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Southeast Asia (SEA) is among the world’s most flood-prone regions, where
climate change is intensifying rainfall and extreme weather events. Floods disrupt
communities and pose risks of infectious disease by bridging human, animal, and
environmental reservoirs of pathogens. These events add strain to countries with
vulnerable healthcare systems and critical infrastructure. Regional platforms such
as the ASEAN Coordinating Centre for Humanitarian Assistance (AHA) and the
ASEAN Biodiaspora Virtual Centre provide valuable weekly updates on emerging
infectious diseases that could support disaster preparedness and response by
incorporating supporting epidemiological and environmental data on waterborne
outbreaks. Evidence synthesized in this review shows how floods reshape pathogen
persistence, transmission pathways, host—environment interactions, and antimicrobial
resistance (AMR), within the SEA context. By complementing existing regional
monitoring endeavors, a One Health perspective emerges as a useful lens to
capture the interconnected nature of risks across human, animal, and environmental
domains. Advances in wastewater and environment-based surveillance, coupled
with multi-omics approaches and machine learning, create new opportunities
to detect diverse pathogens, integrate complex datasets, and forecast risks with
more precision. This review addresses the importance of considering pathogen
transmission before, during and after flood events, framing infectious disease risks
within broader ecological and socio-economic contexts. By adopting this holistic
perspective within the one-health paradigm, SEA countries could strengthen
preparedness and resilience strategies before disasters occur.
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1 Introduction

Human-induced climate change has resulted in rising sea levels and an increase in severe
weather events such as heatwaves, droughts, wildfires, and unpredictable fluctuations in heavy
precipitation that lead to flooding (Stott et al., 2016; Zhai et al., n.d.; Mora et al., 2022). Floods
have a major impact across regions globally. About 1.8 billion people (23% of the global
population) are exposed to 1-in-100-year floods, with the greatest risks concentrated in low-
and middle-income countries (LMIC), especially South and East Asia (Rentschler et al., 2022).
Increased rainfall intensity, a consequence of climate change, puts many regions across
Southeast Asia (SEA) at risk of major floods on an annual basis, particularly during the
monsoon season (Chen et al., 2025; Loo et al., 2015). Of all disaster categories recorded by the
ASEAN Coordinating Centre for Humanitarian Assistance on disaster management (ASEAN
Coordinating Centre for Humanitarian Assistance on disaster management (AHA Centre),
2025), an ASEAN (2025) inter-governmental body responsible for disaster risk management
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in the region, floods are the most frequent disaster type across ASEAN
Member States (AMS), accounting for 63% of all reported disaster
events in this region. Floods directly threaten the livelihood of 23% of
the total ASEAN population (approximately 146 million people)
(AHA Centre, 2024), and cause major economic loss; with Indonesia,
the Philippines, Thailand, Vietnam, Malaysia, and Myanmar, each
incurring between US$3 and 30 billion annual average loss per year
(ASEAN Secretariat, 2025).

In the aftermath of disasters, displacement, disruption of medical
services, and damage to health and civil infrastructure are the most
visible effects (Wisner and Adams, 2002). Less apparent, however, are
ecosystem-level changes that may heighten health risks. From an
environmental perspective, climate change and extreme weather
events are increasingly recognized as drivers of contaminant
mobilization, fate, and transport. Both chemical and microbial
hazards can persist and move through complex pathways, creating
cross-sectoral risks for ecosystems and public health (Mora et al,,
2022; Bolan et al., 2024; Crawford et al., 2022; Laino and Iglesias,
2025; Noyes et al., 2025; Uwishema et al., 2023; Zitoun et al., 2024).
These dynamics are particularly critical in SEA, where recurrent
floods and heavy rainfall across AMS repeatedly expose populations
to unsafe water. In this setting, floodwaters act as vehicles for
pathogens already present at low levels in the environment, while
socio-economic vulnerabilities (Rentschler et al., 2022) amplify
transmission risks (Acosta-Espana et al., 2024). Against this backdrop,
outbreaks of waterborne diseases have historically manifested after
flood events, exemplified by the most recent cholera outbreak in
Myanmar in 2024 (World Health Organization, 2025a). As of August
2025, several major cities in SEA were struck by massive floods, with
numerous official (ADInet) and unofficial news outlets circulating
reports of potential risks of outbreaks (ASEAN Coordinating Centre
for Humanitarian Assistance on disaster management (AHA
Centre), 2025).

