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Background: Acute pancreatitis (AP) is an inflammatory disorder with distinct 
etiological subtypes, yet the role of gut microbiota in disease pathogenesis 
remains poorly understood. We  hypothesized that biliary acute pancreatitis 
(BAP) and hyperlipidemic acute pancreatitis (HLAP) exhibit etiology-specific 
gut microbiota signatures that correlate with disease severity and metabolic 
dysfunction.
Methods: We conducted a cross-sectional study in which stool samples were 
collected from 20 BAP patients, 20 HLAP patients, and 20 healthy controls (HC) 
for 16S rRNA gene sequencing to compare gut microbiota profiles among the 
three groups. Microbial diversity, taxonomy, and functional genes were analyzed 
using bioinformatics pipelines. Clinical-microbial correlations were assessed, 
and the construction of RF and logistic regression models evaluated diagnostic 
biomarker potential.
Results: Both AP groups showed significantly reduced microbial diversity 
compared to controls, with HLAP patients exhibiting more severe dysbiosis. 
HLAP patients showed enrichment of pro-inflammatory taxa, including 
Escherichia-Shigella and Collinsella, alongside depletion of beneficial genera 
Faecalibacterium and Bifidobacterium. As a key SCFA-producing genus, 
Faecalibacterium exhibited comprehensive correlations with inflammatory 
markers, pancreatic enzymes, and lipid profiles in Spearman correlation analysis. 
Functional analysis revealed compromised short-chain fatty acid biosynthesis 
capacity, as evidenced by significant downregulation of acetate (ackA, pta) and 
butyrate (buk, but) synthesis genes in AP patients, which may have partially 
mediated the observed differences in microbiota composition. Furthermore, our 
findings reveal that multi-species biomarker panels provide superior diagnostic 
performance compared to single-species predictors for BAP and HLAP subtype 
classification.
Conclusion: BAP and HLAP patients exhibit distinct gut microbiota signatures 
with progressive dysbiosis, functional impairment, and strong host associations. 
These findings establish a novel framework linking gut microbial composition 
to AP pathophysiology, providing insights for microbiome-targeted precision 
medicine strategies.
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1 Introduction

Acute pancreatitis (AP) is a disease characterized by acute 
inflammatory responses in the pancreas with distinct etiological 
subtypes that differ significantly in pathogenesis, clinical 
presentation, and prognosis (Boxhoorn et  al., 2020). Among 
various etiologies, biliary acute pancreatitis (BAP) remains the 
leading cause of AP (Hamada et  al., 2020). BAP results from 
gallstone migration, causing duct obstruction at the bile duct, 
pancreatic duct, or both. The resulting increased duct pressure 
promotes pancreatitis through unregulated activation of digestive 
enzymes (van Geenen et al., 2010). With improved living standards 
and dietary changes in China, HLAP has emerged as the second 
leading cause of AP, surpassing alcohol in several regions, 
including Beijing and southern Sichuan (Wu et al., 2022; Zheng 
et al., 2015). The pathogenesis of HLAP primarily involves lipotoxic 
mechanisms where elevated triglycerides lead to free fatty acid 
accumulation in pancreatic microcirculation, causing local 
ischemia and inflammatory cascades (De Pretis et al., 2020). This 
lipid-mediated pancreatic injury pathway differs fundamentally 
from the mechanical obstruction seen in BAP. Accumulating 
evidence indicates that HLAP patients demonstrate higher rates of 
infected pancreatic necrosis (IPN), organ failure, prolonged 
hospitalization, and increased mortality (Pascual et  al., 2019; 
Nawaz et al., 2015). These fundamental pathogenic and clinical 
differences between BAP and HLAP suggest that targeted research 
on both subtypes is essential for advancing AP management.

