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Introduction: This study investigated the effects of stage-specific
supplementation with 0.1% resveratrol on growth performance, immune
function, and intestinal microbiota in Cherry Valley ducks from 1 to 42 days of
age.

Methods: A total of 300 1-day-old Cherry Valley ducks were randomly allocated
into a control group (C) and four treatment groups (R1~R4). Resveratrol was
administered via diet at 14, 21, 28, or 35 days of age until 42 days. Growth
performance, slaughter traits, serum immune indices, and intestinal microbiota
were analyzed.

Results: In growth performance, the R1~R4 groups exhibited significantly
improved slaughtering rates compared to the control (P < 0.01). The R1&R2
groups showed marked elevations in semi-evisceration rates (P < 0.001), while
the R1 group displayed a significant increase in full-evisceration rate (P < 0.01).
In terms of immune function, the R4 group demonstrated elevated serum
IgA levels by 46.37%. All treatment groups exhibited upward trends in IgG.
Complement C3 in the R2 group was markedly higher than the control (P <
0.0001). Interleukins IL-2 and IL4 were significantly upregulated in R1&R2 groups
(P < 0.01). Thymus and spleen indices showed increasing trends in R3&R4 and
R4 groups, respectively. With respect to intestinal microbiota, a-Diversity indices
were significantly enhanced in R2&R4 groups (P < 0.001). B-Diversity analysis
revealed distinct clustering between treated groups and controls. LEfSe analysis
identified Bacteroides, Alistipes, and Faecalibacterium as biomarkers in R2&6R4
groups, with pathogenic genera (Prevotellaceae, Desulfovibrio) reduced.
Discussion: Resveratrol supplementation improved slaughtering performance,
immune competence, and intestinal homeostasis in Cherry Valley ducks.
Resveratrol supplementation from day 21 (R2 group) showed the most favorable
outcomes for growth-immunity-microbiota axis regulation, highlighting its
potential as a precision nutrition strategy in waterfowl aquaculture.

KEYWORDS

Cherry Valley duck, resveratrol, growth performance, immunefunction, intestinal
microbiota

1 Introduction

Resveratrol (3,5,4/-trihydroxy—trans—stilbene), a plant-derived natural polyphenolic
compound, is widely present in peanuts, Polygonum cuspidatum, grapes, and
processed byproducts (Kursvietiene et al, 2016; Sai-Sai, 2023). Its trans-isomer
exhibits superior stability and bioactivity, positioning it as a research hotspot
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in nutrition and medicine (Canto and Sameer, 2015). Studies
demonstrate that resveratrol activates signaling pathways such
as SIRT1/Nrf2/ARE, exerting pleiotropic biological functions
including immunomodulation, anti-inflammation, anticancer,
antioxidation, antimicrobial, and antiviral activities (Alarcon et al.,
2004; Alov et al,, 2015; Hwang and Lim, 2015; Spanier et al., 2009).
In human medicine, resveratrol has shown promise in preventing
tumor progression, cardiovascular diseases, and neurodegenerative
disorders (Smoliga et al., 2011).

In livestock production, resveratrol serves as a novel functional
additive to enhance animal health and productivity. For example,
dietary supplementation with 400 mg/kg resveratrol significantly
improves the villus height/crypt depth ratio (V/C) in heat-stressed
Muscovy ducks, alleviating intestinal inflammation, oxidative
stress, and dysbiosis while mitigating deoxynivalenol-induced
intestinal barrier damage (He et al., 2019a). Similarly, inclusion
of 0.2% resveratrol in pig diets enhances feed conversion
efficiency, immunoglobulin G levels, and intestinal immune
barrier function by modulating cytokines like IL-6 and TNF-a
(Ahmed et al, 2013; Yaolian et al, 2019). Notably, resveratrol
exhibits robust antagonistic effects against mycotoxins: it activates
the Nrf2 signaling pathway to counteract deoxynivalenol-
induced cytotoxicity/apoptosis in porcine intestines and
improves pork quality via the IncRNA-KEAP1-NRF2 axis
(Yang et al., 2019; Zhang et al., 2024). Collectively, these findings
suggest resveratrol exerts multi-target regulatory effects on
intestinal health, though its mechanisms in poultry remain
poorly elucidated.

Despite extensive research in monogastric species (e.g., pigs,
chickens), systematic investigations of resveratrol in aquatic
poultry—particularly Cherry Valley ducks—are lacking. Existing
literature highlights the breed’s vulnerability to rapid fat deposition
and diet-induced intestinal dysbiosis (Bai et al., 2024; Li et al,
2023). Recent studies indicate that 400 mg/kg resveratrol improves
feed conversion efficiency and modulates anti-inflammatory
cytokines (e.g., IL-10, TGF-B) in 21-day-old broilers (Wang
et al, 2021). Oral supplementation with Lactobacillus casei,
Lactobacillus rhamnosus and Lactobacillus rhamnosus can mitigate
avian colibacillosis induced intestinal flora dysbiosis (Shi et al.,
2020). Adding 6% paper mulberry powder to the daily diet
can enhance the cecal microbial diversity of Cherry Valley
ducks and increase the abundance of Bacteroides (Xiong et al.,
2025). Muscovy duck probiotics fermented feedstuff can promote
the growth of core probiotics and reduce potential pathogenic
bacteria (Li et al., 2024). However, critical gaps persist regarding
optimal supplementation timing, dose-response relationships,
and synergistic effects on the gut-immune axis for Cherry
Valley ducks.

