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The gut-muscle axis: a
comprehensive review of the
interplay between physical
activity and gut microbiota in the
prevention and treatment of
muscle wasting disorders

Yan Xu and Benxiang He*

College of Sports and Health, Chengdu Sport University, Chengdu, China

Skeletal muscle wasting disorders, such as sarcopenia and cachexia, pose a
significant clinical challenge. The gut-muscle axis, a bidirectional signaling
network, is now understood to be a critical regulator of muscle homeostasis,
with the gut microbiota functioning as a key metabolic organ. Physical activity
is a cornerstone intervention, exerting benefits by directly stimulating muscle
and by favorably modulating the composition and metabolic output of the
gut microbiota. This review synthesizes the molecular mechanisms of muscle
wasting and the pathways of the gut-muscle axis, with a specific focus
on microbial metabolites like short-chain fatty acids (SCFAs). We analyze
how different exercise modalities modulate this system and critically evaluate
evidence from human trials. By identifying key research gaps, this review argues
for a paradigm shift toward integrated, personalized interventions that combine
targeted exercise with nutritional and microbial strategies to more effectively
combat muscle wasting disorders.
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1 Introduction

Muscle wasting disorders, encompassing both sarcopenia and cachexia, are progressive
and debilitating syndromes that lead to the involuntary loss of skeletal muscle mass and
strength (Carlier et al., 2015; Brogi et al., 2024). Sarcopenia, first defined by Rosenberg in
1989, is characterized as a geriatric syndrome marked by a progressive decline in muscle
mass, strength, and physical performance, often exacerbated by aging (Wang et al., 2025;
Dohertya, 2010; Cederholm et al., 2011). Its prevalence is alarmingly high, affecting 5-
13% of adults aged 60-70 and rising to 11-50% in those over 80 (Wang et al., 2025; von
Haehling et al., 2010; Shafiee et al., 2017), with this wide range reflecting differences in
diagnostic criteria and the specific populations studied. The clinical implications are severe,
including an increased risk of falls, fractures, mobility challenges, and a diminished quality
of life (Wang et al., 2025; Costa et al., 2008). In contrast, cachexia is a more severe wasting
syndrome associated with chronic, systemic diseases such as cancer (Mortellaro et al.,
2024), heart failure (Maeda et al., 2024), AIDS (Li Y-. H. et al., 2022), and chronic kidney
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disease (Rahbar Saadat et al., 2025), and is marked by significant
loss of both fat and fat-free mass, along with intense systemic
inflammation (Wang et al., 2025; Biolo et al., 2014; Kotler, 2000).

Skeletal muscle homeostasis is governed by a delicate balance
between anabolic and catabolic signaling pathways (Liu and Tang,
2022; McCarthy and Murach, 2019). While traditional therapeutic
approaches have focused on nutritional support and exercise,
emerging evidence points to a multi-organ communication
network as a critical therapeutic target (Wang et al., 2025, 2021;
Monda et al., 2017; Afzaal et al,, 2022). Within this network,
the human gut microbiota—a complex ecosystem of trillions of
microorganisms—is now recognized as a vital player in host
health, functioning as a “metabolic organ” that modulates immune
responses and produces beneficial metabolites from indigestible
carbohydrates (Monda et al.,, 2017; Afzaal et al., 2022; Zhou et al,,
2024).

The reciprocal influence between the gut microbiota and
skeletal muscle, termed the “gut-muscle axis” or, more specifically,
the “gut microbes-muscle axis,” has been substantiated by a
growing body of evidence, highlighting its potential role in the
pathogenesis of muscle wasting disorders (Li G. et al, 2022
Chae and Lee, 2023; He et al., 2025; Chew et al., 2023). This
review therefore synthesizes the intricate mechanisms of this axis,
focusing specifically on how physical activity serves as a potent,
non-pharmacological modulator of the gut microbiota to prevent
and treat sarcopenia and cachexia. In doing so, we frame these
components as an integrated signaling network—the gut-muscle
axis—whereby physical activity serves as a primary modulator.