Systematic reporting of flood-associated disease outbreaks across
AMS remains limited. Where available, historical literature frequently
focuses on leptospirosis (Sawangpol et al., 2025), diarrhea disease
(Asadgol et al., 2020; De Guzman et al., 2015; Glass et al., 1984; Lopez
etal., 2015; Simanjuntak et al., 2001), typhoid fever (Nga et al., 2018;
Roberts et al., 2020; Alba et al., 2016; Muhammad et al., 2020; Pham
Thanh et al., 2016), malaria (Memon et al., 2014; Bharati and Ganguly,
2013) and dengue (Langkulsen et al., 2020; Wibawa et al., 2024) as the
most common flood associated outbreaks in this region. This gap
between well-documented flood events and the sparse reporting of
associated outbreaks underscores the challenge of aligning disaster
monitoring with public health surveillance. Currently, the ASEAN
Weekly Disaster Update (ASEAN Coordinating Centre for
Humanitarian Assistance on disaster management (AHA Centre),
2025) systematically documents major flooding events to support
transnational coordination; however, flood-related outbreaks are
rarely captured and typically surface only through news reports or
official statements. Wastewater and environment surveillance (WES),
as recommended by WHO (World Health Organization, 2024) can
plug this gap to better understand disease transmission and circulation
patterns within populations. Linking such approaches with the
ASEAN BioDiaspora Virtual Center Dashboard (ASEAN BioDiaspora
Virtual Center (ABVC), 2024), which already supports surveillance of
epidemic-prone diseases such as leptospirosis, influenza, COVID-19,
and Mpox, could provide a stronger disaster-health surveillance system.
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ASEAN’s recent Leaders’ Declaration on the One Health Initiative
and Health Cluster 2’s ‘all-hazards’ program (ASEAN, 2025)
recognizes that emergencies such as floods, propagate simultaneously
through people, animals, and water systems; consequently,
preparedness and response cannot be siloed. AHA Centre disaster
intelligence and ABVC analytics further underscore the need for
interoperable indicators across health, agriculture/livestock, and
water—environment authorities as floods and their disease
consequences traverse provinces and borders. This position is
congruent with the WHO/FAO/WOAH/UNEP Quadripartite One
Health Joint Plan of Action, which prioritizes integrated surveillance
and WASH/food-safety protections precisely because flooding elevates
risks of water- and vector-borne disease and mobilizes environmental
AMR. Within ASEAN’s information ecosystem, the hazard-exposure
stream (AHA Centre Weekly Disaster Update and ADInet) is event-
centric and geotemporal, describing flood intensity, extent, affected
populations, and lifeline status; the ABVC dashboard is population-
and administration-indexed, curating epidemic-prone syndromes;
and wastewater/environmental surveillance contributes leading
indicators of contamination and AMR pressure. Read as a single stack,
these sources allow lead-lag analysis from inundation to
environmental loading to clinical signal emergence, reconcile basin-
scale impacts with district-level reporting, and surface risk
concentration in low-lying informal settlements and agri-aquaculture
corridors. Harmonizing on shared timestamps and spatial keys
(administrative codes and river basins) preserves each platform’s
native workflow while enabling One Health interpretation of flood-
associated transmission dynamics across Member States. In the later
sections of this review, we will explore these synergies with emerging
techniques and integrative approaches.

2 From baseline to surge: microbial
shifts in transmission

This review is guided by the DISEAASE framework, which Smith
et al. (2022) addresses the compounded effect of disasters and
epidemics, and how they increase human health risks. In SEA, flood-
triggered outbreaks often involve multiple waterborne diseases shaped
by overlapping geographical, socio-economic, pre-existing
vulnerabilities and climatic drivers (Acosta-Espana et al., 2024). In
operational terms, the DISEAASE framing maps cleanly onto One
Health: disaster shocks perturb environmental reservoirs, alter
animal-human contact, and intensify healthcare demand, so risk
assessment must track all three domains together. Building on this
framework, we examine flood-associated outbreaks in the region to

draw lessons on disease transmission for future preparedness.

2.1 Pre-existing vulnerabilities increase risk
of waterborne outbreaks

A combination of factors, such as climate change (heavy rainfall
events, droughts), low elevation (coastal and river delta settlements),
rapid urbanization (dense communities with inadequate drainage/
sanitation systems), and socioeconomic impacts (poverty-stricken
communities) are preexisting vulnerabilities that some AMS grapple
with, increasing their susceptibility to floods and exposure to
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waterborne diseases and outbreaks (Fabrice et al., 2021). WHO data
shows that unsafe water, sanitation, and hygiene (WASH) remain a
major driver of global health burden, responsible for an estimated
1.4 million preventable deaths and 74 million disability-adjusted life
years (DALYs). Although WHO reported global improvements in
WASH and reduced vulnerability between 2015 and 2020,
communities in LMICs, including those in SEA, remain highly
vulnerable to climate change and limited access to safe drinking
water, with persistent regional and intercountry disparities affecting
local communities (Wen et al., 2025; Deshpande et al., 2020;
Greenwood et al., 2024; World Health Organization, 2021). Many
communities that live below the poverty line in SEA are
experiencing regular floods (Rentschler et al., 2022), and are hit
harder due to lack in WASH (World Health Organization, 2025b).
Recent reviews show how these processes interact with
environmental persistence, uncertain exposure pathways, and the
challenges of managing risks across human, agricultural, and
natural systems (Bolan et al., 2024; Crawford et al., 2022; Laino and
Iglesias, 2025; Noyes et al., 2025; Uwishema et al., 2023; Zitoun
etal., 2024).

