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Introduction: Although eradication programs have successfully controlled 
pestivirus infections in domestic livestock across Fennoscandia, serological 
evidence suggests that several free-ranging, semi-domesticated reindeer herds 
are exposed to and possibly endemically infected with pestivirus(es). While 
the significant economic impact of pestiviruses on domestic animals is well 
documented, their effects on reindeer remain poorly understood. Attempts to 
isolate and characterize these pestiviruses from seropositive reindeer herds have 
so far been unsuccessful, despite analyses of serum and nasal swab samples 
by multiple studies. Ear tissue is commonly used to detect cattle persistently 
infected (PI) with pestivirus and utilized for both screening and controlling 
infection. Despite its practicality in cattle, ear tissue has not been utilized for 
the demonstration of pestivirus in reindeer. The current study aimed to examine 
ear tissue as sample material for the detection and isolation of pestivirus in 
Norwegian semi-domesticated reindeer herds.
Methods: Ear tissue from 3,453 reindeer calves from three geographically distinct 
locations were assessed by conventional reverse transcriptase polymerase chain 
reaction (RT-PCR), antigen capture ELISA (ACE), and virus isolation.
Results: A total of 24 (0.7%) individual ear tissue samples were considered 
potentially positive by RT-PCR but were negative by ACE, and no virus could 
be isolated from any of the samples. Three commercially available reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) assays for the 
diagnosis of bovine viral diarrhea virus (BVDV) were also employed from which 
a CT-value of less than 40 was detected in only one sample (CT 36.95).
Discussion: While potential positive ear tissue samples were observed in this 
study, it is unknown if low viral load, pestivirus genetic diversity, or sample 
suitability contributed to the inability to confirm pestivirus-specific RNA nor 
viable virus particles in the samples. The impact of pestivirus infections on health 
and welfare of reindeer and effect on eradication programs in Fennoscandian 
livestock remain undetermined and the results from this study emphasize the 
critical need for multidisciplinary research regarding this topic.
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1 Introduction

Reindeer husbandry generates a livelihood for many people in 
Fennoscandia (in this context defined as Sweden, Norway and 
Finland) and has an equally significant cultural value, especially for 
the indigenous Sami people. Reindeer meat and other products are 
sold as delicacies in grocery stores, which are supplied by 16 registered 
reindeer slaughterhouses in Norway (Landbruksdirektoratet, 2024a). 
Recent assessments estimate that 70,650 Norwegian reindeer were 
slaughtered during the year 2023–2024, which generated 1,626 tons of 
meat for human consumption (Landbruksdirektoratet, 2024b).

In contrast to typical farming of domestic animals, Fennoscandian 
reindeer husbandry mainly utilizes natural grazing lands with free-
ranging animals throughout the year, which contributes to mortality 
from predation and winter/spring starvation (Nieminen et al., 2013; 
Tryland, 2013; Mørk et al., 2024). Reindeer calves are born in remote 
locations and are only monitored/counted for during summer and/
or fall round-ups, making it difficult to identify the exact causes of 
morbidity and mortality. Factors such as poor nutrition, stress, 
illness, and infectious diseases may contribute to decreased reindeer 
fertility and overall poor calf survival (Laaksonen, 2016). 
Additionally, co-grazing with free-ranging domestic (sheep and 
occasionally cattle) and wild ruminants occurs in Norway (Utaaker 
et  al., 2023), which increases the potential for general disease 
transmission between species.

Pestiviruses are single-stranded, positive-sense RNA viruses that 
can infect several species in the mammalian order Artiodactyla. 
Among domestic species, infections are common in cattle, swine, 
small ruminants, and new world camelids (Brock, 1995; Aguirre et al., 
2014; Crilly et  al., 2018; Renson and Le Potier, 2022), but wild 
mammals such as pronghorn (Antilocapra americana) (Neill et al., 
2014), and caribou (Rangifer tarandus) (Carlsson et al., 2019), are also 
susceptible. The pestivirus species infecting cattle and sheep are 
bovine viral diarrhea virus (BVDV) 1 & 2, and border disease virus 
(BDV), which were recently renamed as Pestivirus bovis, Pestivirus 
tauri, and Pestivirus ovis, respectively (Cox et al., 2025).

Despite the successful eradication of BVDV and BDV from 
domestic livestock in Fennoscandian countries (Hult and Lindberg, 
2005; Løken and Nyberg, 2013; Autio et al., 2021), several studies over 
the last decades documented seropositive reindeer herds, including 
some with high seroprevalence rates. Finnish reindeer herds appeared 
to have lower seroprevalence rates of 0.7% (N = 596) (Tryland et al., 
2023) and 2.5% (N = 122) (Omazic et  al., 2019), compared to 
Norwegian herds, with 41.2% (N = 596) (Tryland et al., 2021) and 38% 
(N = 119) (Omazic et  al., 2019), and Swedish herds with 49% 
(N = 132) (Omazic et al., 2019), and 32% (N = 1,158)(Kautto et al., 
2012). Nevertheless, these studies collectively indicate that pestiviruses 
are endemic in Fennoscandian reindeer populations.

To date, uncertainty exists about whether the circulating 
pestiviruses resulted from spillover infections from domestic species 
prior to implementation of the eradication programs, or if reindeer 
harbor species-specific pestivirus(es) (Larska, 2015; Omazic et al., 
2019). Recent serological studies in Fennoscandia suggested that 
pestivirus from seropositive animals are more antigenically related to 
BDV than BVDV (Kautto et al., 2012; das Neves et al., 2019), as is the 
case for the only pestivirus ever isolated from a captive reindeer 
(Reindeer-1 virus), which was housed in a German zoo (Becher 
et al., 1999).

