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The prevalence of antibiotic-resistant bacterial strains, particularly Staphylococcus
aureus, poses a significant threat to global health. The ability of S. aureus to form
biofilms reduces the efficacy of antibiotics. Therefore, the need for innovative
anti-biofilm strategies to improve the efficacy of antibiotic therapy is crucial,
particularly when biofilms cause treatment failure. In this study, we investigated the
effects of glucosamine (GAM) and its acetylated derivative, N-acetylglucosamine
(NGAM), on the biofilm formation of the multidrug-resistant S. aureus strain Wood
46. The minimum biofilm inhibitory concentration (MBIC) assay was used to
evaluate the inhibition of biofilm formation. The results indicated that 2—-8% of
GAM significantly inhibited S. aureus biofilm formation. However, only a high
concentration of NGAM (8%) showed partial inhibition of biofilm formation. The
RNA sequencing analysis of the treated biofilms indicated that, compared to
NGAM, GAM leads to a more pronounced downregulation of S. aureus adhesion
genes (eno, ebps, and sraP) and genes involved in arginine biosynthesis and
tricarboxylic acid (TCA) pathways, which are essential for biofilm proteinaceous
structure. The decreased pH in the biofilm environment treated with higher GAM
concentrations supports its observed anti-biofilm activity and is likely linked to
impaired pH homeostasis resulting from the downregulation of ureABC genes and
disruption of urea metabolism, a process interconnected with arginine biosynthesis.
In conclusion, unlike its acetylated form (NGAM), GAM is a potent anti-biofilm
agent that effectively inhibits the biofilm formation of S. aureus Wood 46 and
significantly alters the gene expression profile associated with biofilm formation.

KEYWORDS

arginine biosynthesis, biofilm metabolism, glucosamine (GAM), multidrug-resistant
bacteria, N-acetylglucosamine (NGAM), RNA-seq, Staphylococcus aureus, TCA cycle

1 Introduction

The increasing prevalence of antibiotic-resistant bacterial strains is one of the major global
public health threats. It was estimated that antibiotic-resistant bacterial infections were directly
responsible for more than one million deaths in 2019, which could increase drastically to 50
million by 2050 without well-adapted preventive measures (O'Neill, 2014). One of the primary
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multidrug-resistant microorganisms is Staphylococcus aureus
(S. aureus) (Pajohesh et al., 2022; Lowy, 1998). S. aureus is a Gram-
positive opportunistic bacterial pathogen commonly found as part of
the skin and nasal cavity flora. Under certain circumstances, S. aureus
can become pathogenic, causing a wide range of health issues in
humans and animals (Lowy, 1998; Petersson-Wolfe et al., 2010).
Bacteria such as S. aureus continuously attempt to evade the host
immune system or antimicrobial agents by using different
mechanisms. S. aureus strains are categorized as methicillin-resistant
S. aureus (MRSA) or methicillin-sensitive S. aureus (MSSA) strains
(Chambers and DeLeo, 2009). Biofilm formation is one of the key
mechanisms of S. aureus bacterial resistance against antimicrobial
agents (Hall-Stoodley et al., 2004; Prinzi and Rohde, 2023). S. aureus
biofilm formation is initiated after planktonic bacteria adhere to a
biotic or abiotic surface, followed by the secretion of an extracellular
matrix (ECM) (Moormeier and Bayles, 2017). The biofilm structure
varies from a more proteinaceous composition in MRSA strains to a
polysaccharide composition in MSSA strains (Pozzi et al., 2012). A
biofilm forms through five different stages, each regulated by several
encoding genes (Moormeier and Bayles, 2017; Wu et al., 2024).
Disturbing any of these stages could inhibit biofilm formation or
facilitate its dispersal (Roy et al., 2018). To overcome antibiotic-
resistant S. aureus strains and biofilm formation as protective
mechanisms for bacteria, novel compounds should be considered in
the search for alternative treatments. Naturally accessible compounds,
such as carbohydrates with various molecular structures, might
be significant therapeutic alternatives (Ritter and Wong, 2001; Ye and
Chen, 2022). Glucosamine (GAM) and its acetylated derivative,
(NGAM),
(Figure 1) with broad-spectrum applications in the food and