The gut-pancreas axis concept has provided novel insights into 
AP pathophysiology (Zhou et  al., 2024; Zhang et  al., 2022). 
Previous studies have identified the intestine as the organ most 
susceptible to injury during pancreatitis (Leveau et al., 2005). The 
resulting intestinal barrier dysfunction provides conditions for 
bacterial translocation, which worsens the original injury to the 
pancreas and triggers systemic inflammatory responses (Sun et al., 
2024). This inflammatory environment promotes microbial 
dysbiosis, characterized by reduced diversity, beneficial bacteria 
depletion, and pathogenic taxa enrichment (van den Berg et al., 
2021; Wu et  al., 2023). Given the fundamental pathogenic 
differences between BAP and HLAP, these two subtypes likely 
exhibit distinct gut microbiota profiles, which could advance 
understanding of AP pathophysiology and enable precision 
diagnostics. However, comparative analyses of microbial signatures 
and their mechanistic roles in AP remain largely unexplored.

Therefore, this study aims to characterize gut microbiota 
composition among patients with BAP, HLAP, and healthy 
controls, and to elucidate how etiology-specific host factors shape 
distinct microbial signatures. Building on these insights, 
we sought to explore the microbial and metabolic mechanisms 
underlying gut-pancreas crosstalk and its disruption in 
AP. Ultimately, to translate microbiota-derived findings into 
potential clinical applications, we  focused on identifying key 
microbial biomarkers and developing diagnostic models for 
precision AP subtype classification.

2 Materials and methods

2.1 Study design

The flow diagram of this study is shown in Figure 1.

2.2 Study participants and grouping

A total of 60 participants were enrolled in this study, including 20 
patients with biliary acute pancreatitis (BAP), 20 patients with 
hyperlipidemic acute pancreatitis (HLAP), and 20 healthy controls 
(HC). All patients were diagnosed with acute pancreatitis at the 
Department of Gastroenterology, Affiliated Hospital of Ningbo 
University, based on the 2012 revised Atlanta criteria (Banks et al., 
2013). The BAP diagnostic criteria were as follows: (1) having 
gallstones confirmed by abdominal ultrasound, CT, MRCP or other 
imaging examination; (2) having two or more of the following 
laboratory examination indicators: ① alkaline phosphatase 
(AKP) > 125 U/L, ② alanine transaminase (ALT) > 150 U/L, ③ total 
bilirubin (TBIL) > 2.3 mg/dL, and ④ gamma-glutamyl transferase 
(GGT) > 40 U/L (Zver et  al., 2022). HLAP was defined as serum 
triglycerides ≥ 11.3 mmol/L or the serum TG levels between 5.65 to 
11.3 mmol/L accompanied by chylous fasting serum without other 
etiologies of AP (Li et al., 2023; Tenner et al., 2024). Exclusion criteria 
included: (1) concurrent gastrointestinal diseases other than AP; (2) 
recent antibiotic use within the past month; and (3) the presence of 
severe comorbidities preventing proper sample collection or clinical 
assessment. Written informed consent was obtained from all 
participants, and clinical data were anonymized before analysis. This 
study was approved by the Ethics Committee of The First Affiliated 
Hospital of Ningbo University (No. 2025138A; 28 May 2025), and 
conducted in accordance with the Declaration of Helsinki.

2.3 Clinical data collection

Relevant clinical data of AP patients, including routine blood test 
results, serum amylase, and lipase levels, were extracted from the 
hospital’s Electronic Medical Record (EMR) system. The clinical 
laboratory tests were performed on the same day as stool collection. 
Healthy control data were obtained during physical examinations.

2.4 Fecal sample collection

For AP patients, approximately 1 g of stool was collected using 
sterile cryotubes on the first day of hospital admission. Samples were 
immediately packed on ice and transported to the laboratory from the 
Affiliated Hospital of Ningbo University. Upon arrival, fecal samples 
were divided into three aliquots and stored at −80 °C until further 
analysis. Stool from HC was collected during routine physical 
examinations using the same protocol to ensure consistency.
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2.5 16S rRNA gene sequencing

Microbial genomic DNA was extracted from approximately 
200 mg of fecal material using the QIAamp Fast DNA Stool Mini Kit 
following the manufacturer’s instructions. The V3-V4 hypervariable 
regions of the bacterial 16S rRNA gene were amplified using universal 
primers 341F and 806R. PCR products were purified, quantified, and 
sequenced using the Illumina NovaSeq 6,000 platform (paired-end 
250 bp reads).