Although pestiviruses are known to result in a variety of clinical 
manifestations (most importantly immunosuppression, reproductive 
losses, and persistently infected (PI) offspring), and contribute to 
significant economic losses to livestock production systems globally 
(Houe, 2003; Vilček and Nettleton, 2006; Evans et al., 2019), their 
long-term impact on many wildlife populations remains largely 
unknown (Vilček and Nettleton, 2006; Ridpath and Neill, 2016; 
Tryland et al., 2019). However, examples exist in which pestiviruses 
are associated with severe health outcomes in free-ranging wildlife, 
such as the population impacts of BDV in Pyrenean chamois 
(Rupicapra pyrenaica pyrenaica) in Spain (Marco et al., 2009; Serrano 
et al., 2015).

Ear tissue has become a preferred sample material for many 
BVDV eradication programs globally due to the ease of collection 
and reliability for viral detection in cattle (Zimmer et al., 2004; Presi 
and Heim, 2010; Graham et al., 2021). Another reason ear tissue is a 
preferred sample is the decreased risk of maternal antibodies 
intervening with the assay, which is likely when blood samples are 
analyzed (Zimmer et  al., 2004). On the other hand, ear notches 
require diligence during sample processing and storage to preserve 
sample quality (Ridpath et al., 2009). The most commonly described 
detection assays for ear tissue are: immunohistochemistry 
(Brodersen, 2004; Bedeković et al., 2011), antigen capture ELISA 
(ACE) (Kuhne et al., 2005; Presi and Heim, 2010; Wernike and Beer, 
2024), conventional reverse transcriptase polymerase chain reaction 
(RT-PCR) (Weinstock et al., 2001; Şevik, 2018; Monteiro et al., 2019), 
and quantitative reverse transcription polymerase chain reaction 
(RT-qPCR) (Presi and Heim, 2010; Dias et  al., 2014; 
McDougall, 2021).

Despite successful demonstration and isolation of pestivirus from 
ear tissue in cattle (Kuhne et al., 2005; Bedeković et al., 2011), and wild 
ungulates (Pogranichniy et al., 2008; Passler et al., 2016; Wolff et al., 
2016), ear notch tissues have not been reported for the demonstration 
of pestivirus in reindeer. Fennoscandian semi-domesticated reindeer 
herds routinely conduct annual ear markings of calves (i.e., manually 
fixating a calf and cutting a distinct owner-specific pattern into the ear 
cartilage) (Beach, 2007), ear tissue is through this tradition an easily 
accessible and convenient sample for research and diagnostic 
purposes. This provides an excellent opportunity to screen the 
majority of calves born into a herd in a given year.

The main objective of this study was to evaluate the suitability of 
reindeer ear tissue as a sample for detecting pestiviruses in this species. 
This study utilized a variety of methods for viral detection and 
characterization and aimed to generate experiences and data to aid in 
gaining further knowledge of pestivirus in reindeer populations.

2 Materials and methods

2.1 Animals, region, and ear tissue 
collection

This study was part of a comprehensive project investigating the 
effects of the increasingly common practice of supplementary feeding 
on reindeer welfare, behavior, health, and sustainability of reindeer 
herding. The animal use application for this project was granted by the 
Norwegian National Animal Research Authority (FOTS id 29948). 
Because the ear tissue collected resulted from annual calf marking 
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activities by reindeer herders, no additional animal use approval was 
necessary to obtain the owner-collected tissue samples.

Approximately 2–4-months old reindeer calves were ear-marked 
as part of routine herding practices in July–September 2023. During 
this common cultural practice each reindeer owner applies their 
unique ear marking pattern, which is registered in the national 
earmark registry (Beach, 2007). The calves were manually caught by 
the reindeer owners, restrained on the ground, and then marked using 
a knife. This traditional marking procedure generated pieces of ear 
tissue, approximately 2 × 4 cm in size, which were collected for the 
purpose of this research project. The marking procedure was 
performed rapidly to minimize stress and injury, and calves were 
released immediately afterward.

The calves belonged to three geographically distinct herds in 
Norway (Figure 1), and the number of calves sampled from each of 
the herds are presented in Table 1. Calf sex was not recorded. The 
pestivirus seroprevalence for two of the herds (Herd 1 and 3) had been 
investigated in 2013–2018, indicating that pestivirus was endemic 
(Herd 1 N = 14/99; 14%, Herd 3 N = 30/82; 37%), and the last herd 
(Herd 2) was chosen as it was neighboring another previously 
seropositive herd with (N = 57/110; 52%) from 2013 to 2018 (Tryland 
et al., 2021).

Approximately 50–150 individual earpieces were collected daily 
and stored together in sample bags containing no more than 50 ear 

tissue samples per bag. After collection, the earpieces were placed into 
a refrigerator (4 °C), or a cooler containing ice packs for 2–8 h. At the 
end of each collection day, the ear tissue bags were further divided into 
pools of 10 earpieces and placed into smaller sample bags, temporarily 
stored in a −20 °C freezer for 1–2 weeks, and then transferred to a 
−80 °C freezer until shipping. At the end of the sampling period, a 
total of 345 pools with 10 individual tissue samples had been collected 
in each, representing 3,453 individual reindeer calves.

2.2 Cell lines and reference pestivirus 
isolates

Five diverse pestivirus isolates that had previously been 
characterized including BVDV-1b (AU526; KF835697.1), BVDV-2a 
(PI28; MH231141.1), Reindeer-1 pestivirus (V60-Krefeld; 
AF144618.2), border disease virus (Coos Bay; KJ463423.1), and 
pronghorn antelope pestivirus (Pestivirus antilocaprae; NC_024018.2) 
were used to optimize viral propagation and detection procedures 
(Figure 2; Becher et al., 1999; Vilcek et al., 2005; Passler et al., 2014; 
Neill et al., 2019). Two primary cell lines, bovine turbinate (BTu) and 
ovine fetal turbinate (OFTu) cells were derived at the USDA-ARS-
National Animal Disease Center, Ames, IA, United States, utilizing the 
previously reported methods described for harvesting and maintenance 

