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alters arbuscular mycorrhizal
fungi spore-associated bacterial
communities of tomato
rhizosphere
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Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China, 2Department
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Intercropping systems optimize soil ecological functions, modulate microbial
diversity, and enhance crop productivity. Arbuscular mycorrhizal fungi (AMF)
are key soil symbionts that facilitate nutrient acquisition and enhance
stress resilience in host plants. Notably, the AMF spore-associated bacterial
communities that play a key role in maintaining AMF spore viability and
supporting AMF function remain understudied in intercropping systems. This
knowledge gap limits our ability to optimize intercropping’s ecological benefits
(e.g., enhanced soil fertility, reduced reliance on chemical fertilizers) by
leveraging plant-AMF-bacteria synergies, which are critical for sustainable
agriculture. This study compared the effects of tomato (Solanum lycopersicum
L.) monocropping vs. tomato/potato-onion (Allium cepa L. var. aggregatum G.
Don) intercropping on the composition and diversity of AMF spore-associated
bacterial communities in the tomato rhizosphere under controlled greenhouse
conditions, using Illumina MiSeq sequencing of the 16S rRNA gene V3–V4
region. The results demonstrated that compared with tomato monocropping,
tomato/potato-onion intercropping significantly increased the alpha diversity
(Shannon and Chao1 indices) of AMF spore-associated bacterial communities
in the tomato rhizosphere (Student’s t-test, P < 0.05) and markedly altered
their taxonomic composition. Taxa significantly enriched under the intercropping
system included the phyla Actinobacteriota and Cyanobacteria, the classes
Alphaproteobacteria and Actinobacteria (a class of phylum Actinobacteriota),
and the genera Janthinobacterium, Rhodococcus, Paenarthrobacter, and
Streptomyces. Differential analysis identified 156 significantly shifted OTUs,
with 137 enriched (predominantly Proteobacteria/Actinobacteria) and 19
depleted (mostly Bacteroidetes/Proteobacteria) in intercropping. These findings
demonstrate that tomato/potato-onion intercropping reshapes AMF spore-
associated microbiomes, selectively enriching microbial taxa with putative
functions in nutrient cycling and plant growth promotion.

KEYWORDS

intercropping, tomato, potato-onion, AMF spore-associated bacteria, bacterial
community

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1686962
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1686962&domain=pdf&date_stamp=2025-11-26
mailto:dmgao2019@neau.edu.cn
https://doi.org/10.3389/fmicb.2025.1686962
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1686962/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhou et al. 10.3389/fmicb.2025.1686962

1 Introduction

Intercropping, a traditional agricultural practice globally,
optimizes crop canopy structure, enhances the efficient utilization
of natural resources, and exerts positive impacts on crop
productivity and the soil microbial environment (Nyawade et al.,
2019). Compared with monoculture, intercropping confers distinct
ecosystem benefits by modulating soil microbial communities
(Wang et al., 2018), particularly those closely associated with key
symbiotic fungi. Specifically, Gao D. M. et al. (2021) demonstrated
that tomato intercropped with potato-onion significantly promotes
tomato growth, improves nutrient uptake, and increases the
abundance of rhizosphere arbuscular mycorrhizal fungal (AMF)
communities. This tomato/potato-onion intercropping system
functions as a beneficial companion cropping strategy, but the
bacteria associated with AMF spores—a group directly regulating
AMF spore germination and early symbiosis establishment (Chu
et al., 2022), which are critical for sustaining AMF’s nutrient cycling
function—remain uncharacterized in this system.