Therefore, this study evaluated the effects of stage-specific
resveratrol supplementation (0.1%) on growth performance,
immune function, and intestinal microbiota in Cherry Valley ducks.
The objectives were to identify the optimal intervention window for
improving intestinal health and provide a theoretical foundation
for the application of resveratrol in precision nutrition strategies
for waterfowl. Furthermore, these findings aim to facilitate the
practical implementation of resveratrol as an antibiotic alternative
in sustainable aquaculture practices.
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2 Materials and methods

2.1 Experimental reagents

Resveratrol (0.1% premixed feed) was purchased from
Shandong Kangpushan Biotechnology Co., Ltd. (Product name:
Tefumei Livestock and Poultry Compound Premix Feed). The
0.1% dose was selected based on preliminary dose-response trials
in ducks and consistent with effective concentrations reported in
previous studies (He et al., 2019a; Wang et al., 2021).

2.2 Experimental design

A completely randomized single-factor design was adopted. A
total of 300 one-day-old healthy commercial Cherry Valley ducks
were randomly assigned to five groups (n = 6 replicates/group, 10
ducks/replicate): Control group (C): Basal diet without resveratrol.
Treatment groups (R1~R4): Basal diet supplemented with 0.1%
resveratrol starting at 14, 21, 28, or 35 days of age, respectively, until
42 days.

Basal Diet Composition (Table 1) was formulated to meet
or exceed NRC (2012) nutrient requirements for meat ducks.
Daily observations included health status, feed/water intake, fecal
abnormalities, and mortality. At 42 days, growth performance,
immune indices, serum oxidative status, and intestinal microbiota
were analyzed.

2.3 Animal management

Cherry Valley ducks were raised under a raised wire flooring
system with each pen serving as a replicate unit. Environmental
humidity, and ventilation)

conditions (temperature,

pens. A

were

standardized across continuous lighting regime
with an intensity of 5 lux was implemented for 24h to
maintain photoperiod consistency. Mechanical ventilation
was employed to ensure air quality. Immunization protocols
followed the National Technical Code for Commercial Meat Duck
Production (GB/T 22346-2008). Daily records included ambient
temperature/humidity, weather conditions, and observations of

feeding behavior, water intake, and flock health status.

2.4 Measurement indices and methods

2.4.1 Growth performance

Body weight was recorded at day 42 (fasted overnight starting
at 08:00). Growth parameters were calculated as follows: Average
Daily Gain (ADG, g/bird/day) = Total weight gain/Experimental
days. Average Daily Feed Intake (ADFI, g/bird/day) = Total
feed consumption/Experimental days. Feed-to-Gain Ratio (F/G)
= ADFI/ADG.

2.4.2 Slaughter traits

In the experiment, Cherry Valley ducks received an

intravenous injection of 50 mg/kg pentobarbital sodium. Following
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anesthesia induction, the carotid artery was transected to induce
exsanguination, resulting in cardiac arrest. Five birds per group
were randomly selected for slaughter according to NY/T 823-2004
(Terminology and Metrics for Poultry Production Performance).
Traits measured included: Slaughter Rate (%) = (Carcass
weight/Live weight) x 100. Evisceration Rates: Semi-evisceration
Rate (%) = (Semi-eviscerated weight/Carcass weight) x 100,
Full-evisceration Rate (%) = (Full-eviscerated weight/Carcass
weight) x 100. Muscle Yields: Breast muscle yield (%) = (Breast
meat weight/Full-eviscerated weight) x 100, Leg muscle yield (%)
= (Leg meat weight/Full-eviscerated weight) x 100.

2.4.3 Immune organ indices

Five birds per group were euthanized for immune organ
collection. Organ indices were calculated as: Thymus Index (mg/g)
= Thymus weight/Live body weight, Spleen Index (mg/g) = Spleen
weight/Live body weight, Bursa of Fabricius Index (mg/g) = Bursa
weight/Live body weight.

2.4.4 Serum immune indices assay

Blood samples were collected via wing vein puncture into
heparinized tubes. Plasma was separated by centrifugation at
3,000 x g for 15min at 4 °C. Concentrations of IgA, IgG, IgM,
complement components C3/C4, and cytokines IL-2, IL-4, IL-6,
and IFN-y were quantified using enzyme-linked immunosorbent
assays (ELISA) following the manufacturer’s instructions. Kits for
all analytes were purchased from Beijing Huaying Biotechnology
Co., Ltd. (Beijing, China). Absorbance was read at 450 nm
using a microplate reader (BioTek Instruments, Winooski,
VT, USA).

2.4.5 Intestinal microbiota high-throughput
sequencing

Select 5 ducks per group, aseptically collect 1.0 g cecal contents
into 2mL sterilized cryovials, rapidly preserve in liquid nitrogen,
then transfer to —80 °C freezer for sequencing. Extract genomic
DNA using the CTAB method. Amplify the V3-V4 region of the
16S rRNA gene via PCR. Perform sequencing on the Illumina
NovaSeq platform. Cluster PCR products and purify. Complete
library construction and sequencing by NovoMagic Co., Ltd.
Use QIIME2 software for ASV clustering (97% similarity). Alpha
diversity (Shannon index, Chaol index) was calculated using
QIIME2. Beta diversity was assessed via principal coordinate
analysis (PCoA) based on Bray-Curtis dissimilarity matrices.
Differential abundance analysis was performed using the linear
discriminant analysis (LDA) effect size (LEfSe) algorithm (LDA
score > 4.0).

