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Due to the robust capabilities in hydrocarbon/herbicide degradation, biopolymer/
compatible solute synthesis, steroid bioconversion, and zinc salt solubilization,
Pseudomonas oleovorans has shown considerable potential for industrial,
agricultural, and environmental applications. However, the poor availability of
genetic tools for this bacterium hinders genetic, biochemical, metabolic, and
engineering studies. In the present study, a genetic manipulation system that is
based on electroporation was established for P. oleovorans strain TOAD. Antibiotic
susceptibility profiling demonstrated that aminoglycoside-type antibiotics, such
as kanamycin and gentamycin, are suitable selective markers. Optimization of
electroporation parameters, including processing temperature for competent
cell preparation, DNA concentration, DNA-cell pre-incubation, and post-pulse
recovery, yielded stable electroporation efficiencies at levels of 10* CFU/ug DNA.
Among five candidate genomic neutral sites, two were experimentally verified
and exhibited favorable suitability for gene integration. Integration of reporter
genes at these sites did not affect cell growth, salt tolerance, and compatible
solute anabolism. Using these neutral sites or the broad-host-range plasmid
pBBRIMCS-5, regulated gene expression via the genome- or plasmid-based
strategies was successfully achieved. All together, these tools, in combination
with established conjugation methods, set up a robust technological platform
to facilitate fundamental and application research in P. oleovorans.

KEYWORDS

Pseudomonas, genetic manipulation, antibiotic susceptibility, electroporation, neutral
site

1 Introduction

Pseudomonas spp., comprising one of the largest genera of Gram-negative bacteria, thrive
in a broad spectrum of environments from soils and waters to extreme niches (Lalucat et al.,
2022; Saati-Santamaria et al., 2022). Given their metabolic diversity, these bacteria exhibit
remarkable potential in industrial, agricultural, and environmental applications (Craig et al.,
2021; Mehmood et al,, 2023). As a member with rarely reported pathogenic associations,
Pseudomonas oleovorans displays robust capabilities in alkane degradation and biopolymer
biosynthesis, such as poly (3-hydroxyalkanotes), thereby attracting considerable
biotechnological interest (Huisman et al., 1991; Fiedler et al., 2002; Nisar et al., 2025).
Subsequent studies have unveiled additional functions of this species, including degradation
of halogenated herbicides (e.g., acetochlor; Xu et al., 2006; Chen et al., 2024), bioconversion
of steroids (e.g., hydrocortisone to prednisolone; Abd El-Hady and Abd El-Rehim, 2004),
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solubilization of insoluble zinc salts (Rehman et al.,, 2021), and
compatible solute synthesis (e.g., glucosylglycerol [GG]). These
discoveries further expand the biotechnological relevance of
P, oleovorans to herbicide bioremediation, biofertilizer development,
pharmaceutical synthesis, and moisturizer production.

A convenient and stable genetic manipulation system in
P. oleovorans is essential for in-depth investigations into genetic,
biochemical, and regulatory mechanisms of the aforementioned
functions, as well as for advancing genetic engineering studies.
However, reports on specialized methods and genetic tools for
P. oleovorans remain extremely limited. Most of these studies rely
on approaches (e.g., conjugation) developed for well-characterized
species such as P. putida (Klinke et al., 2000; Nandy et al., 2021; Guo
et al,, 2022). In the present study, an electroporation-based genetic
manipulation system for P. oleovorans was established by using a
marine-derived strain, T9AD (Wang et al., 2021).

2 Materials and methods

2.1 Bacterial strains and cultivation
conditions

The bacterial strains used in the present study are listed in Table 1.
P, oleovorans T9AD was grown in LB medium (for growth experiment)
or M9 minimal medium (containing 0.5% wt/vol L-lactic acid as the sole
carbon source, for GG production) at 30 °C. Escherichia coli was grown
in LB medium at 37 °C. Cell growth was monitored by measuring the
optical density at a wavelength of 600 nm (ODgy). Solid media were
prepared by adding 1.5% (wt/vol) agar. Kanamycin (Km) of 50 pg/mL
and/or gentamycin (Gm) of 10 pg/mL were added when required.

