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Background: Acute pancreatitis (AP) is an inflammatory disorder with distinct
etiological subtypes, yet the role of gut microbiota in disease pathogenesis
remains poorly understood. We hypothesized that biliary acute pancreatitis
(BAP) and hyperlipidemic acute pancreatitis (HLAP) exhibit etiology-specific
gut microbiota signatures that correlate with disease severity and metabolic
dysfunction.

Methods: We conducted a cross-sectional study in which stool samples were
collected from 20 BAP patients, 20 HLAP patients, and 20 healthy controls (HC)
for 16S rRNA gene sequencing to compare gut microbiota profiles among the
three groups. Microbial diversity, taxonomy, and functional genes were analyzed
using bioinformatics pipelines. Clinical-microbial correlations were assessed,
and the construction of RF and logistic regression models evaluated diagnostic
biomarker potential.

Results: Both AP groups showed significantly reduced microbial diversity
compared to controls, with HLAP patients exhibiting more severe dysbiosis.
HLAP patients showed enrichment of pro-inflammatory taxa, including
Escherichia-Shigella and Collinsella, alongside depletion of beneficial genera
Faecalibacterium and Bifidobacterium. As a key SCFA-producing genus,
Faecalibacterium exhibited comprehensive correlations with inflammatory
markers, pancreatic enzymes, and lipid profiles in Spearman correlation analysis.
Functional analysis revealed compromised short-chain fatty acid biosynthesis
capacity, as evidenced by significant downregulation of acetate (ackA, pta) and
butyrate (buk, but) synthesis genes in AP patients, which may have partially
mediated the observed differences in microbiota composition. Furthermore, our
findings reveal that multi-species biomarker panels provide superior diagnostic
performance compared to single-species predictors for BAP and HLAP subtype
classification.

Conclusion: BAP and HLAP patients exhibit distinct gut microbiota signatures
with progressive dysbiosis, functional impairment, and strong host associations.
These findings establish a novel framework linking gut microbial composition
to AP pathophysiology, providing insights for microbiome-targeted precision
medicine strategies.
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1 Introduction

Acute pancreatitis (AP) is a disease characterized by acute
inflammatory responses in the pancreas with distinct etiological
subtypes that differ significantly in pathogenesis, clinical
presentation, and prognosis (Boxhoorn et al., 2020). Among
various etiologies, biliary acute pancreatitis (BAP) remains the
leading cause of AP (Hamada et al., 2020). BAP results from
gallstone migration, causing duct obstruction at the bile duct,
pancreatic duct, or both. The resulting increased duct pressure
promotes pancreatitis through unregulated activation of digestive
enzymes (van Geenen et al., 2010). With improved living standards
and dietary changes in China, HLAP has emerged as the second
leading cause of AP, surpassing alcohol in several regions,
including Beijing and southern Sichuan (Wu et al., 2022; Zheng
etal., 2015). The pathogenesis of HLAP primarily involves lipotoxic
mechanisms where elevated triglycerides lead to free fatty acid
accumulation in pancreatic microcirculation, causing local
ischemia and inflammatory cascades (De Pretis et al., 2020). This
lipid-mediated pancreatic injury pathway differs fundamentally
from the mechanical obstruction seen in BAP. Accumulating
evidence indicates that HLAP patients demonstrate higher rates of
infected pancreatic necrosis (IPN), organ failure, prolonged
hospitalization, and increased mortality (Pascual et al., 2019;
Nawaz et al., 2015). These fundamental pathogenic and clinical
differences between BAP and HLAP suggest that targeted research
on both subtypes is essential for advancing AP management.

The gut-pancreas axis concept has provided novel insights into
AP pathophysiology (Zhou et al., 2024; Zhang et al., 2022).
Previous studies have identified the intestine as the organ most
susceptible to injury during pancreatitis (Leveau et al., 2005). The
resulting intestinal barrier dysfunction provides conditions for
bacterial translocation, which worsens the original injury to the
pancreas and triggers systemic inflammatory responses (Sun et al.,
2024). This inflammatory environment promotes microbial
dysbiosis, characterized by reduced diversity, beneficial bacteria
depletion, and pathogenic taxa enrichment (van den Berg et al.,
2021; Wu et al, 2023). Given the fundamental pathogenic
differences between BAP and HLAP, these two subtypes likely
exhibit distinct gut microbiota profiles, which could advance
understanding of AP pathophysiology and enable precision
diagnostics. However, comparative analyses of microbial signatures
and their mechanistic roles in AP remain largely unexplored.