2.5 Data statistics

Experimental data were organized using Excel software.
Statistical analysis was performed with SPSS 20.0 software via
analysis of variance (ANOVA). Normality and homoscedasticity
were verified using Shapiro-Wilk and Levene’s tests, respectively,
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TABLE 1 Composition and nutritional levels of the basal diet.

Components  Proportion Nutrient levels Value
(%)

Rough rice and 41.87 Crude protein (%) 18.52

wheat mixture

Wheat flour 22.30 Crude fat (%) 8.18

Food residue 8.50 Crude ash (%) 4.17

Secondary lard 3.00 Moisture (%) 12.51

Soybean meal, 1.60 Calcium (%) 0.60

CP45.0

Soybean meal, 4.20 Total phosphorus (%) 0.61

CP46.0

Peanut cake (flake) 1.00 Metabolizable energy 3,289.64

(kcal/kg)

Corn gluten meal 4.00 Lysine (%) 1.19

Distillers dried 2.00 - -

grains with solubles

(DDGS)

Corn sugar residue 1.00 - -

Chicken hydrolyzed 1.00 - -

feather meal

Pork meal 4.00 - -

Chicken powder 1.50 - -

Monosodium 1.50 - -

glutamate residue

L-Lysine sulfate, 0.91 - -

70%

Premix* 1.62 - -

*Each kilogram of premix contains: Vitamins: Vitamin A: 60 KIU Vitamin B1 (Thiamine):
>15mg, Vitamin B, (Riboflavin): >30mg, Pantothenic acid: >150mg, Vitamin B6
(Pyridoxine): >10 mg, Vitamin B1, (Cobalamin): >0.2 mg, Vitamin D3: 40 KIU, Vitamin E:
>150 KIU, Vitamin K3: >25 mg, Folic acid: >8 mg, Niacin (Nicotinic acid): >200 mg, Choline
chloride: >3000 mg. Minerals: Copper (Cu): >500mg, Iron (Fe): >1500 mg, Manganese
(Mn): =900 mg, Zinc (Zn): >1250 mg, Iodine (I): >3 mg, Selenium (Se): >20 mg.

prior to ANOVA. Intergroup significance was determined by
Duncan’s multiple range test (DMRT) with a significance
threshold of P < 0.05. Results are presented as mean =+
standard deviation.

3 Result

3.1 Effects of resveratrol on different ages
on growth performance

As shown in Table 2, no statistically significant differences were
observed in average daily gain (ADG) or average daily feed intake
(ADFI) across all groups during the entire 1~6 weeks growth
period (P > 0.05). Notably, a specific trend emerged in feed-
to-gain ratio (F/G) at week 6, where the Rl group exhibited a
significantly lower F/G value (2.69 £ 0.05) compared to control
groups (2.99 £ 0.01) (P < 0.05). As a critical indicator of
feed conversion efficiency, this result suggests that resveratrol
supplementation may optimize nutrient metabolism in late-stage
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TABLE 2 Effect of resveratrol on the growth performance.

10.3389/fmicb.2025.1689994

Weeks Groups ADG (g/d) ADFI (g/d) F/G Slaughter performance
ab
1 C 30.14 + 2.60 32.65 4 2.50 1.08 + 0.05 % *%
RI 30.00 + 2.80 31.98 +£2.72 1.08 £ 0.03%
R2 28.57 + 3.05* 30.64 +2.6 07 4 0.04° I_I** l_l**
.57 £ 3.05 .64 + 2.65 1.07 +0.04
R3 29.29 +2.65° 30.97 +2.81 1.06 + 0.07° * %k %k % % *
R4 30.71 £ 2.74% 33.01 4+ 2.66 1.07 £ 0.05® a ™
% %k %k %k %k % %k
2 C 66.35 +2.45 86.47 £ 4.52 1.30 4 0.05% '| ]
100
R1 67.86 +2.90 88.49 + 4.04 1.30 & 0.06® | mC
R2 67.14 +2.84 86.03 & 3.36 1.28 4 0.05° < . = Rl
S mm R2
R3 65.71 +2.78 85.21 = 4.40 1.29 4 0.04° = 1
g 504 EE R3
a =
R4 65.00 % 2.69 85.03 + 5.92 1.31 4 0.04 § ] = R4
3 C 90.31 + 3.03 162.85 £ 4.85° 1.80 £ 0.04° & ]
R1 89.29 +3.02* 159.84 + 6.23 1.79 + 0.05° . ‘ I
R2 89.29+291° | 160.87 + 5.55 1.80 4 0.03* 0 T T T
< & & < <
R3 10214 +£3.11° | 182304562 | 1.7840.03® & & & & &
'&* ‘00‘ & é@ g\&»
R4 94.29 + 2.89° 172.72 £ 6.03 1.83 4 0.04° 0“‘ S S Qo* &&
> & & > A
4 c 127.86 £2.45 | 202.54 & 18.25 1.58 = 0.03 © \0‘ \@‘ 0.@‘ ¥
O < &
R1 157.14+3.07 | 21651 +17.77 1.38 £ 0.06® %é&' Q&\ %
R2 157.86 £2.94 | 21238 +16.43 1.35 4 0.07°
FIGURE 1
R3 142.85 +2.88 209.52 £ 18.92 1.47 + 0.06® Effects of resveratrol on slaughter performance in cherry valley
. ducks. P-values are typically indicated by asterisks (*) to denote
R4 140.00 £+2.92 211.90 £18.34 1.51 £ 0.07 significance levels. Different numbers of asterisks represent different
5 C 126.43 + 2.53 241.90 & 22.65 191 4+ 0.03* P-value ranges and significance levels: P > 0.05: Not significant (ns),
: ’ : : : : P < 0.05: Significant, denoted by one asterisk (*), P < 0.01: Highly
R1 127.86 & 2.42 245.40 & 22.45 1.92 4 0.042 significant, denoted by two asterisks (**), P < 0.001: Extremely
significant, denoted by three asterisks (***).
R2 130.00 +2.88 | 244.76 +23.05 1.88 +0.03
R3 121.43 +2.23 247.62 £ 22.77 2.04 £ 0.05°
R4 136.43 +2.43 | 244.44 +22.69 1.79 + 0.06*
N R4 (P < 0.05) groups. No significant differences were observed
6 C 69.64 + 2.45" 208.32 +18.27 2.99 4+ 0.01° . T
in breast muscle or leg muscle rates (P > 0.05), indicating
R1 7643 £2.17 | 20651+17.47 | 2.69 005" resveratrol effectively enhances slaughter performance without
R2 68.57 £2.36" | 2023841642 | 2.95+0.01° affecting muscle mass distribution.
R3 67.14 £ 2.45° 199.52 + 18.62 2.97 +0.02°
R4 71434211 | 211.90 4 18.64 2.96 + 0.05° .
3.3 Effects of resveratrol on immune organ