In the test of antibiotic sensitivity, P. oleovorans T9AD was
inoculated into 96-well plates containing LB medium supplemented
with different concentrations (0, 1, 2, 5, 10, 20, 50, and 100 pg/mL) of
Km, ampicillin (Amp), chloramphenicol (Cm), spectinomycin (Spe),
apramycin (Apr), Gm, neomycin (Neo), and streptomycin (Stp). A
negative control was included with no cell inoculation. After 20 h
cultivation on a horizontal shaker (MB100-2A, Hangzhou Aosheng,
China) at 500 rpm, cell growth was determined by measuring the
ODsoo 0n a microplate reader (SpectraMax M3, Molecular Devices,
United States).

2.2 Sequence analysis

The P, oleovorans T9AD genome under the GenBank accession
number LR130779.2 was used for sequence analysis. The manual
examination of open reading frames (ORFs) was conducted using the
ARTEMIS program (Rutherford et al., 2000).

2.3 Competent cells of Pseudomonas
oleovorans and electroporation

The optimized procedure for competent cell preparation and

electroporation was as follows: P. oleovorans strain TOAD was
grown in 100 mL of LB medium in 250 mL flasks. Overnight
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cultures were harvested by centrifugation at room temperature
(RT), washed twice with 0.3 M sucrose solution, and resuspended
in the same solution. Electroporation was performed with the
following procedure: a proper amount of plasmid DNA was
added into 100 pL of competent cells to a final concentration of
0.02 pg/mL. An incubation step was not necessary. The mixtures
were immediately transferred into electrocuvettes, which have a
gap of 2 mm, and electropulse treated by an electroporator
(Bio-Rad Micropulser, United States) with the following
parameters, 12.5 kV/cm, 25 pF, 200 Q, and a pulse duration of
5 ms. Immediately after pulses, cells were supplemented with
900 pL of SOC medium (Russell and Sambrook, 2001) and
incubated at 30 °C for 1 h recovery. Then cells were plated onto
LB agar plates containing antibiotics for selection. Generation of
Gm-resistant (Gm") and/or Km-resistant (Km") transformants
was examined after 20 h of cultivation. During the optimization
of the electroporation method, different processing temperatures
for competent cell preparation, such as 4 °C and RT, DNA
concentrations (0-5 pg/mL), durations for DNA-cell incubation
(0-2 h), and times for cell recovery (0-24 h) were tested.

2.4 DNA manipulation

The plasmids and primers used in the present study were
listed in Table 1 and Supplementary Table S1, respectively. To
construct mutant KH115, the upstream (0.90 kb) and downstream
(0.98 kb) flanking regions of the neutral site 1 (NSI) were
amplified from the total DNA of P. oleovorans T9AD using primer
pairs NS1-up-F/NS1-up-R(Km) and NSI1-dn-F(Km)/NS1-dn-R,
respectively. A 0.93 kb Km" cassette was amplified from pCE-Zero
(Vazyme Biotech, China) using primers Km-F(NSI1) and
Km-R(NS1). The three fragments were assembled and cloned into
pUC19 using the ClonExpress® Ultra One-Step Cloning Kit
(Vazyme Biotech, China), resulting in plasmid pKH34. After
sequence confirmation by sequencing, pKH34 was
electrotransformed into P. oleovorans T9AD. After 20h of
cultivation for homologous double crossover, Km" transformants
were obtained on LB agar plates containing Km, and the genotypes
of the transformants were confirmed by PCR. The other
recombinant strains of P. oleovorans, including KH116 (using
primers NS2-up-F/NS2-up-R(Km) and NS2-dn-F(Km)/NS2-dn-R
for flanking regions), KH121 (using primers NS1-up-F/NS1-up-
R(Gm) and NS1-dn-F(Gm)/NS1-dn-R for flanking regions), and
KH122 (using primers NS2-up-F/NS2-up-R(Gm) and NS2-dn-
F(Gm)/NS2-dn-R for flanking regions), were constructed
following a similar procedure. The 1.19 kb Gm" cassette was
obtained from pQL164 using primers Gm-F(NS1)/Gm-R(NS1) or
Gm-F(NS2)/Gm-R(NS2). For constructing KH123 and KH126,
the ORF of the gfp gene (coding for green fluorescent protein,
0.72 kb) was amplified from pQL250 using primer pair gfp-F/
gfp-R(NS1) or gfp-F/gfp-R(NS2) and cloned into pKH55 and
pKH56 at the sites downstream of the trc¢ promoter (Py.),
generating plasmids pKH57 and pKH58 for electroporation. For
constructing KH130, the Km'-P,.-lacZ cassette, amplified from
pKH63 using primers KPZ-F and KPZ-R, was cloned into
pBBRIMCS-5, generating pKH69 for electroporation.
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TABLE 1 Bacterial strains and plasmids used in the present study.
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Name Characteristic or description Source or reference