N-acetylglucosamine are amino-monosaccharides
pharmaceutical industries (Dalirfardouei et al., 2016; Chen et al,,
2010; Liu et al., 2013; Noack et al., 1994). GAM significantly enhances
the potential antibacterial properties of substances such as gold, silver,
and copper nanoparticles against S. aureus (Veerapandian et al., 20105
Yang et al, 2018; Chudobova et al, 2015). Increased anti-
staphylococcal activity was also observed when GAM was added to an
oligochitosan solution (Blagodatskikh et al., 2013). The improved
efficacy against S. aureus is attributed to the increased interactions
between these nanoparticles and the bacterial cell wall after the
addition of GAM, allowing the compounds to penetrate the bacteria
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(Blagodatskikh et al., 2013). Importantly, chitosan oligosaccharides
(COSs), which are composed of monomeric units of GAM and
NGAM, have demonstrated potent anti-biofilm activity against
S. aureus. COSs not only inhibit biofilm formation but also show
synergistic effects with antibiotics such as clindamycin, enhancing
their efficacy against S. aureus biofilms (Asadpoor et al., 2021). These
findings suggest that the monomeric building blocks of COSs, GAM
and NGAM, may themselves possess biofilm-inhibitory properties,
warranting investigation into their individual effects.

To the best of our knowledge, no studies have investigated the
impact of GAM on S. aureus biofilm formation. Given the critical role of
bacterial biofilms in the prevalence of antibiotic-resistant strains,
we investigated the effects of GAM and NGAM on S. aureus biofilm
formation and their potential anti-biofilm mechanisms. These
compounds differ subtly in chemical structure, particularly due to the
presence of an acetyl group in NGAM (Figure 1). The biofilm assay
illustrated complete inhibition of S. aureus biofilm formation at various
concentrations of GAM, while only partial inhibition was observed at the
highest concentration of NGAM. Transcriptomic analysis revealed that
GAM inhibits S. aureus biofilm formation by suppressing genes involved
in bacterial adhesion and inhibiting dominant metabolic pathways;
however, this inhibitory effect was less pronounced with NGAM.

2 Materials and methods
2.1 Bacterial strain

S. aureus Wood 46 (ATCC 10832; de Vor et al., 2022), a MRSA
strain, was generously provided by Prof. Dr. S. Rooijakkers (UMC,
University Medical Center; Utrecht, Netherlands). The strain was
cultured on sheep blood agar plates (Biotrading, Mijdrecht,
Netherlands) at 37 °C.

2.2 GAM and NGAM

(GAM) derived from
Aspergillus niger and N-acetyl-D-glucosamine (NGAM) derived from

D-(+)-glucosamine hydrochloride

Paralithodes camtschaticus, both with a purity >99%, were purchased

A)

HO

OH

OH
NH,

FIGURE 1

The chemical structures of D-(+)-glucosamine hydrochloride (GAM) (A) and N-acetyl-D-glucosamine (NGAM) (B). These structures were drawn using

the web-based BioRender software.
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from Sigma-Aldrich (St. Louis, MO, United States). The compounds
were freshly prepared by dissolving them in tryptic soy broth (TSB);
their pH was adjusted to ~7.3; and they were finally passed through a
0.2 pm sterile filter (Minisart®, Sartorius, Gottingen, Germany). The
chemical structures of GAM and NGAM are depicted in Figure 1.

2.3 Minimum biofilm inhibitory
concentration (MBIC) assay

The minimum biofilm inhibitory concentration (MBIC) assay was
conducted to evaluate the effect of GAM and NGAM on the biofilm
formation of S. aureus. For this purpose, S. aureus was cultured in TSB
for 24 h at 37 °C in a shaking incubator (160 rpm). After 24 h, the
culture was diluted to achieve a starting optical density (ODggonm) Of
~0.0005 for the MBIC assay. The MBIC assay, with or without GAM
or NGAM at concentrations ranging from 8 to 0.25%, was performed
in TSB supplemented with 0.5% glucose and 3% NaCl [biofilm media
or BM (Kang et al., 2019)], resulting in a final volume of 200 pL in a
96-well F-bottom polystyrene microtiter plate.

The MBIC assay plate was covered with a sterile breathable cover
(VWR International, Amsterdam, Netherlands) and incubated at
37 °C with 5% CO, under static conditions for 24 h. After incubation,
the supernatant was removed from the wells, and the biofilms were
rinsed with 200 pL of phosphate-buffered saline (PBS). Then, the
biofilms were fixed at 60 °C for 30 min and stained with 160 pL of
0.1% crystal violet (CV) for 5 min. The CV stain from the wells was
carefully washed once with excess tap water, and the stained biofilms
at the bottom of the wells were dissolved in 160 pL of 33% acetic acid.
Finally, 100 pL of the dissolved biofilm was transferred to another
96-well plate, and the optical density at 595 nm was measured using a
FLUOstar Omega microplate reader.