Different letters of the shoulder label in the same column indicate significant differences
(P < 0.05), and the same letters or no letter labels of the shoulder labels indicate no significant
differences (P < 0.05). The table below is the same.

growth stages, thereby enhancing dietary utilization efficiency in
Cherry Valley ducks.

3.2 Effects of resveratrol on slaughter
performance

Comparison between the control group and resveratrol-treated
groups (R1~R4) revealed that resveratrol significantly improved
slaughter performance (Figure 1). Slaughter rate was markedly
increased in R1~R4 groups (P < 0.01 vs. C group). Semi-
evisceration rate showed extreme significance in RI&R2 groups
(P < 0.001) and significance in R3&R4 groups (P < 0.01). Full-
evisceration rate was significantly higher in R1 (P < 0.01) and

Frontiers in Microbiology

indices

The regulatory effects of resveratrol on immune organ
development were demonstrated that R3 and R4 groups (1.18 £
0.10 mg/g, 1.16 & 0.22 mg/g) showed slight increases compared to
C group (0.64 £ 0.06 mg/g, P >0.05) in thymus index (Figure 2).
About spleen index, R4 group reached 1.15 + 0.75 mg/g (vs. 0.52 &
0.05mg/g in C group, P > 0.05), suggesting positive regulation. No
significant differences among groups (P > 0.05) of bursa fabricius
index, indicating limited impact.

3.4 Effects of resveratrol on serum immune
indicators

Analysis of serum immunoglobulins (Figure 3) showed that
IgA content significantly increased 46.37% in R4 group (vs. C
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Thymus index Spleen index  Bursa index

FIGURE 2
Effect of resveratrol on immune organ index.

group), IgM showed no significant differences, and IgG exhibited
an increasing trend in RI-R4 groups (P > 0.05). These results
demonstrate resveratrol’s ability to upregulate IgA and IgG levels,
enhancing humoral immunity.

For immune factors, complement C3 was extremely
significantly higher in R1, R2 and R4 groups (P < 0.0001),
Compared with the control group, the increases were 48.35%,
76.10%, and 52.39%, respectively (Figure 4). A significant increase
in C4 levels was observed in group R4 compared to the control
group (17.13%; P < 0.05). For Cytokines, IL-2 was extremely
significantly elevated in R1 and R2 groups (28.86% and 43.19%,
P < 0.001); IL-4 significantly higher in R1, R2 and R4 groups
(46.21%, 39.96% and 58.52%, P < 0.05); and IL-6 and IFN-y
showed increasing trends (P >0.05). These findings indicate
resveratrol effectively regulates immune factors, particularly
enhancing complement and cytokine responses in R1 and
R2 groups.

3.5 Effects of resveratrol on intestinal
microbiota

3.5.1 ASV analysis of intestinal microbiota

The Venn diagram (Figure 5) clearly illustrates that resveratrol
treatment significantly altered the microbial community structure.
A total of 243 shared ASVs were detected across all five groups,
indicating the presence of a core microbiota prevalent in the
gut. However, each treatment group (R1~R4) developed distinct
microbial compositions, as reflected by the number of group-
specific ASV's (C: 251; R1: 259; R2: 390; R3: 282; R4: 353). Moreover,
the number of shared ASVs between groups varied: only 411
ASVs were shared between the C and R1 groups, whereas 594
ASVs were shared between the R2 and R4 groups. The R2, R3
and R4 cluster exhibited strong community associations, sharing
402 ASVs, whereas the C, Rl and R4 cluster showed weaker
associations with only 311 shared ASVs. These differences in
sharing patterns, combined with the presence of group-specific
ASVs, collectively indicate that resveratrol and varying treatment
durations exerted selective pressures on the microbiota, shaping
group-specific microbial communities.
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FIGURE 3

Effect of resveratrol on immunoglobulin.

Immune factors
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FIGURE 4

Effect of resveratrol on immune factors. In this context, the asterisks
(*) are used to indicate the probability value (p-value) of a statistical
test, *p < 0.05, This is the most common threshold; **p < 0.01,
Stronger significance; ***p < 0.001, Very strong significance. ****p
< 0.0001, Extremely strong significance.