Strain
E. coli DH5a Wild-type strain, for gene cloning Our strain collection
P, oleovorans T9AD Wild-type strain, from Marine Culture Collection of China MCCC 1A04326
KH115 P. oleovorans T9AD mutant, NS1:Km", Km" This study
KH116 P. oleovorans TOAD mutant, NS2::Km’, Km" This study
KHi121 P, oleovorans TOAD mutant, NS1::Gm", Gm" This study
KH122 P. oleovorans T9AD mutant, NS2:Gm’, Gm" This study
KH123 P, oleovorans T9AD mutant, NS1:Km"-P,,-gfp, Km" This study
KH126 P. oleovorans T9AD mutant, NS2:Km"-P,-gfp, Km" This study
KH130 P. oleovorans T9AD harboring pBBRIMCS-5::Km'-P,-lacZ, Gm"Km" This study
KH132 P. oleovorans T9AD harboring pBBRIMCS-5:Km', Gm"Km" This study

Plasmid
pKH34 Containing the NS1::Km" fragment, for constructing KH115 This study
pKH35 Containing the NS2:Km" fragment, for constructing KH116 This study
pKH53 Containing the NS2:Gm" fragment, for constructing KH122 This study
pKH54 Containing the NS1:Gm' fragment, for constructing KH121 This study
pQL250 Containing gfp Our strain collection
pQL164 Providing Gm" cassette Our strain collection
pKH55 Providing the NS1:Km'-P, platform Our strain collection
pKH56 Providing the NS2:Km"-P,, platform Our strain collection
pKH57 Containing the NS1::Km"-P,-gfp fragment, for constructing KH123 This study
pKH58 Containing the NS2:Km*-P,.-gfp fragment, for constructing KH126 This study
pKH63 Providing the Km'-Py-lacZ fragment Our strain collection
pBBRIMCS-5 Broad-host-range shuttle plasmid Kovach et al. (1995)
pKH69 pBBRIMCS-5::Km"-P,-lacZ, for constructing KH130 This study
pKH72 PpBBRIMCS-5::Km', for constructing KH132 This study

2.5 Phenotype analyses

To determine GG production, P. oleovorans cells grown in M9
minimal medium were harvested by centrifugation and inoculated
into 100 mL of the same medium supplemented with 3% (wt/vol)
NaCl at an initial ODg, of 0.8. After 6 h of cultivation, GG was
extracted from P. oleovorans cells for determination. GG extraction
and quantification were performed as previously described (Qiao
etal., 2018; Qiao et al., 2019).

To analyze GFP fluorescence, strains KH123 and KH126 were
grown in LB medium and an isopropyl-D-1-thiogalactopyranoside
(IPTG) concentration ranging from 0 to 0.25 mM was applied to
induce gfp expression. After 6 or 20 h of induction, cells were
harvested and resuspended in M9 minimal medium with an ODso of
~1.0. 200 pL of cell suspensions was transferred to 96-well microplates,
and fluorescence intensity was measured using a microplate reader
(SpectraMax M3, Molecular Devices, United States) with an excitation
wavelength of 488 nm and an emission wavelength of 525 nm.
Visualization of GFP fluorescence was accomplished using a
fluorescence microscope (Axio Imager 2, Zeiss, Germany).

To analyze (-galactosidase (LacZ) activity, strains KH130 and
KH132 were grown in LB medium and induced by adding IPTG (final
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concentrations of 0-0.25mM). After 6 or 20h of induction,
B-galactosidase activity was determined following a reported protocol
(Miller, 1972; Jaishankar and Srivastava, 2020; Fitzgerald et al., 2024).