10.3389/fmicb.2025.1694246

2.2 Pathogen reservoirs in human settings

Pathogen reservoirs in the environment and animal populations
play a critical role in sustaining transmission between flood events
(Figure 1). Among flood-related infectious agents, leptospirosis,
caused by Leptospira spp., is the most commonly reported zoonotic
disease worldwide. Leptospira comprises a diverse group of species
and serovars, many of clinical relevance, and has been recently
reviewed by Rajapakse et al. (2025) and Davignon et al. (2023). A
comprehensive account of Leptospira serovars, case definitions, risk
factors, epidemiological trends, and management strategies,
specifically within the SEA context, has been recently reviewed by
ASEAN Biodiaspora Virtual Centre (2024). More recent focused
reviews of regional surveillance have also been published for
individual AMS, including Malaysia (Ahmad Zamzuri et al., 2023;
Azman et al., 2025; Philip and Ahmed, 2023; Lea et al., 2025), Thailand
(Sawangpol et al., 2025) and Vietnam (Mai et al., 2022). Leptospira is
endemic across SEA, with a wide range of animal hosts, causing
isolated infections detected across all AMS between 2017 and 2023
(ASEAN Biodiaspora Virtual Centre, 2024). Rainfall frequency and
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Transmission pathways of waterborne, vector-borne and zoonotic disease during major flooding events within a One Health context. Before floods:
Zoonotic Leptospira spp. persists in environmental reservoirs such as waterlogged soils, paddy fields, and mud; maintained through zoonotic hosts
including rodents, livestock, and stray animals. Other human-adapted pathogens (e.g., Salmonella Typhi, Vibrio cholerae, hepatitis A and parasite)
circulate at low endemic levels in human populations, responsible for isolated or sporadic outbreaks. During floods: Storms, typhoons, and heavy
rainfalls precipitate into major floods, dismantle ecological and sanitary barriers. Floodwaters mobilize pathogens through sewage overflows, fecal
contamination, and runoff, while also driving zoonotic transmission by bringing animal pathogens into closer contact with humans. After floods:
Stagnant water and blocked drainage sustain mosquito-borne diseases such as malaria and dengue. Failures in water, sanitation, and hygiene (WASH)
systems fuel secondary outbreaks, while antimicrobial resistance (AMR) complicates treatment. Added pressures from physical injuries, overcrowding,
and disrupted healthcare services further compound the public health burden. Created with BioRender.com.
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intensity are commonly associated with heightened risk of
leptospirosis. Infections often peak during periods of heavy rain and
following flooding events (Chutinantakul et al., 2019; Matsushita
etal.,, 2018; Phosri, 2022). Temporal data shows a rise of reported cases
in Indonesia, Malaysia, Thailand, and Singapore over the past 3 years
(2022-2025), while the Philippines saw a decline of cases after a 2018
peak, before rising again (ASEAN Biodiaspora Virtual Centre, 2024).
Beyond public health, Leptospirosis also increases DALY and reduces
global human productivity, resulting in significant global economic
losses ($29.3 billion); with Indonesia, Thailand, and Malaysia reported
as the three most affected AMS (Agampodi et al., 2023).

SEA with varied and diverse environmental niches such as rice
paddies, wells, open water, and soils serve as environmental reservoirs
for harboring dormant Leptospira that can reactivate under saturated
wet conditions (Yanagihara et al., 2022). The pathogen has also been
detected in contaminated surface waters, creating exposure risks
through recreational and occupational activities (Narkkul et al., 20205
Narkkul et al., 2021). Populations living in rural areas and engaged in
agriculture or farming practices are particularly vulnerable to
infection (Sawangpol et al., 2025; Chadsuthi et al., 2021; Suttirat et al.,
2025; Douchet et al., 2022), often occurring through direct contact
with contaminated water or soil, when the skin is broken or abraded
(Sakundarno et al., 2014). Within human settlements in urban and
rural areas, zoonotic reservoirs play a major role in sustaining
transmission, with high densities of commensal rodents consistently
linked to infection risk (Sutiningsih et al., 2024; Widawati et al., 2023;
Ribas et al.,, 2016; Villanueva et al., 2010; Ciano et al., 2021;
Wuthiekanun et al., 2007; Krairojananan et al., 2025; Griffiths et al.,
2022). Rodents are frequently found in environments such as wet
markets and soils of paddy fields, where water samples from these
areas test positive for Leptospira (Ling et al., 2025). In addition,
exposure to stray animals (e.g., dogs, cats) (Narkkul et al., 2021;
Chadsuthi et al., 2017; Ngasaman et al., 2020; SprifSler et al., 2019;
Altheimer et al., 2020; Andityas et al., 2025) and livestock, (e.g., cattle,
goat, sheep) (Sunaryo and Priyanto, 2022; Widiasih et al., 2021),
carrying the pathogen, also represent a significant risk; as these
animals can become hosts through infection after floods, or when
exposed to contaminated water used for farming purposes (Lea et al.,
2025; Widiasih et al., 2021; Rahman et al., 2023).