The MBIC of GAM and NGAM was statistically analyzed as
previously described by Sun et al. (2016), based on the inhibition of
bacterial biofilm growth exceeding 90% compared to the control with
full biofilm growth (positive control).

2.4 Colony-forming unit (CFU) assay

The colony-forming unit (CFU) assay was performed on different
biofilm conditions to measure the number of surviving bacteria in the
biofilm of S. aureus. Briefly, after 24 h of the MBIC assay, the
supernatant was removed and the biofilms were rinsed with 200 pL of
PBS. Subsequently, 100 pL of PBS was added to each well, and the
biofilms were scratched with sterile tips. Serial dilutions of the well
content were cultured on sheep blood agar square Petri dishes and
incubated at 37 °C. The number of S. aureus colonies was counted
after 24 h, and the data are shown in Supplementary Figure S1.

2.5 RNA isolation from S. aureus biofilms

The culture media above the biofilm were first removed before
total RNA isolation from the S. aureus biofilms. TRIzol™ LS Reagent
(Invitrogen, United States) was used for total RNA isolation according
to the manufacturer’s instructions. To ensure that the collected RNA
samples yield good results, we measured the bacterial counts in both
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the supernatant and the biofilm. Due to the very low bacterial
population in the supernatant, we decided to conduct RNA sequencing
exclusively on the biofilm samples. The RNA yield was obtained by
pooling eight different wells, and three independent biological
replicates were collected for each condition for subsequent
RNA sequencing.

2.6 RNA-sequencing (RNA-seq)

To achieve the best possible results, a quality control (QC)
process was performed on the isolated RNA samples. All samples
with an RNA quantity of >500 ng and ODs of A260/230 and
A260/280 > 2 passed the QC. Subsequently, to ensure the absence
of DNA contamination, the extracted RNA samples were subjected
to treatment with RNase-free DNase I (Thermo Fisher Scientific,
Baltics UAB, Lithuania). The prepared RNA samples were
delivered to Novogene (Novogene UK, Cambridge,
United Kingdom) for RNA-sequencing. The RNA library was
prepared through rRNA removal and cDNA reverse transcription.
Ilumina Novaseq6000 was used to sequence the RNA samples,
and the NovaSeq PE150 strategy was then utilized to screen the
expressed genes. Transcriptomic analysis was then performed to
identify differentially expressed genes (DEGs). The log,(FPKM+1)
scale was utilized to represent the expression levels of genes, which
also indicates the fold change in the expression of each gene
compared to the expression level in the reference (positive
control). For this purpose, all expressed genes were classified
based on the corrected p-value (—logl0) into non-differentially
expressed genes and differentially expressed genes. The expression
levels of DEGs in the treated biofilm samples (GAM and NGAM)
were compared to the positive control, and the fold change for
each gene was determined. The fold change factor represents the
difference in the expression of each specific gene in the treated
biofilm samples compared to the positive control. The output data
were displayed as negative and positive values, representing
downregulated and upregulated genes, respectively. Through
enrichment analysis of DEGs, the clustering of expressed genes
associated with different pathways was investigated. There are
different databases offering a wide range of pathways, such as
biological pathways, genomes, and diseases. In the present study,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
was used to identify pathways related to the clustering of DEGs.
Subsequently, clusterProfiler software (version 4.0) was used for
enriching DEGs (Wu et al., 2021). Different functional pathways
were found by grouping upregulated or downregulated DEGs and
differentiated based on the number of involved genes and the
adjusted p-value (—logl0). Hierarchical clustering analysis was
also conducted to categorize genes with similar expression
patterns into different clusters, which were then illustrated in
a heatmap.

2.7 pH evaluation of the supernatant of
S. aureus biofilms

To measure the pH of the biofilm supernatant, the upper media
from similarly treated wells were carefully collected and pooled in a
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50 mL sterile tube in order to obtain a sufficient volume for accurate
measurement using a pH meter probe.

2.8 Statistical analysis

The data were presented as mean + SEM from a minimum of
three separate experiments (n = 3), each conducted in triplicate (three
wells per group). The results were statistically analyzed using
GraphPad Prism 9.0 software (GraphPad, San Diego, CA,
United States). Statistical significance was assessed using one-way
ANOVA, followed by the Bonferroni post hoc test, with p-values less
than 0.05 considered statistically significant.