3 Results and discussion

3.1 Antibiotic sensitivity profiling of
Pseudomonas oleovorans T9AD

A clear profiling of antibiotic susceptibility forms the foundation
for developing genetic manipulation tools in a given microbe, as it
guides rational selection of selective markers and tool vectors
(Aparicio et al., 2015). Due to the generally low outer membrane
permeability and the presence of multiple efflux pumps and
modification enzymes (e.g., aminoglycoside-modifying enzymes and
16S rRNA methylase) in the cell, Pseudomonas species generally
exhibit intrinsic resistance to many antibiotics (Burns et al., 1989;
Ramos et al., 2002; Daniels and Ramos, 2009; Fernandez et al., 2012;
Aghazadeh et al,, 2013). Additionally, Pseudomonas can also acquire
antibiotic resistance through chromosomal mutations and horizontal
gene transfer (Botelho et al., 2019). For example, while P. aeruginosa
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is generally sensitive to carbapenems, some clinic isolates of this
species acquire carbapenemase-encoding genes and exhibit resistance
to these antibiotics (Botelho et al., 2015; Oliver et al., 2015). Therefore,
for a given strain, the antibiotic resistance profile can be species- or
strain- specific and requires clear determination on a case-by-
case basis.

To determine the antibiotic susceptibility profile of P. oleovorans
T9AD, eight commonly used antibiotics, namely Km, Amp, Cm, Spe,
Apr, Gm, Neo, and Stp, at final concentrations of up to 100 pg/mL, were
employed to apply selective pressure (Figure 1 A; Supplementary Table S2).
In liquid culture, Km and Gm exhibited the most potent inhibitory
effects on cell growth. A concentration of 5 pg/mL completely arrested
the growth of P. oleovorans T9AD, indicating a minimal inhibitory
concentration (MIC) of < 5 pg/mL. By contrast, Stp, Apr, Neo and Spe,
showed moderate inhibition. Complete suppression of cell growth was
observed at antibiotic concentrations of 20 pg/mL (for Apr, Neo, and Stp)
or 50 pg/mL (for Spe). For Amp and Cm, no inhibitory effect was
detected under the tested conditions. A similar inhibitory pattern was
also observed in solid culture (Supplementary Figure S1). These results
agreed well with the established understanding that Pseudomonas species
are generally susceptible to aminoglycoside-type antibiotics while
exhibiting resistance to p-lactam- and amphenicol-type antibiotics
(Kadurugamuwa and Beveridge, 1997; Fernandez et al., 2012; Hujer

10.3389/fmicb.2025.1691967

etal.,, 2023). For example, P. aeruginosa, P. putida, and P. fluorescens are
sensitive to Gm, Km, Stp, and tobramycin. These antibiotics were
frequently used in the genetic studies of Pseudomonas (Shivaji et al.,
1989; Ghiglione et al., 1999; Wu et al., 2015; Calero et al., 2018). A key
factor underlying the efficacy of these antibiotics is their strong ability to
penetrate bacterial cell membranes (Lang et al., 2023). On the other
hand, many Pseudomonas bacteria (e.g., P cepacia, P. loganensis,
P aeruginosa, and P. putida) also exhibit natural resistance to Cm,
carbapenems, and penicillins (Burns et al., 1989; Fernandez et al., 2012;
Horna et al., 2018; Karaman et al., 2025). The wide presence of RND
family multidrug efflux pumps (such as MexAB-OprM and MexXY-
OprM) and hyperexpression of modifying enzymes (such as AmpC
fB-lactamases) in the cells contribute considerably to their intrinsic
antibiotic resistance by reducing intracellular drug accumulation and
inactivating B-lactam compounds, respectively (Barcel6 et al., 2022;
Lorusso et al., 2022).

3.2 Electroporation optimization of
Pseudomonas oleovorans T9AD

To introduce foreign DNA into Pseudomonas cells, conjugation
and electroporation are the most commonly used methods. The

with standard deviations.
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FIGURE 1

Determination of the antibiotic susceptibility profile of P oleovorans T9AD (A), optimization of its electroporation efficiency (B—E), and assessment of
plasmid-based gene expression in P. oleovorans T9AD (F). In (A), P. oleovorans T9AD was grown in liquid LB medium supplemented with different
antibiotics (as indicated) at an initial optimal density at 600 nm (ODgqo) of 0.05. After 20 h of cultivation, cell growth was monitored by measuring
ODggo. Uninoculated LB medium was used as the negative control (NC). In (B—E), the effects of processing temperature for cell preparation and
electropulse (B, 4 °C and RT), DNA concentration (C, 0—5 pg/mL), pre-incubation time for DNA-cell mixture (D, 0-2 h), and post-pulse cell recovery
(E, 0—24 h) on the electroporation efficiency were analyzed. Each parameter was altered independently, whereas the others remained constant.