2.3 Anthroponotic reservoirs: source of
sporadic outbreaks

Anthropogenic reservoirs of infection sustain a range of human-
adapted pathogens that can fuel large diarrheal outbreaks following
floods (Figure 1). Ingestion of fecally contaminated food or drinking
water remains the primary route of transmission for a wide range of
foodborne pathogens across AMS (Dewanti-Hariyadi, 2024). These
pathogens including Vibrio cholerae, Enteric microorganisms, viral
agents (e.g., norovirus, hepatitis A and E virus), and protozoan
parasites (e.g., Cryptosporidium, Giardia) are often linked to sporadic
outbreaks and isolated cases but can escalate into large-scale diarrheal
events during floods (De Guzman et al., 2015; Lopez et al., 2015; Nga
et al., 2018; Roberts et al., 2020; Alba et al., 2016; Muhammad et al.,
2020; Swaddiwudhipong et al., 1995; Udompat et al., 2024). Like the
other diarrheal pathogens mentioned earlier, typhoid caused by
Salmonella enterica serovar Typhi also spreads through the fecal-oral
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route via contaminated water and food. Many of these pathogens
including both S. typhi and toxigenic V. cholerae, linked to major
outbreaks following a flooding event (Glass et al., 1984; Lopez et al.,
2015; Simanjuntak et al., 2001; Roobthaisong et al., 2017; Karkey et al.,
2016), can persist in aquatic environments and sediments during
non-flood periods, especially when protected by organic matters (Liu
etal, 2018; Tiwari et al., 2019; Eiler et al., 2007). The presence of these
pathogens usually indicates the incidence of fecal contamination
(Karkey et al., 2016; Oktaria et al., 2025). Viral agents also pose
significant flood-related risks including waterborne viruses such as
Hepatitis A and E, norovirus, and rotavirus, which are linked to
outbreaks through contaminated food (Dewanti-Hariyadi, 2024),
drinking and recreational waters (Mora et al., 2022). Wastewater, a
major source of contamination during floods, can harbor a wide
spectrum of clinically significant viruses such as enteroviruses,
poliovirus, and SARS-CoV-2; many of which are now key targets of
wastewater surveillance in several AMS (Pang et al., 2025). The
presence of viruses such as SARS-CoV-2 in wastewater has been
flagged as a potential public health risk during flooding events in
urban settings (Han and He, 2021), although infectivity has not been
conclusively demonstrated (Giacobbo et al., 2021). These findings
underscore concerns of possible viral transmission through exposure
to contaminated floodwaters.

Besides bacterial and viral etiologies, protozoan pathogens are an
overlooked dimension to flood-associated disease risks. While some
Cryptosporidium and Giardia species infect only humans, others are
zoonotic and may be acquired through contact with animals,
including pets (Ryan et al., 2021). In Asia and SEA, outbreaks caused
by Cryptosporidium and Giardia are rare, accounting for less than 1%
of all reported protozoan-related outbreaks (Bourli et al., 2023; Lim
and Nissapatorn, 2017). Oocysts have been detected in surface waters,
recreational and environmental sources, as well as in sewage (Lim and
Nissapatorn, 2017; Masangkay et al., 2020) across several AMS, with
low counts (0.06 + 0.19 oocyst/L) also found in treated drinking water
in the Philippines (Kumar et al,, 2016). Practices such as open
defecation, application of untreated human waste as fertilizer, and
reliance on shallow wells (Nasim et al., 2022; Lam et al., 2015; Pham-
Duc et al,, 2013; Humphries et al., 1997) can keep pathogens in
circulation. The global spread of the seventh cholera pandemic, traced
by comparative genomic analysis to Sulawesi, Indonesia in 1961,
illustrates how quickly such pathogens can proliferate once established
(Luo et al.,, 2024). In effect, persistence of anthroponotic pathogens in
both rural and urban settings can be sustained by human practices,
with low-level transmission continuing until cross-contamination or
flooding triggers large-scale outbreaks (Figure 1).

