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The gut microbiome has emerged as a critical modulator of cardiovascular
disease (CVD) risk, offering a novel frontier for therapeutic intervention. This
mini-review synthesizes current evidence on how probiotic-like bacteria and
their metabolites mediate protective physiological mechanisms against CVD.
Drawing from both animal models and human clinical trials, we elucidate
the biological pathways, including trimethylamine-N-oxide (TMAO), short-chain
fatty acids (SCFAs), and bile acid metabolism, through which the gut microbiota
influences hypertension, atherosclerosis, and heart failure. Furthermore, we
examine microbiota-based strategies such as dietary modification, fecal
microbiota transplantation (FMT), and pharmacological agents aimed at
restoring microbial homeostasis. Despite promising mechanistic insights,
human trials have yet to consistently demonstrate significant clinical benefits
in reversing CVD outcomes via gut microbiota modulation. This review
underscores the necessity of moving from correlation to causation, highlighting
current limitations and future prospects for leveraging gut microbiome research
in the development of personalized, effective therapeutic strategies for
cardiovascular diseases.
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1 Introduction

In the pursuit of effective and sustainable medicinal intervention, approaches with
minimal adverse effects are highly prioritized. While antibiotics, and endocrine drugs, and
metabolic therapies aim to promote health, they often face challenges such as pathogen
resistance or detrimental side effects on the host. In recent years, the emerging field of
gut microbiota medicine has introduced a range of non-pharmacological interventions,
offering promising alternatives (Bajinka et al., 2022, 2023). Notably, macromolecules
and metabolites derived from dietary supplements are being extensively studied for
their potential to reverse life-threatening conditions, including metabolic disorders,
cardiovascular disease (CVD), neurodegenerative diseases, and cancer (Yang and Cong,
2021). Alterations in gut microbiota composition can lead to low-grade, systemic, and
local inflammation, directly contributing to the development of metabolic disorders such
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as obesity, diabetes mellitus, CVD, and microvascular
complications (Yang L. et al., 2021; Hasani et al., 2024).

The gut microbiota has emerged as a powerful regulator of host
physiology, attracting significant scientific interests in its role in
reversing metabolic disorders. It mediates host physiology through
various mechanisms, including signaling via receptor ligands,
serving as substrates for host enzymes, and providing metabolites as
energy sources. Through these interactions, gut microbiota plays a
direct role in the pathogenesis of CVD. For instance, the breakdown
of dietary nutrients such as choline, coupled with lipid metabolism
and host immune system modulation, can lead to the development
of atherosclerosis (Dovi et al., 2022). Current strategies to mitigate
these conditions focus on reducing trimethylamine (TMA) to
trimethylamine-N-oxide (TMAO) using compounds like 3,3-
dimethyl-1-butanol and archaebiotics. Additionally, converting
high fiber diets into TMA precursors to promote beneficial bacterial
populations is being explored as an anti-atherogenic approaches
(Anbazhagan et al., 2017).

Beyond metabolic pathways, the gut microbiota also interacts
with systemic immunity to influence CVD progression. Studies
using murine lupus models have revealed connections between
gut microbiota dysbiosis, antiphospholipid syndrome (APS),
and autoimmune-driven vascular damage. Altered intestinal IgA
levels and molecular mimicry between microbial proteins and
host autoantigens may exacerbate thrombosis and endothelial
dysfunction, while dietary short-chain fatty acids (SCFAs) could
mitigate these effects through immunomodulation (van Mourik
et al, 2022). Importantly, the integrity of the gut barrier
and microbiota homeostasis is closely associated with systemic
inflammation-a key driver of both CVD and cerebrovascular
conditions. For example, ischemic stroke shares overlapping risk
factors and inflammatory pathways with CVD, suggesting a broader
role of gut microbiota in circulatory health (Wei et al., 2021).
However, the mechanisms by which gut microbiota directly
regulates CVD pathogenesis, particularly through metabolites and
endothelial interactions, remain a critical research frontier.

Among CVD-related interventions, dietary phytochemicals
such as anthocyanins
of microbiota-mediated

exemplify the therapeutic potential
approaches. Anthocyanins confer
antioxidant effects by activating nuclear factor erythroid 2-related
factor 2 and suppressing pro-inflammatory cytokines, thereby
improving endothelial function and nitric oxide bioavailability (Xin
et al., 2024). These findings highlight the bidirectional crosstalk
between dietary components, gut microbiota, and cardiovascular
homeostasis. Giving the growing evidence supporting the role of
gut microbiota in mediating CVD, a systematically analysis of
the underlying biological mechanisms is crucial. While human
clinical trials provide valuable insights, complementary studies
using animal models are essential to elucidate these mechanisms.
To comprehensively map the gut microbiota’s role in CVD,
a systematic literature search was conducted in PubMed, Web
of Science, and Scopus (2013-2023) using keywords including
“gut microbiota,” “cardiovascular disease,; “TMAOQO,” “SCFAs,
and “inflammation” combined with Boolean operators. Included
studies investigated the mechanistic role of gut microbiota in
cardiovascular diseases in human or animal models and were
published in English. Exclusion criteria covered non-peer-reviewed
articles and studies lacking mechanistic insights. Data on study
design, findings, and mechanisms were extracted independently

Frontiers in Microbiology

10.3389/fmicb.2025.1690411

by two reviewers, with discrepancies resolved through consensus.
Reference lists of relevant articles were also screened.