In (F), the p-galactosidase activity of mutants KH130 (expressing lacZ in pBBRIMCS-5) and KH132 (blank control) was examined. Cells were grown in LB
medium, and IPTG of 0—0.25 mM was supplemented to induce lacZ expression. The data are presented as means from three independent replicates
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former enables the transfer of large DNA fragments but is generally
more time-consuming and less efficient for small fragments compared
with electroporation (Harris et al., 2016; Bai et al., 2024). To the best
of our knowledge, the few genetic investigations in P. oleovorans have
all relied on conjugation. By employing suicide vectors (e.g., pUT- and
PEGM-series) and shuttle vectors (e.g., pVLT- and pHERD-series),
genetic constructs have been delivered into P oleovorans cells,
enabling successful gene inactivation (e.g., phaD), chromosomal
disruption (e.g., CRISPR array), expression of reporter genes (e.g.,
lacZ), and gene complementation (e.g., phaD and phaF; Table 2; Pricto
etal, 1999; Klinke et al., 2000; Nandy et al., 2021; Guo et al., 2022). In
comparison with conjugation, electroporation offers greater flexibility
with respect to the types and lengths of foreign DNA. For example,
based on this strategy, a rapid all-in-one plasmid-based CRISPR/Cas9
system was established for genome editing in P. putida. This allowed
one edit in less than 1.5 days. Although being fast and simple for gene
transfer, electroporation generally suffers from low efficiency in
Pseudomonas species at initial attempts. Reducing nonessential genetic
components in genomes and optimizing the electroporation
procedure can substantially improve transformation efficiency (Choi
et al.,, 2006; Fan et al., 2024; Wen et al., 2024). Here, the feasibility of
electroporation in P. oleovorans T9AD was examined using the broad-
host-range plasmid pBBRIMCS-5 (Kovach et al., 1995).

Our initial attempt of electrotransforming P. oleovorans TOAD
yielded an efficiency of only 66.7 CFU/pug DNA, a level that was too low
for efficient genetic manipulation. Therefore, a systematically
optimization of electroporation efficiency was conducted. Optimization
began with the following settings: (i) preparing electrocompetent cells
at 4 °C, (ii) using 1.5 pg/mL plasmid DNA, (iii) no pre-incubation of
DNA with cells, and (iv) 4 h-recovery after pulses. Each parameter was
modified individually while the others remained constant. In many
cases, low temperatures were used for competent cell preparation and
electroporation pulses (Diver et al., 1990; Qin et al., 2022). However,
some studies have also reported improved electroporation efficiencies
at RT for Pseudomonas species (Choi et al., 2006; Tu et al., 2016). Here,
a similar result was observed in P. oleovorans T9AD (Figure 1B). When
competent cells were prepared and pulsed at RT, the electroporation
efficiency increased 3.8-fold compared with the level of 4 °C. The value

TABLE 2 Experimental details of genetic investigations in P. oleovorans.

10.3389/fmicb.2025.1691967

raised from 1.3 x 10° to 4.9 x 10° CFU/pg DNA. Therefore the RT
condition was applied in the following experiments. In the assessment
of the relationship between electroporation efficiency and DNA
concentration, the highest efficiency (1.4 x 10" CFU/pg DNA) was
observed at a concentration of 0.02 pg/mL, followed by a sharp decline
at 0.2 pg/mL (Figure 1C). At higher concentrations (> 0.2 pg/mL), the
value continued to decrease gradually. Thus, low DNA concentrations
favor efficient electroporation in P. oleovorans. Similar findings have
been reported in Rhodobacter sphaeroides, Nocardia nova, and Bacillus
subtilis (Luo et al., 2013; Zhang et al., 2015; Lee et al., 2024).