Therefore, this study aims to characterize gut microbiota
composition among patients with BAP, HLAP, and healthy
controls, and to elucidate how etiology-specific host factors shape
distinct microbial signatures. Building on these insights,
we sought to explore the microbial and metabolic mechanisms
underlying gut-pancreas crosstalk and its disruption in
AP. Ultimately, to translate microbiota-derived findings into
potential clinical applications, we focused on identifying key
microbial biomarkers and developing diagnostic models for
precision AP subtype classification.
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2 Materials and methods

2.1 Study design

The flow diagram of this study is shown in Figure 1.

2.2 Study participants and grouping

A total of 60 participants were enrolled in this study, including 20
patients with biliary acute pancreatitis (BAP), 20 patients with
hyperlipidemic acute pancreatitis (HLAP), and 20 healthy controls
(HC). All patients were diagnosed with acute pancreatitis at the
Department of Gastroenterology, Affiliated Hospital of Ningbo
University, based on the 2012 revised Atlanta criteria (Banks et al.,
2013). The BAP diagnostic criteria were as follows: (1) having
gallstones confirmed by abdominal ultrasound, CT, MRCP or other
imaging examination; (2) having two or more of the following
laboratory examination indicators: @ alkaline phosphatase
(AKP) > 125 U/L, @ alanine transaminase (ALT) > 150 U/L, ® total
bilirubin (TBIL) > 2.3 mg/dL, and @ gamma-glutamyl transferase
(GGT) > 40 U/L (Zver et al., 2022). HLAP was defined as serum
triglycerides > 11.3 mmol/L or the serum TG levels between 5.65 to
11.3 mmol/L accompanied by chylous fasting serum without other
etiologies of AP (Li et al., 2023; Tenner et al., 2024). Exclusion criteria
included: (1) concurrent gastrointestinal diseases other than AP; (2)
recent antibiotic use within the past month; and (3) the presence of
severe comorbidities preventing proper sample collection or clinical
assessment. Written informed consent was obtained from all
participants, and clinical data were anonymized before analysis. This
study was approved by the Ethics Committee of The First Affiliated
Hospital of Ningbo University (No. 2025138A; 28 May 2025), and
conducted in accordance with the Declaration of Helsinki.

2.3 Clinical data collection

Relevant clinical data of AP patients, including routine blood test
results, serum amylase, and lipase levels, were extracted from the
hospital’s Electronic Medical Record (EMR) system. The clinical
laboratory tests were performed on the same day as stool collection.
Healthy control data were obtained during physical examinations.

2.4 Fecal sample collection

For AP patients, approximately 1 g of stool was collected using
sterile cryotubes on the first day of hospital admission. Samples were
immediately packed on ice and transported to the laboratory from the
Affiliated Hospital of Ningbo University. Upon arrival, fecal samples
were divided into three aliquots and stored at —80 °C until further
analysis. Stool from HC was collected during routine physical
examinations using the same protocol to ensure consistency.
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2.5 16S rRNA gene sequencing

Microbial genomic DNA was extracted from approximately
200 mg of fecal material using the QIAamp Fast DNA Stool Mini Kit
following the manufacturer’s instructions. The V3-V4 hypervariable
regions of the bacterial 16S rRNA gene were amplified using universal
primers 341F and 806R. PCR products were purified, quantified, and
sequenced using the Illumina NovaSeq 6,000 platform (paired-end
250 bp reads).

2.6 Real-time gPCR

The total fecal microbial DNA was obtained through the Fecal
Genome DNA Extraction Kit (AU46111-96, BioTeke, China)
according to the standard procedure of the manufacturer. The
concentration and quality of DNA were assessed using a NanoDrop
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ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, United States). The SuperStar Universal SYBR Master Mix kits
(Cowin Biotech, China) were used to determine the DNA levels of
acetate kinase A (ackA), phosphotransacetylase (pta), butyrate kinase
(buk), and butyryl-CoA (but). Calculations were conducted based on

AAC()

the comparative cycle threshold method (2744). The primers used in

this study are provided in Table 1.