This mini-review aims to provide a comprehensive overview
of recent studies on gut microbiota-mediations interventions
for CVD, drawing from both human and animal research over
the past decade, sourced from various databases. This review
innovatively synthesizes a decade of human and animal studies
to map the gut microbiota’s role in CVD through specific
metabolites and pathways. It critically evaluates the translational
gap between mechanistic insights and clinical applications,
highlighting the lack of robust human trial data. By proposing
CRISPR-based microbiome
editing and species-specific FMT, it provides a forward-

advanced future directions, like

looking framework for moving from correlation to causation,
paving the way for targeted, microbiota-based personalized
therapeutics in CVD.

2 Gut microbiota-induced risk
factors for cardiovascular disease

The risk factors for CVD include hypertension, diabetes,
hypercholesterolemia, obesity, chronic inflammation, and genetic
factors (Kjeldsen, 2018; Dal Canto et al., 2019; Alfaddagh
et al, 2020; Foger et al., 2020; Powell-Wiley et al., 2021;
Tada et al, 2022). Among these, gut microbiota diversity,
as a key regulator of metabolism and dietary intake, plays
a pivotal role in driving the pathological processes of CVD,
particularly hypertension, atherosclerosis, and heart failure
(Jia et al., 2023).

Hypertension, as a key risk factor for cardio-cerebral vascular
diseases, can induce gut microbiota dysbiosis and gut barrier
dysfunction. This is mediated by the influx of hydrogen sulfide,
lipopolysaccharide (LPS), and pathogenic bacteria, coupled with a
reduction in SCFA-producing bacterial populations. These changes
lead to increased intestinal permeability and disruption of tight
junction proteins (Lugman et al, 2024). Furthermore, reduced
alpha diversity and an increased abundance of LPS-producing
Gram-negative bacteria contribute to pro-inflammatory responses,
resulting in dysregulated blood pressure and hypertension.

Increased gut permeability is strongly associated with LPS
translocation into systemic circulation, yet therapeutic targets
to mitigate CVD risk remain elusive. Although interventions
targeting bile acid receptors show potential in reducing
atherosclerosis progression, TMAO has emerged as a pro-
atherogenic metabolite, representing one of multiple pathways
involved in CVD pathogenesis (Yang et al, 2023). Elevated
cholesterol levels are another critical risk factor for CVD.
Through gut microbiota modulation, probiotics from the genera
Bifidobacterium and Lactobacillus have demonstrated efficacy in
controlling cholesterol levels in clinical studies (Fuentes et al,
2013; Costabile et al., 2017; Marras et al., 2021). Moreover, next-
generation probiotics, such as Bacteroides spp., and Akkermansia
show promise in specifically lowering cholesterol levels (Verhaar
et al., 2020). Gut microbiota-derived metabolites, include TMAO,
SCFAs, polyphenols, and bile acids, are essential for maintaining
the healthy function of cardiovascular organs (Massey et al., 2022).
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3 Gut microbiota-induced
mechanisms for cardiovascular
disease

Distinct gut dysbiosis profiles are closely associated with
specific CVD subtypes, reflecting the complex interplay between
microbiota composition and disease pathophysiology (Datta et al.,
2024). In metabolic disorders such as T2DM, obesity, and
hyperlipidemia, the gut microbiota is characterized by a significant
reduction in the abundance of Akkermansia and Bifidobacterium,
two genera known for their roles in maintaining metabolic
homeostasis and gut barrier integrity. In contrast, atherosclerosis
is associated with an elevated Firmicutes/Bacteroidetes ratio, a
microbial signature often linked to pro-inflammatory states and
impaired lipid metabolism. Furthermore, coronary heart disease
shows a unique microbial profile marked by increased Collinsella
abundance, a genus implicated in promoting inflammation
and cholesterol accumulation. Meanwhile, myocardial infarction
exhibits a transient microbial shift, featuring enrichment of
Lactobacillus and depletion of Bacillus, which may reflect acute
inflammatory responses and oxidative stress during the ischemic
event.