3.5.2 Effects of resveratrol on intestinal microbial
abundance

The heatmap of species abundance clustering (Figure 6)
visually illustrates the differential relative abundances of intestinal
microbiota at the phylum and genus levels across resveratrol-
treated groups.

At the genus level, the control group showed significant
enrichment of  Prevotellaceae, Subdoligranulum, and
Phascolarctobacterium, while Alisipes abundance was relatively
low. R1 group elevated Bacteroides abundance, with significant
reductions in Desulfovibrio and Faecalibacterium, R3 group
increased Mycoplasma and Mucispirillum abundances, and R4
group with higher levels of Megamonas, Desulfovibrio, and Alisipes.

Notably, Prevotellaceae and Subdoligranulum abundances were
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Venn Diagram of ASVs

R1 R2

R4

FIGURE 5

Characteristics of ASV distribution between groups in Venn diagram. Each circle represents a group sample. Numbers in overlapping regions between
circles indicate the number of shared ASVs between samples (groups), while numbers in non-overlapping regions indicate group-specific ASVs.
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FIGURE 6

Heatmap of intestinal microbial abundance on Phylum level (A) and Genus level (B). Top 10 species (phylum/genus) selected by abundance; heatmap
from species/group clustering, color intensity (red = high, blue = low) reflects relative abundance.
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Alpha diversity difference
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FIGURE 7

Shannon index (A) and Chaol index (B) of intestinal microbiota a diversity. Boxplots show intra-group diversity metrics (median, dispersion, max/min,
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significantly reduced in R1, R3, and R4 groups compared to
the control.

At the phylum level, R1 group enriched Bacteroidota, but
depleted Desulfobacterota, Firmicutes, and Deferribacterota. R2
group elevated Halobacterota, Cyanobacteria, Patescibacteria,
and Proteobacteria, and R3 group Increased Deferribacterota
abundance, R4 group has higher Spirochaetota,
Actinobacteriota, and Desulfobacterota, but reduced Bacteroidota.
Resveratrol reshaped the gut
effects: Rl
group characterized by Bacteroidota expansion and Firmicutes

however
administration significantly

microbial community, with distinct temporal
reduction. R4 group showed a unique restructuring pattern
with elevated Spirochaetota and Actinobacteriota, alongside

suppressed Bacteroidota.

3.5.3 Effects of resveratrol on alpha diversity of
intestinal microbiota

Alpha diversity analysis (Figure 7) revealed that both Chaol
index (reflecting community richness) and Shannon index
(reflecting community diversity) were significantly higher in R2
and R4 groups compared to the control group (P < 0.001). These
findings indicate that resveratrol effectively enhanced the richness
and diversity of intestinal microbiota, with the R2 and R4 groups
exhibiting the most pronounced effects.

3.5.4 Effects of resveratrol on beta diversity of
intestinal microbiota

Beta diversity analysis based on Weighted UniFrac distances
(Figure 8) demonstrated significant differentiation in microbial
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community composition between resveratrol-treated groups (R1,
R2 and R4) and the control group. Notably, the R4 group showed
the most distinct divergence from all other groups (P < 0.01).
Further analysis using Unweighted UniFrac distances revealed
clear clustering distinctions between R4, R2, R1 groups and
the control (P < 0.001). These results suggest that resveratrol
not only reshaped the overall distribution of gut microbial
species (Weighted UniFrac) but also modulated the relative
abundance of key taxa (Unweighted UniFrac), achieving targeted
interventions in the gut microecological structure of Cherry
Valley ducks.

3.5.5 Analysis of significantly differential intestinal
microbiota

Using LEfSe analysis (LDA >4.0, P < 0.05), we identified
multiple groups of statistically significant biomarkers across
treatments (Figure9). Specific findings include: R1 group
dominated by Bacteroidota (LDA = 5.90), with significant
enrichment of the genus Bacteroides (e.g., B. caecigallinarum,
LDA = 542). R2 group featured Prevotellaceae_UCG_001
(LDA = 4.12) as a alongside
enrichment of Bacteroides_sp_Marseille (LDA = 4.85) and
(LDA = 441). R3
group specifically enriched in Deferribacterota (LDA= 4.56),

core species, signiﬁcant

Eubacterium_coprostanoligenes_group
with mucosal inflammation-associated Mucispirillum (LDA

4.50) as
key biomarkers. R4 group highlighted by Firmicutes taxa,

= 492) and Firmicutes Mycoplasma (LDA =
including butyrate-producing Faecalibacterium (LDA = 4.15) and

Selenomonadaceae_Megamo (LDA = 4.34). Additionally, Alistipes
spp. (e.g., A. inops, LDA = 4.32, with gut barrier-protective
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function) and Desulfovibrionaceae_Desulfovibri (LDA = 4.58)
were significantly enriched. Control group (C) enriched in
Bacteroides_coprocola (LDA 4.61), Prevotellaceae (LDA
4.48), Ruminococcaceae_Subdoligranulum (LDA 4.70), and
Acidaminococcaceae_Phascolarctobacterium  (LDA 4.87).
These results demonstrate that resveratrol treatment (R1~R4)
selectively modulated the abundance of functionally distinct
microbial taxa, profoundly altering gut microbial composition and
functional characteristics.
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3.5.6 Correlation analysis between intestinal
microbiota and immune indicators

This study systematically explored the association between the
gut microbial community and immune indicators in Cherry Valley
ducks using genus-level redundancy analysis (CCA) and Spearman
correlation heatmaps.