2 Molecular pathogenesis of muscle
wasting: a foundation for intervention

2.1 The anabolic-catabolic imbalance

Muscle atrophy is a pathological state defined by a reduction
in muscle fiber size and overall muscle mass, which occurs when
protein degradation outpaces protein synthesis (Fanzani et al,
2012). This imbalance is regulated by an intricate network of
anabolic and catabolic signaling pathways (Liu and Tang, 2022).

Catabolic signaling is primarily driven by proteolytic systems
that dismantle muscle proteins (Chapela et al., 2023). The most
prominent of these is the ubiquitin-proteasome system (UPS),
which tags proteins with ubiquitin for targeted removal by the
proteasome (Pang X. et al, 2023). In muscle atrophy, muscle-
specific E3-ubiquitin ligases such as MuRF-1 and MAFbx (atrogin-
1) are transcriptionally upregulated, marking contractile proteins
for degradation (Bowen et al., 2015; Peris-Moreno et al., 2021).
Other major proteolytic pathways include the calpain pathway and
the autophagy-lysosomal pathway, which also contribute to the
loss of muscle mass (Bowen et al., 2015; Triolo and Hood, 2021).
A potent catabolic factor is myostatin, a member of the TGFp
family that acts as a negative regulator of muscle growth (Bonaldo
and Sandri, 2013). Myostatin-induced atrophy is mediated by its
capacity to block the key anabolic IGF-1-PI3K-Akt pathway and
activate the transcription factor FoxOl, thereby increasing the
expression of atrogin-1 (Bonaldo and Sandri, 2013; Permpoon et al.,
2025; Xu et al,, 2023). This direct antagonism between myostatin
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and the IGF-1/Akt pathway is a crucial mechanistic aspect of
atrophy, as a catabolic signal actively suppresses an anabolic one,
creating a powerful feedback loop that accelerates muscle loss
(Huang et al., 2022a).

In contrast, muscle anabolism is driven by growth factors
and hormones such as Insulin-like Growth Factor 1 (IGF-1) and
insulin (Fanzani et al., 2012; Lowe, 2024). The central pathway for
protein synthesis is the PI3K-Akt-mTOR pathway, which promotes
myocyte proliferation, differentiation, and protein synthesis while
simultaneously suppressing protein degradation (Wang et al,
2025; Lowe, 2024; Chen et al., 2025). Low circulating levels of
IGF-1 have been associated with sarcopenia and other chronic
diseases, highlighting the central role of this anabolic pathway in
maintaining muscle mass (Fanzani et al., 2012; Nyul-Toth et al,,
2025). The activation of the PI3K/Akt pathway is a critical step
that promotes protein synthesis and reduces protein degradation,
serving as a primary target for therapeutic interventions (Fanzani
etal,2012; He Y. et al., 2021; Verma et al., 2023) (Table 1).

2.2 Differentiating sarcopenia and cachexia

Although both are muscle wasting disorders, sarcopenia
and cachexia have distinct underlying mechanisms and clinical
presentations (Wang et al, 2025; Rausch et al, 2021). This
distinction is critical for tailoring effective therapeutic strategies.
Sarcopenia is a muscle disease often associated with aging, and is
primarily characterized by a progressive loss of muscle mass and
strength without significant fat loss (Wang et al., 2025; Najm et al.,
2024). While the UPS is involved, existing evidence is inconsistent,
suggesting that other proteolytic pathways, particularly the calpain
and autophagy pathways, may play a more dominant role in
sarcopenia pathogenesis (Pang X. et al.,, 2023; Bowen et al,, 2015).
Sarcopenia is often associated with mild, or even undetectable,
systemic inflammation, in contrast to the intense inflammatory
state of cachexia (Wang et al, 2025; Jimenez-Gutierrez et al,
2022). This lower inflammatory burden may make sarcopenia more
responsive to certain non-pharmacological interventions (Ispoglou
et al., 2023; Clerton, 2025).