Arbuscular mycorrhizal fungi (AMF) are core components of
the “rhizospheric symbiotic community” (Rhizobiont), serving as
key symbionts that mobilize insoluble nutrients, enhance mineral
uptake, and promote plant growth (Brundrett and Tedersoo, 2018;
Wang and Qiu, 2006; Wang et al., 2024). The ecological functions
of AMF are highly dependent on their associated microorganisms:
AMF mycelial exudates recruit specialized bacterial communities
in the hyphosphere (Zhang et al., 2022), while bacteria colonizing
the surfaces or interiors of AMF spores form a unique symbiotic
microenvironment (Artursson and Jansson, 2003; Bianciotto et al.,
2001). These AMF spore-associated bacteria differ functionally
from rhizospheric or hyphospheric bacteria—unlike rhizospheric
bacteria, which primarily interact with plant roots, or hyphospheric
bacteria, which associate with extended mycelia, spore-associated
bacteria directly regulate AMF spore germination, viability, and the
establishment of initial symbiosis (Chu et al., 2022; Toljander et al.,
2006). For example, specific bacterial taxa can increase AMF spore
germination rates and support early mycelial growth, a process
that is foundational for the subsequent formation of plant-AMF
symbiosis and the execution of nutrient cycling functions (Bidondo
et al., 2016; Duan et al., 2024).

Despite the importance of AMF spore-associated bacteria,
current research on intercropping and soil microorganisms has
primarily focused on rhizosphere microbial communities or
AMF themselves (Van der Heijden and Wagg, 2013; Jain et al.,
2020). Studies have shown that, compared with conventional
tillage, intercropping increases the abundance and diversity of
soil microbial communities in orchard systems (Lacombe et al.,
2009); however, how intercropping regulates AMF spore-associated
bacterial communities—particularly in the tomato/potato-onion
system—remains largely unknown. This knowledge gap limits our
understanding of the “plant-AMF-bacteria” synergy mechanisms
that underpin the benefits of intercropping, thereby hindering
efforts to optimize intercropping practices for enhanced soil fertility
and sustainable agricultural production.

In the present study, we compared the effects of tomato
monoculture and tomato/potato-onion intercropping on
AMF spore-associated bacterial communities in the tomato

rhizosphere. Using Illumina MiSeq sequencing, we analyzed
the abundance, diversity, and taxonomic composition of these
bacterial communities. Our primary objective was to investigate
how interspecific plant interactions impact the diversity and
structural composition of AMF spore-associated microbiomes. To
address these knowledge gaps, we posed the following research
questions: (1) Does tomato/potato-onion intercropping alter the
alpha diversity of AMF spore-associated bacterial communities
relative to monoculture? (2) Does intercropping enrich specific
bacterial taxa linked to plant-beneficial potential (e.g., nutrient
cycling, growth promotion)?

2 Materials and methods

2.1 Experimental design

This study was conducted in a greenhouse at the Horticultural
Research Station of Northeast Agricultural University, Harbin,
China (45◦41′N, 126◦37′E). Test soil was collected from the top
0-15 cm layer of a low-phosphorus open field at the Xiangyang
Research Base in Harbin, where native vegetation has been growing
for over 20 years. The soil is classified as black soil with a sandy
loam texture, and its basic chemical properties are as follows:
organic matter, 2.92%; inorganic nitrogen (NH−

4 -N and NO+
3 -N),

134.19 mg kg−1; available potassium (AK), 70.19 mg kg−1; available
phosphorus (AP), 14.53 mg kg−1; electrical conductivity (EC, 1:5,
w/v), 0.25 mS cm−1; pH (1:5, w/v), 6.61; and AMF spore numbers
were ca. 500 per 100 g of the soil (Gerdemann and Nicolson, 1963).

The plant species selected for this study included tomato and
potato-onion, with the tomato cultivar specified as “Dongnong
708” (Solanum lycopersicum L.) and the potato-onion cultivar
identified as “Suihua” (Allium cepa L. var. aggregatum G. Don).
Both are locally adapted varieties widely used in agricultural
research and production within the study region, and all plant
materials were provided by the Key Laboratory of Horticultural
Crop Biology and Genetic Improvement, Ministry of Agriculture
and Rural Affairs, Northeast Agricultural University.

