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Comprehensive analysis of phage 
genomes from diverse 
environments reveals their 
diversity, potential applications, 
and interactions with hosts and 
other phages
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Phages are ubiquitous and diverse, playing a key role in maintaining microbial 
ecosystem balance. However, their diversity, potential applications, and their 
interactions with hosts and other phages remain largely unexplored. To address 
this, we collected 59,652,008 putative viral genomes from our laboratory, 45 public 
viral datasets, and an integrated public viral genome database (IGN), covering seven 
habitats. We obtained 741,692 phage genomes with completeness ≥50% (PGD50), 
and most (93.83%, 695,938/741,692) of these phage genomes were classified into 
the Caudoviricetes class. We found that 158,522 species-level viral clusters that 
contained 28.96% (214,814/741,692) phage genomes without any known phage 
genomes in the IGN, indicating substantial novelty. Global phylogenetic trees for 
five iterations based on complete phage genomes significantly expanded the known 
diversity of the virosphere. Genome analysis revealed phage potential divergence 
with habitat types and highlighted the utilization of alternative genetic codes. 
Furthermore, 3D structural similarity searches demonstrated significant potential 
for annotating previously uncharacterized viral proteins. Analysis of CRISPR spacer 
inferred potential hosts of phages and competitive networks among phages, 
highlighting virulent phages as promising candidates for phage therapy against 
pathogenic bacteria. Intriguingly, diverse CRISPR-Cas systems were detected within 
phage genomes themselves, suggesting their enormous potential as novel gene 
editing tools. Collectively, this study provides a comprehensive phage genome 
resource, foundational for future research into phage–host and phage–phage 
interactions, phage therapy development, and the mining of next-generation 
genetic tools.
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1 Introduction

Phages, ubiquitous, highly diverse viral components, are key regulators of microbial 
ecosystem balance, primarily through infection and lysis of bacteria and archaea (Clokie et al., 
2011). They shape microbial community dynamics, metabolism, and diversity via established 
interactions (e.g., “kill-the-winner,” “piggyback-the-winner,” and evolutionary arms races) 
(Brown et  al., 2022; Yan and Yu, 2024). Specifically, phages maintain diversity by lysing 
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dominant strains, enhance host adaptability through horizontal gene 
transfer, and drive microbial diversification via adaptive co-evolution 
(Dion et al., 2020; Mangalea and Duerkop, 2020). Their therapeutic 
promise is exemplified in combating multidrug-resistant pathogens 
through phage therapy (Federici et al., 2022). Furthermore, phages 
engage in complex co-evolutionary dynamics with their hosts and 
environments. For instance, under heavy metal stress like chromium 
contamination in soil, phage–host interactions can shift from a 
predatory relationship to a potentially mutualistic one, with an 
increase in lysogeny and phage-mediated horizontal gene transfer 
potentially aiding host adaptation (Touchon et al., 2017). Similarly, in 
freshwater lake systems subjected to multiple environmental stressors, 
the complexity and stability of virus-bacteria interaction networks can 
be significantly reduced, altering the composition of viral auxiliary 
metabolic genes and consequently impacting ecosystem functions like 
carbon cycling (Wang T. et al., 2025). These findings underscore the 
critical role of environmental factors in shaping phage–host 
interaction networks. Although a number of phage genome databases 
have been established, the data remain largely fragmented and exhibit 
significant habitat-specific biases (Resch et  al., 2024; Wang et  al., 
2024). However, a significant research gap persists because two key 
resources are lacking: a unified, high-quality genome resource for 
phages from diverse habitats, and a comprehensive understanding of 
the global-scale architecture of phage–host interaction networks. This 
gap fundamentally limits systematic ecological and evolutionary 
insights (Bignaud et al., 2025; Wang B. et al., 2025).

To counter phage predation, prokaryotes have evolved the 
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic 
Repeats) system, an adaptive immune mechanism that provides 
sequence-specific defense against invading nucleic acids (DNA and 
RNA) through the stages of adaptation, expression, and interference 
(Burstein et al., 2017; Makarova et al., 2020). Diverse CRISPR-Cas 
systems have been identified within metagenome-assembled genomes 
(MAGs) across specific prokaryotic phyla (Shmakov et al., 2015; Yan 
et al., 2018), and this suggests a rich landscape of interacting phage 
genomes. Phages themselves have been found to harbor CRISPR-Cas 
systems, inspiring novel gene-editing tools, a comprehensive overview 
of CRISPR-Cas systems across entire prokaryotic host and phage 
populations is still lacking (Pausch et al., 2020; Al-Shayeb et al., 2022). 
This gap hinders our understanding of the tripartite interactions 
among phages, other phages, and host bacteria or archaea, and their 
collective role in maintaining microbial community homeostasis.

Herein, to bridge these knowledge gaps, we  present the 
construction and comprehensive characterization of the PGD50 
database, a curated collection of high-quality phage genomes 
integrated from diverse habitats. The primary objective of this study 
is to employ this unified resource to systematically evaluate global 
phage diversity, evolutionary patterns, and ecological interactions, 
with an emphasis on uncovering novel phages and elucidating their 
functional traits. To address these objectives, we designed a series 
of targeted analytical approaches: (1) Taxonomic classification and 
phylogenetic analysis were applied to delineate evolutionary 
relationships and quantify phylogenetic novelty. (2) CRISPR spacer 
matching was leveraged to infer phage–host interaction networks 
and uncover competitive dynamics among phages. (3) Structure-
based functional annotation enabled the prediction of protein 
functions beyond sequence homology, expanding the functional 
landscape of phage genomes. (4) Comparative genomics of 

CRISPR-Cas systems identified their diversity and potential activity 
within phage genomes. Together, these integrated approaches 
provide a multidimensional perspective on phage ecology and 
evolution, while also facilitating the identification of phage-encoded 
systems with potential biotechnological utility.