FIGURE 1

Map of Norway, Sweden, and Finland Showing the geographical locations of three Norwegian Reindeer Herds sampled for pestivirus analysis.
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of bovine fetal testicle cells (Weber et  al., 2017). Additionally, the 
immortalized Madin Darby Bovine Kidney (MDBK) cell line, 
previously obtained from the ATCC, was used to determine which cell 
line would be  optimal for propagation of the genetically diverse 
pestivirus species. All cell lines were maintained in Minimal Essential 
Medium (MEM, Corning®, Glendale, AZ, United States), supplemented 
with 1% of antibiotic/antimycotic solution (A/A, Corning®, Glendale, 
AZ, United States) and 5% fetal bovine serum (FBS, Gibco/Thermo 
Fisher Scientific. Waltham, MA, United States). FBS was confirmed to 
be  free of BVDV antigen and antibodies as previously described 
(Bauermann et al., 2014). Cells were also free from adventitious BVDV 
based on polymerase chain reaction (PCR) tests.

The BVDV-1b and BVDV-2a reference strains were viral stocks 
maintained in the laboratory, Reindeer-1 pestivirus isolate was 
received from University of Inland Norway, and border disease virus 
and Pronghorn pestivirus were received from the USDA-National 
Animal Disease Center Ames, IA. Propagation of the five reference 
viruses was accomplished by diluting 1 mL of each respective viral 
stock in 4 mL of MEM and inoculating a 175 cm2 flask of OFTu cells 
at approximately 60–70% confluency with the 5 mL of viral solution. 
After the addition of the viral inoculum, flasks were placed on a 
gentle rocker and incubated for approximately 1 h at 37 °C with 5% 
CO2. The viral inoculum was removed, and complete MEM media 
supplement was added to a final volume of 20 mL. Flasks were 
maintained at 37 °C with 5% CO2 in incubators for 96 h and 
monitored daily. After 96 h, flasks were frozen at −80 °C. After 
freezing, flasks were thawed, and contents were transferred into tubes 
for clarification by centrifugation at 800 × g for 10 min. The viral 
supernatant was poured into a new tube and passed through a 
0.22 μm syringe filter and aliquoted into separated 1 mL aliquots for 
further use. The OFTu cell line was selected for virus isolation of 
samples and propagation given that superior viral titers were achieved 
for all five reference pestivirus isolates, when compared to BTu and 
MDBK cell lines in which Pronghorn pestivirus could not 
be propagated. Reference pestivirus isolates were used as positive 
control samples for sample extraction and conventional reverse 
transcriptase polymerase chain reaction (RT-PCR).

2.3 Processing of pooled ear tissue

The 345 bags with pooled earpiece tissue samples were sent on dry 
ice to another laboratory for further processing and stored there at 
−80 °C until analysis. The pools were further processed by excising a 
smaller sample from each individual earpiece sample while frozen 
using a commercial V-shaped ear notching tool (Agri-Pro ear notcher, 
Agri-Pro Enterprises-Iowa Inc., Iowa Falls, IA, United States), which 

provided a notch approximately 0.5 cm2 in size as is common when 
ear notches are collected from cattle for PI detection. The remaining 
earpiece tissues were left in the original pooled bags and stored at 
−80 °C. The 10 notches from each pool were placed into a 5 mL snap 
cap tube with 3 mL of cell culture medium (Gibco Opti-MEM®, Life 
Technologies Corporation, Grand Island, NY, United  States) 
containing 1% of antibiotic/antimycotic solution (Corning®, Glendale, 
AZ, United States). This resulted in 342 tubes with 10 ear notches and 
3 tubes with 11 ear notches in each. The tubes were vortexed for 
10–15 s, submitted to two freeze–thaw cycles at −80 °C and room 
temperature, respectively, and centrifuged at 4000 × g for 4 min.

2.4 RNA extraction

One hundred and forty μL of supernatant from each pooled 
sample were used for RNA extraction. RNA extraction was performed 
using the QIAamp  96 Viral RNA Kit (Qiagen Inc., Valencia, CA, 
United States), according to the manufacturer’s recommendations.

2.5 Conventional reverse 
transcription-polymerase chain reaction

Extracted RNA from samples was assayed using a one-step 
RT-PCR based on the widely used primer set HCV90 (5’ CATGCCC 
ATAGTAGGAC 3′) and HCV368 (5’ CCATGTGCCATGTACAG 3′) 
(Ridpath et al., 1994; Vilcek et al., 1994; Ridpath and Bolin, 1998) 
targeting the 5′ untranslated region (5’ UTR) of the pestivirus genome 
and generating a 248-base pair (bp) amplicon. The reaction was 
performed with Promega (Promega Corporation, Madison, WI, 
United States) GoTaq Flexi system that consisted of 1X Green GoTaq 
Flexi buffer (Promega M891A), 4.5 mM MgCl2 (Promega A351H), 
0.4 mM dNTPs (Promega C1141), 100 U M-MLV RT (Promega 
M170B), 1 U GoTaq DNA Polymerase (Promega M829B), 20 U 
RNasin Ribonuclease Inhibitor (Promega N251B), 0.1 μM of each 
primer, and nuclease-free water in a final volume of 25 μL.

RT-PCR was performed under the following conditions: RT at 
50 °C for 1 h, initial denaturation at 95 °C for 4 min, 40 cycles of: 
95 °C denaturation for 30 s, 50 °C annealing for 45 s and 72 °C 
elongation for 1 min; and a final elongation at 72 °C for 10 min, 
followed by a 4 °C hold. 5 μL of each PCR product was used for 
electrophoresis in a 1.5% agarose gel stained with GelRed® (Biotium, 
Fremont, CA, United States), with band visualization under ultraviolet 
light. All samples yielding a visible band of appropriate amplicon size 
regardless of intensity were submitted for sequencing. Additionally, 
when a band that was approximately 250–300 bp in size was visualized, 

TABLE 1  Overview of positive and total counts for ear tissue pools (n = 10/pool) and Individual Ear Notch Samples Across Three Herds of semi-
domesticated Eurasian tundra reindeer in Norway (2023).

