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Comprehensive analysis of phage
genomes from diverse
environments reveals their
diversity, potential applications,
and interactions with hosts and
other phages

Chao Wei* and Zhe Chen*

National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural
University, Nanchang, China

Phages are ubiquitous and diverse, playing a key role in maintaining microbial
ecosystem balance. However, their diversity, potential applications, and their
interactions with hosts and other phages remain largely unexplored. To address
this, we collected 59,652,008 putative viral genomes from our laboratory, 45 public
viral datasets, and an integrated public viral genome database (IGN), covering seven
habitats. We obtained 741,692 phage genomes with completeness >50% (PGD50),
and most (93.83%, 695,938/741,692) of these phage genomes were classified into
the Caudoviricetes class. We found that 158,522 species-level viral clusters that
contained 28.96% (214,814/741,692) phage genomes without any known phage
genomes in the IGN, indicating substantial novelty. Global phylogenetic trees for
five iterations based on complete phage genomes significantly expanded the known
diversity of the virosphere. Genome analysis revealed phage potential divergence
with habitat types and highlighted the utilization of alternative genetic codes.
Furthermore, 3D structural similarity searches demonstrated significant potential
for annotating previously uncharacterized viral proteins. Analysis of CRISPR spacer
inferred potential hosts of phages and competitive networks among phages,
highlighting virulent phages as promising candidates for phage therapy against
pathogenic bacteria. Intriguingly, diverse CRISPR-Cas systems were detected within
phage genomes themselves, suggesting their enormous potential as novel gene
editing tools. Collectively, this study provides a comprehensive phage genome
resource, foundational for future research into phage—host and phage—phage
interactions, phage therapy development, and the mining of next-generation
genetic tools.

KEYWORDS

phage-phage interactions, phage diversity, potential applications, diverse CRISPR-Cas
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1 Introduction

Phages, ubiquitous, highly diverse viral components, are key regulators of microbial
ecosystem balance, primarily through infection and lysis of bacteria and archaea (Clokie et al.,
2011). They shape microbial community dynamics, metabolism, and diversity via established
interactions (e.g., “kill-the-winner,” “piggyback-the-winner;” and evolutionary arms races)
(Brown et al,, 2022; Yan and Yu, 2024). Specifically, phages maintain diversity by lysing
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dominant strains, enhance host adaptability through horizontal gene
transfer, and drive microbial diversification via adaptive co-evolution
(Dion et al., 2020; Mangalea and Duerkop, 2020). Their therapeutic
promise is exemplified in combating multidrug-resistant pathogens
through phage therapy (Federici et al., 2022). Furthermore, phages
engage in complex co-evolutionary dynamics with their hosts and
environments. For instance, under heavy metal stress like chromium
contamination in soil, phage-host interactions can shift from a
predatory relationship to a potentially mutualistic one, with an
increase in lysogeny and phage-mediated horizontal gene transfer
potentially aiding host adaptation (Touchon et al., 2017). Similarly, in
freshwater lake systems subjected to multiple environmental stressors,
the complexity and stability of virus-bacteria interaction networks can
be significantly reduced, altering the composition of viral auxiliary
metabolic genes and consequently impacting ecosystem functions like
carbon cycling (Wang T. et al., 2025). These findings underscore the
critical role of environmental factors in shaping phage-host
interaction networks. Although a number of phage genome databases
have been established, the data remain largely fragmented and exhibit
significant habitat-specific biases (Resch et al.,, 2024; Wang et al,,
2024). However, a significant research gap persists because two key
resources are lacking: a unified, high-quality genome resource for
phages from diverse habitats, and a comprehensive understanding of
the global-scale architecture of phage-host interaction networks. This
gap fundamentally limits systematic ecological and evolutionary
insights (Bignaud et al., 2025; Wang B. et al., 2025).

To counter phage predation, prokaryotes have evolved the
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic
Repeats) system, an adaptive immune mechanism that provides
sequence-specific defense against invading nucleic acids (DNA and
RNA) through the stages of adaptation, expression, and interference
(Burstein et al., 2017; Makarova et al., 2020). Diverse CRISPR-Cas
systems have been identified within metagenome-assembled genomes
(MAGs) across specific prokaryotic phyla (Shmakov et al., 2015; Yan
et al,, 2018), and this suggests a rich landscape of interacting phage
genomes. Phages themselves have been found to harbor CRISPR-Cas
systems, inspiring novel gene-editing tools, a comprehensive overview
of CRISPR-Cas systems across entire prokaryotic host and phage
populations is still lacking (Pausch et al., 2020; Al-Shayeb et al., 2022).
This gap hinders our understanding of the tripartite interactions
among phages, other phages, and host bacteria or archaea, and their
collective role in maintaining microbial community homeostasis.