2 Methods

2.1 Construction of a phage genome 
database (PGD50)

To obtain phage genomes from diverse environments, we collected 
and combined putative viral contigs from our laboratory, 45 public 
viral datasets across 7 habitats, and an Integrated Genomic Database 
[IGN: IMG/VR (Camargo et al., 2023a), GenBank (Benson et al., 
2013), NT (Sayers et al., 2022); Supplementary Tables S1, S2], yielding 
59,652,008 contigs for analysis. Among them, we  performed a 
dereplication step on all viral genomes included in the IGN database 
using MMseqs2 with the “easy-linclust -c 1.0 --min-seq-id 1.0” 
options, clustering them at 100% sequence identity to ensure 
non-redundancy. Viral contig identification utilized a custom pipeline 
developed by Nayfach et al. (2021b) based on four signatures: presence 
of viral protein families, absence of microbial protein families, viral 
nucleotide signatures, and multiple adjacent genes on the same strand. 
Briefly, to identify the presence of viral protein families, we constructed 
hidden Markov models (HMMs) for 23,841 viral protein families from 
the IMG/VR database, after excluding 1,440 families that are 
commonly found in microbial genomes or plasmids. Conversely, to 
confirm the absence of prevalent microbial protein families, HMM 
profiles were constructed for 16,260 families from the Pfam-A 
database, following the removal of 452 families that are also common 
in viruses. All protein sequences were searched against these HMMs 
using hmmsearch [HMMER v3.3.2 (Potter et al., 2018); parameters: 
-Z 1, E-value <1 × 10−10], with the database of the top hit determining 
the classification. Concurrently, viral nucleotide signatures were 
identified using VirFinder v.1.1 (Ren et al., 2017), which employs 
k-mer frequencies and machine learning. Genomic organization was 
assessed by calculating the strand switch rate (number of strand 
switches divided by gene count) for contigs with multiple adjacent 
genes. Finally, 9,607,235 viral contigs with genome size ≥3 kb were 
obtained for subsequent analysis.

Phage identification employed two complementary methods 
(Devoto et al., 2019; Al-Shayeb et al., 2020; Shang et al., 2022). First, 
protein sequences derived from contigs were annotated against Pfam-A 
(Mistry et  al., 2021), TIGRFAM (Haft et  al., 2003), and VOGDB1 
databases using HMMER v3.3.2 (Potter et  al., 2018) with the 
“hmmsearch -E 1e-5” parameter. Genomes required two or more genes 
containing virus-specific keywords (“capsid, phage, terminase, base 
plate, baseplate, prohead, virion, virus, viral, tape measure, tapemeasure 
neck, tail, head, bacteriophage, prophage, portal, DNA packaging, T4, 
p22, and holin”), exclusion of prokaryote-specific terms (“ribosomal 
protein, preprotein translocase, and DNA gyrase subunit A”), and at least 
one spacer match from bacterial or archaeal genomes. Second, we used 

1  http://vogdb.org
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PhaMer v1.0 (Shang et al., 2022; Hu et al., 2024) with default parameters, 
which applies a Transformer model for metagenomic phage prediction.

Removing false positives involved assessing bacterial universal 
single-copy orthologs (BUSCOs) ratios (Simao et  al., 2015) and 
curated viral protein family modules (VPFs) ratios (Gregory et al., 
2020). Genomes were retained only if they exhibited a BUSCO ratio 
<0.067, or a BUSCO ratio >0.067 with at least three VPF hits. 
Subsequent processing detected provirus boundaries, removed host 
bacterial sequence contamination, and evaluated genome 
completeness using CheckV v0.8.1 (Nayfach et al., 2021a). The final 
PGD50 database comprised 741,692 phage genomes with ≥50% 
completeness.

2.2 Lifestyle prediction and taxonomy 
assignment of phage genomes (PGD50)

We predicted phage lifestyles using BACPHLIP v0.9.3 
(Hockenberry and Wilke, 2021), which classifies genomes as virulent 
(score <0.5), uncertain (score 0.5–0.9), or temperate (score >0.9). 
Since temperate phages exhibit both lytic and lysogenic states, 
we  integrated prophages identified by CheckV with BACPHLIP-
predicted temperate phages to define the final temperate category. 
Taxonomic assignment was performed using geNomad v1.7.4 
(Camargo et al., 2023b), which leverages viral taxon markers covering 
most ICTV-recognized lineages.

2.3 Clustering phage genomes to 
species-level viral clusters and 
identification of potential novel phage 
genome clusters

We clustered 741,692 PGD50 genomes into species-level viral 
clusters using a greedy centroid-based algorithm (Roux et al., 2019; 
Nayfach et al., 2021b; Tomofuji et al., 2022; Zeng et al., 2024; Wei et al., 
2025) with threshold criteria of 95% average nucleotide identity (ANI) 
and ≥85% genome coverage, as recommended by Roux et al. (2019). 
Clusters lacking any phage genomes from the IGN database were 
subsequently classified as novel phage genome clusters. Furthermore, 
we obtained all phage genomes from the PhageScope (Wang et al., 
2024) database (total 873,718 genomes). To ensure a fair comparison 
with our PGD50 dataset (completeness ≥50%), we first processed the 
PhageScope genomes through CheckV, retaining only those with 
≥50% completeness (446,062 genomes). These were then dereplicated 
at 100% average nucleotide identity using MMseqs2 (--min-seq-id 1.0 
-c 1.0), resulting in a high-quality, non-redundant PhageScope 
reference set of 334,616 genomes. A comparative analysis at the 
species-level viral cluster was performed based on the PGD50 and 
PhageScope reference sets.

2.4 Performing global phylogenetic 
analysis for phage genomes based on five 
iterations

To evaluate the phylogenetic novelty and contribution of our 
obtained phage genomes within the global context of phage diversity, 

we  conducted a large-scale phylogenetic analysis. This approach 
allowed us to quantify the phylogenetic distance (PD) between our 
genomes and established reference sequences, thereby assessing the 
expansion of the known evolutionary landscape.

Specifically, we combined 44,311 complete phage genomes from 
PGD50 with 5,658 reference complete phage genomes from the VMR 
database.2 The combined dataset was processed through a five-
iteration phylogenetic workflow adapted (Low et  al., 2019). First, 
duplicate genomes were removed using MMseqs2 v2.0 (“--min-seq-id 
1.0 -c 1.0”) (Steinegger and Soding, 2017). Protein coding sequences 
were then predicted using Prodigal v2.50 (Hyatt et al., 2010). The 
resulting protein sequences were clustered with MMseqs2 
(“--min-seq-id 0.3 -c 0.7”), yielding 353,315 protein clusters. Clusters 
containing ≥3 proteins were used to build HMM profiles with 
MUSCLE v3.8.15513 and HMMER. These were supplemented with 77 
existing Caudoviricetes HMM profiles from single-copy protein 
markers, generating a total of 219,604 phage-associated HMM profiles.