3 Results

3.1 GAM and NGAM demonstrate distinct
effects on the biofilm formation of
S. aureus

The inhibitory activity of GAM and NGAM against S. aureus
biofilm formation was compared using the CV staining protocol. As
depicted in Figure 2, the serially diluted concentrations of both
compounds, ranging from 0.25 to 8%, were applied to the biofilms of
S. aureus. Both compounds showed inhibitory effects against biofilm
formation. However, the extent of inhibition varied between the two
compounds. Although a concentration-dependent biofilm reduction
was observed with NGAM, only 8% NGAM significantly inhibited
biofilm formation. The inhibition of biofilm formation reached 47%
with 8% NGAM and 54% with 4% NGAM compared to full biofilm
formation (the positive control, Figure 2B). In contrast, GAM
demonstrated a more potent inhibitory effect, leading to drastic

10.3389/fmicb.2025.1689343

biofilm inhibition. Among all the tested concentrations of GAM and
NGAM, GAM at concentrations >2% can be considered the MBIC
against S. aureus, achieving over 90% inhibition of biofilm formation
(Figure 2A). The CFU assay showed a significantly lower number of
live S. aureus bacteria in all GAM-treated biofilms compared to the
NGAM-treated biofilms (Supplementary Figure S1).

3.2 GAM and NGAM alter the gene
expression profile of the S. aureus biofilm

To gain insights into the mechanism underlying the differential
effects of GAM and NGAM on S. aureus biofilm formation, the
transcriptomic profiling of the treated and untreated biofilms was
compared. Due to the low remaining biofilm biomass under inhibited
conditions and to obtain sufficient RNA, S. aureus biofilms exposed
to 0.5% concentrations of GAM and NGAM were selected for RNA
isolation. A Venn diagram (Figure 3) was generated to depict the
co-expressed and unique differentially expressed genes (DEGs) among
the GAM-treated, NGAM-treated, and untreated S. aureus biofilms.
Of all 3,140 expressed genes, 3,042 genes were commonly expressed
in the biofilms treated with GAM and NGAM, as well as in the
untreated biofilms (Supplementary Tables S1,52). However, only a
limited number of genes were uniquely expressed under each biofilm
condition (13 for GAM, 16 for NGAM, and 16 for control).

Subsequently, the classified genes based on the p-value (<0.05)
and fold change factors were illustrated in volcano plots (Figures 4A,B).
In the S. aureus biofilm treated with GAM and NGAM, a total of 808
and 541 DEGs were identified, respectively. The highly downregulated
DEGs, such as IdhD, icaABCD, ureAEE, sdrC, and 23S rRNA, were
similar in both GAM- and NGAM-treated biofilms, although the fold
change in gene expression was slightly different. Similarly, the highly
upregulated DEGs, such as nanAET, lukEv, lukDv, ptsG, and sspB, were
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FIGURE 2

(A) The activity of GAM and (B) NGAM against the biofilm formation of the S. aureus Wood 46 strain. Two-fold serial dilutions of GAM and NGAM in TSB
were exposed to the S. aureus biofilm for 24 h. The positive control (Control+) represents the full biofilm formation of S. aureus Wood 46 in TSB media.
The data are presented as mean + SEM, expressed as a percentage of full biofilm formation (Control+). The data were obtained from three different
biological and technical replicates. The values for each condition were statistically compared to the positive control using one-way ANOVA (*p < 0.05,
***p < 0.001, and ****p < 0.0001). GAM, glucosamine; NGAM, N-acetylglucosamine.
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FIGURE 3

Venn diagram showing overlapping and unique differentially
expressed genes (DEGs) among the GAM-treated, NGAM-treated,
and untreated S. aureus biofilms (24 h). Control+ represents the full
biofilm formation of S. aureus in TSB (positive control). GAM and
NGAM represent the biofilms treated with GAM and the biofilms
treated with NGAM, respectively.

similarly expressed in both GAM- and NGAM-treated biofilms, with
only small differences in the fold change of gene expression.