2.7 Statistical analysis

The data were analyzed using SPSS 25.0 statistical software (IBM,
USA). Continuous variables with normal distribution were presented
as the mean * standard deviation (SD), and Statistical analysis among
multiple groups was performed using one-way ANOVA. Continuous
variables with non-normal distribution were presented as the median
(P25, P75), and statistical analysis among multiple groups was
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TABLE 1 Primer sequences used for RT-qPCR analysis.

Gene name

Forward

10.3389/fmicb.2025.1695811

Primer sequence

Reverse

Total bacteria TCCTACGGGAGGCAGCAGT GACTACCAGGGTATCTAATCCTGTT
Acetate kinase A CAAACTGCTGACCAAAGAGT GCGGTAGTTGTCTTCAACAT
Phosphotransacetylase AACTGAACGCACCGGTTGAT GAAGAGTCGTCGAAAATCTC
Butyrate kinase CCATGCGTTAAACCAAAAAGC AATACCTCCGCCCATATG

Butyryl-coenzyme A

GCIGAICATTTCACITGGAAY WSITGGCAYATG

CCTGCCTTTGCAATRTCIACRAANG

performed using the Kruskal-Wallis test. Categorical data were
expressed as percentages (%), and comparisons between groups were
performed using a y° test. Multivariate logistic regression analysis was
used to determine the independent predictors of PSD. Raw reads were
processed using the QIIME2 pipeline or DADA?2 for quality filtering,
denoising, chimera removal, and sequence clustering into amplicon
sequence variants (ASVs). Taxonomic annotation was performed
using the SILVA 138 reference database (Lloyd-Price et al., 2019).

3 Results

3.1 Clinical characteristics of BAP, HLAP,
and HC groups

As shown in Table 2, the demographic and clinical parameters were
compared among the HC, BAP, and HLAP groups. There were no
significant differences in gender composition across the three groups
(¥’ = 0.600, p = 0.741), indicating that sex was not a confounding variable
in subsequent analyses. However, the incidence of hypertension (HTN)
was significantly higher in the HLAP group (55.0%) compared to the
BAP (20.0%) and HC (10.0%) groups (y*=10.999, p=0.004).
Additionally, fatty liver disease (FLD) also showed group-specific
differences (y* = 7.267, p = 0.026). Serum amylase (AMY) and lipase
(LPS), established diagnostic biomarkers of AP that reflect pancreatic
acinar cell injury and enzyme release into systemic circulation, were
elevated in both BAP and HLAP patients (Ross et al., 2021). In contrast,
inflammatory markers (CRP and WBC) correlated more closely with
disease severity (Farrell et al., 2021), with HLAP patients exhibiting the
highest median values (p < 0.001), reflecting more severe inflammatory
responses in this subtype. Moreover, lipid parameters exhibited
significant alterations, with HLAP patients showing higher serum
triglyceride (TG) levels (p < 0.001). These findings establish the clinical
and biochemical foundation for understanding -etiology-specific
microbiota differences between BAP and HLAP. The elevated pancreatic
enzymatic activity and inflammatory response observed in both AP
subtypes reflect their systemic pathophysiological impact, while the
divergent patterns in lipid metabolism and associated comorbidities
(including FLD and HTN) may shape unique disease microenvironments,
thereby contributing to the divergent gut microbiota profiles.