From a metabolic perspective, gut microbiota-derived
metabolites play pivotal roles in CVD pathogenesis through
multiple mechanisms. Elevated TMAO levels, generated from
dietary choline via gut microbial metabolism and hepatic
flavin monooxygenase-3 conversion, are associated with
CVD risk factors including obesity, type 2 diabetes mellitus
(T2DM), hyperlipidemia, as well as specific CVD manifestations
such as coronary heart disease and myocardial infarction by
promoting platelet hyperreactivity, atherosclerosis, and heart
failure (Zhu et al, 2016; Guasti et al, 2021; Zhang et al,
2021). The gut microbiota also influences bile acid metabolism,
which activates nuclear receptors such as the farnesoid X
receptor (FXR) and pregnane X receptor (PXR). These receptors
regulate lipid homeostasis by downregulating triglyceride levels
and attenuating pro-inflammatory NF-kB signaling, thereby
modulating atherosclerosis progression and coronary heart
disease (Wu et al., 2021). Conversely, dysbiosis-driven metabolites
like phenylacetylglutamine exacerbate thrombosis and in-
stent stenosis (Chassaing et al., 2015; Lahnwong et al.,, 2018),
while hydrogen sulfide exerts protective effects by inhibiting
nucleotide-binding oligomerization domain-like receptor protein
3 (NLRP3) inflammasome activation via purinoreceptor-7
blockade (Jia et al, 2020). Indole-3-propionic acid (IPA), a
microbial metabolite derived from dietary tryptophan by gut
microbiota such as Lactobacillus reuteri, Clostridium caloritolerans,
Clostridium sporogenes, and Peptostreptococcus. IPA enhances
gut-blood barrier function through the expression of tight
junction proteins and claudins, activates the aryl hydrocarbon
receptor, and protects against lipid peroxidation and oxidative
damage (Konopelski and 2022). Furthermore,
IPA stimulates macrophage reverse cholesterol transport by

Mogilnicka,

upregulating ABCA1 expression (Schwartz et al., 2013). As gut
microbiota translocates to the aortic artery due to defect in gut
barrier integrity, microbial-derived metabolites and inflammation
results in renal insufficiency and inflammation-signaling pathway.
While gut microbiota modulation of drug efficacy against CVD
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is harnessed, its combination with physical exercise will lead to
healthier cardiovascular organ functions (Jia et al., 2019).

4 Gut microbiota-mediated
therapeutic strategies for
cardiovascular disease

To prevent CVD, include evidence-
based approaches such as dietary and lifestyle modifications,
pharmacological interventions, as well as novel approaches like

current strategies

fecal microbiota transplantation (FMT) and NLRP3 inflammasome
inhibition. Mechanistic studies have shown that these interventions
may contribute to reduced risks of heart failure and atherosclerosis,
though clinical evidence varies across different modalities. Regular
physical exercise and supplementation with probiotics, prebiotics,
or their combination as synbiotics have been shown to ameliorate
cardiac hypertrophy and fibrosis. Furthermore, adopting healthy
lifestyle practices enhances microbiome composition and function,
thereby augmenting the production of beneficial metabolites
essential for gastrointestinal tract homeostasis (Zhao and Wang,
2020; Usman et al.,, 2024). Through gut microbiota-artery axis,
dietary components such as omega-3 polyunsaturated fatty acids,
sphingomyelin, and phosphatidylcholine play pivotal roles in
lipid metabolism and the progression of atherosclerosis (Shi
et al., 2024). Probiotics, in particular, stabilize the gastrointestinal
tract dynamics, generating metabolites with cardioprotective
properties, thus advancing precision medicine for cardiometabolic
complications. Conversely, high-salt dietary supplements reduce
the abundance of Lactobacillus, leading to an increase in T helper 17
(Th17) cells, which are biomarkers for salt-sensitive hypertension.
The Mediterranean diet, characterized by reduced saturated
fatty acids, phosphate, and sodium, along with enriched nitrate,
fiber, and antioxidants, promotes gut microbiota diversity. This
ultimately mitigates oxidative stress while enhancing antioxidant
functions and nitric oxide bioavailability, thereby improving
cardiac and vascular function (Barrea et al., 2019).