2.4 Changing climate and flood-induced
shifts in transmission

More than half (58%) of known human infectious diseases
worsen with floods and other climate hazards, spreading through
multiple transmission pathways that drive flood-related outbreaks
(Mora etal., 2022). Most floods in SEA are driven by the East Asian
Summer Monsoon (EASM), which brings peak rainfall during the
boreal summer (May-September) (Chen et al., 2025; Loo et al,
2015). Seasonal monsoons are strongly associated with increased
incidence of dengue, leptospirosis, and typhoid across several
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regions of SEA (Chadsuthi et al.,, 2021; Matsushita et al., 2018;
Cunha et al,, 2022; Benedum et al., 2018); for example, in Myanmar,
peak rainfall has been linked to cholera outbreaks (Roobthaisong
et al, 2017). Our Philippines case study (2022-2023) further
illustrates this pattern (Figure 2). In 2023, rainfall was anomalously
high during January-February and peaked within the core
Southwest Monsoon (Weeks 22-43). This rainfall pattern coincided
with elevated early-year dengue, leptospirosis, and typhoid case
counts that declined soon after the monsoon subsided (Figure 3). In
contrast, 2022 exhibited a late rainfall peak around epidemiological
week 45, beyond the official monsoon window, and correspondingly
sustained disease activity into the post-monsoon period. The
persistence of cases beyond the monsoon season in 2022 is
consistent with the delayed environmental effects of late-season
rains (Chadsuthi et al., 2021; Matsushita et al., 2018; Cunha et al.,
2022). To provide a balanced regional view, we tabulated flood-
associated disease events across multiple AMS, including outbreaks

10.3389/fmicb.2025.1694246

following non-monsoon flood events, to illustrate the recurring
post-flood transmission risk during and beyond the monsoon
context (Table 1).

With the impact of climate change, countries/regions including
the Philippines, Singapore, Malaysia, Borneo, and Thailand are
expected to see more intense rainfall, while Indonesia experiences
fewer extreme events but longer stretches of consecutive wet days
(Chen etal., 2025; Loo et al., 2015). Tropical cyclones are projected to
persist longer and intensify, threatening key coastal cities such as Hai
Phong, Bangkok, and Yangon, while extending damage farther inland
(Garner et al., 2024). By the end of the century, SEA could see average
regional warming of approximately 2 °C under moderate emissions
(SSP245), rising to 3 °C or more under high emissions (SSP585),
depending on the sub-region (Try and Qin, 2024). This mix of
changing climates, complex surface and meteorological features
means that monsoon-linked floods may become even more severe and
unpredictable in the future.
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case counts are from national surveillance. Data from 2020 to 2021 were excluded due to COVID-19 lockdowns that affected routine reporting in the
Philippines (Parrefio, 2024). Rainfall: CHIRPS (Gorelick et al.,, 2017). Disease data: Department of Health, Weekly Disease Surveillance Reports (WDSR)
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Flooding from heavy rainfall, cyclones, or typhoons destroys
natural and infrastructural barriers, facilitating contact between
pathogens, vectors, and humans (Mora et al., 2022; Setiawalti et al.,
2022). Many pathogens persist at low endemic levels during non-flood
periods and remain geographically contained until floods amplify
transmission through dissemination into new regions previously
unaffected (Ascione and Valdano, 2025; Bett et al., 2021). Floodwaters
compromise sewage, and seed surface waters with enteric pathogens,
mobilize pathogens from wildlife, livestock, human waste, and
environmental reservoirs into shared aquatic systems (Mora et al.,
2022; Chadsuthi et al., 2021; Rahman et al., 2023; ten Veldhuis et al.,
2010; Thibeaux et al., 2024; Poulakida et al., 2024; Raya et al., 2024).
Flood victims exposed to contaminated water are at high risk of
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infection via direct contact (e.g., skin abrasions) or through ingestion
of water contaminated by sewage containing pathogenic organisms
(Figure 1). Less commonly reported viruses further add to the burden,
contributing through unknown pathways to post-flood illnesses such
as respiratory diseases and skin infections (Mora et al., 2022).
Compounded by inadequate WASH (Wen et al.,, 2025; World Health
Organization, 2021) and intensified by climate change, heavy rainfall
can devastate many areas across SEA; for example, recent seasonal
rains in Myanmar in mid-2024 triggered yet another major cholera
outbreak affecting 7,000 people and causing several deaths from
contaminated water sources (World Health Organization, 2025a).
Beyond the immediate surge in waterborne infections, the timing
and intensity of monsoon rainfall also govern the onset of
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TABLE 1 Flood-related disease outbreaks in AMS between January 2024 to September 2025.

Country/

Province

Trigger

Disease/
syndrome

Cases/
Deaths

10.3389/fmicb.2025.1694246

Corroboration

Source

Jan-Jun 2025 Thailand/North East Monsoon, flood Leptospirosis 1,623/20 Department of Disease The nation (Public
Provinces Control Health Ministry,
n.d.)
Jun-Aug 2025 The Philippines Monsoon, cyclone | Leptospirosis 4,859/unknown Department of Health Inquirer.net (DOH,
n.d.)
Jan-Sep 2025 Indonesia/Riau Sporadic heavy Dengue 499/2 (Riau Health authorities The Jakarta Post
Island, Aceh, Bangka rains Islands) (Asia News
Belitung 108/unknown Network, n.d.)
(Aceh)
200/unknown
(Bangka Belitung)
Mar-May 2024 Indonesia/Central Early-year floods Leptospirosis Over 200/ Department of Health, Antara (ANTARA
Java unknown Provincial News, n.d.), Jateng
(PKS Jateng, n.d.)
Apr-May 2024 Indonesia/Pesisir Flash floods Acute diarrhea ~200-300/5 Local Government Antara (ANTARA
Selantan, West News, n.d.), Pesisir
Sumatra Selantan
(Kabupaten Pesisir
Selatan, n.d.)
Nov 2024 Myanmar/ Typhoon Yagi, Acute watery diarrhea/ | 205/unknown ‘WHO Regional Office for WHO, 2024 (7th
Yangon WASH disruption | cholera South-East Asia edition, 2024)
Dec 2024 Thailand/Tak Rainy season Cholera 4/0 WHO Regional Office for WHO, 2025
Province floods (imported South-East Asia (Biweekly, n.d.)
case)