Herein, to bridge these knowledge gaps, we present the
construction and comprehensive characterization of the PGD50
database, a curated collection of high-quality phage genomes
integrated from diverse habitats. The primary objective of this study
is to employ this unified resource to systematically evaluate global
phage diversity, evolutionary patterns, and ecological interactions,
with an emphasis on uncovering novel phages and elucidating their
functional traits. To address these objectives, we designed a series
of targeted analytical approaches: (1) Taxonomic classification and
phylogenetic analysis were applied to delineate evolutionary
relationships and quantify phylogenetic novelty. (2) CRISPR spacer
matching was leveraged to infer phage-host interaction networks
and uncover competitive dynamics among phages. (3) Structure-
based functional annotation enabled the prediction of protein
functions beyond sequence homology, expanding the functional
landscape of phage genomes. (4) Comparative genomics of
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CRISPR-Cas systems identified their diversity and potential activity
within phage genomes. Together, these integrated approaches
provide a multidimensional perspective on phage ecology and
evolution, while also facilitating the identification of phage-encoded
systems with potential biotechnological utility.

2 Methods

2.1 Construction of a phage genome
database (PGD50)

To obtain phage genomes from diverse environments, we collected
and combined putative viral contigs from our laboratory, 45 public
viral datasets across 7 habitats, and an Integrated Genomic Database
[IGN: IMG/VR (Camargo et al., 2023a), GenBank (Benson et al,,
2013), NT (Sayers et al., 2022); Supplementary Tables S1, S2], yielding
59,652,008 contigs for analysis. Among them, we performed a
dereplication step on all viral genomes included in the IGN database
using MMseqs2 with the “easy-linclust -¢ 1.0 --min-seq-id 1.0”
options, clustering them at 100% sequence identity to ensure
non-redundancy. Viral contig identification utilized a custom pipeline
developed by Nayfach et al. (2021b) based on four signatures: presence
of viral protein families, absence of microbial protein families, viral
nucleotide signatures, and multiple adjacent genes on the same strand.
Briefly, to identify the presence of viral protein families, we constructed
hidden Markov models (HMMs) for 23,841 viral protein families from
the IMG/VR database, after excluding 1,440 families that are
commonly found in microbial genomes or plasmids. Conversely, to
confirm the absence of prevalent microbial protein families, HMM
profiles were constructed for 16,260 families from the Pfam-A
database, following the removal of 452 families that are also common
in viruses. All protein sequences were searched against these HMMs
using hmmsearch [HMMER v3.3.2 (Potter et al., 2018); parameters:
-Z 1, E-value <1 x 107'], with the database of the top hit determining
the classification. Concurrently, viral nucleotide signatures were
identified using VirFinder v.1.1 (Ren et al., 2017), which employs
k-mer frequencies and machine learning. Genomic organization was
assessed by calculating the strand switch rate (number of strand
switches divided by gene count) for contigs with multiple adjacent
genes. Finally, 9,607,235 viral contigs with genome size >3 kb were
obtained for subsequent analysis.

Phage identification employed two complementary methods
(Devoto et al., 2019; Al-Shayeb et al., 2020; Shang et al., 2022). First,
protein sequences derived from contigs were annotated against Pfam-A
(Mistry et al,, 2021), TIGRFAM (Haft et al.,, 2003), and VOGDB!
databases using HMMER v3.3.2 (Potter et al, 2018) with the
“hmmsearch -E le-5” parameter. Genomes required two or more genes
containing virus-specific keywords (“capsid, phage, terminase, base
plate, baseplate, prohead, virion, virus, viral, tape measure, tapemeasure
neck, tail, head, bacteriophage, prophage, portal, DNA packaging, T4,
P22, and holin”), exclusion of prokaryote-specific terms (“ribosomal
protein, preprotein translocase, and DNA gyrase subunit A”), and at least
one spacer match from bacterial or archaeal genomes. Second, we used

1 http://vogdb.org
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PhaMer v1.0 (Shang et al., 2022; Hu et al., 2024) with default parameters,
which applies a Transformer model for metagenomic phage prediction.

Removing false positives involved assessing bacterial universal
single-copy orthologs (BUSCOs) ratios (Simao et al., 2015) and
curated viral protein family modules (VPFs) ratios (Gregory et al.,
2020). Genomes were retained only if they exhibited a BUSCO ratio
<0.067, or a BUSCO ratio >0.067 with at least three VPF hits.
Subsequent processing detected provirus boundaries, removed host
bacterial sequence contamination, and evaluated genome
completeness using CheckV v0.8.1 (Nayfach et al., 2021a). The final
PGD50 database comprised 741,692 phage genomes with >50%
completeness.