3.3 Several upregulated and downregulated
biological pathways are detected through
the clustering of differentially expressed
genes and KEGG enrichment analysis

The KEGG database was used to compare the investigated DEGs
against the whole genome background of the S. aureus Wood 46
strain, identifying significantly enriched metabolic pathways. The
results were visualized using histograms, as depicted in Figure 5.
Glycolysis/gluconeogenesis, aminoacyl-tRNA biosynthesis, and
pyruvate metabolism pathways were found to be significantly
upregulated in the biofilm treated with NGAM (Figure 5A). In
contrast, only the aminoacyl-tRNA biosynthesis pathway was
significantly upregulated in the biofilm treated with GAM (Figure 5B).
Although only the ABC transporter pathway was significantly
downregulated in the NGAM-treated biofilms (Figure 5C), four
different pathways, including arginine biosynthesis, citrate cycle,
microbial metabolism in diverse environments, and 2-oxocarboxylic
acid metabolism, were significantly downregulated in the biofilms
treated with GAM (Figure 5D).

Given the stronger anti-biofilm activity of GAM, as illustrated in
Figure 2, we aimed to determine which genes involved in biofilm
formation are more significantly affected by GAM compared to
NGAM. To accomplish this, we focused on genes specifically
associated with the two most downregulated pathways: the
tricarboxylic acid (TCA) cycle and arginine biosynthesis. Additionally,
differentially expressed genes (DEGs) known to play a role in biofilm
formation were included. Heatmaps depicting these genes were
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generated, as illustrated in Figure 6. Polysaccharide intercellular
adhesin (PIA)-encoding genes (icaABCD) and IdhD were among the
most downregulated genes in both GAM- and NGAM-treated
biofilms, as shown in Figure 6A. On the other hand, S. aureus
leukocidin-encoding genes (lukEv and lukDv) and nan locus genes
(nanAET) were highly upregulated under both GAM and NGAM
conditions, as displayed in Figure 6C. The transcription of the majority
of the genes involved in the TCA cycle, arginine biosynthesis, and urea
metabolic pathways was lower in the biofilm treated with GAM than
in the biofilm treated with NGAM (Figure 6B). In particular, there was
a difference in the expression of the downregulated ureA-C and
pdhA-D genes between the biofilms treated with GAM and NGAM. In
addition, genes involved in the initial stages of prokaryotic S. aureus
adhesion and colonization, such as sraP, as well as microbial surface
components recognizing adhesive matrix molecules (MSCRAMMs),
were mostly downregulated by GAM (Figure 6D).

3.4 pH of the S. aureus biofilm environment
changes as the biofilm is inhibited by GAM

To assess the metabolic impact of GAM and NGAM on S. aureus
biofilm formation, changes in the pH of the supernatant from the
biofilm growth environment were monitored, as shown in Figure 7.
The supernatant of the untreated S. aureus biofilm (positive control)
exhibited a moderately acidic pH (x5.0). Treatments with lower
concentrations of GAM and NGAM (0.25-2%), which exhibited no
or minimal anti-biofilm activity, resulted in supernatant pH values
similar to those of the controls. However, treatments with higher
concentrations (4 and 8%) revealed opposing pH trends between
GAM and NGAM. The supernatants from biofilms treated with 4 and
8% NGAM showed the highest pH values among all tested conditions
(=5.15 and ~5.24, respectively), whereas treatment with 4 and 8%
GAM resulted in the lowest pH values (x4.85 and ~4.56, respectively).

4 Discussion

S. aureus is recognized as a major antibiotic-resistant bacterium
that causes complex infections in humans and animals (Tacconelli,
2017; Rao et al., 2022). Almost all S. aureus strains can form a biofilm,
which is one of the key mechanisms of bacterial protection against
antibiotics (Hall-Stoodley et al., 2004). Considering the major role of
the biofilm in protecting S. aureus under stressful conditions,
we examined the effects of the amino-monosaccharides GAM and its
acetylated form NGAM on S. aureus biofilm formation and
investigated their potential anti-biofilm mechanisms.

A strong (>90%) and significant inhibition of S. aureus Wood 46
biofilm formation was observed after treatment with 2 to 8% GAM,
while 8% NGAM could only inhibit biofilm formation by 47%. Similar
results have been obtained using polysaccharide chitosan, which
typically contains 60-90% GAM depending on the degree of
deacetylation, with the remaining portion being NGAM (Asli et al.,
2017; Felipe et al,, 2019; Lopes et al., 2020). However, the reported
inhibitory effect of chitosan on biofilm formation was less pronounced
compared to that of GAM. NGAM is not only a main component of
the bacterial cell wall but also forms polymers (PNAG or PIA) that are
an important part of the biofilm matrix and play an important role in
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FIGURE 4