vector-borne diseases. Standing water left behind after floods provides
breeding grounds for mosquitoes, with dengue and malaria risks often
peaking several weeks after the initial wave of diarrheal and leptospiral
cases (Chadsuthi et al., 2021; Matsushita et al., 2018; Cunha et al.,
2022; Benedum et al., 2018; Wang et al., 2023). This lag creates a
critical window where health systems concentrate on waterborne
outbreaks, while arboviral and parasitic threats accumulate more
quietly in the background. Evidence from urban and national studies
across the Philippines, Thailand, and Myanmar further shows that
rainfall and flooding exert short-term, non-linear, lagged effects that
elevate leptospirosis risk and amplify dengue transmission,
underscoring how seasonal monsoons function as a recurrent driver
of multi-disease dynamics in SEA (Chadsuthi et al., 2021; Matsushita
et al., 2018; Cunha et al., 2022; Benedum et al.,, 2018). Frequent
co-infections are reported in flood-affected regions including
overlapping dengue-leptospirosis and melioidosis-leptospirosis cases
(Lea et al., 2025; Asaduzzaman et al., 2024; Sachu et al., 2018). Animal
reservoirs add another layer of complexity. In northern Vietnam,
rodents were found to carry Rickettsia, Leptospira, and Bartonella at
the same time (Anh et al., 2021), while rodents in Indonesian markets
harbored both Leptospira and Orthohantavirus (Miura et al., 2025).
Their role as reservoirs sustaining and spreading diseases across SEA
has been comprehensively reviewed recently (Ganasen et al., 2025;
Nguyen et al., 2025). Since most surveillance systems in ASEAN still
monitor one disease at a time (Pang et al., 2025), such findings stress
the risk of multi-pathogen spillover, which can delay recognition of
overlapping outbreaks and lead to case misclassification.

Frontiers in Microbiology

3 Burden of floods on public
healthcare

In the aftermath of a disaster, public health priorities in the
emergency phase include ensuring access to food, shelter, health care,
water supplies, sanitation facilities, control of communicable diseases,
and public health surveillance (Wisner and Adams, 2002). There are
three pathways by which floods can accelerate disease and death, (A)
contamination of water supply which may lead to gastrointestinal
illnesses and disease transmission, (B) stagnant breeding sites which
harbor pests (e.g., rodents) and disease spreading vectors (e.g.,
mosquitos), (C) human displacement and poor access to sanitary
conditions (Yang et al., 2024; Barbetta et al., 2022; Paterson et al., 2018;
Suhr and Steinert, 2022; Lee et al., 2020). Compromised healthcare
infrastructure associated with flooding events, and the sudden surge
of patient care imposes a severe strain on healthcare facilities (Paterson
et al., 2018). Risk of infection is a common cause of healthcare
presentations after floods such as cutaneous and respiratory infections,
and gastrointestinal, zoonosis and vector borne diseases as covered in
the earlier sections of this review. A surge of noncommunicable
diseases including chronic respiratory illnesses, cardiovascular
disease, and diabetes emerge when disasters disrupt access to medical
care and interrupt the supply of essential medication (McKinney et al.,
2011; Ryan et al., 2015; Ryan et al., 2016). This is further compounded
with acute health impacts such as orthopedic injuries, lacerations,
hypothermia, electrocution, and burns that add to the public health
burden during floods (Paterson et al., 2018). Drawing on data from
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over 300 million hospital admissions in 747 flood-prone communities,
Yang et al. (2025) reported that floods were associated with elevated
hospitalizations for infectious (RR = 1.26) and digestive diseases
(RR = 1.30). These excess risks persisted for as long as 210 days after
flooding, illustrating how the health impacts of floods extend well
beyond the immediate crisis and reinforcing the need for sustained
surveillance and preventive measures across SEA.