In each iteration, core HMM profiles were identified by scanning 
progressively refined genome subsets against all profiles using 
HMMER (E-value ≤1 × 10−3; coverage ≥50%). A profile was 
considered core if it was present in ≥10% of genomes, had an average 
copy number ≤1.2, and an average protein length >100 residues. For 
phylogenetic tree construction, gene markers in retained genomes 
were identified via HMMER searches (E-value ≤1 × 10−3) against the 
core HMM profiles (Nayfach et  al., 2021b). Multiple sequence 
alignments of these markers were trimmed with trimAl v1.4.rev22 
(Capella-Gutierrez et al., 2009), retaining fragments with <50% gaps. 
Genomes needed to possess ≥3 markers present in >5% of alignment 
columns to be included. The final phylogeny was reconstructed using 
IQ-TREE2 v2.1.3 (Nguyen et al., 2015) under the LG + F + G4 model 
with 1,000 ultrafast bootstraps, and visualized in iTOL.4 Finally, 
phylogenetic distances between genomes were computed from the 
resulting tree branch lengths using the ape v5.7-1 (Paradis and Schliep, 
2019) and picante v1.8.2 (Kembel et al., 2010) packages in R, enabling 
quantitative assessment of the novel diversity introduced by 
our dataset.

2.5 Potential divergence analysis of 
complete phage genomes with habitat 
types

To minimize confounding effects from genomic fragmentation 
and unannotated habitats, we  analyzed 26,439 complete phage 
genomes with verified habitat origins. These genomes were clustered 
into genus-level viral clusters based on average amino acid identity 
(AAI) and gene sharing (Nayfach et al., 2021b; Tomofuji et al., 2022; 
Zeng et  al., 2024; Wei et  al., 2025). Protein sequences were first 
predicted using Prodigal, followed by all-vs-all BLASTP alignments 
in DIAMOND v2.1.9.163 (Buchfink et al., 2015). For each phage pair, 
we calculated AAI percentages and shared gene proportions. Genome 
pairs exhibiting <50% AAI or <20% shared genes were clustered using 
MCL v14-137 (van Dongen, 2008) with an inflation factor of 2.0.

2  https://ictv.global/vmr

3  http://www.drive5.com/muscle/

4  https://itol.embl.de/
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For clusters containing ≥4 genomes distributed across ≥2 habitats, 
we constructed phylogenetic trees (Wu et al., 2024). Core genes were 
identified using Roary v1.7.8 (Page et al., 2015) (-i 50 option) and 
aligned to create multi-FASTA files. Phylogenies were reconstructed 
with FastTree v2.1.10 (Price et  al., 2010) and visualized in 
iTOL. Branch lengths between all genome pairs were systematically 
measured within each cluster. We performed two one-tailed Wilcoxon 
rank sum tests to compare branch lengths: (1) between genomes from 
identical habitats versus (2) between genomes from different habitats. 
Clusters where cross-habitat branch lengths significantly exceeded 
same-habitat distances (p < 0.05) were designated as exhibiting 
potential habitat-specific divergence.

2.6 Identifying alternative genetic codes in 
phage genomes (PGD50)

We employed a custom Prodigal v2.50 to identify open reading 
frames in all 741,692 PGD50 genomes using four genetic coding 
schemes: the standard genetic code (11) and three alternative codes—
TAG recoding (15), TAA recoding (90), and TGA recoding (91) 
(Ivanova et al., 2014; Nayfach et al., 2021b; Lou et al., 2024). Briefly, 
for a phage with a genome size <100 kb, if its protein-coding density 
with the genetic codes 15, 90, or 91 increased >10% compared to that 
with the standard genetic code 11, we  considered that this phage 
genome tended to use the corresponding alternative genetic code. For 
those phages with a genome size ≥100 kb, the threshold for 
considering the utilization of an alternative genetic code was the 
increase of protein-coding density >5%.

2.7 Functional annotation of phage 
genomes (PGD50)

We predicted proteins from all 741,692 PGD50 genomes using 
their corresponding alternative genetic codes and clustered them into 
4,372,210 protein clusters via MMseqs2 (“--min-seq-id 3.0 -c 0.7”). To 
account for the mixed genetic repertoire of phages, which often 
includes genes of bacterial origin acquired via horizontal gene transfer, 
we utilized a multi-database approach including Pfam-A (Mistry et al., 
2021), TIGRFAM (Haft et al., 2003), and VOGDB (see text footnote 
1) for functional annotation to ensure broad coverage of both viral 
and bacterial protein domains. Representative sequences from each 
cluster were then functionally annotated against the three databases 
using HMMER (hmmsearch) (Potter et al., 2018) with an E-value 
threshold of 1 × 10−5.

To address unannotated proteins, we employed an approach of 
structural similarity searches developed by Nomburg et al. (2024) 
leveraging conserved structural domains from horizontal gene 
transfer events between viruses and cells. Given the substantial 
computational demands of structure prediction, our structural 
analysis was limited to representative sequences from the top 100 
largest no-hit clusters. These structures were generated using 
ColabFold (Tunyasuvunakool et  al., 2021), which leverages the 
AlphaFold2 algorithm. To infer functional insights, we performed 
structural alignments of our predicted models against the AlphaFold 
database using Foldseek (v1.0) (van Kempen et al., 2024). A TM-score 
threshold of ≥ 0.4 was employed to filter the alignments, retaining 

only those pairs with a statistically significant topological similarity 
for functional inference.