Volcano plots visualizing the distribution of differentially expressed genes (DEGs) in the S. aureus Wood 46 strain biofilms exposed to (A) GAM and
(B) NGAM, compared to untreated biofilms (positive control or Control+). Gene expression was statistically analyzed, and genes with a corrected
p-value of <0.05 were considered DEGs. The horizontal axis represents the fold change in gene expression, while the vertical axis represents the —
log10 corrected p-value. Smaller p-values are indicated higher on the y-axis. Each point on the plot represents a specific gene. Blue dots represent
genes with no significant differential expression, red dots represent upregulated DEGs, and green dots represent downregulated DEGs. Due to the
proximity of gene expression values, only 12 highly significant genes, based on p-values and/or fold changes, are labeled on the plots. The data for
each sample were derived from three biological and technical replicates. GAM, glucosamine; NGAM, N-acetylglucosamine.
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the adhesion of S. aureus to solid surfaces during biofilm formation.
This likely explains why NGAM interferes less with biofilm formation
than GAM (Lin et al., 2015; Yeswanth et al., 2013).

The RNA-sequencing analysis performed on the S. aureus biofilm
exposed to GAM and NGAM displayed an altered biofilm gene
expression profile induced by both amino-monosaccharides. Among
the investigated DEGs, all genes encoding S. aureus PIA-producing
enzymes (icaABCD) were highly downregulated by both GAM and
NGAM. The presence of ica enzymes is crucial for cell-cell adhesion
and subsequently for forming biofilms by S. aureus planktonic bacteria
(Cramton et al., 1999; Diemond-Herndndez et al., 2010). Other
studies using anti-biofilm compounds, such as gallic acid or manuka
honey, have shown that downregulation of the ica genes, particularly
icaA and icaD, is crucial for the reduction of S. aureus biofilms (Liu
etal, 2017; Kot et al,, 2020). Although NGAM showed no significant
inhibitory effect on S. aureus biofilm formation, the icaABCD genes
were found to be nearly as downregulated as those associated with
GAM. Therefore, downregulation of the ica gene family is unlikely to
be the main mechanism behind the anti-biofilm properties of GAM.

Treating the S. aureus biofilm with GAM and NGAM resulted in
the high expression of many genes with roughly similar expression
levels, particularly in the highly upregulated genes such as lukDv and
lukEv, as shown in Figures 4, 8. The lukED genes encode Staphylococcal
strain-specific toxins with cytolytic functions, which are secreted as
virulence factors for pathogenesis purposes (Vasquez et al., 2020).
Furthermore, we observed a similar upregulation level in some of the
nan locus (nanA, nanE, nanT) genes under both GAM and NGAM
conditions, which are part of carbon metabolism in the bacteria
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(Olson et al., 2013). The nan genes facilitate the uptake and catabolism
of sialic acid, allowing S. aureus to adapt to environments rich in this
nutrient. Since sialic acid, which is converted into pyruvate in the
glycolytic pathway, contributes to the structural integrity and stability
of biofilms, upregulation of the nan genes may destabilize the biofilm
structure (Olson et al., 2013).

However, the adaptation of S. aureus biofilms to diverse
environments is achieved through several biological pathways
(Malviya et al., 2023). Both GAM, and to a lesser extent NGAM,
downregulated TCA cycle genes encoding the pyruvate dehydrogenase
(PDH) complex (pdhABCD), succinate dehydrogenase (sdhAB), and
oxoglutarate dehydrogenase (odhAB) compared to the untreated
biofilm (Figure 6A). The TCA cycle plays a central role in S. aureus
biofilm metabolism and ATP production, especially under conditions
of oxygen and nutrient shortages (Gaupp et al., 2010). Within biofilms,
oxygen availability is limited, creating microaerophilic to anaerobic
niches. Under such conditions, S. aureus upregulates genes in
glycolysis, fermentation, and anaerobic respiration while repressing
genes in the TCA cycle (Fuchs et al., 2007; Cramton et al., 2001).
However, other studies have shown that, in certain biofilm regions, the
enzymes and corresponding genes of the TCA cycle are upregulated
compared to planktonic growth (Resch et al., 2005; Resch et al., 2006),
indicating metabolic heterogeneity and suggesting that GAM, in
particular, facilitates the transition from a biofilm to a planktonic
growth phase (Resch et al., 2005; Resch et al., 2006).