2.2 Lifestyle prediction and taxonomy
assignment of phage genomes (PGD50)

We predicted phage lifestyles using BACPHLIP v0.9.3
(Hockenberry and Wilke, 2021), which classifies genomes as virulent
(score <0.5), uncertain (score 0.5-0.9), or temperate (score >0.9).
Since temperate phages exhibit both lytic and lysogenic states,
we integrated prophages identified by CheckV with BACPHLIP-
predicted temperate phages to define the final temperate category.
Taxonomic assignment was performed using geNomad v1.7.4
(Camargo et al.,, 2023b), which leverages viral taxon markers covering
most ICTV-recognized lineages.

2.3 Clustering phage genomes to
species-level viral clusters and
identification of potential novel phage
genome clusters

We clustered 741,692 PGD50 genomes into species-level viral
clusters using a greedy centroid-based algorithm (Roux et al., 2019;
Nayfach et al., 2021b; Tomofuji et al., 2022; Zeng et al., 2024; Wei et al.,
2025) with threshold criteria of 95% average nucleotide identity (ANI)
and >85% genome coverage, as recommended by Roux et al. (2019).
Clusters lacking any phage genomes from the IGN database were
subsequently classified as novel phage genome clusters. Furthermore,
we obtained all phage genomes from the PhageScope (Wang et al.,
2024) database (total 873,718 genomes). To ensure a fair comparison
with our PGD50 dataset (completeness >50%), we first processed the
PhageScope genomes through CheckV, retaining only those with
>50% completeness (446,062 genomes). These were then dereplicated
at 100% average nucleotide identity using MMseqs2 (--min-seq-id 1.0
-c 1.0), resulting in a high-quality, non-redundant PhageScope
reference set of 334,616 genomes. A comparative analysis at the
species-level viral cluster was performed based on the PGD50 and
PhageScope reference sets.

2.4 Performing global phylogenetic
analysis for phage genomes based on five
iterations

To evaluate the phylogenetic novelty and contribution of our
obtained phage genomes within the global context of phage diversity,
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we conducted a large-scale phylogenetic analysis. This approach
allowed us to quantify the phylogenetic distance (PD) between our
genomes and established reference sequences, thereby assessing the
expansion of the known evolutionary landscape.

Specifically, we combined 44,311 complete phage genomes from
PGD50 with 5,658 reference complete phage genomes from the VMR
database.” The combined dataset was processed through a five-
iteration phylogenetic workflow adapted (Low et al., 2019). First,
duplicate genomes were removed using MMseqs2 v2.0 (“--min-seq-id
1.0 -¢ 1.0”) (Steinegger and Soding, 2017). Protein coding sequences
were then predicted using Prodigal v2.50 (Hyatt et al., 2010). The
resulting protein sequences were clustered with MMseqs2
(“--min-seq-id 0.3 -¢ 0.7”), yielding 353,315 protein clusters. Clusters
containing >3 proteins were used to build HMM profiles with
MUSCLE v3.8.1551°* and HMMER. These were supplemented with 77
existing Caudoviricetes HMM profiles from single-copy protein
markers, generating a total of 219,604 phage-associated HMM profiles.

In each iteration, core HMM profiles were identified by scanning
progressively refined genome subsets against all profiles using
HMMER (E-value <1x107% coverage >50%). A profile was
considered core if it was present in >10% of genomes, had an average
copy number <1.2, and an average protein length >100 residues. For
phylogenetic tree construction, gene markers in retained genomes
were identified via HMMER searches (E-value <1 x 10~°) against the
core HMM profiles (Nayfach et al., 2021b). Multiple sequence
alignments of these markers were trimmed with trimAl v1.4.rev22
(Capella-Gutierrez et al., 2009), retaining fragments with <50% gaps.
Genomes needed to possess >3 markers present in >5% of alignment
columns to be included. The final phylogeny was reconstructed using
IQ-TREE2 v2.1.3 (Nguyen et al., 2015) under the LG + F + G4 model
with 1,000 ultrafast bootstraps, and visualized in iTOL." Finally,
phylogenetic distances between genomes were computed from the
resulting tree branch lengths using the ape v5.7-1 (Paradis and Schliep,
2019) and picante v1.8.2 (Kembel et al., 2010) packages in R, enabling
quantitative assessment of the novel diversity introduced by
our dataset.

2.5 Potential divergence analysis of
complete phage genomes with habitat

types

To minimize confounding effects from genomic fragmentation
and unannotated habitats, we analyzed 26,439 complete phage
genomes with verified habitat origins. These genomes were clustered
into genus-level viral clusters based on average amino acid identity
(AAI) and gene sharing (Nayfach et al., 2021b; Tomofuji et al., 2022;
Zeng et al., 2024; Wei et al., 2025). Protein sequences were first
predicted using Prodigal, followed by all-vs-all BLASTP alignments
in DIAMOND v2.1.9.163 (Buchfink et al., 2015). For each phage pair,
we calculated AAI percentages and shared gene proportions. Genome
pairs exhibiting <50% AAI or <20% shared genes were clustered using
MCL v14-137 (van Dongen, 2008) with an inflation factor of 2.0.