2.8 Host prediction for phage genomes 
(PGD50) and identification of phage–
phage interactions

We predicted hosts for 741,692 PGD50 genomes through CRISPR 
spacer matching. CRISPR spacers were identified from microbial 
genomes and MAGs in GTDB (Genome Taxonomy Database) 
(Chaumeil et  al., 2022), UHGG (Unified Human Gastrointestinal 
Genome) (Almeida et  al., 2021), and pig gut (Chen et  al., 2021) 
databases using MinCED v0.4.25 with default parameters. Taxonomic 
classification of MAGs employed GTDB-tk v2.0.0 (classify_wf mode) 
(Chaumeil et  al., 2022). Spacer-phage mapping used BLAST 
v2.12.0 + (BLASTn, -max_target_seqs 10,000,000 -dust no -word_size 
8 -evalue 10) (Camacho et  al., 2009), with matches requiring ≤1 
mismatch and 100% alignment. Successful mappings indicated host-
phage relationships. For pathogenic targeting analysis, we downloaded 
complete Escherichia coli and Klebsiella pneumoniae genomes from 
GenBank,6 removed duplicates using dRep v3.2.2 (-pa 0.9 -sa 1) (Olm 
et al., 2017), and annotated virulence factors (VFDB, http://www.mgc.
ac.cn/VFs/), antibiotic resistance genes (CARD, https://card.
mcmaster.ca/), and pathogenic bacterial proteins (PHI database, 
http://www.phi-base.org/).

We identified CRISPR spacers within PGD50 genomes using 
MinCED with default parameters and performed reciprocal BLASTn 
searches against all phage CRISPR spacers. Interactions were 
confirmed when spacers mapped to other phage genomes with ≤1 
mismatch and 100% alignment. CRISPR-Cas systems in both phages 
and hosts were predicted using CRISPRCasFinder v 4.3.2 (Couvin 
et al., 2018) with default parameters. Furthermore, Cas12 proteins 
were obtained and the Cas12 phylogeny was reconstructed using 
IQ-TREE2 v2.1.3 under the LG + F + G4 model with 1,000 ultrafast 
bootstraps, and visualized in iTOL (see text footnote 4).

2.9 Statistical analysis

All statistical analyses were performed using R packages (v4.2.1).

3 Results

3.1 Characterization of phage genomes 
with completeness ≥50% (PGD50) from 
diverse environments

To expand phage genome recovery across habitats, we collected 
putative viral genomes from our laboratory, 45 public viral datasets, 
and an integrated public viral genome database (IGN). Using a custom 
pipeline, we identified 5,893,090 phage contigs from 59,652,008 total 

5  https://github.com/ctSkennerton/minced

6  https://www.ncbi.nlm.nih.gov/genbank/
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contigs based on: (1) using a custom viral pipeline, (2) removal of 
contigs with a genome size <3 kb, (3) retention of contigs encoding ≥2 
virus-specific hallmark genes, (4) retention of contigs with ≥1 CRISPR 
spacer match, (5) using the PhaMer tool, and (6) confirmation using 
BUSCO and VPFs. Following validation using multiple methods, 
we  retained 741,692 high-confidence genomes with completeness 
≥50% (termed PGD50; Figure 1a).

We estimated the source distribution of phage genomes from 
PGD50, and found that 230,600 and 88,706 phage genomes were 
recovered from the human gut and pig gut, respectively (Figure 1b). 
Completeness assessment of phage genomes in the PGD50 identified 
44,311 complete genomes, which represented a valuable resource for 
the known virosphere diversity (Figure 1c). We further focused on the 
lifestyle of phages in the PGD50 and found 55.35% (410,503/741,692) 
phage genomes were predicted as virulent phages, highlighting 
therapeutic potential against pathogenic infections (Figure  1d). 
Taxonomic analysis of phages in the PGD50 using geNomad assigned 
93.83% (695,938/741,692) to the Caudoviricetes class, yet only 7.94% 
(58,902/741,692) achieved family-level resolution, demonstrating 
both substantial novelty and persistent classification challenges 
(Figure 1e and Supplementary Table S3).

3.2 Assessing novelty of PGD50 and global 
phylogenetic analysis of complete phage 
genomes

To evaluate the novelty of phage genomes in the PGD50, 
we clustered 741,692 phage genomes into 420,230 species-level viral 
clusters at the threshold of 95% average nucleotide identity (ANI) and 
85% coverage. We found 69,198, 45,937, and 23,611 species-level viral 
clusters were specifically identified in the human gut, pig gut, and 
rumen, respectively. Analysis of the species-level viral clusters 
confirmed the substantial novelty of our dataset. Specifically, 37.72% 
of the clusters themselves were novel, as they contained no sequences 
from the IGN database including IMG/VR, GenBank, and NT. These 
novel clusters comprised 28.96% of all the phage genomes analyzed 
(Figure 2a). Furthermore, a comparative analysis at the species-level 
viral cluster revealed the distinct contribution of our resource: 331,784 
(44.73%) of the 741,692 genomes in our PGD50 dataset are not 
present in the PhageScope database. In contrast, only 76,410 (22.84%) 
of the 334,616 PhageScope genomes with completeness ≥50% are 
absent from our dataset. It demonstrated that our study has 
contributed a massive number of novel phage genomes that were 
absent from a leading, recently published database.

To resolve global evolutionary relationships of phages, 
we  constructed phylogenetic trees for five iterations using 44,311 
complete phages from this study and 5,658 reference genomes from 
the Virus Metadata Resource (VMR) from the International 
Committee on Taxonomy of Viruses (VMR_MSL40.v1). Briefly, 
we first obtained 353,315 protein clusters and 219,604 HMM profiles 
based on protein clustering and HMM profile generating using 
MMseqs2 and HMMER. Notably, we  filtered and generated core 
HMM profiles for these complete phage genomes and performed five 
iterations to construct global phylogenetic trees (Figure 2b). Briefly, 
this iterative process was essential due to the vast diversity of our 
dataset. In each iteration, phage genomes not placed in the phage 
phylogenetic tree were identified, their specific marker genes were 

inferred, and these new markers were added to a composite set. This 
strategy progressively captured a broader spectrum of phage diversity, 
enabling a more inclusive and robust global phylogeny than would 
be possible with a single, static marker set. Interestingly, core HMM 
profiles of five iterations showed low inter-iteration similarity 
(Figure  2c), confirming representation of distinct phage diversity 
subsets. Phylogenetic distance (PD) metrics from all iterations 
(Figure 2d) collectively demonstrate significant expansion of known 
virosphere diversity.