2.6 Real-time qPCR

The total fecal microbial DNA was obtained through the Fecal 
Genome DNA Extraction Kit (AU46111-96, BioTeke, China) 
according to the standard procedure of the manufacturer. The 
concentration and quality of DNA were assessed using a NanoDrop 

ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, United States). The SuperStar Universal SYBR Master Mix kits 
(Cowin Biotech, China) were used to determine the DNA levels of 
acetate kinase A (ackA), phosphotransacetylase (pta), butyrate kinase 
(buk), and butyryl-CoA (but). Calculations were conducted based on 
the comparative cycle threshold method (2−∆∆Ct). The primers used in 
this study are provided in Table 1.

2.7 Statistical analysis

The data were analyzed using SPSS 25.0 statistical software (IBM, 
USA). Continuous variables with normal distribution were presented 
as the mean ± standard deviation (SD), and Statistical analysis among 
multiple groups was performed using one-way ANOVA. Continuous 
variables with non-normal distribution were presented as the median 
(P25, P75), and statistical analysis among multiple groups was 

FIGURE 1

Flow diagram of this study.
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performed using the Kruskal-Wallis test. Categorical data were 
expressed as percentages (%), and comparisons between groups were 
performed using a χ2 test. Multivariate logistic regression analysis was 
used to determine the independent predictors of PSD. Raw reads were 
processed using the QIIME2 pipeline or DADA2 for quality filtering, 
denoising, chimera removal, and sequence clustering into amplicon 
sequence variants (ASVs). Taxonomic annotation was performed 
using the SILVA 138 reference database (Lloyd-Price et al., 2019).

3 Results

3.1 Clinical characteristics of BAP, HLAP, 
and HC groups

As shown in Table 2, the demographic and clinical parameters were 
compared among the HC, BAP, and HLAP groups. There were no 
significant differences in gender composition across the three groups 
(χ2 = 0.600, p = 0.741), indicating that sex was not a confounding variable 
in subsequent analyses. However, the incidence of hypertension (HTN) 
was significantly higher in the HLAP group (55.0%) compared to the 
BAP (20.0%) and HC (10.0%) groups (χ2 = 10.999, p = 0.004). 
Additionally, fatty liver disease (FLD) also showed group-specific 
differences (χ2 = 7.267, p = 0.026). Serum amylase (AMY) and lipase 
(LPS), established diagnostic biomarkers of AP that reflect pancreatic 
acinar cell injury and enzyme release into systemic circulation, were 
elevated in both BAP and HLAP patients (Ross et al., 2021). In contrast, 
inflammatory markers (CRP and WBC) correlated more closely with 
disease severity (Farrell et al., 2021), with HLAP patients exhibiting the 
highest median values (p < 0.001), reflecting more severe inflammatory 
responses in this subtype. Moreover, lipid parameters exhibited 
significant alterations, with HLAP patients showing higher serum 
triglyceride (TG) levels (p < 0.001). These findings establish the clinical 
and biochemical foundation for understanding etiology-specific 
microbiota differences between BAP and HLAP. The elevated pancreatic 
enzymatic activity and inflammatory response observed in both AP 
subtypes reflect their systemic pathophysiological impact, while the 
divergent patterns in lipid metabolism and associated comorbidities 
(including FLD and HTN) may shape unique disease microenvironments, 
thereby contributing to the divergent gut microbiota profiles.