Ear notch 
region

Total number of 
individual ear notches

Total number of 
pools

Number of positive 
pools

Number of potentially 
positive individual samples

Herd 1 2,080 208 10 18

Herd 2 50 5 0 0

Herd 3 1,320 132 2 6

Totals 3,453 345 12 24
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the remaining ear tissues comprising the pooled sample were further 
individually processed for virus isolation and extraction.

2.6 Nucleotide sequencing and 
phylogenetic analysis

RT-PCR products that yielded a visible band approximately 
250–300 bp in size were submitted to Eurofins Genomics (Louisville, 
KY, United States) for sequencing. The PCR products were not cloned 
but sequenced directly in both directions. Quality samples yielded an 
amplification of a trimmed 248-bp sequence of the 5′ UTR. Any 
resulting quality sequences were edited and aligned using MAFFT 
version 7, and phylogenetic comparison among generated sequences 
was performed using the 12th version of the Molecular Evolutionary 
Genetics Analysis (MEGA12) software (Kumar et  al., 2024), with 
Bungowannah virus (NC_023176.1) used as the outgroup. The 
evolutionary distances were inferred using the Maximum Likelihood 
analysis and Kimura 2 parameter + Invariant sites + Gamma 
distribution (K2 + G + I) as the best substitution model, and branch 
support estimated using bootstrap of 1,000 replicates (Figure 2).

2.7 Positive pool ear tissue—further 
processing

If a band was visualized for an ear tissue pool, another ear notch 
was collected as described above from each individual ear tissue 
contained in the pool. The individual ear sample was further processed 
by cutting it into small pieces, minced with scissors, followed by 
resuspension with 1 mL Opti-MEM and homogenization of the 
sample, then subjected to one freeze–thaw cycle. Samples were 
vortexed and 100 μL of supernatant from the tissue sample 
homogenate was used for viral isolation and 140 μL of sample 
supernatant for RNA extraction and RT-PCR, according to procedures 
as described above, aiming to identify the potential positive individual 
sample within each pool.

2.8 Viral isolation from individual ear tissue

Hundred μL of individual tissue supernatant as previously 
described were used to inoculate each respective 48-well plate that had 
been seeded for 24-h with OFTu cells, at a density of 2 × 105 cells/
mL. A positive control (Reindeer-1 pestivirus) and a negative (virus-
free culture media) control were included on all plates. After the 
addition of the samples, plates were incubated for approximately 1.5 h 
at 37 °C with 5% CO2. The inoculum was removed and complete 
MEM media supplement as previously described (section 2.2) was 
added to a final volume of 500 μL. Plates were maintained at 37 °C 
with 5% CO2 in incubators for 96 h and monitored daily. Wells 
showing cell toxicity/cell death or bacterial/fungal contamination 
were recorded. After 96 h, plates were frozen at −80 °C until further 
passage. At each new passage, sample aliquots were obtained for RNA 
extraction and RT-PCR (sections 2.5 and 2.6) to assess for potential 
viral isolation, and samples were also used for further passage. 
Passaged material was used to inoculate new 48-well plates seeded 
with OFTu cells at a density of 2 × 105 cells/mL for 24-h as described 
previously. Samples were subjected to a maximum of 6 passage 
attempts to isolate virus or obtain a sequence.

2.9 Commercial ACE and RT-qPCR

Commercially available pestivirus tests used for BVDV detection 
in cattle, including an ACE (ELISA BVDV PI x2 test; IDEXX 
Laboratories, Westbrook, ME, United States) targeting the Erns protein 
of BVDV and three commercially available BVDV-detection 
quantitative RT-PCR (RT-qPCR) assays (Virotype® BVDV RT-PCR; 
Indical Bioscience GmbH, Leipzig, Germany; VetMAX™ BVDV 
4ALL; Thermo Scientific, Waltham, MA, United States; and RealPCR 
BVDV; IDEXX, Westbrook, ME, United States) were evaluated. The 
ACE and each of the three RT-qPCR were conducted according to the 
manufacturer’s recommendation and RNA for the RT-qPCR assays 
was extracted as previously described (section 2.4). Samples used in 
each assay included viral stocks for each of the reference pestivirus 

FIGURE 2

Phylogenetic analysis of the 5′-untranslated region (5’-UTR) for reference pestivirus isolates propagated and used as positive controls in the current 
study. Analyses were conducted in MEGA12 using the maximum likelihood model and bootstraps of 1,000 replicates. Accession numbers represent 
previously available full-length sequences and can be accessed at http://www.ncbi.nlm.nih.gov/pubmed/.
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isolates (BVDV-1b, BVDV-2a, BDV, Pronghorn, and Reindeer-1; 
V60-Krefeld) that had previously been confirmed positive by 
conventional RT-PCR to assess the ability of the other assays to detect 
previously confirmed positive samples.

A subset of ear tissue samples, either those in which a band was 
visualized (n = 24) or those randomly chosen with no visible band 
(n = 24), were analyzed using ACE to further characterize samples 
previously identified as potentially positive or completely negative by 
conventional RT-PCR. The viral stocks from each reference pestivirus 
isolate were diluted (1:1) with supernatant from a negative reindeer 
ear notch to assess potential sample inhibition associated with the ear 
notch itself. In addition, 10-fold dilutions of each viral stock from 10−1 
to 10−6 were made with PBS. RT-qPCR kits were also used to assess 
the subset of samples and the reference pestivirus samples.