3.2 Comprehensive analysis of gut microbiota
diversity and community structure

Microbial richness and diversity, as evaluated by the Chaol,
Shannon, Simpson, and Pielou_E indices, were markedly decreased
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in both the BAP group and HLAP group, compared to the HC
group (Figures 2A-D). A Venn diagram analysis revealed that the
number of group-specific ASVs was highest in the HC group
(n =2,693), followed by the BAP group (n =1812) and HLAP
group (n = 1,393) (Figure 2E). These results indicate a progressive
loss of microbial diversity and uniqueness from healthy individuals
to AP patients, with the HLAP group exhibiting the most marked
reduction in unique ASVs, suggesting a more severe disturbance
of the gut microbial ecosystem. Principal coordinates analysis
(PCoA) further revealed a clear separation in microbial community
structure between the HC and AP groups (Figures 2F-G),
indicating AP-induced dysbiosis. We next examined microbial
community composition at the phylum (Figure 2H), family
(Figure 2I), and genus (Figure 2J) levels. At the phylum level,
Firmicutes, Actinobacteriota, and Bacteroidota dominated the
microbial community composition. Consistent with previous
reports, the enrichment of Proteobacteria, a common hallmark of
microbiota dysbiosis (Reuvers et al., 2022), was more pronounced
in the HLAP group compared to the BAP group. Notably, the top
three most abundant families (Lachnospiraceae, Ruminococcaceae,
and Bifidobacteriaceae) represent key SCFA-producing taxa,
suggesting that gut-pancreas axis interactions may be primarily
these
communities (Sanchez-Tapia et al., 2020; Song et al., 2025). These

mediated through metabolically active microbial
findings prompted us to investigate whether the observed
microbiota alterations translated into compromised SCFA

biosynthetic capacity.

3.3 Differential taxonomic composition
across multiple levels

At the phylum level, Firmicutes and Bacteroidota dominated
across all groups. While Firmicutes showed no significant
differences, Bacteroidota was markedly depleted in both AP groups
vs. controls (Figure 3A). The Firmicutes/Bacteroidota (F/B) ratio
serves as a crucial indicator of gut microbiota homeostasis, with
elevated ratios typically associated with metabolic dysfunction,
inflammation, and compromised intestinal barrier integrity
(Houtman et al., 2022). As shown in Figure 3B, the F/B ratio was
significantly elevated in the HLAP group compared to the HC group
(p <0.01), while the BAP group showed no significant difference
from the HC group. At the family level, Enterobacteriaceae
HLAP  (p<0.001),
markedly  decreased

whereas
(p < 0.001)
(Figures 3C,D). At the genus level, pro-inflammatory taxa
Escherichia-Shigella and Collinsella were enriched in HLAP

abundance was higher in

Ruminococcaceae were
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TABLE 2 Clinical characteristics and laboratory results among three groups.

10.3389/fmicb.2025.1695811

Variables HC BAP HLAP F/H/y? P
Number 20 20 20

Age (years) 31.50 (25.25, 39.25) 59.30 + 16.41 47.70 £ 16.01 21.073 <0.001
BMI 2227 £0.71 24.89 £3.52 25.54 £3.38 7.379 0.001

Male 14 (70.0) 14 (70.0) 12 (40.0)
Gender, 1 (%) 0.600 0.741
Female 6(30.0) 6 (30.0) 8(60.0)

HTN, n (%) 2(10.0) 4(20.0) 11 (55.0) 10.999 0.004
DM, n (%) 0(0.0) 4(20.0) 3(15.0) 4.205 0.122
FLD, n (%) 1(5.0) 4(20.0) 8 (40.0) 7.267 0.026
CRP (mg/L) <0.50 40.05 (8.80, 89.29) 49.99 (2.95, 146.10) 40.880 <0.001
WBC (*10°/L) 5.90 (5.10, 6.40) 7.50 (6.15, 8.75) 9.89 £4.16 15.013 <0.001
NE% 51.47 +6.77 74.97 £10.57 80.25 (59.03, 84.45) 30.144 <0.001
LY% 39.15 (32.88, 42.53) 15.90 +£7.68 11.75 (6.33, 27.68) 33.038 <0.001
AMY (U/L) 75.5 (57.5, 78.8) 186.5 (77.5,711.3) 145.5 (109.0, 345.5) 18.920 <0.001
LPS (U/L) 48.5 (32.5,53.0) 164.5 (49.0, 566.3) 160.5 (94.5, 529.8) 20.840 <0.001
TG (mmol/L) 1.01 (0.80, 1.38) 1.03 (0.64, 2.17) 10.72 (6.85, 11.79) 36.293 <0.001
TC (mmol/L) 4.49+0.73 3.80 (3.35, 4.49) 5.24 (3.60, 8.30) 5.380 0.068
HDL (mmol/L) 1.24 (1.09, 1.63) 0.99 (0.65, 1.07) 1.09 (0.91, 1.45) 10.610 0.005
LDL (mmol/L) 2.77 £ 0.66 2.35(2.39,3.31) 2.88£1.38 1.055 0.590

BMI, body mass index; HTN, hypertension; DM, diabetes mellitus; FLD, fatty liver disease; CRP, C-reactive protein; WBC, white blood cell count; NE%, neutrophil percentage; LY %,
lymphocyte percentage; AMY, amylase; LPS, lipase; TG, triglycerides; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.