3.2 Comprehensive analysis of gut microbiota 
diversity and community structure

Microbial richness and diversity, as evaluated by the Chao1, 
Shannon, Simpson, and Pielou_E indices, were markedly decreased 

in both the BAP group and HLAP group, compared to the HC 
group (Figures 2A–D). A Venn diagram analysis revealed that the 
number of group-specific ASVs was highest in the HC group 
(n = 2,693), followed by the BAP group (n = 1812) and HLAP 
group (n = 1,393) (Figure 2E). These results indicate a progressive 
loss of microbial diversity and uniqueness from healthy individuals 
to AP patients, with the HLAP group exhibiting the most marked 
reduction in unique ASVs, suggesting a more severe disturbance 
of the gut microbial ecosystem. Principal coordinates analysis 
(PCoA) further revealed a clear separation in microbial community 
structure between the HC and AP groups (Figures  2F–G), 
indicating AP-induced dysbiosis. We  next examined microbial 
community composition at the phylum (Figure  2H), family 
(Figure  2I), and genus (Figure  2J) levels. At the phylum level, 
Firmicutes, Actinobacteriota, and Bacteroidota dominated the 
microbial community composition. Consistent with previous 
reports, the enrichment of Proteobacteria, a common hallmark of 
microbiota dysbiosis (Reuvers et al., 2022), was more pronounced 
in the HLAP group compared to the BAP group. Notably, the top 
three most abundant families (Lachnospiraceae, Ruminococcaceae, 
and Bifidobacteriaceae) represent key SCFA-producing taxa, 
suggesting that gut-pancreas axis interactions may be primarily 
mediated through these metabolically active microbial 
communities (Sánchez-Tapia et al., 2020; Song et al., 2025). These 
findings prompted us to investigate whether the observed 
microbiota alterations translated into compromised SCFA 
biosynthetic capacity.

3.3 Differential taxonomic composition 
across multiple levels

At the phylum level, Firmicutes and Bacteroidota dominated 
across all groups. While Firmicutes showed no significant 
differences, Bacteroidota was markedly depleted in both AP groups 
vs. controls (Figure 3A). The Firmicutes/Bacteroidota (F/B) ratio 
serves as a crucial indicator of gut microbiota homeostasis, with 
elevated ratios typically associated with metabolic dysfunction, 
inflammation, and compromised intestinal barrier integrity 
(Houtman et al., 2022). As shown in Figure 3B, the F/B ratio was 
significantly elevated in the HLAP group compared to the HC group 
(p < 0.01), while the BAP group showed no significant difference 
from the HC group. At the family level, Enterobacteriaceae 
abundance was higher in HLAP (p < 0.001), whereas 
Ruminococcaceae were markedly decreased (p < 0.001) 
(Figures  3C,D). At the genus level, pro-inflammatory taxa 
Escherichia-Shigella and Collinsella were enriched in HLAP 

TABLE 1  Primer sequences used for RT-qPCR analysis.

Gene name Primer sequence

Forward Reverse

Total bacteria TCCTACGGGAGGCAGCAGT GACTACCAGGGTATCTAATCCTGTT

Acetate kinase A CAAACTGCTGACCAAAGAGT GCGGTAGTTGTCTTCAACAT

Phosphotransacetylase AACTGAACGCACCGGTTGAT GAAGAGTCGTCGAAAATCTC

Butyrate kinase CCATGCGTTAAACCAAAAAGC AATACCTCCGCCCATATG

Butyryl-coenzyme A GCIGAICATTTCACITGGAAYWSITGGCAYATG CCTGCCTTTGCAATRTCIACRAANG
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(p < 0.001), while beneficial genera Faecalibacterium and 
Bifidobacterium were significantly depleted (p < 0.001) 
(Figures 3E–H). LEfSe analysis revealed distinct microbial signatures 
among groups (Figure 3I). Key biomarkers included Bacteroidota 
and Cyanobacteria at the phylum level, Ruminococcaceae at the 
family level, and Faecalibacterium at the genus level. These findings 
motivated the establishment of predictive models to achieve precise 
AP subtype classification, thereby translating the observed 
microbiota differences into potential clinical utility.