4 AMR as a disaster risk multiplier

AMR is a global public health priority, and it is projected that in
2050, 1.91 million annual deaths will be attributed to AMR worldwide
(Naghavi et al,, 2024). In the AMS region, sepsis accounted for
~4 million deaths in 2019, with 62% linked to bacterial infections. Of
this, between 0.39 and 1.41 million deaths were attributed to AMR
bacteria (Sthombing et al., 2023). LMICs are most susceptible to AMR
spread due to misuse of antibiotics, availability of counterfeit drugs,
fragmented health systems, inadequate/overcrowding of intensive care
units (ICU) facilities, and inadequate WASH access (Rudd et al., 2018)
particularly in times of crises. The two AMR indicators (E. coli
resistant to third generation resistant cephalosporin (3GC), methicillin
resistant Staphylococcus aureus (MRSA)) within the Sustainable
Developmental Goals (SDG) monitoring framework showed slight
overall improvement in bloodstream infections over 2017-2021;
however countries such as Indonesia (70-75%), Nepal (65-77%) and
Myanmar (77-84%) still face a fluctuating persistence of 3GC E. coli
and other MDR pathogens (Sihombing et al., 2023).

Multiple intersections link climate change and extreme weather
conditions to the emergence and spread of AMR, driven by the
convergence of environmental contamination, intensive agriculture/
farming practices, and rapid urbanization (Yasir Alhassan and
Abdullahi Ahmad, 2025; Allel, 2021; Magnano San Lio et al., 2023; van
Bavel et al., 2024). Within the One Health paradigm, these pressures
emphasize the interconnectedness of human, animal, and
environmental health, where AMR pathogens, and antibiotic
resistance genes (ARGs) can circulate across ecosystem and amplify
during climate related disruptions (Figure 1).

TABLE 2 Antimicrobial resistant bacteria detected after disaster events.

10.3389/fmicb.2025.1694246

During and after disaster events (flooding, typhoons, earthquakes,
tsunamis), displacement and overcrowding of hospitals, combined
with the collapse of clean water and sanitation systems, and lack of
medication, create optimal conditions for the silent spread of AMR
and other communicable diseases (Noji, 2005). Damage to healthcare
infrastructure often precipitates infection prevention and control
(IPC) breakdowns, allowing resistant hospital-acquired infections to
spread, while disrupted medical supply chains drive inappropriate or
incomplete antibiotic use, intensifying selection pressure for AMR
(Wisner and Adams, 2002; Skender and Zhang, 2024). Contamination
of water systems from floodwaters carrying untreated sewage from
damaged wastewater, hospital infrastructure, sewer overflows,
agricultural runoft or industrial sites can introduce antibiotic resistant
bacteria (ARB) and contaminants (e.g., disinfectants) that select for
resistance (Furlan et al., 2024; Sethi et al., 2023). Aquatic environments
that receive terrestrial effluents are AMR hotspots (ARB, ARGs) for
horizontal gene transfer (HGT) between human and animal
resistomes (Reverter et al., 2020). Another route of exposure for AMR
transmission within a flood scenario is contamination of the food
chain through aquaculture and livestock in flood-affected mariculture
and agriculture areas that jeopardizes consumers of these food
products (Furlan et al., 2024; Topp et al., 2018). Vietnam, Thailand,
and Malaysia have the highest reports of AMR in aquaculture with
E. coli, Aeromonas, Vibrio spp., being the most widely reported ARB,
and tetracycline, beta-lactam, and sulpha the highest antibiotic classes
detected in aquaculture across (Suyamud et al., 2024). Within SEA,
few studies have documented pathogen-AMR disease (3GC resistance,
MRSA, MDR) occurrences in human and environmental biomes
following flooding events; however evidence remains scant, raising the
need for strengthened surveillance (Table 2).

Rising global temperature, erratic precipitation, and extreme
weather events enhances microbial adaptation, bacterial survival,
genetic mutations, and increases AMR transfer by HGT (Yasir
Alhassan and Abdullahi Ahmad, 2025). E. coli and Klebsiella
pneumoniae strains show a 4-5% increase in AMR with a 10 °C rise
in temperature which is worrying in prolonged drought situations in
SEA and reliance on unsafe water sources (MacFadden et al., 2018).
Effective mitigation strategies including strengthening AMR

Disaster event  Samples Country Opportunistic AMR Reference
pathogens
2004 Earthquake & Multiple large-scale Across affected SEA Acinetobacter spp., E. coli, MDR Acinetobacter spp., | Maegele et al. (2005)
tsunami soft-tissue wound countries Staphylococcus aureus, ESBL E. coli, MRSA,
infections, respiratory Aeromonas hydrophilia, MDR A. hydrophilia,
infections of hospitalized Pseudomonas spp., Candida MDR Pseudomonas spp.,
patients albicans MDR C. albicans
2015 Flooding Surface and Chennai, India Coliforms, Enterobacter Resistance to 3GC Gowrisankar et al. (2017)

groundwaters from

Adyar river

aerogenes, Staphylococcus
epidermis, Shigella flexneri,
Streptococcus pyogenes, S. typhi,
V. cholera

2022 Typhoon season

Mariculture tailwater

Hainan, China

Vibrio spp., Shewanella spp.,

Beta-lactam resistant

Zhao et al. (2025)

treatment Pseudomonas spp., Aeromonas genes detected
spp.
Frontiers in Microbiology 08 frontiersin.org
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surveillance and prediction models in the event of disasters would
be beneficial to LMICs in SEA to curb the spread of AMR.