(p <0.001), while beneficial genera Faecalibacterium and
Bifidobacterium  were  significantly  depleted (p < 0.001)
(Figures 3E-H). LEfSe analysis revealed distinct microbial signatures
among groups (Figure 3I). Key biomarkers included Bacteroidota
and Cyanobacteria at the phylum level, Ruminococcaceae at the
family level, and Faecalibacterium at the genus level. These findings
motivated the establishment of predictive models to achieve precise
AP subtype classification, thereby translating the observed
microbiota differences into potential clinical utility.

3.4 Host-microbiota interaction networks
and clinical correlations

To explore the host-microbiome associations, we performed
Spearman correlation between the top 20 abundant genera and
10 clinical indicators, which showed significant differences in
Table 2 and Figure 4. Faecalibacterium, as the most abundant
genus among the top 20, demonstrated comprehensive
associations with inflammatory markers, pancreatic enzymes,
and lipid metabolism parameters in correlation analysis. Notably,
Agathobacter, despite displaying similar correlations with
inflammatory and pancreatic markers, lacked associations with
lipid profiles (TG, HDL). This suggests that different bacterial
genera exhibit distinct regulatory responses in BAP versus HLAP
patients, with metabolically active bacteria like Faecalibacterium
(a key SCFA-producing genus) being more sensitive to lipid-
associated pathological changes (Lopez-Siles et al.,, 2017). In
contrast, the pro-inflammatory taxa Escherichia-Shigella and
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Enterococcus correlated positively with inflammatory markers
(CRP, NE%), with Escherichia-Shigella enrichment in HLAP
associated with more severe inflammation (van den Berg et al,,
2021). Megamonas and Phascolarctobacterium are also negatively
correlated with pancreatic enzymes (AMY, LPS), exhibiting their
relevance as potential diagnostic markers in AP. Additionally, our
analysis revealed that age did not show significant correlations
with gut microbiota composition overall. Although age was
correlated with Megasphaera and Klebsiella, these two genera
showed no correlations with any of these clinical indicators
examined, indicating minimal confounding from age differences
among groups. Collectively, these findings suggest distinct
associations between bacterial genera and AP-related
inflammatory responses and lipid metabolism, highlighting
potential mechanistic links.

3.5 Functional genes analysis of microbial
metabolic pathways

Short-chain fatty acids (SCFAs), especially acetate and
butyrate, are the main products of dietary fiber fermentation in the
colon (ITkeda et al., 2022). Acetate production primarily involves
two key genes, ackA and pta, encoding acetate kinase and
phosphotransacetylase respectively, while gut microbes produce
butyrate through two main pathways, the butyrate kinase pathway
(buk) and the butyryl-CoA pathway (but) (De Mets et al., 2019;
Gharechahi etal,, 2021). Acetate serves as a key metabolic regulator
that can suppress adipocyte lipolysis, thereby maintaining lipid
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FIGURE 2
Changes of gut microbiota in the HC, BAP, and HLAP groups based on 16S rRNA data. a-diversity analysis showing that (A) the Chaol index, (B) the
Shannon index, (C) the Simpson index, and (D) the Pielou_E index were decreased in the BAP and HLAP groups. (E) Venn diagram of the observed ASVs
in the HC, BAP, and HLAP groups. (F) Principal coordinate analysis. (G) NMDS analysis. (H-J) The taxonomic composition among the groups at the
phylum, family, and genus levels. Data are presented as mean + SD (n = 20 per group). *p < 0.05, **p < 0.01, ***p < 0.001.