The effects of DNA-cell pre-incubation and cell recovery were
further examined. With an increase of incubation time, the number
of positive transformants exhibited a decreasing tendency
(Figure 1D). Compared with the non-incubated control (0 h),a2 h
pre-incubation reduced the efficiency by half. Therefore, a
pre-incubation of competent cells with DNA prior to electroporation
is unnecessary. Regarding the process after electropulses, a recovery
of pulse-treated cells in antibiotic-free medium seems helpful to
increase efficiency (Figure 1E). In all recovery attempts with
different times (0-24 h), increased numbers of transformants were
observed in comparison with the control (0 h). The highest level
(1.6 x 10* CFU/pug DNA) was achieved after 1 h recovery. From five
randomly selected transformants, plasmids were extracted and
examined by restriction digestion. They all exhibited identical
pattern to the parent plasmid in the electroporation analysis
(Supplementary Figure S2). Taken together, these optimizations
yielded stable electroporation efficiencies of 10* CFU/pg DNA in
P. oleovorans, sufficient for genetic manipulations such as gene
inactivation or expression.

3.3 Controllable gene expression on a
plasmid platform

For genetic and metabolic engineering studies in Pseudomonas,
stable and controllable gene expression platforms are required due to
the needs of gene complementation, heterologous protein expression,
pathway construction, metabolic flux regulation, and other

Plasmid Vector type and property DNA transfer Purpose References
pUT-Tc pUT-based suicide vector, containing mini-Tn5 Conjugation Random mutagenesis de Lorenzo et al. (1990);
and oriT (RP4) Prieto et al. (1999)
pPG132 pUT-based, Pc;:lacZ Conjugation Mini-Tn5-insertion-based expression of lacZ
pPF61 pUT-based, lacl*-Ptrc:phaF Conjugation Gene complementation of phaF
pUT-phaD::tet Using pUT backbond, phaD€2(8 bp::tet) Conjugation For phaD inactivation de Lorenzo et al. (1993);
pHADS5 pVLT-based shuttle vector, RSF1010, phaD Conjugation Gene complementation of phaD Klinke et al. (2000)
pminiTn7Gm- - Conjugation Labeling P. oleovorans ICTN13 with orange Nandy et al. (2021)
lacItac-ofp fluorescent protein (Ofp)
pMSL13 PEMG-based suicide vector, oriT (RP4), tra], Conjugation Site-specific insertion of the mNeonGreen gene Qiu et al. (2008); Guo
oriV (R6K) etal. (2022)
pMSL15 pEMG-based Conjugation For deletion of the CRISPR array
pHERD30T pUCP30T derivative, shuttle vector, araC-Py,p, Conjugation Expression of target crRNA
ori (pBR322), ori (pRO1600), oriT
“Not available.
Frontiers in Microbiology 05 frontiersin.org
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applications. These are usually accomplished by plasmid-based
systems and genomic integration.

Plasmid-based systems usually offer advantages in expression
flexibility (e.g., temporal control and intensity regulation) and ease of
manipulation (Rangwala et al., 1991; Blatny et al., 1997). Several types
of shuttle vectors have been validated for use in Pseudomonas (Table 3).
The pBBRIMCS-series plasmids, known for their broad-host-range,
compact size, moderate copy number, and multiple cloning sites, have
been validated for stable heterologous gene expression in many Gram-
negative bacteria including Pseudomonas species (Elzer et al., 1995;
Battisti and Minnick, 1999; Takahashi et al., 2016). They could be ideal
candidates for gene or pathway expression in P. oleovorans. During
electroporation optimization, the stable and autonomous replication of
pBBRIMCS-5, a Gm' version of pPBBRIMCS, in P. oleovorans has been
demonstrated. Thus, this plasmid was further employed to drive
inducible expression of the lacZ reporter gene via the commonly used
E. coli trc promoter (Py.) in strain T9AD. Upon plasmid transformation,
a dose-dependent induction of lacZ expression was observed in the
recombinant strain KH130 (Figure 1F). It displayed B-galactosidase
activity in the presence of IPTG, with enzyme activity increasing
progressively along with elevated IPTG concentrations. In contrast, the
control strain KH132, which harbored a blank plasmid, exhibited only
basal activity regardless of IPTG concentration. These results validated
the utility of pBBRIMCS-based vectors and the trc promoter for
controllable expression of non-native genes in P. oleovorans. Considering
that P oleovorans exhibits sensitivity to Km, Apr, Spe, Stp, and
tetracycline (Figure 1A; Prieto et al., 1999), other pBBRIMCS variants
harboring appropriate resistant cassettes (e.g., pPBBRIMCS-2 and
PBBRIMCS-3; Kovach et al., 1995) could be also applied. In addition to
the broad-host-range capability, pPBBRIMCS plasmids also demonstrate

TABLE 3 Selected examples of shuttle vectors used in Pseudomonas.