In addition to TCA metabolism, the arginine biosynthesis
pathway was found to be downregulated in both GAM- and NGAM-
treated S. aureus biofilms. Our data indicate a more pronounced
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FIGURE 5

Significantly upregulated and downregulated KEGG pathways in the S. aureus Wood 46 biofilms treated with GAM or NGAM. The y-axis shows the
pathway name and the number of involved genes (rich factor) per pathway (n = 3), while the x-axis represents the —log10 adjusted p-value after
multiple hypothesis testing, shown as histograms. A star on the bar indicates pathways with statistically significant differences in the rich factor. The
rich factor is defined as the ratio of DEG counts to the pathway's annotated gene counts, reflecting the degree of enrichment. Panels (A) and (B) show
histograms of upregulated KEGG pathways in the biofilms treated with NGAM and GAM, while panels (C) and (D) display the corresponding data for
downregulated pathways in the biofilms treated with NGAM and GAM, respectively.

B) GAM

«

Aminoacyl-tRNA biosynthesis (n=16)

Nucleotide metabolism (n=13)

Glycolysis / Gluconeogenesis (n=16)

Pyruvate metabolism (n=18)

Biosynthesis of nucleotide sugars (n=10)

Propanoate metabolism (n=12)

O-Antigen nucleotide sugar biosynthesis (n=6)
Amino sugar and nucleotide sugar metabolism (n=11)
Pantothenate and CoA biosynthesis (n=8)

Methane metabolism (n=8)

Pyrimidine metabolism (n=9)

Cysteine and methionine metabolism (n=8)
Peptidoglycan biosynthesis (n=8)

Two-component system (n=17)

Microbial metabolism in diverse environments (n=31)
Butanoate metabolism (n=5)

Biosynthesis of cofactors (n=23)

Staphylococcus aureus infection (n=10)

Fatty acid degradation (n=3)

Oxidative phosphorylation (n=6)

]
[
1]

I

[

I

|

|

|

|

T

0

=i
n
w
IN

-log10(padj)

D) GAM

Arginine biosynthesis (n=14)

Citrate cycle (TCA cycle) (n=15)

Microbial metabolism in diverse environments (n=46)
22-Oxocarboxylic acid metabolism (n=10)

Valine, leucine and isoleucine biosynthesis (n=8)
Carbon metabolism (n=27)

Sulfur metabolism (n=5)

(C5-Branched dibasic acid metabolism (n=5)
Butanoate metabolism (n=8)

Oxidative phosphorylation (n=9)

Nitrogen metabolism (n=6)

Sulfur relay system (n=5)

Selenocompound metabolism (n=5)

Tryptophan metabolism (n=6)

Glycolysis / Gluconeogenesis (n=15)

Valine, leucine and isoleucine degradation (n=6)
Lysine degradation (n=5)

Biosynthesis of amino acids (n=28)

Fructose and mannose metabolism (n=6)

AABC transporters (n=20)

-log10(padj)

downregulation of the ureABC genes in the S. aureus biofilm treated
with GAM compared to NGAM (Figures 6, 8). The arginine
biosynthesis pathway enables the bacterium to process different
biological needs, such as protein synthesis and biofilm formation
(Manna et al., 2022; Zhu et al., 2007). Arginine biosynthesis might
be one of the protein synthesis pathways responsible for the formation
of the proteinaceous biofilm structure of antibiotic-resistant S. aureus
strains, such as Wood 46 (Pozzi et al., 2012). The biological processes
involved in S. aureus biofilm formation can be severely disrupted
when arginine biosynthesis is downregulated, as observed in the
enrichment analysis of GAM (Manna et al.,, 2022). Disrupting arginine
biosynthesis is important for inhibiting biofilm persistence; however,
it leads to increased antibiotic tolerance in S. aureus biofilms (Freiberg
et al., 2024). The urease enzyme complex, encoded by ureABC, plays
a pivotal role in neutralizing acidic conditions within the biofilm by
hydrolyzing urea into ammonia and carbon dioxide, maintaining pH
homeostasis, and promoting biofilm persistence (Zhou et al., 2019;
Zhou and Fey, 2020). Disruption of urease activity can compromise
acid resistance, leading to biofilm destabilization (Zhu et al., 2007). In
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addition, the biofilms of S. aureus exhibited expression of both the
urease genes (ureABC) and the lactate dehydrogenase (LDH)-
encoding gene (IdhD), which together facilitate pH regulation under
weak acidic stress during biofilm growth (Figure 6) (Zhou et al., 2019).
This acidic stress arises from pyruvate produced through anaerobic
glycolysis, most of which is converted to lactic acid by LDH (Olson
et al, 2013). These findings suggest that the superior anti-biofilm
activity of GAM may be linked to its ability to impair pH regulation
mechanisms, particularly through urease inhibition. In agreement
with the downregulation of the urease genes, we observed that the pH
of the biofilm cultures decreased significantly after treatment with
2-8% GAM but not after treatment with NGAM (Figure 7). The more
pronounced downregulation of the ureABC genes involved in
S. aureus biofilm arginine metabolism by GAM may explain its
superior anti-biofilm activity compared to NGAM. These findings
suggest that GAM inhibits both aerobic (TCA) and anaerobic
(arginine biosynthesis) energy metabolism pathways of the S. aureus
biofilm, highlighting its potential as a more effective agent for
inhibiting S. aureus biofilm formation.
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The heatmaps display cluster analysis of gene expression levels in the S. aureus Wood 46 biofilms treated with GAM (left columns) or NGAM (right
columns). (A) The highly downregulated ldhD and ica locus genes, (B) genes involved in the TCA cycle, arginine biosynthesis KEGG pathways, and urea
metabolism, (C) highly upregulated genes including leukocidins and nan locus genes, and (D) genes involved in MSCRAMMs, such as the sraP gene,
were selected for generating the heatmaps. The color ranges from green to red, representing fold changes from high to low, respectively. The values in
each cell indicate the fold change in the expression levels of the related genes under each condition, varying from positive values (upregulated) to
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FIGURE 7