Two experimental treatments were established: a tomato
monoculture system (T) and a tomato/potato-onion intercropping
system (TO). The experiment was conducted in plastic pots
(22.5 cm in diameter × 14.0 cm in height) (Wu et al., 2019),
which were thoroughly cleaned and sterilized with 75% ethanol
prior to use to eliminate potential microbial contaminants; each
pot contained 3 kg of soil. A randomized complete block design
was adopted, with three replicates per treatment and 15 pots per
replicate. Tomato seeds were surface-sterilized with 3.8% sodium
hypochlorite and germinated in a sterilized mixture of sand and
low-P soil (1:1, v/v). After 15 days, tomato seedlings with two
true leaves were transplanted. Potato-onion bulbs were stored at
4 ◦C before planting. For the tomato monoculture system (T),
two uniformly sized tomato seedlings at the two-true-leaf stage
were transplanted into each pre-prepared pot. The two seedlings
were planted approximately 5 cm apart in a parallel arrangement
to ensure balanced access to resources. In the tomato/potato-onion
intercropping system (TO), one tomato seedling and three potato-
onion bulbs were planted per pot. The potato-onion bulbs were
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placed 5–10 cm away from the tomato seedling in the horizontal
direction, corresponding to a planting ratio of 3:1 (potato-
onion:tomato). This arrangement ensured sufficient space for root
development while facilitating potential interspecific interactions
between the two species.

Therefore, the experiment comprised 2 cropping systems
(monoculture and intercropping) × 3 replicates × 15 pots, totaling
90 pots. During sample analysis, a subsampling strategy was
implemented to ensure representativeness: 5 pots were randomly
selected from the 15 pots of each biological replicate, and their
rhizosphere soils were pooled to form one composite sample
per replicate, resulting in 3 composite samples per treatment for
subsequent analyses. Soil moisture in all pots was maintained at
70% of the soil’s water-holding capacity by adding groundwater
every 1–3 days, ensuring optimal plant growth conditions. Weeds
were manually removed throughout the experiment. To prevent
the leaching of soil microorganisms with irrigation water, the inner
walls of the plastic pots were lined with plastic film.

2.2 Soil sampling

Rhizosphere soil sampling was conducted 90 days after
transplantation following this specific protocol: Five tomato plants
were randomly selected from each replicate of each treatment.
The roots were gently shaken, and rhizosphere soil was collected
using a sterile bristle brush. Soil samples from each replicate were
then thoroughly homogenized and sieved through a 2 mm mesh to
remove impurities. This yielded three composite soil samples per
treatment, which were stored at 4 ◦C for subsequent extraction of
AMF spore-associated bacteria.

2.3 Preparation of AMF spore-associated
bacterial suspension

AMF spores in the rhizosphere soil samples were extracted
using the wet sieving and sucrose density gradient centrifugation
method (Daniels and Skipper, 1982). The soil samples were first
mixed with sterile water at a ratio of 1:5 (w/v) and shaken for
10 min to fully disperse the spores. The sucrose density gradient
used was 10%−50% (w/v), with centrifugation performed at 3000
× g for 20 min at 4 ◦C, and AMF spores were collected from the
interface layer (Rillig, 2004). The extracted spores were further
identified as AMF spores via microscopic examination, based on
typical morphological characteristics such as spherical or elliptical
shape, thick walls, possible surface ornamentation, and non-septate
sporangiophores, to exclude spores of other fungi (Johnson et al.,
2003).

The AMF spore suspension obtained after extraction was
subjected to AMF spore retention using a 0.45 μm aqueous
filter membrane. Subsequently, the filter membrane is placed in
a centrifuge tube and washed vigorously with a vortex mixer at
1,500 rpm for 1 min to obtain a suspension of AMF spore symbiotic
bacteria (Agnolucci et al., 2015). This bacterial suspension was
stored at 4 ◦C for no more than 48 h for subsequent isolation
and purification (Brundrett and Tedersoo, 2018). For long-term

preservation, 20% glycerol (final concentration) was added, and the
suspension was stored at−80◦C (Stürmer et al., 2021).