In addition to dietary and lifestyle interventions, the
introduction of healthy gastrointestinal tract microbiome to
patients FMT is effective for controlling Clostridium difficile.
Emerging evidence suggests its potential in improving insulin
sensitivity and plasma triglyceride levels, thereby enhancing
cardiometabolic health (Miranda et al., 2018). This is evidenced
by a downregulation of myocarditis incidence and an increase
in Bacteroidetes abundance. Pharmacological interventions
targeting gut microbiota composition and dynamics are crucial
for attenuating CVD-related dysbiosis. Dipeptidyl peptidase-4
(DPP-4) inhibitors mitigate cardiovascular risks by attenuating
high-fat-diet-induced dysbiosis, promoting the abundance of
SCFAs-producing microbiota, and reducing the Bacteroidetes
to Firmicutes ratio (Zhang et al, 2023). Biguanides, such as
metformin, reduce the risk of myocardial infarction in patients
with T2DM by regulating the incretin pathway and enhancing
peripheral glucose uptake. This is achieved through increased
pancreatic and plasma levels of glucagon-like peptide-1, a
precursor for SCFAs, which exert cardioprotective effects (Bu
et al,, 2022). Additionally, metformin downregulates bile acids
absorption by inhibiting the apical sodium-dependent bile acid
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transporter, thereby interfering with primary bile acids-mediated
FXR activation. This process is facilitated by SCFA-producing
genera such as Bifidobacterium bifidum, Butyrivibrio, and
Megasphera. Furthermore, o-glucosidase inhibitors, such as
acarbose, upregulate bile salt hydrolase activity, promoting
beneficial genera like Bifidobacterium and Lactobacillus while
suppressing pathogenic genera such as Clostridium, Alistipes, and
Bacteroides, thereby contributing to cardiometabolic homeostasis
(Montandon and Jornayvaz, 2017; Hu et al., 2019).

Targeting the NLRP3 inflammasome, a sensor of deleterious
endogenous and exogenous stimuli, is a promising therapeutic
strategy for mitigating pro-inflammatory signaling and CVD
progression, particularly atherosclerosis. Cholesterol crystals
activate the NLRP3 inflammasome, increasing the risk of
atherosclerotic plaque formation (Morgan et al.,, 2014). TMAO,
a key trigger of NLRP3 inflammasome activation, induces
endothelial barrier dysfunction and hyperpermeability, ultimately
leading to cardiac fibrosis. Therefore, interventions targeting
NLRP3 inflammasome activation are critical for attenuating
of HMG-CoA
inhibitors, mitigate oxidative stress, endothelial dysfunction,
cardiomyocyte apoptosis, and cardiac hypertrophy (Ning et al,
2010; Viollet et al,, 2012). Statins, including rosuvastatin, impede
the TLR4/MyD88/NF-kB signaling pathway, a key activator of
NLRP3 inflammasome, and are effective in treating diabetic
cardiomyopathy (Duewell et al, 2010). Simvastatin enhances

atherosclerosis. ~ Statins, analogs reductase

endothelial barrier integrity by upregulating tight junction protein
expression, reducing vascular endothelial hyperpermeability,
and mitigating hyperglycemia-associated endothelial dysfunction
(Rajamaki et al., 2010). Mechanistically, simvastatin inhibits
HMGBI release in aortic endothelial cells, thereby obstructing
NLRP3 inflammasome activation. Additionally, the natural NLRP3
inflammasome inhibitor, arglabin, exhibits anti-atherogenic effects
in high-fat-diet-induced murine models (Zhang et al., 2022).

Acetate-producing bacteria reduce blood pressure and
alleviate cardiac fibrosis and hypertrophy, while probiotics
modulate oxidative stress, inflammation, renin-angiotensin system
overactivity, vascular resistance, and hyperlipidemia. Lactobacilli
increase SCFA production and reduce toxin levels, thereby
inhibiting atherosclerosis progression. TMAO levels can be
reduced by inhibiting TMA production in the gastrointestinal
tract, and flavonoids inhibit TMA lyase activity, offering
therapeutic potential for coronary heart disease. Oat fiber
prevents atherosclerosis by blocking the TLR4 signaling pathway,
modifying lipid metabolism, and reducing NF-kB p65 expression
(Gao et al, 2022). Furthermore, intestinal mucosal barrier
integrity is preserved through alterations in metabolites such as
1-methylguanosine, 2-methylguanosine, isobutyrylcarnitine, and
valerylcarnitine. Fish oil-derived long-chain monounsaturated
fatty acids (LCMUFAs) have demonstrated cardiovascular
risk reduction in murine models, with reduced TMAO levels
and improved endothelial function (Tsutsumi et al, 2021).
LCMUFAs also increase Akkermansia abundance while reducing
Firmicutes and Bacteroidetes, thereby balancing the intestinal
microenvironment through SCFA regulation and glucagon-
like peptide modulation. Additionally, LCMUFAs attenuate
atherosclerosis by reducing macrophage infiltration, regulating
inflammation, and lowering serum levels of branched-chain amino
acids (Yang et al., 2016; Figure 1 and Table 1).
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5 Nutrition, the microbiome, and
cardiovascular disease pathogenesis

This section highlights a complex, bidirectional relationship
between diet, gut microbiota composition, and host cardiovascular
health. The molecular mechanisms underpinning this relationship
involve microbial metabolite production, systemic inflammation,
oxidative stress, and endothelial function.

