, Columbus, OH,
United States) to determine the medium pH value. The concentration
of P and Pb was analyzed by ICP-OES (PerkinElmer Avio 200,
United States). Before the test, the filtrate was diluted 10 times.
Calibration curves were prepared at concentrations of 1, 5, 10, 20, 50,
and 100 mg/L using P and Pb standards (Feng et al., 2025).

The secretion of oxalic acid was determined by HPLC (Agilent
1200, Agilent Technologies, Santa Clara, CA, United States). The
mobile phase included 2.5 wt%o potassium dihydrogen phosphate
(KH,PO,) and methanol (CH;OH) in a ratio of 99:1. The HPLC
column temperature was 30 °C. Phosphoric acid was used to adjust
the pH of KH,PO, to 2.8 at a rate of 1 mL/min. Standard solutions of
oxalic acid were diluted to concentrations of 1,500, 1,000, 500, 200,
100, 50, and 0 mg/L (Su et al., 2019).

The XRD analysis of precipitates was performed by D/Max-2500
X-ray diffraction (Rigaku Corporation, Tokyo, Japan, Cu-K; 36 kV;
20 mA; scanning from 5 to 60 at a speed of 4/s). Prior to XRD analysis,
the filtered dry precipitates were ground in a planetary ball mill (Mitr
YXQM, Changsha Mitrcn Instrument Equipment Co., Ltd., Changsha,
China). The ground material was then passed through a 100-mesh
sieve. Finally, using the MDI Jade 6.5 software to detect the results of
XRD precipitation for phase identification.

2.6 Statistical analysis

Each experiment was replicated three times. The mean and
standard deviation of each treatment were calculated and reported.

10.3389/fmicb.2025.1696000

Tukey’s honestly significant difference test (p < 0.05) was used to
identify the significant differences among the treatments by one-way
ANOVA. Before conducting one-way ANOVA, the data were tested
for homogeneity of variance and normality using the Shapiro-Wilk
and Levene tests. The data were analyzed statistically with SPSS
26.0 software.

3 Results

3.1 Fungal dry biomass and pH value in
medium

After 7 days of incubation, the fungal dry biomass in 0 and
3.75 mg/L Mn?* treatments was 1.07 and 1.12 g (Figure 1A). In
7.5mg/L Mn** treatment, the fungal dry biomass significantly
increased to 1.26 g (Figure 1A). In 15 and 30 mg/L Mn?* treatments,
the fungal dry biomass decreased to 1.08 g and 1.10 g, respectively,
(Figure 1A). For P. chrysogenum, the fungal dry biomass showed a
lower value compared with A. niger, i.e., 0.80, 0.85, 0.78, 0.77, and
0.76 g in each Mn** concentration conditions after 7 days of incubation
(Figure 1A).

The initial medium pH value is 6.5. After 7 days of incubation, the
medium pH value in A. niger under 0, 3.75, 7.5, 15, and 30 mg/L Mn**
treatments decreased to 3.27, 3.14, 2.86, 2.95, and 3.07, respectively
(Figure 1B). For P. chrysogenum, the medium pH value showed a
higher pH value compared to A. niger, i.e., ranged from 6.16 to 6.90
under different Mn** concentration, suggesting the lower secretion of
organic acids from P. chrysogenum (Figure 1B).

3.2 Secretion of oxalic acid and citric acid
by A. niger and P. chrysogenum

In 0 mg/L Mn?* treatment, the concentration of oxalic acid
secreted by A. niger was 436.87 mg/L (Figure 2A). Meanwhile, the
oxalic acid concentration gradually increased to 807.01 mg/L in
3.75mg/L Mn*" treatment and reached to the highest value of

0 mg/L
3.75mg/L
154 7.5 mg/L
a 15 mg/L
30 mg/L
—_~ b ab ab
8 2
Z 1.0 -
=
E
2
=
e
[=]
0.5 4
0.0
ANG PCH
FIGURE 1

Dry biomass (A) and pH value (B) of Aspergillus niger and Penicillium chrysogenum in different Mn?* conditions after 7 days of incubation. Standard
deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey's honest significant difference test
(p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.
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Oxalic acid (A) and citric acid content (B) Aspergillus niger and Penicillium chrysogenum in different Mn?* conditions after 7 days of incubation.
Standard deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey’s honest significant difference
test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.