Cachexia, a more severe, involuntary wasting syndrome, is
typically linked to chronic diseases such as cancer, heart failure, and
AIDS (Wang et al., 2025; Rausch et al., 2021). It is characterized
by significant loss of both fat and fat-free mass, and is marked
by an intense inflammatory response driven by pro-inflammatory
cytokines such as TNF-o and IL-6 (Timmanpyati et al, 2024;
He M. et al, 2021). The activation of these cytokines directly
disrupts muscle metabolism and leads to the upregulation of
catabolic pathways (Wang et al., 2025; He M. et al., 2021). While
some signaling pathways like myostatin, NF-kB, and STAT3 are
shared between the conditions, the more robust and systemic
inflammatory response in cachexia necessitates more aggressive
interventions (Wang et al., 2025; Ahmad et al., 2022; Malla et al,,
2022; Cao et al, 2021). The distinct inflammatory profiles and
primary proteolytic pathways of sarcopenia and cachexia imply that
while the gut-muscle axis is relevant to both, the specific therapeutic
modulation required may differ (Malla et al., 2022; Nardone
et al., 2021). For example, while targeting the gut microbiota to
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TABLE 1 Anabolic and catabolic pathways involved in muscle wasting.

Pathway type Pathway/system

Anabolic-Catabolic Crosstalk PI3K-Akt-mTOR Insulin, IGF-1, PI3K,

Akt, nTOR

Key components

10.3389/fmicb.2025.1695448

Role in muscle wasting Ref.

Promotes protein synthesis, cell proliferation, and
myocyte differentiation; suppresses protein
degradation.

Feng et al., 2022

Anabolic-Catabolic Crosstalk Myostatin/Akt Crosstalk

atrogin-1

Myostatin, Akt, FoxO1,

Myostatin blocks the Akt pathway, leading to the
activation of FoxO1 and upregulation of the catabolic
ligase atrogin-1.

Murphy et al., 2022

STAT3

Catabolic Ubiquitin-Proteasome Ubiquitin, Proteasome, Marks and degrades contractile proteins and organelles, | Pang X. etal, 2023
System (UPS) MuRF-1, MAFbx leading to cellular shrinkage and muscle atrophy.
(atrogin-1)
Catabolic Calpain Pathway Calpains, Calpastatin Cleaves myofibrillar proteins, disrupting the sarcomere Haberecht-Miiller
structure. May play a dominant role in sarcopenia. etal, 2021
Catabolic Autophagy-Lysosomal Autophagosomes, Bulk degradation of cytoplasmic components. May Triolo and Hood,
Pathway Lysosomes contribute to muscle atrophy in sarcopenia. 2021
Catabolic Inflammatory Signaling TNF-a, IL-6, NF-kB, Pro-inflammatory cytokines that disrupt muscle Malla et al., 2022

metabolism and promote catabolism, particularly in
cachexia.

Evidence suggests that the Calpain and Autophagy-Lysosomal pathways are suggested to play a particularly dominant role in the pathogenesis of sarcopenia compared to other muscle

wasting conditions.

reduce low-grade inflammation could benefit sarcopenia, a more
robust anti-inflammatory strategy via the gut-muscle axis might be
necessary to counteract the intense inflammatory state of cachexia
(Nardone et al., 2021). This highlights the need for a personalized
approach to modulating the gut-muscle axis for muscle wasting
(Figure 1).

3 The gut-muscle axis: a bidirectional
signaling network

3.1 Microbial metabolites as key mediators

The gut microbiota is a complex metabolic organ that
transforms indigestible dietary components into a diverse array
of metabolites that influence host health (Monda et al., 2017;
Zhang, 2022). Among the most critical are short-chain fatty acids
(SCFAs)—primarily acetate, propionate, and butyrate—produced
through the anaerobic fermentation of dietary fibers (Facchin et al.,
20245 Ashaolu et al., 2021). These metabolites are absorbed from
the gut lumen and enter systemic circulation to modulate host
metabolic responses, including those in skeletal muscle (Frampton
et al., 2020; Lefevre and Bindels, 2022).

A closer examination of the individual SCFAs reveals distinct
roles. In the human colon, these are typically found in a molar ratio
of approximately 60:20:20 for acetate, propionate, and butyrate,
respectively (Morrison and Preston, 2016).