3.3 Potential divergence analysis with 
habitat types using complete phage 
genomes

To minimize impacts of the genomic fragmentation and unknown 
habitat, we  analyzed 26,439 complete phage genomes from seven 
known habitats. These were clustered into genus-level viral clusters at 
the threshold of <50% average amino acid identity (AAI) or <20% of 
shared genes and an inflation factor of 2.0, yielding 2,517 genus-level 
viral clusters. Our analysis revealed a substantial number of habitat-
specific genus-level viral clusters, with 687 uniquely identified in the 
pig gut, 525 in the human gut, 458 in the rumen, 138 in soil and lake 
sediments, 60 in the ocean, and 38 in the non-human primate gut 
(Figure 3a). These clusters contained no complete phage genomes 
from any other habitat, highlighting the distinct viral populations 
endemic to each environment.

To investigate potential divergence with habitat types, we analyzed 
327 genus-level clusters containing ≥4 genomes distributed across ≥2 
habitats (Supplementary Table S4). For each genus-level viral cluster, 
phylogenetic trees were constructed to test whether genomes from the 
same habitat exhibited closer evolutionary distances than cross-habitat 
counterparts. We observed that 62.69% (205/327) of clusters showed 
significantly closer phylogenetic distances among same-habitat 
genomes (p < 0.05), supporting potential habitat-phage divergence 
(Figure  3b). As the examples, genus-level viral clusters 1 and 2 
demonstrated clear habitat-based phylogenetic clustering. No 
divergent pattern was detected in genus-level viral clusters 3–5, 
indicating taxon-specific variation in evolutionary dynamics 
(Figure 3c).

3.4 Functional potentials of phage 
genomes in the PGD50

We investigated whether phages utilize alternative genetic codes 
to maintain low coding density and prevent protein fragmentation. 
Using custom Prodigal (v2.50), we evaluated four genetic codes (11, 
15, 90, 91) based on total potential coding scores. The standard genetic 
code (11) dominated (97.97%, 726,601/741,692), while a small 
proportion (2.03%, 15,091/741,692) recoded stop codons as glutamine 
(Q, genetic codes 15) and Glycine (G, genetic codes 90). Notably, no 
genomes recoded TAA as glutamine (Q, genetic code 91) (Figure 4a). 
To identify phages employing alternative genetic codes, we applied a 
specific threshold during prediction. The use of the correct, 
corresponding genetic code for these identified phages then led to a 
significant improvement in functional annotation, as evidenced by a 
higher match rate against the Pfam-A database.
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FIGURE 1

Identification and characterization of phage genomes from diverse environments. (a) The pipeline for identification of phage genomes (PGD50) from 
diverse environments. (b) The distribution of phage genomes (PGD50) in different habitats. Different colors represent phage genomes from different 
habitats. (c) The detailed distribution of genome length and quality for phage genomes (PGD50). (d) The lifestyle prediction of phage genomes 
(PGD50) and the proportion of prophages in temperate phages. The pie chart (left) represents different lifestyles of phage genomes with different 
colors, and the bar chart (right) shows the proportion of prophages in temperate phages. (e) The detailed taxonomy of phage genomes and proportion 
of known taxonomy for phages genomes at each taxonomic level. The Sankey diagram represents the detailed taxonomy of phages genomes and 
these pie charts show proportion of known taxonomy for phages genomes at each taxonomic level.
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FIGURE 2

Assessing novelty of PGD50 and construction of global phylogenetic trees based on complete phage genomes. (a) The assessing novelty of PGD50 at 
species-level viral clusters. The pie represents the proportion of novel phages from PGD50 and the UpSet plot compares phage populations among 
different habitats. (b) The pipeline of global phage phylogenetic analysis of complete phages and core HMM profiles and number of phage genomes 
for five iterations. The pipeline (left) is performed to build all 219,604 HMM profiles based on the MMseqs2 and HMMER software. The pipeline (right) is 
performed to generate core HMM profiles and phylogenetic trees for five iterations, and the core HMM profiles for each iteration are generated based 
on all 219,604 HMM profiles. The parameters for generating core HMM profiles are shown in first iteration, and the parameters for five iterations are 
consistent. Phylogenetic trees for five iterations are constructed based on the method developed by Low et al. (2019) and corresponding core HMM 
profiles. (c) The sharing and unique core HMM profiles for five iterations to global phage phylogenetic trees. The distribution of sharing and unique 
core HMM profiles are described by the Venn diagram. The red numbers represent the unique core HMM profiles and the black number represent the 
sharing core HMM profiles for five iterations. (d) The global phage phylogenetic trees for five iterations and the source distribution of phage genomes 
from this study and the VMR database. The different colors OD outer circle for the phylogenetic trees represent phage genomes from different sources 
and the red clades represent novel complete phage genomes from this study.
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Viral proteins were highly divergent even within the same virus 
family, limiting the utility of sequence-based similarity searches when 
amino acid identity fell below 30%. To overcome the limitations of 
sequence-based annotation (e.g., for hits with <30% AA identity), 

we performed structural similarity searches. This approach leverages 
the fact that protein structural domains were often more conserved 
than their amino acid sequences, allowing for the detection of distant 
evolutionary relationships that were otherwise missed (Figure 4b). 

FIGURE 3

Potential divergence analysis for complete phage genomes with habitat types. (a) Comparing genus-level viral clusters among six habitats. (b) Potential 
divergence analysis of genus-level viral clusters with different habitat types. The dot plot shows the likelihood (p-values) distributions of 327 genus-
level viral clusters that were diverged (black green dots) or not diverged (red dots) with habitat types. The pie chart shows the proportion of divergent 
and not-divergent genus-level viral clusters. (c) Five examples of genus-level viral clusters potentially diverged or did not diverge with habitat types. 
The blue p-value (p < 0.05) and the red p-value (p < 0.05) represent the significant divergence and significant not divergence for phage genomes with 
habitats.
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Interestingly, 87.42% (48,339,065/55,294,737) proteins were annotated 
(Figure 4c) and we further classified these genes into functional items, 
and the items with the number of annotated genes in the top 50 were 
listed. Among them, functional items related to the structure, 
assembly and packaging, DNA replication and transcription, and lysis, 
all of which were typical functional capacities of phages were enriched 
by annotated genes (Figure 4d). Critically, structural searches resolved 
53% (53/100) of previously unannotated proteins (top 100 clusters 
with no sequence hits), demonstrating its power for annotating 
divergent viral proteins (Figure 4e and Supplementary Table S5).