5 Surveillance of waste and surface
water for early detection and
monitoring

Floods often trigger outbreaks through sewage contamination.
Wastewater surveillance targeting specific indicators offers an early-
warning signal (Grassly et al., 2025; Hill et al., 2024). Within SEA,
Singapore piloted the first wastewater surveillance to track SARS-
CoV-2 during the COVID-19 pandemic (Ng et al., 2024; Martin et al.,
2020; Wong et al., 2023); and antibiotic-resistant microorganisms and
their removal from wastewater treatment plants (Ng et al., 2017; Ng
et al., 2019; Li et al., 2022). Outside of SEA, the metagenomics of
wastewater has revealed novel human-associated viruses (Bibby et al.,
2019) and diverse parasites with potential clinical significance (Vatta
and Caccio, 2025). More recently, wastewater surveillance has garnered
interest amongst ASM, with current efforts prioritizing five main
targets: SARS-CoV-2, ARB, enteroviruses, influenza, and poliovirus
(Pang et al.,, 2025). WHO’s Wastewater and Environment Surveillance
(WES) framework (World Health Organization, 2024), still in a pilot
phase, has already issued guidelines for cholera, with other targets;
influenza, monkeypox, polio, and COVID-19; while S. typhi, Leptospira,
and other waterborne viruses are pending finalized guidance. Lessons
from early adopters like Singapore could accelerate the integration of
WES to include flood-associated pathogens in AMS in the future.

For surveillance of surface waters and environments, studies
outside of AMS have demonstrated the use of eDNA metabarcoding
to track pathogenic Leptospira in aquatic ecosystems, correlating their
presence with rainfall trends and vertebrate markers (Sato et al., 2019;
Sato et al., 2025; Sato et al., 2024; Gamage et al., 2020; Sato et al., 2022;
Sato et al., 2025). On the clinical side, research has demonstrated the
value of using metagenomics for earlier leptospirosis diagnosis in
patients (Jiang et al., 2022; Li et al., 2024; Han et al., 2024; Ji et al,,
2023). When integrated with epidemiological and One Health data
streams, omics can significantly strengthen global health surveillance
(Hill et al., 2024; Aflmann et al., 2025; Koutsoumanis et al., 2019).
Shotgun metagenomics of gut microbiomes combined with machine
learning (ML) has identified microbial and functional biomarkers
predicting V. cholerae susceptibility and disease severity (Levade et al.,
2020). More recently, Zhuang et al. (2025) applied ML to metagenomic
sequencing of multiple sewage sources, enabling detection of emerging
SARS-CoV-2 variants days to weeks ahead of clinical reporting and
the identification of novel mutation signatures. Together, these
advances demonstrate the value of combining ML and omics
approaches for early disease signal detection in wastewater and
highlight their potential to expand beyond SARS-CoV-2 toward a
broader panel of waterborne and vector-borne pathogens relevant to
flood-prone regions.

6 Conclusion

Climate change is driving more frequent and intense rainfall
across SEA, and more severe floods are expected in the coming
decades. This review has examined pathogen persistence,
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transmission, and the public health impacts of floods. These risks
interact with other climate-related factors. Typhoons, rising
temperatures, algal blooms, and changes in freshwater lakes all
influence access to clean water. Higher temperatures also affect
the survival and growth of waterborne pathogens, many of which
are not directly linked to human sources. Floods amplify the
spread of pathogens and accelerate their distribution. They also
increase the circulation of ARBs, placing heavy pressure on
already burdened local hospitals. The WHO WASH program has
achieved progress over the last decade. Yet outbreaks such as
cholera in Myanmar and persistent challenges in mainland SEA,
Indonesia and the Philippines show that these improvements
remain fragile under climate stress. Flood-associated health risks
require a One Health approach that links human, animal, and
environmental health. Advances in metagenomics, omics
technologies, wastewater surveillance, and machine learning can
support predictive systems to anticipate outbreaks. Alignment
and application of these tools will strengthen surveillance and
coordinated regional action. ASEAN, through its disaster
response and health security platforms, can play a pivotal role in
connecting member states, sharing knowledge, and building
capacity. Delivering this vision requires formalizing One Health
incident playbooks with shared indicators, joint action
thresholds, and co-funded monitoring across health, agriculture,
and environment so that floods trigger coordinated rather than
siloed responses. Taken together, the AHA Centre Weekly
Disaster Update, ADInet, ABVC, and wastewater/environmental
an ASEAN-specific One Health
information stack in which hazard, health, and environmental

surveillance constitute
signals are co-registered in time and space for flood-associated
outbreak analysis. Working in unison will help SEA build climate-
resilient health security and strengthen preparedness for future
flood-related disease threats.
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