3 Results

3.1 Cell line and assay validation using 
reference pestivirus isolates

All five reference pestivirus isolates were successfully detected by 
conventional RT-PCR methods when propagated in the OFTu cell 
line. The pronghorn antelope isolate could not be detected by RT-PCR 
when propagated using the MDBK or BTu cell lines. Successful 
propagation and detection of each reference isolate was confirmed by 
visualization of a band of appropriate size under ultraviolent light 
(Figure 3) and subsequent sequencing of the PCR product associated 
with the band. Since the OFTu cell line supported the successful 
propagation and detection of all reference pestivirus strains, it was 
selected as the most suitable cell line for virus isolation from 
reindeer tissues.

3.2 Viral detection, isolation, and 
sequencing from ear tissue

A total of 345 pools were tested using RT-PCR, comprising 
samples from three regions: Herd 1 (208 pools), Herd 2 (5 pools), and 
Herd 3 (132 pools) (Table  1). A visible band consistent with a 
potentially positive sample was observed for 12 pools in total, 10 pools 
from Herd 1 and two pools from Herd 3 (Table 1). The individual 
samples from these 12 pools were consequently processed and 
analyzed individually. Bands were visualized from 24 individual 
samples, with 18 samples from Herd 1 and 6 samples from Herd 3. All 
samples generating visible bands, regardless of intensity, were 
submitted for sequencing and virus isolation. Additionally, all virus 
isolation passages were assessed by RT-PCR and any samples for 
which a visible band was observed were submitted for sequencing. A 
representative image of the band intensity and potential positive 
samples submitted for virus isolation and sequencing is shown in 
Figure 3.

Quality sequences were not successfully obtained from any pool 
or individual samples that were submitted. Similarly, virus was not 
successfully isolated from pooled or individual ear tissue samples as 
determined by lack of a visible band after passage and lack of quality 
sequences after 6 passage attempts. Following the 6th attempt, no 
band could be visualized.

3.3 Detection using commercial RT-qPCR

A subset of samples, totaling 48 individual ear tissue samples (24 
samples for which a band had been visualized and 24 random samples 
without a band), in addition to 10-fold dilutions in PBS (10−1 and 10−6) 
and 1:1 dilution with negative ear tissue for the five reference 

FIGURE 3

Representative gel image comparing reference Pestivirus strains (BVDV1b AU526, BVDV2a PI28, BDV Coos Bay, Pronghorn Virus, Reindeer-1 V60-
Krefeld) propagated and used as positive controls in the current study with two potentially positive and one negative ear tissue sample “Lanes 
1:1,000 bp ladders, Lane2: BVDV1b AU526, Lane 3: BVDV2a PI28, Lane 4: BDV Coos Bay, Lane 5: Pronghorn Virus, Lane 6: Reindeer-1 (V60-Krefeld), 
Lane 7: Strong band of ear tissue samples, Lane 8: Weak band of ear tissue samples, Lane 9: Negative band of ear tissue samples, Lane 10: Negative 
control”.
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pestivirus isolates were used to assess the three commercial RT-qPCR 
assays (Table 2). Only one sample (1/24) previously characterized as 
having a visible band was also positive by the Indical PCR assay (Ct 
36.95). Although two samples (2/24) for which no band had previously 
been observed had Ct values of 38.56 and 37.93 by the IDEXX 
PCR. Otherwise, all other ear tissue samples were negative by 
RT-qPCR methods.

Given that all reference pestivirus isolates could be detected using 
conventional RT-PCR, the same viral stocks were used to assess the 
three RT-qPCR assays. All three RT-qPCR assays performed similarly 
when used to detect the BVDV-1b and BVDV-2a isolates, although 
the ThermoFisher assay tended to be less sensitive, and positives were 
not observed for the BVDV-1b 10−6, BVDV-2a 10−5 and 10−6 dilutions. 
The lack of sensitivity of the ThermoFisher assay was also evident as 
only the 10−1 dilution of both the BDV and Reindeer-1 isolates were 
positive, but no other dilutions were positive on this assay. In contrast, 
all BDV dilutions, up to the 10−4, were positive using the Indical and 
IDEXX assays.

Interestingly, Reindeer-1 positive samples were detectable by the 
IDEXX assay up to the 10−5 dilution but only up to the 10−2 dilution 
using the Indical assay. While viral titers may have varied for each viral 
stock, as observed by differences in Ct values, comparisons among 
each assay suggest varying sensitivity for each RT-qPCR assay.

None of the three RT-qPCR assays effectively detected the 
Pronghorn isolate. While the Indical assay detected Pronghorn 
pestivirus in undiluted viral stock (Ct 35.8), no other positives were 
observed for the dilutions. Additionally, no positives were observed 
for the viral stock or any other dilutions for the Pronghorn isolate 
when using the IDEXX or ThermoFisher RT-qPCR assays. Lack of 
sensitivity between assays is highlighted by the differing results for the 
BDV, Reindeer-1, and Pronghorn isolates.

3.4 Detection using commercial ACE

A duplicate sample from the subset of the 48 ear tissue samples, 
the dilutions in PBS (10−1 to 10–6), and 1:1 dilution with negative ear 
tissue for the five reference pestivirus isolates were used to assess the 
commercial ACE assay (Table  2). All 48 ear tissue samples were 
negative by the ACE.

Positive results were observed for the BVDV-1b and BVDV-2a 
dilutions from 10−1 to 10–3, up to the 10−2 dilution for the BDV and the 
Reindeer-1 isolates. Similarly, when the five reference pestivirus 
isolates were diluted 1:1 with a negative ear tissue sample, a similar 
trend in detection was observed for the ACE. No positive ACE results 
were observed for any of the dilution series of the Pronghorn isolate 
(Table 2). The BVDV-1b, BVDV-2a, BDV, and Reindeer-1 isolates 
diluted 1:1 with negative ear tissue were positive by ACE, whereas the 
Pronghorn isolate diluted 1:1 with negative ear tissue was the only 1:1 
dilution that was negative by ACE (Table 2).