3.5 Revealing phage–host relationships 
and pathogen targeting potential via 
CRISPR spacer matching

The distribution of host bacteria or archaea is a strong determinant 
for the distribution of phages, and the indigenous phage community 

also greatly affects the structure and function of the host bacterial or 
archaeal community. To establish phage–host linkages, we leveraged 
CRISPR spacer similarity, a key determinant linking phage 
distribution to their bacterial or archaeal hosts. Analysis of 741,692 
phage genomes identified putative hosts for 56.75% (420,907/741,692) 
phages through spacer matches (Supplementary Table S5). Our 
analysis revealed that 35.38% (262,423/741,692) of phage genomes 
were linked via CRISPR spacers to multiple bacterial genera, with 
some connections spanning different phyla (Figure 5a). There were 
21.37% (158,484/741,692) phage genomes only targeting one host 
genus, and host for these specialist host viruses mainly belonged to the 
keystone genera Bacteroides and Prevotella, critical in gut or 
hypersaline ecosystems.

Our analysis focused on Escherichia coli and Klebsiella pneumoniae 
given their predominant role in the global burden of antimicrobial 
resistance. This focused approach allows for a deeper investigation 
into phage solutions for these clinically paramount threats (Murray 
et  al., 2022). We  analyzed virulent phages targeting pathogens 

FIGURE 4

Functional annotations of phage genomes in the PGD50. (a) The proportion of using alternative genetic codes for phages genomes (pie chart), the 
number of proteins annotated by the Pfam-A database for phages using five alternative genetic codes (bar chart). (b) The pipeline of functional 
annotations for 55,294,737 phage genes. (c) The proportion of annotated phage genes for 55,294,737 phage genes. (d) Functional items with the 
numbers of phage genes in the top 50. Different colors represent different functional categories. (e) The proportion of further annotated phage genes 
using structure searching method for genes of top 100 clusters from no hit. The pie chart represents the proportion of annotated phage genes using 
structure searching method, and the 3D structures of phage genes were compared with Alphafold2 and Foldseek.
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including Escherichia coli and Klebsiella pneumoniae, and first 
estimated the distribution of PBP proteins, VFs, and ARGs in collected 
pathogenic bacteria genomes from the GenBank database. 
Interestingly, we found virulent phage genomes in the PGD50 could 
target 67.83% (4,295/6,332) Escherichia Coli and 31.08% (1,288/4,050) 
Klebsiella pneumoniae based on CRISPR spacer matching (Figure 5b), 
suggesting that these virulent phages in the PGD50 might be an ideal 
tool for phage therapy via targeted lysis of pathogenic bacteria.

3.6 Competitive phage networks and 
CRISPR-Cas system distribution

We identified 37,708 CRISPR spacers within 4,430 phage genomes 
in the PGD50. Among these, 8.35% (3,149/37,708) targeted 52,909 
phage genomes, establishing extensive phage–phage interaction 
networks (Figure 6a). Target pair analysis revealed single-directed 
relationships (where one phage targets another without reciprocal 
targeting) dominated these interactions at 89.83% (237,936/264,882), 
while double-directed pairs (reciprocal targeting) constituted the 
remaining 10.17%. Critically, 94.60% (250,585/264,882) of targeted 
pairs consisted of phages infecting the same host, revealing a high 
prevalence of potential competitive relationships  
(Supplementary Table S6).

CRISPR-Cas systems are adaptive immune systems widespread in 
hosts but rarely found in phage genomes. We  identified 243 
CRISPR-Cas systems within phage genomes that specifically target 
other phages, with the most prevalent subtypes being I-C, I-F, and 
II-C (Figure  6b and Supplementary Table S7). Among these, 37 
systems (15.23%) were complete. More broadly, a total of 299 
CRISPR-Cas systems were identified across all phage genomes. In 
contrast, we  found 30,222 CRISPR-Cas systems encoded by host 
genomes, which were predominantly subtypes I-C, II-A, and I-E 
(Figure 6c and Supplementary Table S8). Notably, phage-encoded 
CRISPR-Cas systems (83.61%, 250/299) frequently lacked spacer 
acquisition proteins (Cas1, Cas2, and Cas4), suggesting partial 
horizontal gene transfer (HGT) during acquisition. Furthermore, 
focusing on the two most prevalent subtypes, we found that 96.97% 
(116/120) of the I-C systems and 17.86% (5/28) of the II-C systems 
were missing these Cas proteins. Given the biotechnological 
significance of Cas12 proteins, particularly their compact size for 
gene-editing applications, we performed a phylogenetic analysis to 
explore their diversity in phages. Our analysis incorporated a total of 
1,311 Cas12 sequences, comprising 1,310 derived from host genomes 
(spanning subtypes Cas12a, Cas12b, Cas12f, and Cas12k) and a single, 
notable Cas12a sequence identified from a phage genome in our study. 
The resulting phylogenetic tree (Figure 6d) revealed distinct clustering 
of Cas12 subtypes, with the phage-encoded Cas12a nesting within the 
diversity of host-encoded Cas12a sequences. This placement suggested 
a potential evolutionary history of horizontal gene transfer between 
phages and their bacterial hosts for this particular system. While the 
single phage sequence precluded a conclusion on phage-specific 
diversity, its presence alone was significant. The Cas12 protein 
identified in the phage contained the conserved RuvC nuclease 
domain. This domain was critically important as it was responsible for 
the DNA cleavage activity that formed the foundation for all 
DNA-targeting applications of Cas12 in biotechnology (Makarova 
et al., 2020). The preservation of this functional domain in the phage 

protein underscored its potential as a functional nuclease and a 
valuable resource for mining novel gene-editing tools.