Plasmid Replicon for Used in
Pseudomonas

(Inc. group)®

Vector type

10.3389/fmicb.2025.1691967

good compatibility with other broad-host-range plasmids from the IncP,
IncW, and IncQ groups. This property is particular useful for synthetic
biology investigations, as it enables flexible co-expression of multiple
genes or pathways using plasmids from different incompatibility groups
(such as those listed in Table 3; Antoine and Locht, 1992; Kovach et al.,
1994; Li et al., 2020).

3.4 Development of genomic neutral
platforms in Pseudomonas oleovorans

Genomic NSs are useful tools for bacterial genetic and metabolic
engineering studies. Insertion of genes in these chromosomal loci does
not cause detectable phenotypic changes of cells. Since no NSs have
been identified in P. oleovorans to date, the genome of strain TOAD was
analyzed for this purpose and four criteria were considered: (i)
chromosomal regions lacking predicted ORFs; (ii) region of 250-300 bp
in length to minimize the presence of other possible functional
elements, (iii) flanking genes with opposite transcriptional directions
facing each other, and (iv) the absence of similar sequences to the target
NS and its flanking genes elsewhere in the genome. Five candidate sites
of 256-292 bp in length were identified (Supplementary Figure S3), and
two of them with the longest flanking genes, NS1 (POT9AD_2766-
2,767) and NS2 (POT9AD_5113-5,114), were selected to investigate
their neutrality. A Km" gene and a Gm" gene were independently
introduced into these sites via homologous recombination (Figure 2A).
The resulting mutants KH115, KH116, KH121, and KH122 exhibited
the expected antibiotic-resistances. Regardless of whether the medium
contained 5% NaCl or not, the mutant strains showed growths
comparable to that of the wild-type strain (Figures 2B,C). Thus,

Purpose References

pUCP18, 19 - pRO1600 (—-) P. aeruginosa Construction of E. coli-Pseudomonas Schweizer (1991)
shuttle vector
pKG228 pUCP-based pRO1600 (—) P, putida Gene complementation of rpoN West et al. (1994); Jones et al. (2024)
pHERD20T, 26 T, pUCP-based pRO1600 (-) P aeruginosa For inducible gene expression via araC- Qiu et al. (2008)
28T,30T P fluorescens Py, p system
P, putida
pBBRIMCS pBBRI-based PBBRI1 (-) P. fluorescens Developing broad-range shuttle vectors Kovach et al. (1994); Kovach et al.
P, putida (1995)
pEBP41 pBBRI1-based pBBR1 (-) P, putida Developing novel shuttle vectors for gene Antoine and Locht (1992); Troeschel
expression in different bacterial hosts etal. (2012)
pHADS5 pVLT-based RSF1010 (IncQ) P, putida Gene complementation of phaD de Lorenzo et al. (1993); Klinke et al.
P, oleovorans (2000)
pMMB67-nadD2 pMMB66EH- RSF1010 (IncQ) P. aeruginosa Overexpression of nadD2 Fiirste et al. (1986); Jin et al. (2019)
based
pMONS5757 PMON7051- RSF1010 (IncQ) P, fluorescens Developing shuttle vectors for efficient Barry (1988); Rangwala et al. (1991)
based P. putida gene expression in different Gram-
P. testosterone negative bacteria
P. syringae
PME6031::pmeR* PMEG6031-based pVS1 (=) P. syringae Gene complementation of pmeR Heeb et al. (2000); Lee et al. (2025)
“Not available.
*Inc. Group, incompatibility group.
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integration of foreign genes into NS1 and NS2 did not affect the basic ~ suggesting this strain might synthesize GG as compatible solute for salt
growth of P. oleovorans T9AD as well as its salt-tolerance. During  acclimation. The GG-synthesizing capability of T9AD was examined
genome analysis, it was found that P oleovorans T9AD harbors a  (Figure 2D). Under the condition of 3% NaCl, salt-induced GG
putative glucosylglycerol (GG) synthetic pathway encoded by the  production was observed in the wild-type and mutant strains. The
GG-phosphate phosphatase/synthase gene ggpPS (Cheng et al., 2024),  mutant strains accumulated GG levels comparable to the wild-type.