Acetate, as the most abundant SCFA, plays a crucial role in
host energy balance. It serves as a substrate for lipid synthesis and
can enhance mitochondrial function and glucose metabolism in
skeletal muscle, while also upregulating key genes like myoglobin
and GLUT4 (Liu et al., 2025; Swalsingh et al., 2022). Furthermore,
acetate can mitigate the negative effects of gut microbiota depletion
on muscle development (Liu et al., 2025; Yang et al., 2024).

Propionate is primarily absorbed and utilized by the liver, where
it acts as a critical substrate for hepatic gluconeogenesis. This
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function helps regulate blood glucose levels, which in turn improves
insulin sensitivity in peripheral tissues like skeletal muscle (Monda
etal.,, 2017; Pang R. et al., 2023).

Although less abundant, butyrate is often highlighted for
its pivotal role in gut health and systemic anti-inflammatory
effects. It is the primary energy source for colonocytes, enhancing
the integrity of the intestinal epithelial barrier (Facchin et al,
2024; Salvi and Cowles, 2021). Importantly for muscle health,
butyrate has been shown to support muscle mass preservation
by suppressing inflammation and regulating autophagy, a key
catabolic pathway in muscle wasting (Liu et al., 2025). This detailed
understanding of the individual functions of SCFAs provides a
rationale for personalized dietary and microbial interventions
designed to modulate specific SCFA production for different
clinical outcomes (Rauf and Khalil, 2022).

Beyond SCFAs, the gut microbiota is a critical regulator of
host amino acid metabolism, which directly impacts muscle health.
Gut microbes can synthesize essential amino acids and modulate
the levels of circulating amino acids that serve as building blocks
for muscle protein. For example, specific amino acids such as
glutamine and leucine have been shown to activate the anabolic
Akt/mTOR signaling pathway and upregulate the expression of
myogenic factors like MyoD and myogenin, thereby promoting
muscle regeneration (He et al., 2025). Furthermore, microbial
metabolism of tryptophan into compounds like indolepropionic
acid can exert local and systemic antioxidant effects, potentially
protecting muscle from oxidative damage (Owe-Larsson et al,
2025; Jiang et al., 2022).

Secondary bile acids and vitamins, both heavily influenced by
microbial activity, also act as key signaling molecules in the axis.
Microbes convert primary bile acids from the liver into secondary
bile acids, which can activate receptors in muscle tissue, such as
TGRS5, to influence energy metabolism and muscle growth (Zhao
etal,, 2025; Ferrell and Chiang, 2021). Similarly, the gut microbiota
synthesizes essential vitamins, including B vitamins and vitamin
K. These vitamins are crucial cofactors in energy metabolism
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FIGURE 1

Comparative overview of sarcopenia and cachexia. Sarcopenia is an aging-associated muscle disease characterized by progressive loss of muscle
mass and strength with minimal fat loss. Its pathogenesis involves calpain and autophagy pathways, with inconsistent UPS involvement, and is
typically accompanied by low-grade inflammation. These features make it more responsive to non-pharmacological interventions such as exercise
and nutrition. Cachexia, in contrast, is a severe wasting syndrome linked to chronic diseases (e.g., cancer, heart failure, AIDS), characterized by loss of
both fat and fat-free mass, and driven by intense systemic inflammation mediated by TNF-a and IL-6. It activates proteolytic pathways including UPS,
NF-kB, STAT3, and myostatin, requiring aggressive anti-inflammatory and multimodal therapeutic strategies.
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and can protect muscle from damage; for instance, vitamin K
has been shown to downregulate atrophy-related proteins during
inflammatory states (He et al., 2025). This highlights a complex
system where microbial processing of both host- and diet-derived
compounds creates a pool of bioactive molecules that regulate
muscle function.