1310.16 mg/L in 7.5 mg/L Mn*" treatment (Figure 2A). In 15 and
30 mg/L Mn?* treatments, the secretion of oxalic acid remained the
downward tendency (Figure 2A). For P. chrysogenum, the oxalic acid
concentration was 144.12 mg/L in 0 mg/L Mn®* treatment (Figure 2A).
In3.75,7.5,15, and 30 mg/L Mn?* treatments, the oxalic acid secreted
by P. chrysogenum was also shown a low value, ranging from 11.03 to
68.79 mg/L (Figure 2A).

Unlike oxalic acid, the citric acid secreted by A. niger in
7.5 mg/L Mn** treatment had the lowest value of 647.05 mg/L
(Figure 2B). In 0mg/L Mn*" treatment, the citric acid
concentration had the highest value of 1,268 mg/L (Figure 2B).
Meanwhile, citric acid gradually decreased to 1004.40 mg/L in
3.75 mg/L Mn* treatment (Figure 2B). In addition, the
concentrations of citric acid remained the upward tendency in 15
and 30 mg/L Mn** treatment (Figure 2B). For P. chrysogenum, the
citric acid concentration was 709.52 mg/L without Mn** after
7 days of incubation. With the Mn?>* concentration increased to
3.75, 7.5, 15, and 30 mg/L, the secretion of citric acid by
P chrysogenum increased to 845.38, 1022.75, 1152.82, and
1355.10 mg/L, respectively (Figure 2B).

3.3 P concentration in the medium

The P concentration in A. niger medium without Mn?* addition
(0 mg/L) was 421.53 mg/L (Figure 3A). In 3.75 and 7.5 mg/L Mn**
treatments, the content of P increased to 469.95 and 563.27 mg/L,
respectively (Figure 3A). In 15 and 30 mg/L Mn?* treatments, the P
concentration decreased to 483.79 and 436.14 mg/L, respectively
(Figure 3A). For P. chrysogenum, the P was hardly released from FAp.
The highest P content was 13.38 mg/L in 3.75 mg/ L Mn?* treatment
(Figure 3A). In other Mn** treatments, the P content ranged from 6.08
to 6.56 mg/L (Figure 3A). Compared with P. chrysogenum, A. niger is
more efficient in the release of P from FAp, i.e., more than 40% P
release rate by A. niger vs. less than 5% P release rate by P. chrysogenum
(Figure 3B).
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3.4 Pb remediation by A. niger and
P. chrysogenum under different Mn?*
conditions

After 7 days of incubation, the Pb concentration in each Mn**
treatments was significantly decreased from 1,000 mg/L to 8.00, 6.59,
4.94,5.80, and 6.40 mg/L in A. niger, respectively (Figure 4A). However,
the Pb contents in different Mn** treatments with P. chrysogenum had
about 10 times than A. niger (Figure 4A). The Pb concentration in
P, chrysogenum under different Mn?* treatment ranged from 93.31 to
168.17 mg/L after 7 days of incubation (Figure 4A).

The TCLP-Pb concentration in A. niger with 0, 3.75, 7.5, 15,
30 mg/L Mn?* treatments were 36.23, 31.47, 22.43, 25.39, and
28.09 mg/L after 7 days of incubation, respectively (Figure 4B). For
P chrysogenum, the TCLP-Pb concentration under different Mn?**
treatments showed a higher value of 50.10, 55.20, 63.77, 67.06, and
75.71 mg/L (Figure 4B). Meanwhile, the Pb removal ratio in A. niger
was much higher than P. chrysogenum under different Mn** treatments,
i.e., 99.1 t0 99.5% vs. 83.1 to 90.7% (Figure 4C). In addition, the ratio
of TCLP-Pb/immobilized Pb between A. niger and P. chrysogenum in
0,3.75,7.5,15,30 mg/L Mn?* treatments was 3.65, 3.17, 2.25, 2.55, 2.83
and 5.27%, 5.84, 6.81, 7.19, 8.19%, respectively (Figure 4D).