4 Discussion

The apparently endemic pestivirus of Fennoscandian reindeer has 
been elusive and several unsuccessful attempts to isolate and 
characterize the virus have been carried out for some time (Kautto 
et  al., 2012; das Neves et  al., 2019; Omazic et  al., 2019). Despite 

previous success in the demonstration and isolation of pestivirus from 
ear tissue of other wild ungulates (Pogranichniy et al., 2008; Passler 
et  al., 2016; Wolff et  al., 2016), ear notches (despite their easy 
accessibility and annual availability), have not been previously utilized 
for the detection of pestivirus in reindeer.

In this study, ear tissue from 24 reindeer calves (0.7%) yielded 
weak PCR bands of approximately 250–300 bp, which were initially 
considered potentially positive and subjected to further investigation. 
However, no virus was isolated, and no sequences could be obtained 
from either the original samples or subsequent passages. Furthermore, 
the observed bands did not match the exact size of the positive control 
reference strains and were most likely non-specific. Consequently, all 
initially suspected positive samples were ultimately classified 
as negative.

Although pooling of ear tissue is widely accepted for screening 
large numbers of domestic livestock samples and has shown to be a 
sensitive method (Driskell and Ridpath, 2006; Kennedy et al., 2006; 
Edmondson et  al., 2007; Loy et  al., 2025), it is possible that this 
approach might have reduced sensitivity of detection compared to 
analyzing individual ear notches in this study. Although 18 
individually potentially positive samples originated from 10 different 
pools, indicating that positive samples were not confined to a limited 
number of pools (Herd 1), in Herd 3, six positive tissue samples were 
found in only two pools. Regardless, analyzing each sample 
individually from the start would have been preferable. However, due 
to the large sample size in this study, testing 3,453 samples individually 
was not pursued for financial and practical reasons.

To further investigate the sample material, we analyzed potentially 
positive and negative ear tissue with the commercial ACE kit. The 
results gave rise to concerns about the potential for low viral load in 
potentially positive ear tissue samples, which could cause difficulties 
when attempting demonstration and isolation of virus. Virus isolation 
of pestivirus typically relies on the presence of viable virus in tissues 
and tissue degradation can lead to false negative results (Ridpath et al., 
2009). The low viral load in our samples could potentially be the result 
of handling and storage routines during field sampling, which could 
have contributed to a possible degradation of the virus.

Cattle owners are often encouraged to send ear tissue samples to 
laboratories using standard mail with ice packs, and it is possible that 
BVDV is either more stable or present at higher levels in bovine tissues 
compared to the pestivirus that appears to be  endemic in semi-
domesticated reindeer. One method of improving detection and 
isolation of virus from ear notches could be immediate transfer of 
samples into liquid nitrogen after sample collection and until a − 80° 
C freezer can be  reached (Bedeković et  al., 2011). While optimal 
storage environments could be utilized in most research studies, such 
conditions would be very impractical to achieve for reindeer herders 
during the annual calf marking, which in most cases take place in 
remote location with limited access to infrastructure.

Another potential reason for the failure to detect viral antigen in 
the ear tissue samples by the commercial BVDV ACE test could have 
been attributed to the presence of an antigenically divergent virus. 
While considered antigenically related, examples of divergent 
pestiviruses exist. For example, the Erns protein of the pronghorn virus 
is divergent from the Erns protein of BVDV (Vilcek et al., 2005; Neill 
et al., 2014; de Martin and Schweizer, 2022), and could not be detected 
by the commercial assays in our study, even when confirmed positive 
by other methods.
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TABLE 2  Performance assessment of commercial pestivirus antigen capture ELISA (ACE) (IDEXX ELISA BVDV PI x2 test) and commercially available 
BVDV-detection quantitative RT-PCR assays; Indical Virotype BVDV RT-PCR, Thermo Scientific™ VetMAX™ BVDV 4ALL, and IDEXX RealPCR, in 
detecting pestivirus infection from reindeer ear tissue (notch).

Sample type Samples detailed
Sample test results

IDEXX ACE IDEXX PCR Indical PCR Thermo Scientific PCR

Ear notch 24 negative samples 0/24 2/24

(Ct 38.56 & 37.93)