CCA Analysis Results (Figure 10A) show that the first
two CCA axes (CCAl and CCA2) explained 65.55% of the

total community variation. Microbial distributions across
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Correlation between intestinal microbiota and immune indicators with CAA on Genus Level (A) and Correlation Heatmap on Genus level (B). Color
bar maps heatmap data directly. Colors: bule means positive correlation vs. red means negative correlation. Arrows: environmental factors; length =
correlation strength (longer = stronger). Angles: acute = positive correlation, obtuse = negative.

Corrclation Heatmap on Genus Level

c4
ca
LB
L4

(-4

laG

IghM

ovibrio
group

Bacteroides
Desulfo
Mycoplasma

abA1_

Mcgamenas
[

Faecalibacterium
Gab

Subdoligranulum

Prevotellaceae,

treatment groups exhibited significant group-specific patterns.
The characteristic microorganisms of R1 and R2 groups (e.g.,
R11, R21) showed significant positive correlations with pro-
inflammatory cytokines (IL-2, IL-4) and immunoglobulins (IgA,
IgG). Core microorganisms of the control group (e.g., Bacteroides,
Mucispirillum) were concentrated around the coordinate center
and closely associated with immunoglobulin indicators (IgM, 1gG).
Characteristic microorganisms of the R4 group (e.g., Megamonas)
were located far from the center, showing weak correlations with
immune indicators.

Spearman Correlation Heatmap (Figure 10B) shows that this
further quantified the strength of associations between genera and
immune indicators. Alistipes was significantly positively correlated
with IL-2, IL-4, IL-6, I[FN-y, and complement factor C3 (P < 0.05).
Mucispirillum showed positive correlations with IL-2 and IL-6.
Bacteroides was significantly negatively correlated with IgA, IgM,
C4, and IFN-y (P < 0.05).

These results indicate that there are complex bidirectional
associations between gut microbial community composition and
immune indicators (cytokines, antibodies). Different resveratrol
treatment groups, due to their distinct microbial community
structures, formed wunique “microbe-immune” association
patterns, providing critical data to further elucidate their

interaction mechanisms.

3.5.7 PICRUSt community functional difference
analysis

This study systematically analyzed between-group differences
in gut microbial functions between the control group and R1~R4
groups using primary and secondary classification functional
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relative abundance heatmaps. In the primary classification heatmap
(Figure 11): The relative abundance of microbial taxa associated
with the “Human Diseases” function was significantly higher in
groups R1 and R3 compared to group R4. The abundance pattern
of “Metabolism”-related taxa exhibited significant between-group
divergence: R1 and R3 groups showed higher metabolic activity
(higher abundance), while the R4 group had weaker metabolic
function (lower abundance).

Notably, the R4 group displayed significantly enriched
abundances of taxa related to “Organismal Systems,” “Cellular
Processes,” and “Environmental Information Processing.”

Additionally, the R3 group had extremely high abundances
of “Unclassified” taxa, suggesting it may carry more unknown
functional genes. The secondary classification heatmap further
refined functional differences: “Metabolism”-related taxa were
enriched in groups R4 and R2 (higher abundance) but depleted
in groups C and R1 (lower abundance). The abundance pattern
of “Transcription”-related taxa showed significant divergence: low
abundance in R1 and R3 groups, and moderate-to-high abundance
in R2 and R4 groups. “Membrane Transport’-related taxa were
more abundant in R2 and R4 groups but lower in RI and
R3 groups. For metabolic sub-functions such as “Metabolism of
Cofactors and Vitamins,” “Biosynthesis and Metabolism of Sugars,”
“Carbohydrate Metabolism,” and “Metabolism of Other Amino
Acids,” the relative abundances of related taxa were significantly
higher in R1 and R3 groups than in R4. In summary, both primary
and secondary classification heatmaps clearly revealed divergence
characteristics of abundance across functional categories (from
macro to fine modules): R1 and R3 groups exhibited highly
similar abundance patterns in certain functional modules (e.g.,
metabolic sub-functions), reflecting their functional association.
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PICRUSt Heatmap of functional relative abundance on level 1 (A) and level 2 (B).
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Meanwhile, significant between-group differences in core functions
(e.g., metabolism, transcription) provided critical evidence for in-
depth exploration of the links between microbial functions and
host phenotypes.

4 Discussion

4.1 Effects of resveratrol on growth
performance

As a functional feed additive, resveratrol has demonstrated
potential in alleviating the negative effects of heat stress in livestock
and poultry farming. Previous studies have shown that it can
effectively mitigate heat stress-induced reductions in feed intake
and apparent digestibility of nutrients by regulating nutrient
metabolism, improving gut function, and enhancing antioxidant
stress responses, thereby promoting animal growth performance
(Xie and Chen, 2023). Resveratrol has been reported to promote
gut development and antioxidant function in broilers under heat
stress, thereby improving their growth performance (Yujing et al,
2020). Further research by He et al. confirmed that supplementing
resveratrol under heat stress conditions can positively regulate
serum metabolic parameters and reduce tissue oxidative damage
to improve the growth performance of broiler chicks (He et al.,
2019a). However, the findings of this study are partially consistent
with earlier reports, though some nuances are worth noting.
While resveratrol did not significantly affect the average daily
gain (ADG) or average daily feed intake (ADFI) of Cherry Valley
ducks in this study, the feed-to-gain ratio (F/G) of the R1 group
(supplemented at 14 days of age) was significantly lower than that
of the control group (P < 0.05). This outcome diverges from the
conclusion by Zhang et al. (2020) which suggested that “400 mg/kg
resveratrol is ineffective” in broilers possibly reflecting differences
in experimental conditions or animal models. At the same time,
the observed improvement in F/G aligns with the trend reported
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by Li et al. (2023) where 250 mg/kg resveratrol enhanced the feed
efficiency in Chinese local chickens.