3.5 Enzyme activity in A. niger and
P. chrysogenum under different Mn?*
conditions

The enzyme activity of pyruvate dehydrogenase (PDH) in both
A. niger and P. chrysogenum initially increased and then decreased as
the Mn*" concentration increased from 0 to 30 mg/L (Figure 5A). In
7.5 mg/L Mn*" treatment, A. niger and P. chrysogenum showed the
highest enzyme activity, i.e., 31.53 and 17.23 nmol/min/g, respectively
(Figure 5A). In 0, 3.75, 15, and 30 mg/L Mn** treatments, the PDH
activity in A. niger and P. chrysogenum ranged from 4.13 ~ 19.57 and
3.90 ~ 11.57 nmol/min/g, respectively (Figure 5A). For citrate
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FIGURE 3

P concentration (A) and P release rate (B) of Aspergillus niger and Penicillium chrysogenum in different Mn?* conditions after 7 days of incubation.
Standard deviations are shown with N = 3. The significant differences across treatments were carried out using Tukey's honest significant difference
test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.
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FIGURE 4
Pb?* content in solution (A), TCLP-Pb concentration (B), Pb removal ratio (C), and TCLP-Pb/removed Pb ratio (D) of Aspergillus niger and Penicillium
chrysogenum in different Mn?* conditions after 7 days of incubation. Standard deviations are shown with N = 3. The significant differences across

treatments were carried out using Tukey's honest significant difference test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium
chrysogenum.

synthase (CS) enzyme activity, P. chrysogenum showed a similar trend
with PDH, i.e., reached the highest value of 66.77 nmol/min/g in
7.5 mg/L Mn*" treatment and ranged from 39.90 to 60.27 nmol/min/g

(Figure 5B). The CS enzyme activity in A. niger under 0, 3.75, 15, and
30 mg/L Mn?* treatments were 38.40, 39.90, 30.20, 28.10, and
35.60 mg/L, respectively (Figure 5B).
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FIGURE 5
Pyruvate dehydrogenase (PDH) enzyme activities (A) and citrate synthase (CS) enzyme activities (B) of Aspergillus niger and Penicillium chrysogenum in
different Mn?* conditions after 7 days of incubation. Standard deviations are shown with N = 3. The significant differences across treatments were
carried out using Tukey's honest significant difference test (p < 0.05) after one-way ANOVA. ANG, Aspergillus niger; PCH, Penicillium chrysogenum.

3.6 XRD analysis and mineral peak area
ratio

XRD patterns showed the Pb mineralization by A. niger and
P. chrysogenum at Mn** concentrations of 0, 3.75, 7.5, 15, and
30 mg/L (Figure 6). The peaks located at 24.32° and 31.74°
represent the minerals of lead oxalate (LO) and fluoropyromorphite
(FAL) (Chen et al., 2019). In A. niger treatment, the peaks of LO
and FAL were clearly observed at 3.75, 7.5, 15, and 30 mg/L Mn**
concentrations (Figure 6A). For P. chrysogenum, the peaks of LO
and FAL were also observed (Figure 6B). The peak area ratios of
minerals between A. niger and P. chrysogenum are shown in
Figure 7. For A. niger, the area ratio of LM (LO + FAL)/FAp was
much higher than P. chrysogenum, i.e., 3.46 ~ 4.77 vs. 0.09 ~ 0.23
(Figure 7A). Under different Mn** treatments, the peak area ratios
of LO/FAp were 2.30, 2.31, 2.88, 2.73, and 2.51 in A. niger, much
higher than 0.033, 0.054, 0.031, 0.030, and 0.005 in P. chrysogenum
(Figure 7B). Meanwhile, the peak area ratios of FAL/FAp in A. niger
also higher than P. chrysogenum, i.e., 0.35, 0.49, 0.66, 0.48, and 0.33
vs. 0.04, 0.0550, 0.046, 0.033, and 0.032 (Figure 7C). The peak area
ratios of LO/LM were 0.93, 0.82, 0.73, 0.83, and 0.87 in A. niger,
while in P. chrysogenum was only 0.35, 0.27, 0.34, 0.38, and 0.44
(Figure 7D). The peak area ratios of FAL/LM were 0.54, 0.65, 0.66,
0.61, 0.55 in A. niger and 0.06, 0.17, 0.26, 0.16, 0.12 in
P. chrysogenum (Figure 7E). The XRD peak area ratio of LO and
FAL formed in A. niger were 2.64, 3.03, 2.14, 2.18, 1.95 and 8.56,
3.76, 2.48, 3.74, 4.43 times than P. chrysogenum, respectively
(Figure 7F).