2.4 Illumina MiSeq sequencing

DNA extraction and Illumina MiSeq sequencing of AMF
spore-associated bacteria were performed by Shenggong
Bioengineering (Shanghai) Co., Ltd. Total genomic DNA was
extracted from the bacterial suspension using a TIANamp Bacteria
DNA Kit (TIANGEN, China) following the manufacturer’s
protocol; DNA quality was verified via 1% agarose gel
electrophoresis, and concentration was determined using a
NanoDrop spectrophotometer (Thermo Fisher Scientific, USA)
with OD60

2 /OD80
2 ratios maintained between 1.8–2.0.

The V3–V4 hypervariable regions of the bacterial 16S rRNA
gene were amplified using the primer pair F338/R806, which is
widely used for rhizosphere microbial community analysis due to
its high specificity (Zhou et al., 2018). Each forward and reverse
primer was tagged with a unique 6-bp barcode for sample-specific
discrimination. PCR reactions were conducted in 25 μL volumes
containing 12.5 μL 2 × Taq PCR MasterMix (CWBIO, China),
1 μL of each primer (10 μM), 2 μL template DNA, and 8.5 μL
sterile ddH2O. The thermal profile was: 95 ◦C for 3 min (initial
denaturation); 35 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72
◦C for 45 s; and a final extension at 72 ◦C for 10 min.

For each composite DNA sample, three technical replicates
of PCR amplification were performed. Amplicons from the
replicates were pooled, purified using an Agarose Gel DNA
Purification Kit (TaKaRa, Dalian, China), and quantified with a
Qubit 4 Fluorometer (Thermo Fisher Scientific, USA). Purified
products were pooled in equimolar concentrations to construct the
sequencing library, which was quality-checked using an Agilent
2100 Bioanalyzer (Agilent Technologies, USA) to confirm target
fragment sizes (∼460 bp) before Illumina MiSeq PE300 sequencing.

2.5 Raw sequence data processing

The raw sequence files were quality-filtered and processed
using FLASH following the methods described previously (Magoč
and Salzberg, 2011; Gao et al., 2017). Chimeric sequences were
identified and removed using USEARCH 6.1 implemented in
QIIME (Caporaso et al., 2010). Operational taxonomic units
(OTUs) were clustered at 97% sequence similarity using UPARSE
with an agglomerative clustering algorithm (Edgar, 2013). The
representative sequence of each operational taxonomic unit (OTU)
was taxonomically annotated against the SILVA database (release
128; Quast et al., 2012; Kõljalg et al., 2013). The raw sequences
have been uploaded to the NCBI Sequence Read Archive (accession
number PRJNA1291378).

2.6 Statistical analysis

Alpha diversity indices (Chao1, Shannon, Simpson) were
calculated in QIIME 1 to evaluate community richness and
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evenness. Beta diversity was analyzed via principal coordinates
analysis (PCoA) based on Bray-Curtis dissimilarity to assess overall
compositional differences. Heatmap analysis of dominant taxa
abundance patterns was performed using the “pheatmap” package
in R (Kolde, 2015). Differences in the relative abundance of OTUs
between treatments were measured using likelihood ratio tests with
the Benjamini-Hochberg p value correction in the “EdgeR” package
(Robinson et al., 2010). Volcano plots (via “ggpubr” and “ggthemes”
in R) visualized differential OTU magnitude and significance,
while Manhattan plots (via “ggplot2” in R) displayed taxonomic
distribution of significant differences. Alpha diversity indices and
taxonomic compositions (phylum, class, OTU levels) of AMF
spore-associated bacteria were compared between monoculture
and intercropping systems using Student’s t-test (P < 0.05).
Statistical analyses including Student’s t-test were conducted in
IBM SPSS Statistics v22.0 (IBM Corp., Armonk, NY, USA); analyses
involving EdgeR, PCoA, and heatmaps were performed in R.