These discrepancies may stem from species specificity: as a fast-
growing aquatic bird, Cherry Valley ducks exhibit fundamental
differences in nutrient metabolic pathways (e.g., energy allocation,
intestinal absorption efficiency) compared to terrestrial poultry
(e.g., broilers), leading to species-specific effects of resveratrol at
the same dosage. Notably, although no significant changes in
growth performance were observed in this study, the significant
improvement in slaughter performance of R1~R4 groups suggests
that resveratrol may exert its effects by optimizing nutrient
allocation efficiency rather than directly promoting growth—a
hypothesis consistent with the mechanism proposed by Meng
et al. (2023).where resveratrol improves livestock and poultry
production performance by regulating lipid metabolism, This
study validates the potential of resveratrol in regulating the F/G
ratio and slaughter performance in Cherry Valley ducks, with its
effects likely dependent on species metabolic characteristics and
supplementation timing, providing experimental evidence for the
precise application of resveratrol in waterfowl farming.

4.2 Effects of resveratrol on immune
function

The impact of resveratrol on the immune function of Cherry
Valley ducks can be comprehensively analyzed from three aspects:
immune organ development, serum immune indicators, and
cytokine regulation. First, regarding immune organ indices, the
thymus, spleen, and bursa of Fabricius are critical immune organs
in poultry, and their relative weights (immune organ indices)
directly reflect the body’s immune status (Huang et al., 2004). In this
study, the thymus and spleen indices of resveratrol-treated groups
(R1~R4) showed an upward trend, though not reaching statistical
significance (P > 0.05). However, considering the physiological
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characteristic of Cherry Valley ducks entering the immune decline
phase at 42 days of age, this positive regulation still holds
important physiological significance. Although not statistically
significant, the upward trends in thymus and spleen indices suggest
a potential delay in immune organ involution, which merits further
investigation. This result aligns with the findings reported that
resveratrol increased thymus and spleen indices in heat-stressed
yellow-feathered broilers, validating its potential application in
waterfowl. However, the influence of animal growth cycles and the
natural changes in immune organs on the results should be noted
(He et al., 2019b).

Second, for serum immune indicators, the complement system
is a core component of the body’s non-specific immunity, with
C3 and C4 being key targets for immune regulation due to their
high proportion and critical functions (Lee et al., 2025). This
experiment found that the complement C3 content in the R2
group (supplemented at 21 days of age) was extremely significantly
elevated (P < 0.0001), consistent with the conclusion by S He et al.
that resveratrol increases C3 levels in heat-stressed broilers. The
mechanism is hypothesized to involve activation of the macrophage
TLR4 pathway, enhancing immune responses (Shi et al., 2025).
However, no significant effects were observed on immunoglobulins
(IgA, 1gG, IgM)—markers of specific immunity—possibly due to
differences in experimental dosage, animal species, or growth stages
(He et al., 2019b).

Third, regarding cytokine regulation, IL-2 and IL-4 are
key factors in balancing Th1/Th2 immunity. Their levels were
significantly elevated in the R1 and R2 groups (supplemented
at 14~21 days of age) (P < 0.01), indicating that resveratrol
enhances the body’s disease resistance by promoting Thl-type
immune responses (cellular immunity). This result is consistent
with the mechanism proposed by Liu S et al., where resveratrol
exerts anti-inflammatory effects by inhibiting the TLR4/NF-«kB
pathway, further confirming that resveratrol supplementation for
over 3 weeks has immunoregulatory and anti-inflammatory activity
(Liu et al., 2024a).

In summary, resveratrol influences the immune function of
Cherry Valley ducks through multiple pathways, including delaying
immune organ degeneration, activating the complement system,
and regulating Th1/Th2 balance. Its effects are closely related to the
supplementation stage (e.g., the sensitive 21-day period), providing
experimental evidence for the precise application of resveratrol in
waterfowl farming.

4.3 Effects of resveratrol on intestinal
microbiota

The regulation of intestinal microbiota by resveratrol and its
functional impacts are the core focuses of this study. As the host’s
“second genome,” intestinal microbiota plays a critical role in
maintaining poultry health and productivity by participating in
nutrient digestion, immune development, and barrier maintenance
(Daietal., 2018; Vasaietal,, 2014; Wu et al., 2021). This study found
that resveratrol significantly improved the gut health and immune
status of Cherry Valley ducks by reshaping the intestinal microbiota
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structure, regulating metabolic functions, and influencing the
microbiota-immune interaction.