3.7 SEM analysis

SEM images of Aspergillus niger (7.5 mg/L Mn**) and Penicillium
chrysogenum (3.75 mg/L Mn*") after 7 days of incubation were shown
in Figure 8. Aspergillus niger exhibited robust growth after 7 days,
characterized by significant mycelial development encapsulated with
calcium oxalate, lead oxalate, and fluoropyromorphite (Figures 8A,B).
Similarly, in the presence of Penicillium chrysogenum, the culture
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displayed the presence of calcium oxalate, lead oxalate, and
fluoropyromorphite around the ruptured Penicillium chrysogenum
(Figures 8C,D). These findings indicated that the ability of both
Aspergillus niger and Penicillium chrysogenum can dissolve FAp and
promote Pb immobilization.

4 Discussion

Bioremediation is a high-efficiency and low-cost pathway for Pb
remediation (Dang et al., 2018; Feng et al., 2022; Guan et al., 2024).
This research shows that both A. niger and P. chrysogenum can tolerate
a high Pb toxicity (1,000 mg/L) and remove more than 83% Pb*" in
the solution (Figure 4). Especially for A. niger, the combination of FAp
removed more than 99.3% Pb*', not only higher than P. chrysogenum,
but also more efficient than other fungi, e.g., red yeast combine
calcium phosphate remove 90.64% Pb** (Feng et al., 2022; Tian et al.,
2022). Meanwhile, the Pb immobilized by A. niger is more stable than
P. chrysogenum. In A. niger, less than 3.7% Pb** can be re-released
from the immobilized Pb minerals, much lower than the 5.3-8.2%
observed in P. chrysogenum (Figure 4). Therefore, A. niger is more
efficient in Pb remediation compared with P. chrysogenum.

Organic acid plays a key role in Pb remediation by PSF and FAp,
determined the efficiency of Pb immobilization (Li et al., 2016; Meng
et al., 2022). Our research indicates that the secretion of oxalic acid in
A. niger is 5-10 times higher than in P. chrysogenum (Figure 2). Previous
research confirmed that A. niger has a stronger ability to secrete oxalic
acid compared to other PSE, such as Penicillium oxalicum (Tian et al.,
2019; Tian et al., 2024). Therefore, oxalic acid would not be the primary
mechanism for P. chrysogenum in Pb immobilization. In addition, the
dry biomass of P. chrysogenum was also much lower than A. niger, i.e.,
0.76-0.85 g vs. 1.07-1.26 g (Figure 1B). In other words, a 1,000 mg/L Pb
concentration inhibits the growth of P, chrysogenum and its secretion of
oxalic acid. Hence, the other process like bioadsorption may dominated
the Pb immobilization by P. chrysogenum. Compared with other organic
acid (e.g., citric acid), oxalic acid has a higher acidity constants
(pKa = 1.25) and chelating capacity than other organic acid (Li et al.,
2016; Palmieri et al., 2019). Thus, A. niger has a higher Pb removal ratio

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1696000
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

10.3389/fmicb.2025.1696000

LO: lead oxalate
FAP: flourapatite

FAL: fluoropyromorphite
CO: calcium oxalate
' ’ 2
GO0 L0 Lo, Mn** 0 mg/L

2+
. Mn®" 3.75 mg/L

. Mn*' 7.5 mg/L

Mn** 15 mg/L

. Mn*" 30 mg/L

PP ™

B LO: lead oxalate
FAP: flourapatite

CO: calcium oxalate
FAP  FAL: fluoropyromorphite

_ Mn”" 0 mg/L
L VYT ib

Mn** 3.75 mg/L

Mn?* 7.5 mg/L

Mn?* 15 mg/L

Mn** 30 mg/L
g

e

FIGURE 6

10 20 30 40 50 60
2-Theta

XRD patterns of Aspergillus niger (A) and Penicillium chrysogenum (B) under different Mn?* concentrations after 7 days of incubation.