homeostasis (May and den Hartigh, 2021). We observed a
consistent downward trend in acetate synthesis genes ackA and pta,
indicating compromised microbial acetate-generating potential in
AP patients (Figures 5A,B). This impaired acetate production may
exacerbate lipolysis and lipid dysregulation in HLAP patients (Lei
et al., 2021). Major attention is focused on butyrate for its anti-
inflammatory effects in AP (Xiong et al, 2022). Through
stimulating MUC2 production and modulating tight junction
protein expression, butyrate can reinforce intestinal barrier
integrity and reduce LPS translocation, thereby attenuating
inflammatory response in pancreatic tissues (Peng et al., 2024).
Given these critical roles of butyrate, we investigated whether the
microbiota alterations in AP patients translate into impaired
butyrate biosynthesis capacity. Notably, the expression of the two
key genes was markedly reduced in AP patients compared to the
HC group (Figures 5C,D). Despite similar patterns of microbial
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metabolic impairment between AP subtypes, the pronounced
SCFA biosynthetic deficiency observed in both BAP and HLAP
groups highlights potential therapeutic targets for modulating gut
microbiota function in AP management.

3.6 Clinical diagnostic value assessment
and biomarker development

To evaluate the clinical significance of the gut microbiota
both in BAP and HLAP, this study constructed RF and logistic
regression models, based on the relative abundances of microbial
species (Zou et al., 2022). Through the filtration of species with
abundances less than 1%, 18 taxa were identified as potential
biomarkers for BAP, as indicated by their mean decrease accuracy
(Figure 6A). To evaluate the discriminatory ability of these
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species between BAP patients and healthy controls, a classification
model was constructed using the top 8 species (Figure 6B), and
the accuracy of the model in predicting health status was assessed
via ROC curves (Figure 6C). Among the single-species
predictions, Streptococcus mitis demonstrated the highest
individual predictive power (AUC =0.7638), followed by
Streptococcus parasanguinis (AUC = 0.7241). Notably, inclusion
of all eight differentially abundant species markedly enhanced the
predictive performance of the model (AUC = 0.9517, Figure 6D).
Similarly, for HLAP classification, 17 taxa were identified as
potential biomarkers, with the top 8 species used for model
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construction (Figures 7A,B). ROC curve analysis revealed
comparable results, with the combined eight-species model
achieving an AUC of 0.9586 (Figures 7C,D). Furthermore,
we assessed the discriminatory capacity between BAP and HLAP
subtypes (Figures 8A,D). Lactobacillus crispatus showed the
strongest individual predictive capacity in single-species analysis
(AUC = 0.7238), and the combined eight-species model similarly
improved predictive accuracy (AUC = 0.8575). The consistent
improvement of model performance through multi-species
integration confirms its clinical advantage compared to single-
biomarker diagnostics.
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4 Discussion

This study presents a novel comparative framework characterising
gut microbiota differences between BAP and HLAP, revealing distinct
etiology-specific microbial signatures and identifying potential
biomarkers for AP subtype classification. BAP and HLAP patients
exhibited fundamentally different clinical phenotypes and metabolic
profiles (Table 2). Host-microbiota correlation analyses revealed that
these divergent host factors selectively shaped microbial community
composition, creating distinct dysbiosis patterns (Figure 4).
Specifically, HLAP patients exhibited more severe dysbiosis
characterized by SCFA-producing bacteria depletion and pathogenic
taxa enrichment. Given the critical roles of SCFA in gut-pancreas axis
regulation, we further investigated whether these microbial alterations
resulted in compromised SCFA biosynthetic capacity. Functional
analysis revealed marked downregulation of key SCFA synthesis genes
(ackA, pta, buk, but) in both AP subtypes (Figure 5), providing a
mechanistic basis for targeted interventions. Finally, multi-species
biomarker panels demonstrated robust diagnostic potential for AP
subtype classification, suggesting clinical utility for precision
medicine applications.