3 Results

3.1 Illumina Miseq sequencing data

In total, Illumina MiSeq sequencing generated 294,606 high-
quality bacterial sequences, with individual samples containing
36,182–63,878 sequences (mean = 49,101). The 16S rRNA gene
amplicons average read length was 423 bp. Good’s coverage, an
indicator of captured community diversity, exceeded 99.88± 0.08%
across all bacterial communities, demonstrating comprehensive
sampling of the dominant taxa. Rarefaction curves for OTUs
clustered at 97% sequence similarity approached saturation for all
samples (data not shown), confirming that the sequencing depth
was sufficient to accurately assess bacterial community diversity.

3.2 Diversity of AMF spore-associated
bacterial communities

Alpha diversity of AMF spore-associated bacterial communities
in treatments T and TO was quantified using OTU richness,
Shannon Index, inverse Simpson Index, ACE Index, and Chao1
Index. All assessed alpha diversity metrics were significantly
elevated in the TO system compared to the T treatment (P < 0.05),
indicating a higher level of community richness and evenness in the
intercropping system (Figures 1A–E). At the OTU level, principal
coordinate analysis (PCoA) revealed a distinct clustering pattern,
with clear separation in community composition of AMF spore-
associated bacteria between monoculture (T) and intercropping
(TO) systems (Figure 1F).

3.3 Composition of AMF spore-associated
bacterial communities

At the phylum level, a total of 15 bacterial phyla were
identified across all samples (data not shown). Among these,
Proteobacteria, Bacteroidetes, and Actinobacteriota emerged

as the core dominant phyla, collectively contributing to
over 92% of the total bacterial sequence reads (average
relative abundance >1%) (Figure 2A). Comparative
analysis revealed that the intercropping system (TO)
exhibited significantly higher relative abundances of
Actinobacteriota, Cyanobacteria, and Firmicutes compared
to the monoculture system (T), whereas the relative abundance
of Bacteroidetes was significantly decreased in TO (P < 0.05)
(Figure 2A).

At the class level, 44 distinct bacterial classes were detected
across all samples (data not shown). Gammaproteobacteria,
Actinobacteria, and Bacteroidia represented the dominant
taxonomic classes, accounting for more than 86% of the
total sequence reads (average relative abundances >1%)
(Figure 2B). Relative to T, the TO system displayed significantly
elevated abundances of Actinobacteria, Alphaproteobacteria,
Oxyphotobacteria, Bacilli, and Deltaproteobacteria, while the
relative abundance of Bacteroidia was significantly reduced in TO
(P < 0.05) (Figure 2B).

At the genus level, 274 bacterial genera were identified in
total (data not shown), with the top 50 genera based on relative
abundance visualized in a heatmap (Figure 2C). Specifically,
the relative abundances of Janthinobacterium, Rhodococcus,
Paenarthrobacter, Streptomyces, Sphingomonas, Bacillus,
Microbacterium, Phormidium IAM M-71, Tychonema CCAP 1459-
11B, Aeromicrobium, Micromonospora, Acidovorax, Allorhizobium,
Microcoleus PCC 7113, Staphylococcus, Nocardioides, Marmoricola,
Haliangium, Devosia, and Sphingobium were significantly
higher in TO than in T. Conversely, the relative abundances
of Pseudomonas, Flavobacterium, Pedobacter, Massilia, and
Dyadobacter were significantly lower in the TO system (P < 0.05)
(Figure 2C, Supplementary Table 1). Notably, the tomato/potato-
onion intercropping system exerted a specific regulatory effect
on the abundances of Microcoleus PCC 7113, Staphylococcus,
Comamonas, and Ensifer (Supplementary Table S1). Notably,
enriched genera such as Streptomyces (known for secondary
metabolite production) and Bacillus (plant growth promoters)
suggest potential functional shifts toward enhanced nutrient
mobilization and symbiotic efficiency in intercropping (Figure 2C,
Supplementary Table 1).