20 30 40 50 60

2-Theta

00 O ——0

T T T T T
375 7.5 15 30 0 3.75

Mn concentrations (mg/L)

T
15

T
15

Mn concentrations (mg/L)

FAL/LM

0.2

FIGURE 7

T T T
3.75 7.5 15 30 0 3.75

Mn concentrations (mg/L)

T
15

T
15

Mn concentrations (mg/L)

Peak area ratio of Pb minerals of Aspergillus niger and Penicillium chrysogenum in different Mn?* conditions after 7 days of incubation. (A—E) Peak area
ratio of LM/FAp, LO/FAp, FAL/FAp, LO/LM, and FAL/LM between ANG and PCH. (F) The peak area ratio between ANG and PCH in the formed LO and
FAL. LO, lead oxalate; FAp, fluorapatite; FAL, fluoropyromorphite; LM, lead minerals (LO + FAL); ANG, Aspergillus niger; PCH, Penicillium chrysogenum.

0.7
C | —#5—ANG
0.6 ,/ \\ —o—PCH
0.5 v \xj
P \
a S .
< 0.4 , g
= - x\j
: 0.3
0.2
0.1
—————_ °
0.0
T T T T T
0 375 75 15 30
Mn concentrations (mg/L)
9 0 mg/L F
3.75 mg/L
81 7.5 mg/L
—¥—15 mg/L

1 —e—30mgL

Peak ratio of ANG/PCH
S
1

T T
LO FAL

Mn concentrations (mg/L)

than P. chrysogenum, i.e., 99% vs. ~90% (Figure 4). Previous research has

demonstrated that the secretion of oxalic acid by PSF primarily drives

the dissolution of phosphate and the remediation of Pb (Jiang et al.,
2020). Especially for PSE, enhancing the immobilization capacity of Pb
can be achieved by promoting the secretion of oxalic acid (Tian

et al., 2023).

The oxalic acid secretion by PSF would also influence the stability

of the removed Pb minerals (Wang et al., 2016; Feng et al., 2025). In
Pb bioremediation, the stability of immobilized Pb is usually depended
on the formed Pb minerals (Feng et al., 2025). In this research, both
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XRD patterns and SEM images confirmed the formation of LO and

FAL in both A. niger and P. chrysogenum (Figures 6, 8). However,

A. niger shows a higher stability of immobilized Pb compared to

P. chrysogenum (Figure 4). Due to the high secretion of oxalic acid,

A. niger is more effective in forming Pb minerals when combined with

FAp (Mendes et al., 2020). The secreted oxalic acid not only forms
insoluble LO by chelating with Pb (Equation 1) but also facilitates the
release of P from phosphate and reacts with Pb to create highly

insoluble fluoropyromorphite (Equations 2, 3) (Ma and Rao, 1999;
Tian et al., 2023). The formed Pb minerals of LO and FAL by PSF

07
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demonstrated the Pb immobilization and contributed to its stability
(Giammar et al., 2008; Ahemad, 2015; Feng et al., 2025).

Pb%* +C,07% < PbC,0, )
Ca5(PO,),F+6H" < 5Ca%" +3H,PO; +F~ )
5Pb*" +3H,PO; +F~ < Pbs (PO, ), F+6H" 3)

Meanwhile, the XRD peak area ratio shows that the Pb minerals
of LO and FAL formed in A. niger are ~2 and ~4 times than
P. chrysogenum, respectively (Figure 7). LO and FAL are the primary
pathways in Pb immobilization using the combination of PSF and
FAp, which have a low solubility (Li et al., 2016; Tian et al.,, 2019).
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Therefore, the different oxalic acid secretion significantly changed the
stability of the removed Pb between A. niger and P. chrysogenum
(Figure 4).

Metal cations can significantly influence the the secretion of
organic acids by fungi (Behera, 2020). The addition of metal cations
(Ca®, Mg*, and Mn?*, etc.) not only affects the growth of PSF but also
influences the secretion of oxalic acid (Kobayashi et al., 2014; Geng
et al, 2022). In this research, the addition of Mn?* significantly
changed the secretion of organic acid between A. niger and
P. chrysogenum (Figure 2). For A. niger, low Mn*" concentrations (0
and 3.75 mg/L) and high Mn** concentrations (15 and 30 mg/L) both
limited oxalic acid secretion but enhanced citric acid secretion
(Figure 2). In contrast, the high Mn** concentrations stimulated the
secretion of citric acid in P. chrysogenum (Figure 2). These differences
in organic acid secretion can also alter the Pb immobilization capacity
of PSF (Tian et al., 2019). Our research indicates that the addition of
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Mn?* enhances the secretion of oxalic acid by A. niger and citric acid
by P. chrysogenum, respectively. Compared to P. chrysogenum, A. niger
is more effective in Pb remediation across various Mn** concentrations.