3.4 Host-microbiota interaction networks 
and clinical correlations

To explore the host-microbiome associations, we performed 
Spearman correlation between the top 20 abundant genera and 
10 clinical indicators, which showed significant differences in 
Table 2 and Figure 4. Faecalibacterium, as the most abundant 
genus among the top  20, demonstrated comprehensive 
associations with inflammatory markers, pancreatic enzymes, 
and lipid metabolism parameters in correlation analysis. Notably, 
Agathobacter, despite displaying similar correlations with 
inflammatory and pancreatic markers, lacked associations with 
lipid profiles (TG, HDL). This suggests that different bacterial 
genera exhibit distinct regulatory responses in BAP versus HLAP 
patients, with metabolically active bacteria like Faecalibacterium 
(a key SCFA-producing genus) being more sensitive to lipid-
associated pathological changes (Lopez-Siles et  al., 2017). In 
contrast, the pro-inflammatory taxa Escherichia-Shigella and 

Enterococcus correlated positively with inflammatory markers 
(CRP, NE%), with Escherichia-Shigella enrichment in HLAP 
associated with more severe inflammation (van den Berg et al., 
2021). Megamonas and Phascolarctobacterium are also negatively 
correlated with pancreatic enzymes (AMY, LPS), exhibiting their 
relevance as potential diagnostic markers in AP. Additionally, our 
analysis revealed that age did not show significant correlations 
with gut microbiota composition overall. Although age was 
correlated with Megasphaera and Klebsiella, these two genera 
showed no correlations with any of these clinical indicators 
examined, indicating minimal confounding from age differences 
among groups. Collectively, these findings suggest distinct 
associations between bacterial genera and AP-related 
inflammatory responses and lipid metabolism, highlighting 
potential mechanistic links.

3.5 Functional genes analysis of microbial 
metabolic pathways

Short-chain fatty acids (SCFAs), especially acetate and 
butyrate, are the main products of dietary fiber fermentation in the 
colon (Ikeda et al., 2022). Acetate production primarily involves 
two key genes, ackA and pta, encoding acetate kinase and 
phosphotransacetylase respectively, while gut microbes produce 
butyrate through two main pathways, the butyrate kinase pathway 
(buk) and the butyryl-CoA pathway (but) (De Mets et al., 2019; 
Gharechahi et al., 2021). Acetate serves as a key metabolic regulator 
that can suppress adipocyte lipolysis, thereby maintaining lipid 

TABLE 2  Clinical characteristics and laboratory results among three groups.

Variables HC BAP HLAP F/H/χ2 p

Number 20 20 20

Age (years) 31.50 (25.25, 39.25) 59.30 ± 16.41 47.70 ± 16.01 21.073 <0.001

BMI 22.27 ± 0.71 24.89 ± 3.52 25.54 ± 3.38 7.379 0.001

Gender, n (%)
Male 14 (70.0) 14 (70.0) 12 (40.0)

0.600 0.741
Female 6 (30.0) 6 (30.0) 8 (60.0)

HTN, n (%) 2 (10.0) 4 (20.0) 11 (55.0) 10.999 0.004

DM, n (%) 0 (0.0) 4 (20.0) 3 (15.0) 4.205 0.122

FLD, n (%) 1 (5.0) 4 (20.0) 8 (40.0) 7.267 0.026

CRP (mg/L) <0.50 40.05 (8.80, 89.29) 49.99 (2.95, 146.10) 40.880 <0.001

WBC (*109/L) 5.90 (5.10, 6.40) 7.50 (6.15, 8.75) 9.89 ± 4.16 15.013 <0.001

NE% 51.47 ± 6.77 74.97 ± 10.57 80.25 (59.03, 84.45) 30.144 <0.001

LY% 39.15 (32.88, 42.53) 15.90 ± 7.68 11.75 (6.33, 27.68) 33.038 <0.001

AMY (U/L) 75.5 (57.5, 78.8) 186.5 (77.5, 711.3) 145.5 (109.0, 345.5) 18.920 <0.001

LPS (U/L) 48.5 (32.5, 53.0) 164.5 (49.0, 566.3) 160.5 (94.5, 529.8) 20.840 <0.001

TG (mmol/L) 1.01 (0.80, 1.38) 1.03 (0.64, 2.17) 10.72 (6.85, 11.79) 36.293 <0.001