A total of 443 bacterial operational taxonomic units (OTUs)
were detected within AMF spores (Figure 3). Compared with
the monoculture system (T), 137 OTUs were significantly
enriched in the intercropping system (TO); these enriched OTUs
were predominantly affiliated with the phyla Proteobacteria,
Actinobacteriota, and Cyanobacteria. In contrast, 19 OTUs were
significantly depleted in TO relative to T, and the majority
of these depleted OTUs belonged to the phyla Bacteroidetes
and Proteobacteria.

The most significantly enriched OTUs included OTU6 (8 reads
in T vs 946 reads in TO), OTU8 (3 reads in T vs 601 reads in TO),
OTU24 (0 reads in T vs 155 reads in TO), OTU19 (1 read in T vs 166
reads in TO), OTU14 (3 reads in T vs 251 reads in TO), and OTU15
(3 reads in T vs 187 reads in TO) (Figure 4A). Taxonomically,
these OTUs were assigned to the genera Paenarthrobacter,
Streptomyces, Microcoleus, Tychonema, Micromonospora, and
Acidovorax, respectively (Supplementary Table 2).

Frontiers in Microbiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1686962
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhou et al. 10.3389/fmicb.2025.1686962

FIGURE 1

Alpha (A–E) and beta (F) diversity of AMF spore-associated bacterial communities in tomato monoculture (T) and tomato/potato-onion
intercropping (TO) systems. Beta diversity was analyzed based on Bray-Curtis dissimilarity at the OTU level (97% sequence similarity). ** and ***
indicate significant difference at P < 0.01, and P < 0.001, respectively (Student’s t-test).

The most significantly depleted OTUs included OTU3 (11019
reads in T vs 302 reads in TO), OTU13 (2119 reads in T vs 302
reads in TO), OTU9 (866 reads in T vs 26 reads in TO), OTU5 (880
reads in T vs 3 reads in TO), and OTU7 (566 reads in T vs 6 reads
in TO) (Figure 4B). Taxonomically, these OTUs were assigned to
the genera Flavobacterium, Pseudomonas, Massilia, Pedobacter, and
Dyadobacter, respectively (Supplementary Table 3).

4 Discussion

In the present study, tomato/potato-onion intercropping
significantly increased alpha diversity indices (Shannon, Chao1,
and ACE) of AMF spore-associated bacterial communities
compared to monoculture, supporting our first research question.
This diversity enhancement stems from the intricate resource
dynamics and micro environmental regulation inherent
in intercropping systems. Host plants allocate 4-20% of
photosynthetic carbon to AMF as hexoses and fatty acids
to support extraradical hyphal network expansion (Hodge,
1996; Rich et al., 2017; Zhang et al., 2022), while potato-
onion root exudates—enriched in organic acids, phenolics, and
carbohydrates—modify rhizosphere pH, nutrient bioavailability,
and microbial niche partitioning (Linderman, 1988; Zhou
et al., 2023). This dual input of plant-derived carbon and

exudate-mediated microenvironmental tuning creates a more
heterogeneous habitat, fostering higher bacterial diversity. Such
a pattern aligns with broader ecological theory suggesting that
increased plant diversity drives microbial diversity through
resource partitioning (Van der Heijden et al., 2008), and is
supported by empirical evidence that intercropping-induced
root exudate complexity directly enhances rhizosphere microbial
richness (Li et al., 2024). It is worth noting that our study
was conducted under low-P conditions (which promote AMF
colonization), so observed microbial shifts may also reflect P
limitation effects.