5.1 Oxidative stress and microbial
metabolites

Oxidative stress is a critical molecular mechanism through
which gut dysbiosis contributes to CVD. An imbalanced
microbiome can produce metabolites that either exacerbate
or ameliorate oxidative damage. Certain dietary patterns foster
bacteria that produce metabolites with potent antioxidant
properties. For instance, the high-fiber rye intervention in the
RyeWeight study led to increased plasma levels of microbial
metabolites like indolepropionic acid and enterolactone (Wang
et al., 2024). These compounds are known for their antioxidant
activities, which can mitigate oxidative damage to lipids and
proteins in the vascular endothelium, a key step in atherogenesis.
Similarly, the hydroxytyrosol (HT) study demonstrated that
responders to this phenolic compound exhibited improved
glutathione metabolism, a master regulator of the cellular
antioxidant defense system (Li et al., 2025). This suggests that
HT’s benefits may be mediated through both direct antioxidant
effects and the modulation of microbial communities that support
endogenous antioxidant pathways. Direct evidence comes from
the trial on postbiotic supplementation in stroke patients, which
showed a significant reduction in the oxidative stress marker
malondialdehyde (MDA) and an increase in total antioxidant
capacity (TAC) (Chavez-Alfaro et al.,, 2025). This indicates that
postbiotics (inanimate microorganisms and/or their components)
can confer systemic antioxidant benefits, likely by reducing the
production of pro-oxidant molecules by the host’s immune system
or by the microbiota itself.

5.2 Inflammation and endothelial
dysfunction

Systemic inflammation is a cornerstone of CVD pathogenesis,
and the gut microbiome is a primary regulator of this process. Diet
directly influences the inflammatory tone via microbial signaling.
Dysbiosis can increase gut permeability (“leaky gut”), allowing the
translocation of bacterial fragments like LPS into the bloodstream.
LPS is a potent endotoxin that triggers systemic inflammation
by activating immune cells and promoting the release of pro-
inflammatory cytokines such as IL-1f, IL-6, and TNF-a (Fan
et al., 2025). This chronic, low-grade inflammation damages the
endothelium and promotes atherosclerosis.

The abstracts show that dietary interventions can reverse
this. The CADIMED trial (Ng et al., 2025) and the cycling diet
study aim to or demonstrate a reduction in CVD risk factors by
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Gut microbiota induced mechanisms for cardiovascular disease therapy.

promoting anti-inflammatory microbial patterns (Verhaar et al,
2024). The casein peptide study explicitly links its antihypertensive
effect to anti-inflammatory and antioxidant effects that improve
endothelial function (Gawlik-Kotelnicka et al., 2024). Furthermore,
the postbiotic trial confirmed a direct reduction in IL-1f and hs-
CRP following intervention, underscoring the gut-inflammatory
axis (Spasova et al., 2024).

Butyrate, a SCFA produced by bacterial fermentation of dietary
fiber, is generally considered anti-inflammatory. However, the
trial by Verhaar et al. (2024) presents a surprising finding: oral
butyrate supplementation increased blood pressure in hypertensive
patients (San Diego et al., 2025). This critical result indicates that
the molecular context (route of administration, baseline health,
concomitant diet) drastically alters the effect of a single metabolite.
It warns against simplistic supplementation and highlights the need
for a holistic, diet-based approach to modulate the entire microbial
ecosystem for balanced SCFA production. Conversely, the study by
San Diego et al. (2025) found that the blood pressure response to a
butyrate enema was correlated with intake of specific food groups
(vegetables, whole grains), not just the nutrient itself, emphasizing
the importance of the dietary matrix (Rahimi et al., 2024).

5.3 Pro-atherogenic microbial
metabolites

The gut microbiome can generate metabolites that directly
contribute to CVD pathology. The trial by Spasova et al. (2024)
focuses on TMAO, a well-established independent risk marker
for CVD (Yang et al, 2025). Gut bacteria metabolize dietary
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nutrients like L-carnitine (red meat) and choline (eggs, liver) into
TMA, which is then oxidized in the liver to TMAO. TMAO
promotes atherosclerosis by stimulating foam cell formation,
enhancing platelet reactivity, and inducing endothelial dysfunction.
Interventions aimed at reducing TMAO-producing bacteria or
their activity are a direct molecular strategy for CVD risk reduction.

5.4 Impact of specific nutrients and
dietary fibers on microbial ecology

The molecular effects are ultimately driven by diet-induced
shifts in the microbial population. Increased fiber intake, as seen
with defatted rice bran bread and the high-fiber rye diet, promotes
the growth of beneficial bacteria like Faecalibacterium prausnitzii
(a major butyrate producer) and Bifidobacterium (Pontes et al.,
2025; Union Caballero et al., 2025). These shifts are associated with
improved metabolic outcomes, such as increased HDL cholesterol.
The physical therapy study also showed that a diet enriched with
dietary fibers increased fecal levels of propionic and butyric acid,
which was correlated with reduced systemic inflammation and
improved vascular stiffness (Noguera-Navarro et al., 2025). The
study by Wang et al. (2024) reveals that the molecular and microbial
environment is dynamic. Repeatedly adopting and abandoning a
healthy dietary pattern led to a cycling pattern in microbial taxa
(Collinsella, Mediterraneibacter) that was mirrored by cycling in
LDL-C and total cholesterol. This demonstrates that the molecular
benefits of a healthy diet are transient and dependent on sustained
dietary habits, as the microbiome rapidly reverts to its baseline
state.