However, the gut microbiota also metabolizes undigested
protein. The catabolism of indigestible protein can lead to
the production of potentially detrimental metabolites such as
ammonia, amines, polyamines, and branched-chain fatty acids
(Rodriguez-Romero et al., 2022; Torres et al., 2023; Duncan et al.,
2021). This creates a paradox: while dietary protein is essential
for muscle anabolism, an excess of undigested protein reaching
the large intestine can promote the growth of proteolytic bacteria,
which produce these potentially toxic metabolites (Ashkar and
Wu, 2023; Prokopidis et al., 2021). This underscores the need for
a holistic, balanced nutritional approach that includes sufficient
dietary fiber to promote saccharolytic fermentation over proteolytic
fermentation, rather than a single-macronutrient focus on protein
alone (Table 2).

Frontiers in Microbiology

3.2 The intestinal barrier as a critical
mediator

Beyond the production of metabolites, the structural and
functional integrity of the intestine itself is a cornerstone
of the gut-muscle axis. The intestinal epithelium forms a
critical barrier that regulates the absorption of nutrients
essential for muscle protein synthesis while simultaneously
preventing the translocation of pro-inflammatory microbial
components, such as lipopolysaccharide (LPS), into systemic
circulation (Vancamelbeke and Vermeire, 2017). A compromised
or “leaky” gut which
can trigger a state of low-grade systemic inflammation.

barrier allows for endotoxemia,
This inflammation directly contributes to muscle wasting
(e.g., NF-kB)

anabolic  resistance.

by activating catabolic signaling pathways

in skeletal muscle and promoting

Therefore, a healthy intestinal barrier is essential for
maintaining muscle homeostasis, acting as a gatekeeper
that translates gut health into systemic metabolic and

inflammatory balance.
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TABLE 2 Metabolites produced by microbiome and their mechanisms of action.

Acetate Fermentation of dietary Enhances mitochondrial respiration and glucose Most abundant SCFA; modulates host energy metabolism
fiber by gut microbes metabolism; upregulates myoglobin and GLUT4 genes; and gut hormone secretion (Facchin et al., 2024).
promotes myotube fusion (Liu et al., 2025).
Propionate Fermentation of dietary Improves insulin sensitivity and boosts glucose uptake; Key substrate for hepatic gluconeogenesis; modulates blood
fiber by gut microbes exhibits anti-inflammatory properties (Liu et al., 2025). glucose levels (Monda et al., 2017).
Butyrate Fermentation of dietary Suppresses inflammation and regulates autophagy, which Primary energy source for colonocytes; enhances gut
fiber by gut microbes helps preserve muscle mass (Liu et al., 2025). epithelial barrier integrity (Facchin et al., 2024).
Ammonia, Fermentation of Can be detrimental at high concentrations; linked to Potentially toxic; an increased presence may be associated
Amines, undigested protein by pathological states (Rodriguez-Romero et al., 2022). with disease (Rodriguez-Romero et al., 2022).
Polyamines proteolytic bacteria

3.3 Bidirectional signaling via hormones,
cytokines, and extracellular vesicles

The gut-muscle axis is maintained by a complex, bidirectional
flow of information mediated by hormones, cytokines, and
extracellular vesicles (EVs). Gut microbes stimulate intestinal
enteroendocrine cells to secrete hormones such as glucagon-
like peptide-1 (GLP-1) and ghrelin, which enter circulation and
influence muscle glucose uptake and anabolism. In the reverse
direction, exercising muscle releases signaling molecules known
as myokines (e.g., IL-6, IGF-1), which can travel back to the gut
and modulate microbial composition and intestinal function (He
et al., 2025; Leeuwendaal et al., 2021; Everard and Cani, 2014).
This bidirectional hormonal and cytokine crosstalk ensures that
the metabolic state of the muscle is communicated to the gut
and vice-versa.

More recently, extracellular vesicles (EVs) derived from gut
microbes have been identified as novel mediators in this axis. These
lipid-bilayer vesicles can transport a wide array of bioactive cargo—
including nucleic acids, proteins, and metabolites—from the gut
lumen into systemic circulation, eventually reaching peripheral
tissues like skeletal muscle. It has been demonstrated that microbial
EVs can directly influence insulin signaling and glucose uptake
in muscle cells (He et al., 2025; Sun et al., 2023; Kumar et al,
2024; Wu et al, 2024). EVs thus represent a direct transport
mechanism, allowing microbial components to exert functional
effects on muscle physiology far from the gut itself.