Intercropping not only elevated diversity but also reshaped
community composition, with Actinobacteria, Cyanobacteria,
and functional genera (e.g., Streptomyces, Rhodococcus,
Paenarthrobacter) significantly enriched. This taxonomic shift
reflects niche specialization: AMF spores secrete chitin, lipids,
and signaling molecules (Frey-Klett et al., 2007), creating a
microhabitat that selects for bacteria with hydrolytic capabilities
(e.g., chitinases, phosphatases) and symbiotic traits. Our
detection of 12 dominant bacterial phyla (led by Proteobacteria,
Bacteroidetes, Actinobacteriota, and Firmicutes) aligns with Zhang
et al. (2022) characterization of core AMF-associated taxa, but
extends this by identifying intercropping-specific enrichment of
Actinobacteriota—a phylum critical for mediating AMF-plant
mutualisms via secondary metabolite secretion and nutrient
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FIGURE 2

Composition of AMF spore-associated bacterial communities at the phylum (A) and class (B) levels in tomato monoculture (T) and
tomato/potato-onion intercropping (TO) systems. (A, B) Relative abundances of dominant bacterial phyla and classes (with relative abundances > 1%
in at least one treatment). (C) Heatmap of the top 50 genera of AMF spore-associated bacterial communities under different treatments. In the
heatmap, relative abundances of bacterial genera in T and TO are represented by a color gradient from red (high abundance) to yellow to blue (low
abundance). Hierarchical clustering of treatments was performed using the average linkage method based on Euclidean distances. For differential
analysis in the heatmap, only bacterial taxa with relative abundances > 1% in at least one treatment were included for further comparison. Statistical
significance is indicated by *, **, and *** for P < 0.05, P < 0.01, and P < 0.001, respectively, based on Student’s t-test.
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FIGURE 3

Volcano plot illustrating differentially abundant OTUs between
cropping systems. Notes: Each point in the volcano plot represents
an individual OTU. The X-axis denotes the log2 fold change (log2FC)
in OTU abundance between treatments, while the Y-axis represents
the negative logarithm of the adjusted P-value (-log10 adjusted
P-value), indicating the statistical significance of abundance
changes. A larger absolute value on the X-axis indicates a greater
magnitude of difference in OTU abundance between groups,
whereas a higher Y-axis value reflects a more significant difference.
Red dots represent significantly enriched OTUs in the intercropping
system (TO), blue dots represent significantly depleted OTUs in TO,
and gray dots indicate OTUs with no significant difference (P ≥ 0.05
or |log 2 FC| ≤ 1).

mobilization (Song et al., 2010; Wang et al., 2023). Specifically,
Streptomyces—a dominant enriched genus—produces auxins and
cellulases that may enhance AMF spore germination and hyphal
growth (Jin et al., 2024; Sadeghi et al., 2012; Chater, 2016), while
Rhodococcus and Bacillus likely promote AMF root colonization
by modulating hyphal branching and symbiotic signaling (Battini
et al., 2016; Lecomte et al., 2011), suggesting potential plant-AMF-
bacteria synergies. This observation of intercropping-induced
enrichment of functionally beneficial bacterial taxa supports our
second research question. Additionally, since the F338/R806
primer pair may introduce amplification bias against specific phyla
(e.g., Verrucomicrobia), multiple factors should be considered
when analyzing low-abundance phyla.

These community shifts could have notable functional
implications. Enriched taxa in intercropping systems are
linked to key agroecosystem functions based on their well-
documented traits in prior studies: Paenarthrobacter solubilizes
inorganic phosphorus to improve plant uptake (Salimi et al.,
2023); Janthinobacterium produces antifungal compounds
that suppress soil-borne pathogens (Haack et al., 2016); and
Cyanobacteria contribute to nitrogen fixation, enhancing soil
fertility (Álvarez et al., 2023). This functional coordination
suggests intercropping assembles a microbiome with enhanced
nutrient cycling and plant-beneficial traits, rather than inducing
random taxonomic shifts. Our identification of 137 upregulated