TC (mmol/L) 4.49 ± 0.73 3.80 (3.35, 4.49) 5.24 (3.60, 8.30) 5.380 0.068

HDL (mmol/L) 1.24 (1.09, 1.63) 0.99 (0.65, 1.07) 1.09 (0.91, 1.45) 10.610 0.005

LDL (mmol/L) 2.77 ± 0.66 2.35 (2.39, 3.31) 2.88 ± 1.38 1.055 0.590

BMI, body mass index; HTN, hypertension; DM, diabetes mellitus; FLD, fatty liver disease; CRP, C-reactive protein; WBC, white blood cell count; NE%, neutrophil percentage; LY%, 
lymphocyte percentage; AMY, amylase; LPS, lipase; TG, triglycerides; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
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homeostasis (May and den Hartigh, 2021). We  observed a 
consistent downward trend in acetate synthesis genes ackA and pta, 
indicating compromised microbial acetate-generating potential in 
AP patients (Figures 5A,B). This impaired acetate production may 
exacerbate lipolysis and lipid dysregulation in HLAP patients (Lei 
et al., 2021). Major attention is focused on butyrate for its anti-
inflammatory effects in AP (Xiong et  al., 2022). Through 
stimulating MUC2 production and modulating tight junction 
protein expression, butyrate can reinforce intestinal barrier 
integrity and reduce LPS translocation, thereby attenuating 
inflammatory response in pancreatic tissues (Peng et al., 2024). 
Given these critical roles of butyrate, we investigated whether the 
microbiota alterations in AP patients translate into impaired 
butyrate biosynthesis capacity. Notably, the expression of the two 
key genes was markedly reduced in AP patients compared to the 
HC group (Figures 5C,D). Despite similar patterns of microbial 

metabolic impairment between AP subtypes, the pronounced 
SCFA biosynthetic deficiency observed in both BAP and HLAP 
groups highlights potential therapeutic targets for modulating gut 
microbiota function in AP management.

3.6 Clinical diagnostic value assessment 
and biomarker development

To evaluate the clinical significance of the gut microbiota 
both in BAP and HLAP, this study constructed RF and logistic 
regression models, based on the relative abundances of microbial 
species (Zou et al., 2022). Through the filtration of species with 
abundances less than 1%, 18 taxa were identified as potential 
biomarkers for BAP, as indicated by their mean decrease accuracy 
(Figure  6A). To evaluate the discriminatory ability of these 

FIGURE 2

Changes of gut microbiota in the HC, BAP, and HLAP groups based on 16S rRNA data. α-diversity analysis showing that (A) the Chao1 index, (B) the 
Shannon index, (C) the Simpson index, and (D) the Pielou_E index were decreased in the BAP and HLAP groups. (E) Venn diagram of the observed ASVs 
in the HC, BAP, and HLAP groups. (F) Principal coordinate analysis. (G) NMDS analysis. (H–J) The taxonomic composition among the groups at the 
phylum, family, and genus levels. Data are presented as mean ± SD (n = 20 per group). *p < 0.05, **p < 0.01, ***p < 0.001.
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species between BAP patients and healthy controls, a classification 
model was constructed using the top 8 species (Figure 6B), and 
the accuracy of the model in predicting health status was assessed 
via ROC curves (Figure  6C). Among the single-species 
predictions, Streptococcus mitis demonstrated the highest 
individual predictive power (AUC = 0.7638), followed by 
Streptococcus parasanguinis (AUC = 0.7241). Notably, inclusion 
of all eight differentially abundant species markedly enhanced the 
predictive performance of the model (AUC = 0.9517, Figure 6D). 
Similarly, for HLAP classification, 17 taxa were identified as 
potential biomarkers, with the top  8 species used for model 