4 Discussion

Phages play a key role in maintaining the balance of microbial 
ecosystems (Rascovan et al., 2016; Emerson et al., 2018), but their 
interactions with hosts and other phages are largely unknown. This 
study presents a comprehensive and expansive resource of phage 
genomes, significantly augmenting our understanding of global phage 
diversity, evolutionary dynamics, and functional potential. By 
integrating massive datasets from diverse habitats, we have assembled 
a collection of 741,692 medium-to-high-quality phage genomes, vastly 
exceeding the scale of most previous individual studies and 
significantly enriching existing public databases like the IMG/VR 
(Roux et al., 2021), GenBank (Benson et al., 2013), and NT (Sayers 
et al., 2022) (IGN). The sheer number of phage genomes analyzed here 
provides unprecedented resolution for exploring the virosphere.

The most striking finding is the immense proportion (28.96%) of 
phage genomes clustering into 158,522 species-level viral clusters that 
lack any representatives in the IGN. This underscores a profound gap 
in our current cataloging of viral diversity. These novel species-level 
viral clusters likely represent phages endemic to understudied 
environments, highly divergent lineages, or those infecting uncultured 
hosts. Their discovery dramatically reshapes our perception of the 
virosphere’s true breadth and complexity, suggesting that known 
phages represent merely a fraction of the total diversity. The 
construction of global phylogenetic trees reveals that our dataset 
substantially expands the known diversity of the Caudoviricetes, filling 
critical phylogenetic gaps and introducing novel, deep-branching 
lineages. This expansion was particularly pronounced in previously 
underexplored habitats such as the pig gut and rumen. However, 
we  must acknowledge that this apparent “expansion” is partially 
shaped by the inherent unevenness of existing genomic databases. The 
deeper sequencing of certain environments like the human gut 
naturally allows for the resolution of finer-scale genetic diversity, while 
the true evolutionary breadth of under-sampled habitats likely 
remains underestimated (Nayfach et al., 2021b). Consequently, the 
present evolutionary map should be viewed as a robust yet interim 
framework, one that will be refined as future metagenomic surveys 
encompass a broader spectrum of global ecosystems.

Beyond cataloging diversity, our genomic analyses revealed 
distinct evolutionary patterns reflected in the association between 
phages and their habitats. While the observed signals are consistent 
with potential divergence with habitats, we interpret these patterns as 
strong evidence of environmental filtering and habitat adaptation. 
Phages are likely finely tuned to the physicochemical and biological 
conditions of their respective niches, a phenomenon driven by factors 
such as host availability, nutrient constraints, and inter-phage 
competition (Koskella and Brockhurst, 2014; Sharma et al., 2018). 
However, caution is warranted in ascribing these distribution patterns 
solely to strict co-evolution. Habitat filtering, where environmental 
conditions selectively favor both compatible hosts and their phages 
represents a powerful, alternative mechanism shaping these ecological 
relationships (Lennon and Martiny, 2008). In other words, the signal 
we detect may reflect phage adaptation to their host’s ecological niche, 
rather than direct, synchronous genome evolution between phage and 
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FIGURE 5

Potential hosts and targeting pathogen for phage genomes in the PGD50. (a) The proportion of generalist and specialist phages in the PGD50 (pie), the 
distribution of putative host numbers for 262,423 generalist phages at the genus level (box plot), and the distribution of putative prokaryotic hosts for 
158,484 specialist phages (cycle diagram). (b) The phylogenetic trees of pathogenetic bacteria including Escherichia coli and Klebsiella pneumoniae 
and the network diagram of virulent phages targeting Escherichia coli and Klebsiella pneumoniae. The outer circle in phylogenetic trees represents 
Escherichia coli and Klebsiella pneumoniae genomes targeted by virulent phages, and the inner three circles represent Escherichia coli and Klebsiella 
pneumoniae genomes with VFs, ARGs, and PBP proteins, respectively.
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FIGURE 6

Phage–phage interaction and revealing diverse CRISPR-Cas systems for hosts and phages. (a) The pipeline of identification for CRISPR-Cas systems 
and CRISPR spacers for phage genomes, and the four specific phage–phage interactions (left). The network diagram of phage–phage interactions for 
phage genomes (right). (b) The detailed distribution and structural diagram of CRISPR-Cas systems for phage genomes. (c) Distribution of CRISPR-Cas 
system types across host genomes involved in predicted phage-host interactions. (d) The phylogenetic tree of Cas12 proteins from phages, hosts, and 
reference proteins, and the 3D structure and RUVC domain of the Cas12a protein from phage genomes. The different colors of outer circle in the 
phylogenetic tree represent the sources of Cas12 proteins, and the colors of clades represent different types of Cas12 proteins.
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host. For instance, a longitudinal study of Aeromonas and its phages 
demonstrated that their interaction dynamics oscillated over time 
between “arms race” and “fluctuating selection” modes (Marston et al., 
2012). Our cross-sectional study may have captured only a single 
snapshot of this complex, dynamic process. Disentangling these 
possibilities will require future longitudinal time-series sampling of 
the same habitats, combined with experimental validation through 
controlled co-evolution experiments of specific host-phage pairs 
(McGrath, 2024). Furthermore, the detection of alternative genetic 
code usage in some phages highlights an intriguing evolutionary 
strategy (Devoto et  al., 2019), possibly conferring advantages like 
evasion of host defenses or optimization of replication efficiency 
under specific conditions, warranting deeper investigation.

The functional annotation of phage genomes, particularly for 
proteins with no known homologs, remains a major challenge 
(Nomburg et al., 2024). Our application of 3D structural similarity 
searches represents a significant methodological advance. By moving 
beyond sequence-based homology, this approach provided functional 
predictions for 53% of the top  100 previously unannotated viral 
proteins based on 3D structural resolution. This not only enhances our 
understanding of the functional repertoire encoded within this novel 
phage diversity but also provides a powerful strategy for future viral 
metagenomic studies.