Mn’* has been demonstrated to be the co-factor that alters the
secretion of organic acids by fungi (Arvieu et al., 2003). Moderate
amounts of Mn** can promote the growth of fungi and improve their
resistance to different environmental stresses (Berovic et al., 2006
Fekete et al., 2022). In contrast, the deficiency or excess Mn** would
also inhibit fungal growth and alter metabolic pathways (Pinzari et al.,
2018). In A. niger and P. chrysogenum, the fungal growth and organic
acid secretion are different under different Mn** concentrations. This
difference could be attributed to the physiological traits and metabolic
pathways of the two fungi (Huang et al., 2013). In addition, differences
in metabolic pathways and gene expression between these two fungi
further influence their response and adaptation mechanisms to Mn**
(Carrasco et al, 2011; Xie et al, 2018). A. nmiger has strong
environmental adaptability and stress resistance and can survive and
reproduce in a variety of environmental conditions (Qiu et al., 2021).
P chrysogenum is sensitive to environmental conditions and
vulnerable to external factors, e.g., pH value, phosphate source, etc.
(Bodini et al., 2011; Wang et al., 2023). Our previous research has
confirmed that the pH > 5.5 condition could decrease the stability of
Pb immobilization (Feng et al., 2025). Notably, all of the pH value in
P chrysogenum under different Mn®* concentrations exceeded 6
(pH > 6), which might explain the lower Pb remove ratio and stability
of immobilized Pb.

The tricarboxylic acid (TCA) cycle is the main pathway for organic
acid secretion in PSE determining both the quantity and types of
secreted acids (Mikeld et al., 2010; Beatrice et al., 2022). First, pyruvate
dehydrogenase (PDH) catalyzes the conversion of pyruvate to
acetyl-CoA, thereby facilitating the production of organic acids in the
TCA cycle (Mattevi et al., 1992; Dutton and Evans, 1996). Meanwhile,
citrate synthase (CS) catalyzes the synthesis of citric acid in PSF
(Alekseev etal., 2017; Behera, 2020). The enzyme activity regulated the
secretion of organic acids, as well as the phosphate solubilization and
Pb remediation facilitated by PSF (Schmalenberger et al., 2015; Feng
etal., 2022). Our research also indicates that the PDH activity in A. niger
is higher than P. chrysogenum (Figure 5). Meanwhile, the activity of CS
enzyme in P, chrysogenum is much higher than in A. niger, which aligns
with the higher secretion of citric acid (Figure 5). In addition, metal
cations can influence the organic acid secretion by affecting the enzyme
activity. Fe’* can regulate CS enzyme activity and enhance the secretion
of citric acid by PSF (Hao et al., 2021; Wang et al., 2023). Similarly, the
7.5 mg/L Mn** can significantly increase the PDH enzyme activity in
A. niger and P, chrysogenum (Figure 5A). Meanwhile, the 7.5 mg/L Mn**
can also significantly increase the CS enzyme activity in P. chrysogenum
(Figure 5A). Therefore, controlling the Mn?* concentration is important
for regulating the metabolism of organic acid and Pb remediation in PSE

5 Conclusion

The combination of PSF A. niger and P. chrysogenum with FAp can
effectively remove Pb cations via the formation of stable Pb minerals.
Oxalic acid secreted by A. niger and P. chrysogenum plays a dominate
role in Pb removal. Notably, A. niger exhibits a higher oxalic acid
secretion compared to P. chrysogenum, which enhances the formation
of insoluble lead oxalate and pyromorphite. An optimal Mn*
concentration (7.5 mg/L) significantly stimulates oxalic acid secretion
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by A. niger, hence accelerating FAp dissolution and promoting
pyromorphite formation. However, suboptimal (<7.5mg/L) or
excessive (15-30 mg/L) Mn** concentrations reduce the stability of Pb
immobilization by A. niger. In summary, A. niger is more effective
than P, chrysogenum in Pb remediation, and an appropriately regulated
Mn?* concentration further enhances its Pb removal capacity.
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