The pH of the supernatant from the S. aureus Wood 46 biofilms
following supplementation with GAM and NGAM. The pH values are
presented on the y-axis, while the experimental conditions are
displayed on the x-axis. The positive controls (Control+),
representing the pH of the supernatants from the fully developed
biofilms, are shown in dotted columns. Data were analyzed using
one-way ANOVA to compare the supernatants across similar
treatment conditions (**p < 0.01, ****p < 0.0001). In addition, the pH
of each treated biofilm supernatant was compared to its respective
positive control (Control+) using one-way ANOVA: 8% GAM versus
GAM control (***"p < 0.0001) and 8% NGAM versus NGAM control
(*p <0.05).

Then, we investigated the expression of several key regulatory
genes involved in biofilm formation (Wu et al., 2024), which may
provide insights into the observed effects of GAM and NGAM. The
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encoding genes of the elastin-binding protein (ebpS), laminin-
binding protein (eno), and serine-rich adhesin for binding to
platelets (sraP) were more downregulated by GAM compared to
NGAM (Figure 6D). The eno and ebpS genes encode MSCRAMMs,
which facilitate bacterial adhesion to different surfaces and play a
major role in biofilm formation (Foster, 2019; Zuniga et al., 2015;
Nemati et al., 2009). On the other hand, the sraP gene encodes a
surface glycoprotein involved in S. aureus adhesion to human
platelets and bacterial aggregation. However, its expression has been
reported to vary among different Staphylococcus strains (Yang et al.,
2014; Sanchez et al., 2010). The expression of eno and ebpS genes is
reported to be higher in MRSA strains that produce stronger
biofilms (Kot et al., 2018). The expression levels of the MSCRAMM-
encoding genes (eno and ebpS) and the biofilm surface molecule
(sraP) are lower in GAM-treated biofilms than in NGAM-treated
biofilms. This suggests that the anti-biofilm properties of GAM are
also due to its significant anti-adhesive activity.

In conclusion, both GAM and NGAM are capable of reducing the
S. aureus biofilm; however, GAM is a much stronger antibiofilm
compound than NGAM. Both compounds similarly reduce the
expression of the ica genes responsible for the synthesis of PIA, which
is critical for biofilm formation (Figure 8). GAM, compared to
NGAM, facilitates the transition from a biofilm to a planktonic growth
phase by reducing the expression of genes encoding initial adhesion
and colonization, as well as those involved in arginine metabolism and
TCA pathways. The strong anti-biofilm potency of GAM makes it a
highly promising compound that could be used alone or in
combination with other antimicrobial agents to reduce or prevent
S. aureus biofilms in the future.
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This figure shows the main findings of the study. The biofilm of S. aureus develops through five different stages. These stages, from left to right, include
prokaryotic S. aureus attachment, multiplication, exodus, maturation, and dispersal. The most significant changes under GAM and NGAM conditions
are indicated at each stage of biofilm formation. The modulations induced by GAM are depicted with red arrows, while those under NGAM conditions
are shown with blue arrows. Modulated genes, loci, or metabolic pathways are indicated with upward arrows for upregulation and downward arrows
for downregulation. The length of the arrows implies the relative strength of modulation under GAM and NGAM conditions.
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