0/24 0/24

24 positive samples 0/24 0/24 1/24 (Ct 36.95) 0/24

Negative Ear notch + 

virus

BVDV1b (AU526) pos 21.06 16.28 19.2

BVDV2a (PI28) pos 23.47 15.75 25.71

BDV (Coos Bay) pos 22.68 27.52 –

Pronghorn neg – – –

Reindeer-1 (V60) pos 24.66 29.08 –

Virus BVDV1b (AU526) stock pos 17.87 14.97 13.81

BVDV1b (AU526) 10−1 pos 21.48 20.3 18.84

BVDV1b (AU526) 10−2 pos 25.28 24.68 24.26

BVDV1b (AU526) 10−3 neg 29.14 28.48 28.87

BVDV1b (AU526) 10−4 neg 33.21 32 32.23

BVDV1b (AU526) 10−5 neg 35.76 34.62 35.13

BVDV1b (AU526) 10−6 neg 40.32 36.65 –

BVDV2a (PI28) stock pos 18.87 15.09 17.92

BVDV2a (PI28) 10−1 pos 24.02 19.21 23.75

BVDV2a (PI28) 10−2 pos 27.04 23.69 29.64

BVDV2a (PI28) 10−3 neg 30.83 28 33.58

BVDV2a (PI28) 10−4 neg 34.13 31.52 35.62

BVDV2a (PI28) 10−5 neg 36.42 34.94 –

BVDV2a (PI28) 10−6 neg 42.43 – –

BDV (Coos Bay) stock pos 20.03 25.43 36.53

BDV (Coos Bay) 10−1 pos 24.63 30.3 –

BDV (Coos Bay) 10−2 neg 30.04 34.24 –

BDV (Coos Bay) 10−3 neg 34.37 37.16 –

BDV (Coos Bay) 10−4 neg 36.91 36.01 –

BDV (Coos Bay) 10−5 neg – – –

BDV (Coos Bay) 10−6 neg – – –

Pronghorn stock neg – 35.8 –

Pronghorn 10−1 neg – – –

Pronghorn 10−2 neg – – –

Pronghorn 10−3 neg – – –

Pronghorn 10−4 neg – – –

Pronghorn 10−5 neg – – –

Pronghorn10−6 neg – – –

Reindeer-1 (V60) stock pos 23.09 26.81 38.23

Reindeer-1 (V60) 10−1 pos 29.15 32.4 –

Reindeer-1 (V60) 10−2 neg 32.48 36.21 –

Reindeer- 1(V60) 10−3 neg 36.53 – –

Reindeer-1 (V60) 10−4 neg 37.44 – –

Reindeer-1 (V60) 10−5 neg 40.02 – –

Reindeer-1 (V60) 10−6 neg – – –
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It is also possible that the composition of ear tissue from different 
hosts species affects the suitability of this sample type for pestivirus 
detection and could therefore be associated with decreased viral load. 
The reindeer ear tissues were noticeably thinner and covered in a 
much thicker coat of hair as compared to ear tissue collected from 
cattle. Thus, the most appropriate tissue for PI animal detection in 
reindeer and other free-ranging ungulates requires further 
assessment, similar to a study that investigated the BVDV antigen 
distribution in tissues from PI white-tailed deer tissue (Passler et al., 
2012). Notably, the ACE successfully detected the reference pestivirus 
isolates (Reindeer-1, BDV, and BVDV 1 & 2) when combined with 
negative notch- suggesting that the reindeer ear tissue does not 
contain species-specific inhibitors, which theoretically could have 
contributed to the negative test results.

In species other than cattle, previous research demonstrated that 
ante mortem samples such as white blood cells and nasal swabs can 
contain high viral titers (Van Campen et al., 1997; Passler et al., 2007; 
Raizman et al., 2009; Passler et al., 2014; Peddireddi et al., 2018). 
Similarly, post mortem samples containing high viral titers included 
lymphoid tissue (Liebler-Tenorio et  al., 2004; Deregt et  al., 2005; 
Raizman et al., 2009; Crilly et al., 2018), aborted tissue/fetal remains 
(Lamm et al., 2009; Passler et al., 2014; Crilly et al., 2018) and/or the 
central nervous system (Fernandez et al., 1989; Montgomery et al., 
2008; Passler et  al., 2012). Another study demonstrated greatest 
BVDV antigen distribution in the hepatobiliary, integumentary, and 
reproductive organs of PI white-tailed deer, with the viral distribution 
varying from PI cattle (Passler et  al., 2012), which indicates that 
pestiviruses may be  distributed differently depending on viral 
properties, the host species, and host susceptibility and immunity 
(Liebler-Tenorio et al., 2004). Although other tissues have shown to 
harbor a higher viral load, this study utilized ear tissue due to its ease 
of access and its common use in diagnostic testing across other 
species. The inconclusive findings of this study suggest that ear tissue 
may not be  an optimal sample type for pestivirus detection in 
reindeer, warranting further targeted investigation.

Identifying new pestiviruses presents several other challenges, 
including choosing the right viruses for comparative serological 
studies, selecting an appropriate cell line for virus isolation, and 
designing effective PCR primers (Vilček and Nettleton, 2006). The 
5′-UTR is relatively conserved across pestivirus species and has 
served as a target region for the development of pan-pestivirus 
reactive primers (Vilcek et al., 1994; Vilček and Nettleton, 2006), and 
is commonly used in pestivirus genotype classification. The RT-PCR 
method and primers used for initial screening successfully detected 
a potentially positive sample targeting the 5’ UTR of the pestivirus 
genome, along with the selected reference pestivirus species 
(including the highly divergent Pronghorn strain) (Figures 2, 3).

Given the limited success with detection and subsequent 
sequencing, this study explored alternative methods for viral 
nucleotide detection, such as commercially available RT-qPCR. A 
recent study reported two cases in which novel pestiviruses were 
isolated from German cattle (Neill et al., 2019; Köster et al., 2024). In 
both cases, the whole-genome sequences showed the highest level of 
identity to strain Reindeer-1 pestivirus isolate. Both viruses yielded 
positive results in BVDV diagnostic test systems Pestivirus antigen 
detection in serum samples and ear notches using the commercially 
available BVDV Ag/Serum ELISA Plus Test (IDEXX, Liebefeld, 
Switzerland), as well as detection in various organs from both calves 

using the commercial BVDV RT-qPCR assay; Virotype BVDV 2.0 
RT-PCR Kit” (Indical, Leipzig, Germany). The results indicated that 
cross-reactivity can be an important issue in pestivirus diagnostics, 
but also demonstrating that these methods can detect other, related 
pestiviruses (Köster et al., 2024).

None of the three RT-qPCR assays effectively detected the 
Pronghorn isolate in our study. Only the Indical assay detected 
Pronghorn pestivirus viral stock, with no other positives observed for 
any other dilutions or the IDEXX or ThermoFisher RT-qPCR assays 
(Table 2). In contrast, the conventional RT-PCR assay was superior 
and detected viral RNA from all the five reference pestivirus isolates 
(Figure  3). This discrepancy supports the conclusion that the 
methods employed in this study represented were highly sensitive for 
detecting even a potentially divergent pestivirus species in reindeer 
ear tissue, and that the difficulties in both demonstration and 
isolation of virus were not due to a highly divergent pestivirus, but 
rather a low viral load in the sampled tissue. It is possible that a 
reindeer-specific cell line may have improved viral recovery, but 
we used the OFTu cell line encouraged by its permissiveness to all five 
reference strains, suggesting it would also support replication of a 
potentially divergent reindeer pestivirus.