OTUs (predominantly Proteobacteria/Actinobacteriota) and 19
depleted OTUs (Bacteroidetes/Proteobacteria) mirrors Gao D.
et al. (2021) observation of intercropping-driven taxonomic
specificity, reinforcing that plant diversity selects for functionally
complementary microbial consortia. This aligns with the
“functional redundancy” hypothesis, where higher diversity
ensures stable ecosystem function through overlapping taxa
roles (Allison et al., 2008). However, we note that functional
redundancy was not directly measured in this study—our inference
is based on taxonomic diversity patterns and prior literature, not
functional assays.

Beyond productivity, these spore-associated bacteria may play
underappreciated roles in stress resilience. AMF are known to
mitigate heavy metal toxicity and drought stress via immobilization
and osmotic regulation (Wipf et al., 2019), and their associated
bacteria could hypothetically synergistically reinforce these stress-
mitigating traits, drawing on prior findings regarding related
bacterial taxa: Streptomyces species have been reported to degrade
organic pollutants and produce siderophores to alleviate metal
stress (Dimkpa et al., 2009), while Allorhizobium has been shown
to modulate plant stress hormone signaling (e.g., abscisic acid,
ABA) to improve drought tolerance. However, the mechanistic
links between intercropping practices, spore-associated bacterial
activity, and plant stress tolerance have not been examined in
the present study and thus remain underexplored—particularly in
intensive agricultural systems where soil degradation and abiotic
stress are widespread (Chen, 2022), rendering this a priority for
future investigation.

Despite these insights, limitations exist. Our study focuses
on community structure rather than direct functional validation;
future work should employ gnotobiotic systems to quantify how
key taxa (e.g., Streptomyces, Rhodococcus) affect AMF spore
viability, hyphal growth, and plant nutrient uptake. Additionally,
greenhouse conditions may not fully replicate field-scale variability
in soil type and climate, necessitating field trials to confirm the
generalizability of our findings.

In conclusion, this study demonstrates that tomato/potato-
onion intercropping reshapes AMF spore-associated bacterial
communities toward higher diversity and functionally beneficial
taxa. These findings advance our understanding of how cropping
systems modulate microbial symbioses and provide a mechanistic
foundation for harnessing AMF-bacterial interactions to improve
sustainable agroecosystem management.

5 Conclusion

In summary, tomato/potato-onion intercropping significantly
enhances the diversity of AMF spore-associated bacterial
communities in the tomato rhizosphere, enriches beneficial taxa
(e.g., Actinobacteria) and functional genera (e.g., Streptomyces,
Rhodococcus), and modifies community composition relative to
monoculture, providing foundational data on intercropping-driven
microbial dynamics. Mechanistic links between these bacterial
shifts, plant-microbe interactions, and key functions (e.g., nutrient
cycling, stress tolerance) remain unresolved, requiring future
functional validation of enriched taxa. Specifically, verifying their
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FIGURE 4

Manhattan plots and associated bar plots showing differentially abundant OTUs between cropping systems. (A) Manhattan plot displaying taxonomic
information for OTUs enriched in the tomato/potato-onion intercropping system (TO) relative to the tomato monoculture system (T), with a
corresponding bar plot showing counts of representative enriched OTUs (OTU6, OTU8, OTU24, OTU19). (B) Manhattan plot presenting taxonomic
information for OTUs depleted in TO compared to T, accompanied by a bar plot showing counts of representative depleted OTUs (OTU3, OTU13,
OTU9, OTU5). The dashed line indicates the false discovery rate (FDR)-corrected significance threshold (P = 0.05). ** and *** indicate significant
differences at P < 0.01 and P < 0.001, respectively (Student’s t-test). CPM = counts per million; OTU = operational taxonomic unit.
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roles in AMF spore germination, nutrient acquisition, and stress
mitigation could support translating microbial shifts into strategies
for sustainable agriculture.
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