The more severe microbiota dysbiosis observed in HLAP
patients, characterized by greater depletion of beneficial SCFA-
producing bacteria (Faecalibacterium, Bifidobacterium) and
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enrichment of pathogenic taxa, correlates with the increased
disease severity and poor prognosis in this subtype (Hu et al.,
2021). As the most abundant genus among the top 20 and a key
SCFA-producing genus, Faecalibacterium exhibited comprehensive
correlations with clinical indicators in Spearman correlation
analysis. This finding is consistent with its reported anti-
inflammatory properties and intestinal barrier protective
functions, highlighting its critical role in multiple
pathophysiological processes (Lenoir et al., 2020). Bifidobacterium,
recognized as a key beneficial genus with metabolic regulatory
functions, showed notable alterations in AP patients (Li et al,,
2022). Additionally, the expansion of opportunistic pathogens like
Escherichia-Shigella and Enterococcus in HLAP patients, coupled
with their positive correlations with inflammatory markers,
highlights the distinct pathophysiological environments between
BAP and HLAP subtypes (Zhang et al., 2025). These facultative
anaerobes thrive in inflammatory environments and can
translocate across compromised epithelial barriers, potentially
contributing to the higher rates of systemic complications
observed in HLAP (Li et al., 2023). The observed differences in
microbiota composition reflect underlying mechanisms of
gut-pancreas axis interactions (Yazici et al, 2023). These
interactions are mediated through multiple pathways, including

(1) inflammatory responses: the distinct pathophysiological
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mechanisms between biliary obstruction in BAP and lipotoxic
injury in HLAP may cause inflammatory cascades by different
signaling; (2) metabolic regulation: severe lipid dysregulation in
HLAP patients may lead to different intestinal flora, or metabolites
and toxins derived from microorganisms, enter the pancreatic
microcirculation, further influencing disease progression (Han
et al., 2023; Paik et al., 2022; Michaudel and Sokol, 2020).
Notably, alterations in key metabolites such as SCFAs potentially
mediate gut-pancreas axis interactions (Ammer-Herrmenau et al,,
2024). SCFAs have been proven to ameliorate bacterial translocation,
a critical pathogenic mechanism in AP, by rebuilding gut flora and
stabilizing the intestinal epithelial barrier (Yan et al., 2023). Moreover,
SCFAs can suppress systemic inflammatory responses, improve the
injured pancreas, and prevent and protect other organ dysfunctions
(Lietal, 2020; He et al., 2020). Therefore, we analyzed four functional
genes to assess SCFA biosynthetic capacity: ackA and pta, primarily
involved in acetate synthesis; buk and but serving as two key genes in
the butyrate-producing pathway (Huang et al., 2021). Our results
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revealed markedly reduced expression of acetate and butyrate
synthesis genes (ackA, pta, buk, but) in AP patients. While our study
identified impaired SCFA biosynthetic capacity associated with AP
overall rather than subtype-specific changes, these findings provide
rational therapeutic strategies for microbiota modulation in AP
through probiotics, dietary interventions, or fecal transplantation.

Nonetheless, the study has limitations. Its cross-sectional design
precludes causal inference, and whether dysbiosis precedes or results
from AP onset remains to be established. While targeted qPCR validated
key functional pathways, future metagenomics and metabolomics
studies are needed to refine these findings. Additionally, age is not
perfectly matched between groups in Table 2. However, a recent study
with similar age differences (p = 0.004) successfully identified distinct
microbiota signatures between HLAP and non-HLAP groups (Hu et al.,
2021), supporting the validity of our analysis. In future studies, we will
implement more stringent age-matching criteria in the HC group.
Importantly, our correlation analysis demonstrates that age differences
do not significantly confound our findings.
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(D) Combined ROC curve for the multi-species classification model (n = 20).
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In conclusion, we establish a novel, etiology-specific framework
linking gut microbial composition, function, and host phenotype in
AP. This study advances the understanding of microbiota-driven
mechanisms in AP pathogenesis and reveals distinct microbial signatures
between BAP and HLAP subtypes. The significant discriminatory
capacity of multi-species biomarker panels highlights their translational
potential for precision diagnostics between BAP and HLAP. Future work
should focus on refining key biomarkers and developing multiplex PCR
assays for the simultaneous detection of these markers. Integration into
microfluidic chip platforms could enable point-of-care testing, providing
rapid subtype classification. This approach can help address current
diagnostic challenges in borderline cases and support precision medicine
in AP management.
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