The only documented case of natural pestivirus infection in 
Rangifer spp., which was followed by successful isolation of the 
Reindeer-1 pestivirus, occurred in a captive reindeer at Duisburg Zoo 
in Germany in 1996 (Becher et  al., 1999). This animal exhibited 
significant diarrhea and anorexia. Additionally, two reindeer 
experimentally inoculated with BVDV had various clinical signs such 
as bloody diarrhea, transient laminitis/coronitis, and nasal lesions 
(Morton et  al., 1990). In contrast, other mammalian species, 
including Plains bison (Bison bison bison) (Deregt et al., 2005), llama 
(Lama glama) (Wentz et al., 2003), mule deer (Odocoileus hemionus) 
(Van Campen et al., 1997; Van Campen et al., 2001), and elk (Wapiti; 
Cervus canadensis) (Tessaro et al., 1999), did not have severe clinical 
signs when inoculated with BVDV. However, similar to cattle, white-
tailed deer infected with BVDV may experience ill-thrift, death, fever, 
decrease in circulating lymphocytes, birth of persistently infected 
(PI) offspring, and reproductive losses as potential outcomes 
(Ridpath et al., 2007; Ridpath et al., 2008; Passler et al., 2016).

The significant impact of pestiviruses on the welfare of livestock 
and economic viability of farms worldwide is well described (Houe, 
2003; Vilček and Nettleton, 2006; Evans et al., 2019). In contrast, the 
impact on wild and semi-domesticated reindeer populations remains 
poorly understood (Vilček and Nettleton, 2006; Larska, 2015; Tryland 
et al., 2019), which is also the case for numerous other cervid species 
(Ridpath and Neill, 2016). This is why the clinical impact of natural 
pestivirus infections in Rangifer spp. remains speculative, particularly 
at the population level and over the long term. However, based on 
similarity of clinical signs between livestock and wildlife hosts 
following natural and experimental infections, pestivirus infections of 
reindeer may possibly result in decreased milk production (Moerman 
et al., 1994; Arnaiz et al., 2021), lower body mass (Runyan et al., 2017), 
decreased immune response (Chase, 2013; Tao et al., 2013; Tesfaye 
Melkamsew et al., 2025), and decreased fertility (Barbudo et al., 2008; 
Burgstaller et al., 2016; Arnaiz et al., 2021).

It would be valuable to evaluate which role pestivirus infections 
in reindeer have in the findings of studies examining factors such as 
maternal and calf fitness, body mass (Ballesteros et al., 2013; Veiberg 
et al., 2017), and female milk production (Gjøstein et al., 2004). This 
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is particularly important since restricted milk/feed intake can lead to 
nutritional deficiencies in calves, making them more susceptible to 
infectious diseases and likely reducing their chances of surviving the 
first winter (Ruong, 1982; Tryland, 2013).

The three herds investigated in our study had annual calf mortalities 
ranging from 20 to 50% during the time of our study 
(Landbruksdirektoratet, 2024b). The differences between areas in the 
number of calves after losses can mainly be attributed to factors such 
as climate, predation losses, or animal density and pasture quality and 
availability (Landbruksdirektoratet, 2024b). Fennoscandian reindeer 
are free-ranging, and their calves are born in remote areas with 
limited close monitoring during summer and fall round-ups. 
Therefore, uncertainty exists about causes of calf mortality spanning 
from the fall rut (conception) through the round-up season the 
following late fall/early winter, during which young calves are sorted 
to either be  slaughtered or destined to be  replacement stock 
(Landbruksdirektoratet, 2024b). As discussed above, uncertainty 
exists regarding the impact of pestiviruses present in Fennoscandian 
reindeer, and future research should evaluate the potential role 
pestivirus infections play in unexplained calf losses.

The Fennoscandian countries have declared freedom from BVDV 
infections in livestock due to successfully implemented eradication 
programs. By standards from ESA (the European Free Trade 
Association, Surveillance Authority) and the European Union (EU), 
Finland and Sweden have been officially considered free from BVDV 
since 2010 (Autio et al., 2021) and 2022, respectively, and only test 
at-risk cattle herds and perform random screenings of serum and 
milk. The Norwegian eradication program, which was started in 
1992, successfully eliminated BVDV, with the last detection in cattle 
in 2006 (Løken and Nyberg, 2013). However, regular screenings for 
antibodies in bulk milk and blood are still conducted in the control 
program. Similarly, Norwegian sheep populations are considered 
BDV free today, with previously reported cases thought to 
be attributed to spillover from cattle (Mattilsynet, 2025). We agree 
with Köster et al. (2024), that determining the presence of pestiviruses 
in small and wild ruminant populations would provide valuable 
information for assessing risk factors, particularly in BVDV-
free regions.

The influence of both apparent and endemic pestivirus on current 
eradication programs in Fennoscandia warrants extensive and 
detailed investigation. This should involve an interdisciplinary 
approach that connects epidemiological modeling, cervid ecology, 
veterinary practice, and pathological as well as microbiological 
investigations (Ridpath and Neill, 2016), especially as inter-species 
co-mingling is not uncommon (Utaaker et al., 2023). With this study, 
we aimed to be a part of this approach and contribute to closing the 
significant knowledge gap regarding pestivirus infections in reindeer.

5 Conclusion

Our goal was to assess whether easily accessible reindeer ear 
tissue could serve as a reliable sample for pestivirus detection, as it 
does in other species. Evaluation of these samples did not yield 
successful virus isolation or genetic sequences and ultimately led to 
a conclusion that the samples were negative. These results raise 
concerns about the reliability of using ear tissue as sample material 

for pestivirus detection in reindeer. It is unknown if low viral load, 
pestivirus genetic diversity, reindeer tissue, or non-specific bands led 
to the initial potential positive designation. The characteristics of the 
pestivirus endemic to reindeer, as well as its potential acute and long-
term effects on reindeer health, herding economy and its influence 
on existing pestivirus eradication programs in livestock, remains 
unclear. This underlines the need to improve how samples are 
collected, to explore other tissue types that may be more suitable, and 
to refine future diagnostic techniques when investigating the endemic 
reindeer pestivirus.
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