4.3.1 Intestinal microbiota diversity and structural
remodeling

The Shannon index (diversity) and Chaol index (richness)
of the R2 and R4 groups were extremely significantly elevated
(P < 0.001), indicating that resveratrol effectively increased
microbial abundance and evenness. LEfSe analysis further revealed
that the R4 group was specifically enriched with butyrate-
producing Faecalibacterium (LDA = 4.15) and gut barrier-
protective Alistipes (LDA = 4.32), while the Bacteroidota
phylum was significantly increased in the R1 and R2 groups
(+22%—35%), and Deferribacterota and opportunistic pathogens
(e.g., Prevotellaceae, Desulfovibrio) were notably reduced. This
pattern aligns with the findings in mice, where resveratrol
increased Bacteroidota abundance (Chen et al.,, 2024); however,
this study further observed that the elevation of Bacteroidota
in R1 AND R2 groups was accompanied by a reduction in
Deferribacterota. The Bacteroidota (Bacteroidota) in R1 and R2
groups was significantly increased, and its metabolites could
activate intestinal epithelial CD4+ T cells, stimulate interleukin
release, or reduce lipopolysaccharide (LPS) production, thereby
alleviating inflammation (Yueqin et al., 2021). This explains why
the R2 group exhibited extremely significant upregulation of IL-
2 and IL-4—likely driven by microbiota-induced CD4+ T cell
activation (He et al., 2023). Conversely, the observed reductions
in Prevotellaceae (known short-chain fatty acid producers) and
Desulfovibrio (sulfate-reducing bacteria) in both the R1 and R2
groups suggest a potential mechanism by which resveratrol may
influence gut health. While not directly measured in this study,
previous research indicates that metabolites from these bacterial
groups may inhibit the NF-kB pathway and alleviate H,S-induced
damage to intestinal epithelial mitochondrial function, respectively
(Scardino et al., 2025; Singh et al., 2023). It is worth noting that
the association with SCFA mechanisms remains speculative in the
present context, but the suppression of these bacterial taxa could
theoretically contribute to reduced inflammation and enhanced
intestinal barrier function.

4.3.2 Microbiota-immune interaction
mechanisms

CCA analysis demonstrated that microbiota composition
dominated immune responses. Microbial clusters in R1 AND R2
groups (e.g., R11, R21) were positively correlated with IL-2, IL-
4, IgA, and IgG, suggesting that early supplementation (14~21
days of age) activated the Th2 immune pathway by enriching
specific microbiota. The Prevotellaceae enriched in the R2 group
may regulate the NF-kB/MAPK signaling pathway via butyrate
metabolism, inhibiting Pseudomonas aeruginosa gene expression
and promoting IL-6 secretion (Bertelsen et al., 2021). Additionally,
the upregulated short-chain fatty acid (SCFA) synthesis genes in
Faecalibacterium led to increased butyrate levels, which modulated
gut lumen pH, inhibited NF-kB activation, and upregulated
IL-10 expression, synergizing with elevated IL-2/IL-4 to exert
anti-inflammatory effects (Munulkka et al., 2017). Correlation
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analysis further confirmed that Alistipes was significantly positively
correlated with IL-2 and IL-4 (r > 0.6), potentially enhancing
mucosal immunity via tryptophan metabolism to produce indole
derivatives (Liu et al., 2024b); in contrast, the negative correlation
between Bacteroides (Bacteroides) and IgA/IgM (r < —0.5)
challenged the traditional view that all Bacteroidetes are beneficial,
suggesting their functions may be regulated by metabolite type
(Zhu and Ding, 2024).

4.3.3 Functional regulation of intestinal
microbiota

As the hosts “second genome,” the functional diversity of
gut microbiota influences poultry health through metabolic and
immune regulation (Hussain and Bhattacharyya, 2024). PICRUSt
functional heatmaps revealed differentiated regulation of gut
microbiota function between resveratrol-treated groups (R1~R4)
and the control group: At the primary classification level,
“Human Diseases” function abundance was significantly higher in
RI&R3 groups than in R4, while “Metabolism” function activity
(R1&R3) contrasted with “Organismal Systems” and “Cellular
Processes” enrichment in R4. At the secondary classification level,
metabolism-related taxa were enriched in R2&R4 groups; genetic
transcription and membrane transport were active in R2&R4
groups; and carbohydrate metabolism was more pronounced in
R1&R3 groups. Consistent with previous mammalian studies
(e.g., mice, broilers), resveratrol promoted lipid and carbohydrate
metabolism (Chen et al.,, 2024; Jie et al., 2024; Qin et al., 2025).
By reshaping microbiota function (metabolism, homeostasis),
resveratrol influenced Cherry Valley duck health, providing
theoretical support for precision nutrition in poultry.

This study is the first to systematically reveal the mechanism
by which resveratrol improves gut health in Cherry Valley ducks
via the “microbiota structural remodeling-metabolic function
regulation-immune response activation” axis, offering metabolic-
level theoretical evidence for precision nutrition in waterfowl.
However, the study did not detect microbiota metabolites (e.g.,
SCFAs, tryptophan derivatives) or correlate microbiota changes
with disease resistance (e.g., challenge tests). Future studies
should employ metabolomic and transcriptomic analyses to
elucidate the underlying molecular mechanisms and substantiate
the functional claims regarding the synergistic effects of the 21-day
resveratrol supplementation.

5 Conclusion

Using Cherry Valley ducks as a model, this study preliminarily
explored the effects of resveratrol supplementation at different
stages. The results suggest that resveratrol may improve slaughter
performance, enhance nutrient utilization efficiency, and elevate
humoral immunity markers (IgA, complement C3) and cytokine
expression (IL-2, IL-4). It also appeared to modulate gut microbiota
composition by increasing beneficial bacteria and suppressing
potential pathogens. Notably, supplementation initiated at 21 days
of age (R2 group) showed relatively stronger effects on slaughter
traits and immune-microbiota coordination. However, these
observations are constrained by fixed dosage, selected endpoints,
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and lack of metabolite validation. The findings tentatively support
a potential “microbiota-immune-metabolism” regulatory axis,
offering preliminary insights for sustainable duck production.
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