05 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1690411
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Zhang et al.

TABLE 1 Human clinical trials on gut microbiota mediation to cardiovascular effects.
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TABLE 1 (Continued)
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o B. ovatus
o B. uniformis
o Butyriciproducens
e Unclassified Christensenellaceae. CAG-74

10.3389/fmicb.2025.1690411

o A strategy to target low-grade
inflammation via multi-target approach

Hornero-Ramirez
etal., 2025

e Omega-3 or inulin supplementation on

cardiovascular effects

e Inulin supplementation increases
abundance of
o Bifidobacterium
o Lachnospiraceae
e Omega-3 supplementation increases
abundance of
o Coprococcus spp.
o Bacteroides spp.
o Omega-3 significant decreases
o Fatty-liver associated Collinsella spp.
o Inulin increases
o Butyrate
o Iso-valerate
o Iso-butyrate
o Nearly increases butyrate

o Dietary omega-3 alters gut microbiota
composition and some cardiovascular
effects

Vijay et al., 2021

e Gut-cardiovascular axis in low-resource

individuals

o Shared microbiota-blood pressure
relationships between dyads

e Host-microbiota responses to lifestyle
interventions

e The gut-cardiovascular axis is a potential
target for reducing future CVD risk in low
resource populations.

Hill et al., 2022

e Choline utilization C/D (cutC/D) gene and
thrombosis

® Microbial cutC-dependent TMA/TMAO
production is crucial for transmitting
increased thrombosis and platelet reactivity

e Microbial choline TMA-lyase pathway is a
molecular target for atherothrombotic
heart disease treatment

Skye et al., 2018

o A shift in baseline levels of 26 metabolites

o Small metabolites with hypertension risk
owing to hypertension

risk of hypertension

and phenylalanine

hypertension

e Amino acids are negatively associated with
o The essential amino acids are threonine

o Increased lyxose has higher risk of

e Low amino acid levels and gut microbiota Hao et al,, 2016
play an important role in hypertension

pathogenesis

5.5 Therapeutic targeting

Multi-strain ~ probiotics improved glucose homeostasis
(HbAlc) in hypertensive individuals (Noguera-Navarro et al.,
2025). More strikingly, probiotic supplementation prior to
cardiopulmonary bypass surgery significantly reduced the
incidence of acute gastrointestinal injury, likely by preserving
gut barrier integrity and preventing bacterial translocation
and subsequent systemic inflammation and oxidative stress
(Petelina et al., 2025). The study by Gawlik-Kotelnicka et al.
(2024) further suggests probiotic efficacy may be enhanced in
individuals with a “leaky gut” or specific immunometabolic profiles
(Li-Hua and Bajinka, 2025). The FMT trial for hypertension
provided proof-of-concept that altering the gut microbiome
can affect blood pressure (Bajinka et al, 2025). Although the
effect was unsustainable, the study identified specific bacteria
lenta, ramosum) whose

(Eggerthella Erysipelatoclostridium
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decreased abundance was correlated with reduced BP, and others
whose increase was beneficial. It also linked these microbial shifts
to changes in blood pressure-modulating metabolites like tyrosine,
glutamine, and phenylalanine, outlining a clear molecular pathway
from microbiota to host physiology.

The molecular pathogenesis of heart diseases is profoundly
influenced by the gut microbiome, which acts as a key
interpreter of nutritional intake. Diets rich in fiber and

(Mediterranean, high-fiber rye)
ecosystem that produces
(SCFAs, antioxidants), reduces inflammation, and protects the

polyphenols promote a

microbial beneficial ~metabolites
endothelium. Conversely, poor dietary patterns lead to dysbiosis,
characterized by increased production of pro-inflammatory
molecules, pro-oxidant species, and pro-atherogenic metabolites
like TMAO, thereby driving CVD progression. The findings
caution against the isolated use of microbial metabolites

such as butyrate pills and instead advocate for a whole-diet

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1690411
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Zhang et al.

approach to sustainably modulate the complex molecular
dialogue between nutrition, the microbiome, and the host
cardiovascular system.