construction (Figures  7A,B). ROC curve analysis revealed 
comparable results, with the combined eight-species model 
achieving an AUC of 0.9586 (Figures  7C,D). Furthermore, 
we assessed the discriminatory capacity between BAP and HLAP 
subtypes (Figures  8A,D). Lactobacillus crispatus showed the 
strongest individual predictive capacity in single-species analysis 
(AUC = 0.7238), and the combined eight-species model similarly 
improved predictive accuracy (AUC = 0.8575). The consistent 
improvement of model performance through multi-species 
integration confirms its clinical advantage compared to single-
biomarker diagnostics.

FIGURE 3

Taxonomic analysis of gut microbiota differences across multiple levels. (A) Relative abundance of Bacteroidota. (B) The Firmicutes/Bacteroidota (F/B) 
ratio. (C,D) Taxonomic analysis of gut microbiota differences at the family level (Ruminococcaceae and Enterobacteriaceae). (E–H) Taxonomic analysis 
of gut microbiota differences at genus level: (E) Faecalibacterium, (F) Bifidobacterium, (G) Escherichia-Shigella, and (H) Collinsella. (I) Differentially 
abundant taxa identified by LEfSe analysis (LDA score > 3). Data are presented as mean ± SD (n = 20 per group). *p < 0.05, **p < 0.01, ***p < 0.001.
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4 Discussion

This study presents a novel comparative framework characterising 
gut microbiota differences between BAP and HLAP, revealing distinct 
etiology-specific microbial signatures and identifying potential 
biomarkers for AP subtype classification. BAP and HLAP patients 
exhibited fundamentally different clinical phenotypes and metabolic 
profiles (Table 2). Host-microbiota correlation analyses revealed that 
these divergent host factors selectively shaped microbial community 
composition, creating distinct dysbiosis patterns (Figure  4). 
Specifically, HLAP patients exhibited more severe dysbiosis 
characterized by SCFA-producing bacteria depletion and pathogenic 
taxa enrichment. Given the critical roles of SCFA in gut-pancreas axis 
regulation, we further investigated whether these microbial alterations 
resulted in compromised SCFA biosynthetic capacity. Functional 
analysis revealed marked downregulation of key SCFA synthesis genes 
(ackA, pta, buk, but) in both AP subtypes (Figure 5), providing a 
mechanistic basis for targeted interventions. Finally, multi-species 
biomarker panels demonstrated robust diagnostic potential for AP 
subtype classification, suggesting clinical utility for precision 
medicine applications.

The more severe microbiota dysbiosis observed in HLAP 
patients, characterized by greater depletion of beneficial SCFA-
producing bacteria (Faecalibacterium, Bifidobacterium) and 

enrichment of pathogenic taxa, correlates with the increased 
disease severity and poor prognosis in this subtype (Hu et al., 
2021). As the most abundant genus among the top 20 and a key 
SCFA-producing genus, Faecalibacterium exhibited comprehensive 
correlations with clinical indicators in Spearman correlation 
analysis. This finding is consistent with its reported anti-
inflammatory properties and intestinal barrier protective 
functions, highlighting its critical role in multiple 
pathophysiological processes (Lenoir et al., 2020). Bifidobacterium, 
recognized as a key beneficial genus with metabolic regulatory 
functions, showed notable alterations in AP patients (Li et al., 
2022). Additionally, the expansion of opportunistic pathogens like 
Escherichia-Shigella and Enterococcus in HLAP patients, coupled 
with their positive correlations with inflammatory markers, 
highlights the distinct pathophysiological environments between 
BAP and HLAP subtypes (Zhang et al., 2025). These facultative 
anaerobes thrive in inflammatory environments and can 
translocate across compromised epithelial barriers, potentially 
contributing to the higher rates of systemic complications 
observed in HLAP (Li et al., 2023). The observed differences in 
microbiota composition reflect underlying mechanisms of 
gut-pancreas axis interactions (Yazici et  al., 2023). These 
interactions are mediated through multiple pathways, including 
(1) inflammatory responses: the distinct pathophysiological 