4 Physical activity as a therapeutic
modulator of the gut-muscle axis

4.1 Exercise-induced changes in gut
microbiota composition and diversity

As a key behavioral input, physical activity does not act on
muscle in isolation; instead, it serves as a powerful regulator
of the entire gut-muscle axis. Physical activity is a powerful
environmental factor that can reshape the gut microbiota.
Numerous studies have shown that exercise enhances microbial
diversity and enriches the microflora with beneficial species
(Lapauw et al., 2024; Dziewiecka et al, 2022; Campaniello
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et al, 2022). Athletes and active individuals generally exhibit
greater microbial biodiversity and a higher abundance of SCFA-
producing bacteria, such as Faecalibacterium prausnitzii, than their
sedentary counterparts (Dziewiecka et al., 2022; Sohail et al., 2019).
Longitudinal studies have further confirmed that a transition from
a sedentary to an active lifestyle can reduce disease-related bacteria
and increase health-associated taxa (Boytar et al., 2023; Lelonek
et al, 2025). This positive modulation of the gut microbiota,
which includes improved barrier function and reduced systemic
inflammation, is a key mechanism by which exercise promotes
overall health and mitigates disease (Monda et al., 2017; Dmytriv
etal., 2024).

However, the effects of exercise on the gut microbiota are
not universal; they are contingent on several variables, including
the type and intensity of exercise, as well as the host’s health
status (Bonomini-Gnutzmann et al., 2022; Cataldi et al., 2022).
For example, a six-week endurance exercise intervention increased
fecal SCFAs in lean but not obese participants (Allen et al,
2018). This suggests that obesity-related dysbiosis or inflammation
may blunt the guts metabolic response to exercise. A separate
study on individuals with type 2 diabetes found that different
exercise intensities increased the abundance of distinct butyrate-
producing species (Torquati et al., 2023). Moderate-intensity
continuous training (MICT) led to a higher relative abundance of
Lachnospira eligens (Torquati et al., 2023) and Clostridium Cluster
IV (Torquati et al., 2023), while high-intensity interval training
(HIIT) promoted other butyrate-producers from Eryspelothrichales
and Oscillospirales (Torquati et al., 2023). This finding is significant
because it indicates that different exercise prescriptions can
specifically target and modulate distinct microbial communities
and their functions (Figure 2 and Table 3).

4.2 The differential impact of exercise
modalities on muscle and gut homeostasis

Different forms of physical activity elicit distinct physiological
adaptations in muscle, and mounting evidence suggests a similar
specificity in their effects on the gut microbiome.

e Resistance Training (RT): This modality is a potent stimulus

for increasing muscle mass and strength, primarily through
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FIGURE 2
Exercise-mediated modulation of gut microbiota. Transitioning from a sedentary to an active lifestyle enhances microbial diversity and increases the
abundance of SCFA-producing bacteria such as Faecalibacterium prausnitzii. These changes improve gut barrier function and reduce systemic
inflammation, contributing to overall health. The effects of exercise vary with type, intensity, and host health status: moderate-intensity continuous
training (MICT) enriches species like Lachnospira eligens and Clostridium Cluster 1V, whereas high-intensity interval training (HIIT) promotes other
butyrate-producing taxa from Erysipelotrichales and Oscillospirales. Obesity and metabolic diseases may blunt these beneficial responses,
highlighting the importance of personalized exercise prescriptions.

TABLE 3 Impact of exercise on microbiome.

Exercise

modality

Study
population

Key microbiota changes

Changes in SCFA
production

Further description

Endurance

Lean, previously
sedentary

Increased overall microbial diversity
(Allen et al,, 2018). Increased relative
abundance of

Akkermansia and a decrease in
Proteobacteria (Erlandson et al.,
2021).

Increased fecal SCFAs in lean
participants, but not in obese
participants (Allen et al.,
2018).

Moderate-Intensity
Continuous Training
(C-MICT)

Low active people
with Type 2 Diabetes

Higher post-exercise abundance of
Bifidobacterium, A. municiphila, and
butyrate-producers like Lachnospira
eligens and Clostridium Cluster IV
(Torquati et al., 2023).