6 Limitations to gut
microbiota-mediating
cardiovascular disease

Despite  advancements in targeted preventive and
personalized approaches, including FMT, dietary modulation,
and pharmacological interventions, significant limitations persist
in gut microbiota-mediation strategies for delaying the onset
and progression of CVD episodes. A primary challenge lies in
the incomplete understanding of the biological mechanisms
underlying the pathophysiological state induced by gut microbiota
dysbiosis, which contributes to CVD development. While
metformin demonstrates effective cardioprotective benefits in
diabetic patients, its therapeutic effects in non-diabetic individuals
remain mechanistically unexplained. Furthermore, although
preliminary evidence suggests improvement in ischemic risk
vascular function among angina patients, large-scale randomized
controlled trials with extended follow-up periods are required
to establish robust clinical significance (Jadhav et al, 20065
Holman et al, 2017; Luo et al, 2019). Notably, metformin
intervention has shown no significant impact on carotid
intima-media thickness, a well-established CVD biomarker
(Chen Y. et al., 2020).

Additional limitations in gut microbiota-mediated CVD
pathophysiology include the inconsistent cardioprotective
effects of a-glucosidase inhibitors. Specifically, coronary artery
disease patients with impaired glucose tolerance demonstrate no
significant cardiometabolic improvement following acarbose
administration. Moreover, sodium glucose co-transporter
2 inhibitors, despite their demonstrated effects in reducing
cellular apoptosis, mitochondrial dysfunction, and cardiovascular
inflammation, exhibit no discernible impact on gut microbiota
homeostasis (Zeng et al,, 2021). The therapeutic application of
FMT faces challenges related to donor-recipient incompatibility,
particularly concerning extra-intestinal complications such as
infections and endotoxin-related adverse events, necessitating
rigorous safety evaluations (Cao et al., 2025).

The role of free sulfate concentrations in mitochondrial
complex IV function remains unclear, potentially leading
consumption and reduce butyrate
oxidation in the colon following non-digestible carbohydrates

to impaired oxygen

administration (Rastall et al., 2022). These prebiotics possess

emulsification property that may alter gut microbiota
composition and potentially facilitate epithelium bacterial
translocation, increasing the risk of septicemia (Allam-
Ndoul et al, 2020). While gut microbiota modulation

for CVD prevention and treatment is gaining increasing
attention, the imperative for well-designed studies adhering
to stringent clinical safety and efficacy standards remains
paramount.

The field must progress from establishing correlations
to demonstrating causality in gut microbiota-mediated CVD
mechanisms. This requires the identification of functional
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metabolites associated with specific molecular pathways and the
characterization of microbial species and strains producing
bioactive compounds with distinct cardiac phenotypes.
Furthermore, the standardization of experimental conditions
and optimization of FMT protocols, from sample collection
to storage, remain areas requiring resolution due to ongoing
procedural controversies.

7/ Prospects in gut
microbiota-mediated cardiovascular
disease

The
CRISPR/Cas9, enables precise modulation of gut microbiota

integration of advanced technologies, such as
metabolic pathways, thereby enhancing the targeted expression
of cardioprotective metabolites. This approach will facilitate the
identification of specific roles played by gut microbiota-derived
metabolites in attenuating CVD pathogenesis, while elucidating the
underlying biochemical processes. In addition, to comprehensively
understand gut microbiota-derived metabolic changes in CVD,
human metabolomics studies should be integrated with bacterial
proteomic and metagenomics, providing a holistic view of the
onset and progression of CVD episodes. Moreover, FMT strategies
focusing on species-specific interventions rather than phyla or
genera, along with the use of cytostatic agents instead of cytotoxic
drugs, will ensure both target specificity and the maintenance of
gut microbiota homeostasis (Ahmad et al., 2024).

disease-associated such as

Cardiovascular conditions,

hypertension, coronary atherosclerosis and heart failure,
represent a significant global health burden, contributing to
elevated mortality rates. The bidirectional interplay between
these conditions and gut microbiota is mediated by well-defined
biological processes, highlighting the functional role of gut
microbiota in cardiovascular health. Given that arteriosclerosis is
often diagnosed at advanced stages, characterized by elevated blood
glucose, lipid, and insulin levels, as well as persistent low-grade
inflammation and insulin resistance, there is an urgent need
for microbiota-targeted individualized strategies for both the
prevention and management of CVD (Hsu et al., 2019). Reduced
diversity of SCFAs producing bacteria and the proliferation of
pathogenic bacteria in the gut microbiota can lead to increased
levels of TMAO, a known risk factor for CVD. Supplementation
with probiotics and prebiotics can promote the dominance of
beneficial bacterial populations, thereby inhibiting the conversion
of dietary lecithin, L-carnitine, and choline into TMA, which is
subsequently oxidized to TMAO in the liver. Notably, TMAO
serves as a biomarker for stroke, myocardial infarction, and
mortality, while SCFAs exert systemic anti-inflammatory effects,
serving as energy sources for colonocytes and regulators of blood
pressure. Maintaining a consistent supply of SCFAs is crucial for
delaying the onset of hypertension, and bile acid biosynthesis,
mediated by receptors such as takeda G protein-coupled receptor
5, PXR, and FXR, is significantly influenced by gut microbiota in
CVD (Martins et al., 2024; Ronen et al., 2024).