FIGURE 4

Heatmap of correlations between the top 20 most abundant genera and key clinical parameters in AP patients.

https://doi.org/10.3389/fmicb.2025.1695811
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Deng et al.� 10.3389/fmicb.2025.1695811

Frontiers in Microbiology 09 frontiersin.org

mechanisms between biliary obstruction in BAP and lipotoxic 
injury in HLAP may cause inflammatory cascades by different 
signaling; (2) metabolic regulation: severe lipid dysregulation in 
HLAP patients may lead to different intestinal flora, or metabolites 
and toxins derived from microorganisms, enter the pancreatic 
microcirculation, further influencing disease progression (Han 
et al., 2023; Paik et al., 2022; Michaudel and Sokol, 2020).

Notably, alterations in key metabolites such as SCFAs potentially 
mediate gut-pancreas axis interactions (Ammer-Herrmenau et al., 
2024). SCFAs have been proven to ameliorate bacterial translocation, 
a critical pathogenic mechanism in AP, by rebuilding gut flora and 
stabilizing the intestinal epithelial barrier (Yan et al., 2023). Moreover, 
SCFAs can suppress systemic inflammatory responses, improve the 
injured pancreas, and prevent and protect other organ dysfunctions 
(Li et al., 2020; He et al., 2020). Therefore, we analyzed four functional 
genes to assess SCFA biosynthetic capacity: ackA and pta, primarily 
involved in acetate synthesis; buk and but serving as two key genes in 
the butyrate-producing pathway (Huang et  al., 2021). Our results 

revealed markedly reduced expression of acetate and butyrate 
synthesis genes (ackA, pta, buk, but) in AP patients. While our study 
identified impaired SCFA biosynthetic capacity associated with AP 
overall rather than subtype-specific changes, these findings provide 
rational therapeutic strategies for microbiota modulation in AP 
through probiotics, dietary interventions, or fecal transplantation.

Nonetheless, the study has limitations. Its cross-sectional design 
precludes causal inference, and whether dysbiosis precedes or results 
from AP onset remains to be established. While targeted qPCR validated 
key functional pathways, future metagenomics and metabolomics 
studies are needed to refine these findings. Additionally, age is not 
perfectly matched between groups in Table 2. However, a recent study 
with similar age differences (p = 0.004) successfully identified distinct 
microbiota signatures between HLAP and non-HLAP groups (Hu et al., 
2021), supporting the validity of our analysis. In future studies, we will 
implement more stringent age-matching criteria in the HC group. 
Importantly, our correlation analysis demonstrates that age differences 
do not significantly confound our findings.

FIGURE 5

Relative expression levels of SCFA-related metabolic genes in fecal samples. (A,B) Acetate pathway: acetate kinase, phosphotransacetylase. (C,D) 
Butyrate pathway: butyrate kinase, butyryl-CoA. Data are presented as mean ± SD (n = 8 per group). *p < 0.05, **p < 0.01, ***p < 0.001.
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In conclusion, we  establish a novel, etiology-specific framework 
linking gut microbial composition, function, and host phenotype in 
AP. This study advances the understanding of microbiota-driven 
mechanisms in AP pathogenesis and reveals distinct microbial signatures 
between BAP and HLAP subtypes. The significant discriminatory 
capacity of multi-species biomarker panels highlights their translational 
potential for precision diagnostics between BAP and HLAP. Future work 
should focus on refining key biomarkers and developing multiplex PCR 
assays for the simultaneous detection of these markers. Integration into 
microfluidic chip platforms could enable point-of-care testing, providing 
rapid subtype classification. This approach can help address current 
diagnostic challenges in borderline cases and support precision medicine 
in AP management.
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(n = 20). (B) Relative abundance of top 8 bacterial biomarkers (n = 20). (C) Individual ROC curves for each of the top 8 biomarkers (n = 20). 
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