No significant change in fecal
SCFAs compared to HIIT group
(Torquati et al., 2023)

High-Intensity Interval
Training (C-HIIT)

Low active people
with Type 2 Diabetes

Higher post-exercise abundance of
other butyrate-producers from
Eryspelothrichales and Oscillospirales
(Torquati et al., 2023).

No significant change in fecal
SCFAs compared to MICT group
(Torquati et al., 2023).

Resistance and Aerobic
(Combined)

Younger and older
individuals

Significant modifications of fecal
microbiota composition (Burtscher
etal, 2022). Increased representation of

Bifidobacteria and
Faecalibacterium prausnitzii
(Burtscher et al., 2022).

SCFA changes were noted in
master athletes compared to
sedentary controls (Burtscher
et al., 2022).
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muscle hypertrophy and neural adaptations (McLeod et al.,
2024; Alix-Fages et al., 2022). RT prescription variables like
volume (number of sets) and load are key determinants of its
effectiveness (McLeod et al., 2024).

While RT’s influence on gut microbiota is a developing area
of research, emerging evidence suggests its effects are distinct
from that of endurance training. Unlike the consistent increases in
microbial diversity seen with aerobic exercise, RT appears to exert
a more targeted influence on microbiota composition (Wegierska
et al., 2022; Varghese et al., 2024; Polo-Ferrero et al., 2025; Zhong
et al., 2022; Cullen et al., 2024). Recent studies have demonstrated
that structured RT can increase the abundance of beneficial,
SCFA-producing genera such as Roseburia and Faecalibacterium,
particularly in individuals who show significant strength gains
(Meiners et al., 2024; Zhang et al, 2024). Furthermore, some
research indicates RT may improve gut barrier integrity by
increasing the metabolic capacity of the microbiome to produce
mucin and decreasing serum zonulin, a marker associated with
intestinal permeability (Di Vincenzo et al., 2024; Dmytriv et al.,
2024). These findings suggest that RT’s primary impact may
be on modulating specific microbial functions related to gut
health and anti-inflammatory pathways, rather than broad changes
in diversity.

e Endurance Training (ET): Classically performed at a low
load for a long duration, ET enhances cardiorespiratory
fitness, promotes mitochondrial biogenesis, and increases
capillary density (Hughes et al., 2018; Molmen et al., 2025).
These adaptations improve the muscle’s ability to utilize
oxygen and delay fatigue (Hughes et al., 2018). As a potent
modulator of the gut microbiome, endurance training is a
potent modulator of the gut microbiome, consistently shown
to enhance microbial diversity and metabolic function (Clauss
et al, 2021). Mechanistically, ET can increase gut motility
and blood flow, creating a favorable environment for the
proliferation of SCFA-producing bacteria (Hawley et al., 2025).
These microbial shifts are directly linked to higher circulating
levels of butyrate, which confers systemic anti-inflammatory
benefits and serves as an energy source for colonocytes. This
enhancement of SCFA production is a cornerstone of how
endurance exercise translates into improved metabolic health
and supports the gut-muscle axis (Martin et al., 2023; Singh
et al., 2022).

The combination of RT’ direct hypertrophy benefits and ET’s
systemic metabolic and microbial benefits suggests that concurrent
training might be the most effective strategy. Resistance training
directly stimulates protein synthesis and combats muscle atrophy
(Gedara and Othalawa, 2023), while endurance training improves
mitochondrial function and cardiorespiratory fitness (Hughes et al.,
2018). Endurance training has also been shown to modulate the
gut microbiota and SCFA production (Sohail et al., 2019; Huang
et al, 2022b). A combined approach could leverage both the
direct mechanical stimulus of RT and the systemic, metabolic,
and microbial benefits of ET. The ongoing DEMGUTS study
(NCT06545123) is a prime example of a clinical trial designed to
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test this very hypothesis, directly comparing the effects of aerobic,
resistance, and concurrent exercise on gut microbiota and physical
outcomes in older adults with sarcopenia (Merelim et al., 2025).