A Ptrc Ptrc
KH121 Gmr
KH115 Kmr KH116 Kmr

KH123 KH126
KH122 [ )

WT//—] 2166 ){Ns1|( 2167 7/ >|5113>{st|( 5114 [/

FIGURE 2

independent replicates with standard deviations. Km', Km-resistant; Gm’, Gm-resistant; P, the trc promoter.
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Development of genomic NSs in P. oleovorans T9AD. (A) Illustrates the genomic loci of NS1 and NS2 in the wild-type (WT) strain and the insertion of
foreign genes in these sites. KH115, KH116, KH121, KH122, KH123, and KH126 are the resulting insertion mutants. The prefix "POT9AD_" of locus tags
POT9AD_2766, POT9AD_2,767, POT9AD_5113, and POT9AD_5,114 is omitted. Growth profiles of the WT and mutant strains in the absence and
presence of 5% salinity are demonstrated in (B,C), respectively. Pseudomonas cells were grown in LB medium with or without 5% (wt/vol) NaCl
addition. (D) Demonstrates the GG-synthesizing ability of the WT and mutant strains of P. oleovorans TOAD. Cells were grown in M9 minimal medium
and 3% (wt/vol) NaCl was added to induce GG production. In (E=H), GFP fluorescence of mutants KH123 and KH126 were examined. Cells were grown
in LB medium, and IPTG of 0—-0.25 mM was supplemented to induce gfp expression. The data of (B—D) and (G,H) are presented as means from three
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Thus gene insertion in NS1 and NS2 did not influence GG anabolism
of P. oleovorans.

Compared to plasmid-based gene expression, the genome-integrated
system eliminates the need to consider plasmid loss, plasmid
incompatibility, and host range limitations. It also allows cultivation
without the addition of antibiotics (Friehs, 2004; Bassalo et al., 2016; Li
etal., 2020; Kazi et al., 2022). To investigate the feasibility of NSI and NS2,
the green fluorescent protein reporter gene (gfp) was integrated into these
sites under the control of the trc promoter (Figure 2A). Under fluorescence
microscopy, the recombinant strains KH123 and KH126 showed strong
fluorescence, indicating successful gfp expression (Figures 2E,F). The
fluorescence intensity correlated positively with increasing IPTG
concentrations (0 to 0.25mM) and induction durations (6 to 20 h;
Figures 2G,H). Under the same conditions, no GFP signal was detected
in the control strains (KH115 and KH116; Figures 2E-H). These results
demonstrated that stable and dose-dependent expression of non-native
genes or pathways could be achieved via the trc regulatory system within
the NS1 and NS2 platforms. Previously, chromosome-based gene
integration in Pseudomonas, such as P. fluorescens and P. putida, has
mainly been achieved employing the miniTn7-transposition system
(Kochetal., 2001; Lambertsen et al., 2004). This requires a miniTn7 vector
and relies on the presence of the atfTn7 site, a neutral intergenic region
located immediately downstream of the glucosamine-6-phosphate
synthetase gene (glmS). In P. oleovorans, an attTn7-like site is detected in
the genome, and the newly developed NS1 and NS2 sites offer alternative
options alongside atfTn7, making them suitable for multi-
module expression.

4 Conclusion

In summary, this study established an electroporation-based genetic
system for P. oleovorans, a species with biotechnological potential.
Aminoglycoside antibiotics, especially Km and Gm, showed potent
inhibitory effects on cell growth, providing a rational basis for selective
marker design. By optimizing the temperature for cell preparation and
electropulse, DNA concentration, and post-pulse cell recovery, the
electroporation efficiency was improved to stably achieve the level of
~10*CFU/pg DNA. Employing the broad-host-range vector
pBBRIMCS-5, plasmid-based inducible expression of foreign genes
could be achieved. Additionally, two genomic NSs (NS1 and NS2) were
developed and validated for gene integration without major phenotypic
influence. Collectively, these tools, along with established conjugation
method, set up a robust technological platform to facilitate further
fundamental and application studies in P. oleovorans.
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