In summary, the three primary gut microbiota-derived
metabolites such as SCFAs, TMAO, and bile acids are promising
biomarkers for CVD. Their targeted modulation offers novel
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therapeutic strategies for CVD treatment. Future therapeutic
approaches will focus on harnessing molecular mechanistic studies
to elucidate the bidirectional biological pathways connecting gut
microbiota and CVD risk. Investigating specific microbial taxa,
including non-bacterial microorganisms, as well as the shifts in
metabolite profiles and their associated metabolic diseases, will
provide deeper insights into gut microbiota-mediated prevention
and management of CVD.

Hypercholesterolemia, a well-established risk factor for
CVD, can be mitigated through gut microbiota modulation
via supplementation with prebiotics, probiotics, and statins.
These interventions regulate cholesterol homeostasis through
metabolites such as TMAO, SCFAs, and bile acids (Vourakis et al.,
2021). A meta-omics perspective offers profound implications for
understanding the role of gut microbiota in CVD (Xu and Yang,
2021). Beyond dietary interventions, the detection of biomarkers
represents another promising strategy for reducing CVD risk
(Evans et al., 2020). The interactions between phytochemicals
and gut microbiota-mediated histone acetylation, adipose tissue
dysfunction, blood pressure regulation, and other bioactive
compounds are areas of growing interest (Pieczynska et al., 2020;
Yang X. etal,, 2021; Yan et al,, 2022; Jiang et al., 2024). Additionally,
the role of gut microbiota and its metabolites in reverse cholesterol
transport, stroke-related risk factors, and exercise-mediated
protection in atherosclerotic cardiovascular disease warrants
further investigation (Gao C. et al., 2024; Zhong et al., 2024).

With far-reaching clinical applications, gut microbiota research
has been significantly advanced through the use of cutting-edge
technologies, enabling robust and sensitive analyses. Although
mechanistic studies remain incomplete, biochemical and molecular
methodologies are yielding increasingly reliable results in this
field. The detection of biomarkers via metabolomics analysis holds
promise for personalized medicine, offering alternative adjunct
therapies through gut microbiota manipulation (Chen L. et al,
2020). Despite clear evidence of the gut-immune-B2 cell axis,
including B cell-mediated humoral immunity via TLR signaling
pathways, the modulation of atherosclerosis-associated immune
responses requires further scientific validation (Forkosh and Ilan,
2019). The heart-gut axis has emerged as a novel therapeutic target
for congestive heart failure and atherosclerosis (Singh et al., 2024).

From a clinical perspective, T2DM patients at risk of
developing CVD exhibit synergistic hypolipidemic effects following
postprandial lipidemia reduction induced by berberine and
Bifidobacterium breve. The dynamics of the gut bacteriophage
community post-FMT are critical for metabolic syndrome subjects.
Vitamin D supplementation has been shown to reduce oxidized
low-density lipoprotein cholesterol levels, thereby improving
cardiometabolic health (Ostadmohammadi et al., 2019). Weight
loss interventions based on energy-reduced Mediterranean diets
have demonstrated significant improvements in CVD risk factors.
Mediterranean diets interventions targeting bile acids represent
a novel approach to biomarker production for cardiometabolic
risk, as do dietary fibers in improving cardiometabolic profiles.
Microbiota-focused strategies, such as omega-3 fatty acids, inulin,
and choline utilization for thrombosis-related genes, can enhance
cardiometabolic effects. However, short-term rifaximin treatment
has failed to reduce gut-derived cardiovascular toxins in patients
with chronic kidney disease.
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8 Conclusion

This mini-review underscores the pivotal role of gut
microbiota-derived metabolites, particularly TMAO, SCFAs,
and bile acids as both biomarkers and mediators in CVD. TMAO
is strongly linked to atherosclerosis and thrombosis, while SCFAs
confer anti-inflammatory and blood pressure-regulating benefits.
Bile acid metabolism, modulated by receptors such as TGRS5,
FXR, and PXR, further influences lipid homeostasis and vascular
health. Therapeutic strategies like FMT, the Mediterranean diet,
and supplementation with omega-3 fatty acids or inulin show
promise in reshaping microbial communities and reducing CVD
risk. However, translating these interventions into sustained
clinical benefits remains challenging. Future efforts must focus
on elucidating causal mechanisms, standardizing protocols, and
advancing personalized microbiota-targeted therapies. Ultimately,
harnessing the gut-heart axis offers a transformative approach for
the prevention and treatment of cardiovascular diseases.
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