Our analysis of phage–host interactions, leveraging CRISPR 
spacer matching, provided crucial insights into the ecological 
networks connecting phages and their potential hosts (Tisza and 
Buck, 2021; Johansen et al., 2023). A key finding was that a substantial 
proportion (35.38%) of phage genomes were linked via spacer 
matches to hosts spanning multiple genera or even phyla, suggesting 
the potential for broad host ranges (Nishijima et al., 2022; Bignaud 
et al., 2025). However, these in silico predictions warrant a nuanced 
interpretation. True ecological generalists capable of productively 
infecting distantly related hosts are considered rare in nature. The 
observed patterns may therefore stem from several alternative 
factors: the presence of common integrative genetic elements shared 
across diverse hosts, the inherent limitations of predictive 
bioinformatics, or the fact that spacer matches can reflect past, 
non-productive infection events rather than active, concurrent 
replication. Despite these important caveats, this spacer-based 
approach proved highly valuable for generating specific, testable 
hypotheses, robustly predicting potential hosts for numerous phages, 
including those with links to clinically relevant pathogenic bacteria 
(López-Beltrán et  al., 2024) and thereby highlighting promising 
candidates for further therapeutic exploration. This approach not 
only revealed complex ecological networks of phage competition and 
co-existence mediated through shared CRISPR targets (Tisza and 
Buck, 2021) but also proved particularly valuable for identifying 
strictly lytic (virulent) phages with therapeutic potential. The strictly 
lytic life cycle of these virulent phages makes them ideal therapeutic 
candidates, as it enables the direct and rapid eradication of target 
pathogens. However, translating these foundational discoveries into 
clinical practice faces significant challenges. Two of the most 
prominent hurdles are the typically narrow host range of phages, 
which can limit their applicability against diverse bacterial strains, 
and concerns regarding the potential transduction of bacterial 
virulence factors (Petrovic Fabijan et al., 2023). The vast and diverse 
reservoir of virulent phages uncovered in our study provides a 
unique resource to address these challenges. The many genes of 

unknown function within these genomes may encode novel proteins 
capable of modulating or evading host immune responses. Through 
rational genetic engineering, such as modifying phage tail fibers to 
broaden host range or knocking out highly immunogenic, 
non-essential genes, we  can leverage these natural blueprints to 
develop next-generation phage-based therapeutics that are safer, 
more effective, and better suited to clinical application (Meile 
et al., 2022).

A particularly exciting and unexpected finding was the detection 
of diverse CRISPR-Cas systems within the phage genomes themselves 
(Al-Shayeb et  al., 2020; Al-Shayeb et  al., 2022). Phage-encoded 
CRISPR-Cas systems open fascinating new avenues for research into 
phage–host arms races, where phages may utilize these systems to 
compete against other mobile genetic elements (including other 
phages) or even manipulate host defenses (Al-Shayeb et al., 2020). 
Beyond their biological significance, these phage-borne systems 
represent a vast, largely untapped reservoir of novel CRISPR-Cas 
variants with potentially unique properties (e.g., smaller size, different 
PAM specificities) (Pausch et al., 2020; Carabias et al., 2021; Al-Shayeb 
et  al., 2022). This positions our phage genome collection as an 
extraordinarily rich source for mining the next generation of gene 
editing tools with enhanced capabilities for biotechnology 
and medicine.

While this study provides a landmark resource for viral 
ecology, several limitations inherent to metagenomic analysis 
must be  acknowledged. First, our reliance on a genome 
completeness threshold (PGD50) ensured high-quality analysis 
but may have systematically excluded abundant, fragmented viral 
sequences, leading to an underestimation of the diversity of 
certain phage groups. Second, although our functional inference 
was augmented by structural similarity searches to reveal distant 
homologies (van Kempen et al., 2024), it remains constrained by 
homology-based methods; proteins with truly novel folds 
represent a fundamental blind spot, and all predictions require 
biochemical confirmation. Finally, our host prediction strategy 
relies solely on CRISPR spacer matches. While this method 
provides high-specificity links, it is inherently limited by the 
incompleteness of microbial genome catalogs and reflects 
historical infection events rather than active replication. 
Furthermore, this singular approach leaves phage interactions 
with many uncultured or un-sequenced hosts undetected; future 
work incorporating complementary methods, such as k-mer 
composition analysis, would be essential to systematically expand 
host assignment coverage and obtain a more comprehensive view 
of phage–host interaction networks. Future efforts combining 
more permissive assembly strategies, multi-faceted host 
prediction, and experimental validation will be  crucial to 
overcome these biases. In total, this study delivers an unparalleled 
genomic resource that fundamentally expands our knowledge of 
phage diversity on Earth. We have uncovered a vast reservoir of 
novel phages, revealed intricate patterns of potential divergence 
and adaptation, developed innovative methods for functional 
annotation, and uncovered critical insights into phage–host 
interactions and competitive networks. Most significantly, we have 
demonstrated the immense, dual application potential of this 
resource: firstly, as a targeted library for discovering potent phage 
therapy agents against pathogenic bacteria, and secondly, as a 
treasure trove for mining the next generation of innovative 
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CRISPR-Cas-based gene editing technologies. This dataset 
provides an essential foundation for future research aimed at 
understanding the intricate roles of phages in global ecosystems, 
combating antibiotic resistance, and advancing 
genetic engineering.

5 Conclusion

In conclusion, this study constructed the PGD50 database, a 
unified resource of 741,692 high-quality phage genomes, which 
enabled a systematic reassessment of global phage diversity and 
ecology. Our key advance lies not in the initial reporting of phage 
diversity or phage-encoded CRISPR-Cas systems, but in the 
substantial expansion of their documented scale and diversity. 
Specifically, we  identified a significant number of novel, deep-
branching lineages, represented by 158,522 species-level viral clusters 
that were absent from existing references. Furthermore, our analysis 
reframed the observed ecological patterns not as definitive 
“co-evolution,” but as a distinct “habitat divergence.” This pervasive 
phylogeographic signal indicates a strong environmental imprint on 
phage evolution, which may arise from co-evolutionary dynamics, 
environmental filtering, or a combination of both. Beyond diversity, 
our integrated approach including combining structural annotation, 
CRISPR spacer analysis, and comparative genomics, provided 
foundational insights into phage function, host interaction networks, 
and the expanded distribution of CRISPR-Cas subtypes within phages, 
underscoring their potential as future therapeutic and biotechnological 
tools. Collectively, this work provides a refined framework and 
resource for future research into phage biology and application.
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