A critical clinical consideration is the reversibility of exercise-
induced benefits. The positive effects of exercise on muscle
strength, endurance, and gut microbiota composition are largely
reversed when training ceases (Bonomini-Gnutzmann et al., 2022;
Allen et al, 2018). This underscores a fundamental principle:
exercise must be a sustained, lifelong intervention to combat
the progressive nature of sarcopenia and chronic disease-related
muscle wasting (Chen, 2024). This shifts the clinical focus from
short-term programs to promoting long-term behavioral change
and adherence.

5 Clinical and translational
perspectives

5.1 Evidence from human studies and
research challenges

Observational studies in elderly populations have consistently
shown significant differences in the gut microbiota between
individuals with and without sarcopenia (Lapauw et al., 2024;
Liu et al, 2021). Sarcopenic patients have been found to
have lower microbial alpha-diversity (richness and diversity)
compared to those with preserved muscle status (Lapauw et al.,
2024). The microbial composition of sarcopenic individuals
also clusters differently, with specific genera, including Blautia,
Lachnospiraceae, and Subdoligranulum (Liu et al., 2021), identified
as having potential diagnostic value for the disease (Zhou
et al., 2023). Metabolomics analysis further links sarcopenia to
significant alterations in 172 metabolites and pathways, including
butanoate metabolism, which is a key SCFA pathway (Zhou
et al., 2023). However, the field faces significant challenges that
hinder direct translation of these findings into clinical practice.
The heterogeneity of study designs, exercise prescriptions, and
reporting methods complicates a direct meta-analysis of the
data (Lapauw et al, 2024). Many studies are cross-sectional,
which makes it impossible to establish causality—it is unclear if
dysbiosis causes muscle wasting or vice versa (Lapauw et al., 2024).
Furthermore, there is no universally accepted “sarcopenia-specific
GM signature,” and findings are often conflicting (Lapauw et al.,
2024).

5.2 Future directions and personalized
medicine

Overcoming the aforementioned challenges is crucial for
translating scientific findings into clinical practice. The progression
of research in this field is a key narrative, marked by a shift
from broad observational studies to targeted, hypothesis-driven
longitudinal clinical trials. There is an urgent need for uniformly
designed trials with large sample sizes, standardized exercise
prescriptions, and clear, defined core outcome sets (Lapauw et al.,
2024).
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Due to the multifactorial nature of muscle wasting, the most
promising therapeutic strategies will likely be multi-modal,
combining exercise with targeted nutritional support and
microbial modulation (Das et al., 2024). The ultimate goal is to
move toward a personalized precision medicine paradigm. The
future trajectory of the field will involve leveraging emerging
technologies like multi-omics (genomics, transcriptomics,
metabolomics) (Mohr et al, 2024) and artificial intelligence
to enable the dynamic monitoring and real-time modulation
of microbial activity and its impact on muscle health (Wang
et al., 2023). This integrated approach will allow clinicians to
design individualized exercise and nutritional prescriptions
based on a patient’s unique biological profile to optimize

health outcomes.

6 Conclusion

Skeletal muscle wasting disorders are complex conditions
driven by an imbalance of catabolic and anabolic signaling. A
growing body of evidence has established the existence of a
bidirectional gut-muscle axis, where the gut microbiota, through
the production of key metabolites like SCFAs, plays a direct
and profound role in regulating muscle health, metabolism, and
inflammation. Physical activity is a powerful, non-pharmacological
modulator of this axis, influencing microbial composition,
diversity, and metabolic output in a manner dependent on
the exercise modality, intensity, and host factors. While the
field has progressed significantly from observational studies to
interventional trials, key challenges remain, including a lack of
standardized research and the heterogeneity of findings. The
future of therapeutic intervention for sarcopenia and cachexia
lies in a shift toward personalized, multi-modal strategies that
leverage the principles of the gut-muscle axis. By integrating
exercise, nutrition, and microbial modulation with advanced
technologies like multi-omics and artificial intelligence, the
scientific community can move closer to developing truly effective,
individualized therapies to preserve muscle function and enhance
the quality of life for millions of individuals affected by these
debilitating disorders.
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