2 https://ictv.global/vmr
3 http://www.drive5.com/muscle/
4 https://itol.embl.de/
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For clusters containing >4 genomes distributed across >2 habitats,
we constructed phylogenetic trees (Wu et al., 2024). Core genes were
identified using Roary v1.7.8 (Page et al., 2015) (-i 50 option) and
aligned to create multi-FASTA files. Phylogenies were reconstructed
with FastTree v2.1.10 (Price et al, 2010) and visualized in
iTOL. Branch lengths between all genome pairs were systematically
measured within each cluster. We performed two one-tailed Wilcoxon
rank sum tests to compare branch lengths: (1) between genomes from
identical habitats versus (2) between genomes from different habitats.
Clusters where cross-habitat branch lengths significantly exceeded
same-habitat distances (p < 0.05) were designated as exhibiting
potential habitat-specific divergence.

2.6 Identifying alternative genetic codes in
phage genomes (PGD50)

We employed a custom Prodigal v2.50 to identify open reading
frames in all 741,692 PGD50 genomes using four genetic coding
schemes: the standard genetic code (11) and three alternative codes—
TAG recoding (15), TAA recoding (90), and TGA recoding (91)
(Ivanova et al., 2014; Nayfach et al., 2021b; Lou et al., 2024). Briefly,
for a phage with a genome size <100 kb, if its protein-coding density
with the genetic codes 15, 90, or 91 increased >10% compared to that
with the standard genetic code 11, we considered that this phage
genome tended to use the corresponding alternative genetic code. For
those phages with a genome size >100kb, the threshold for
considering the utilization of an alternative genetic code was the
increase of protein-coding density >5%.

2.7 Functional annotation of phage
genomes (PGD50)

We predicted proteins from all 741,692 PGD50 genomes using
their corresponding alternative genetic codes and clustered them into
4,372,210 protein clusters via MMseqs2 (“--min-seq-id 3.0 -¢ 0.7”). To
account for the mixed genetic repertoire of phages, which often
includes genes of bacterial origin acquired via horizontal gene transfer,
we utilized a multi-database approach including Pfam-A (Mistry et al.,
2021), TIGRFAM (Haft et al., 2003), and VOGDB (see text footnote
1) for functional annotation to ensure broad coverage of both viral
and bacterial protein domains. Representative sequences from each
cluster were then functionally annotated against the three databases
using HMMER (hmmsearch) (Potter et al., 2018) with an E-value
threshold of 1 x 107>,

To address unannotated proteins, we employed an approach of
structural similarity searches developed by Nomburg et al. (2024)
leveraging conserved structural domains from horizontal gene
transfer events between viruses and cells. Given the substantial
computational demands of structure prediction, our structural
analysis was limited to representative sequences from the top 100
largest no-hit clusters. These structures were generated using
ColabFold (Tunyasuvunakool et al, 2021), which leverages the
AlphaFold2 algorithm. To infer functional insights, we performed
structural alignments of our predicted models against the AlphaFold
database using Foldseek (v1.0) (van Kempen et al., 2024). A TM-score
threshold of > 0.4 was employed to filter the alignments, retaining
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only those pairs with a statistically significant topological similarity
for functional inference.

2.8 Host prediction for phage genomes
(PGD50) and identification of phage—
phage interactions

We predicted hosts for 741,692 PGD50 genomes through CRISPR
spacer matching. CRISPR spacers were identified from microbial
genomes and MAGs in GTDB (Genome Taxonomy Database)
(Chaumeil et al.,, 2022), UHGG (Unified Human Gastrointestinal
Genome) (Almeida et al,, 2021), and pig gut (Chen et al., 2021)
databases using MinCED v0.4.2° with default parameters. Taxonomic
classification of MAGs employed GTDB-tk v2.0.0 (classify_wf mode)
(Chaumeil et al, 2022). Spacer-phage mapping used BLAST
v2.12.0 + (BLASTn, -max_target_seqs 10,000,000 -dust no -word_size
8 -evalue 10) (Camacho et al, 2009), with matches requiring <1
mismatch and 100% alignment. Successful mappings indicated host-
phage relationships. For pathogenic targeting analysis, we downloaded
complete Escherichia coli and Klebsiella pneumoniae genomes from
GenBank,® removed duplicates using dRep v3.2.2 (-pa 0.9 -sa 1) (Olm
etal,, 2017), and annotated virulence factors (VFDB, http://www.mgc.
ac.cn/VFs/), antibiotic resistance genes (CARD, https://card.
mcmaster.ca/), and pathogenic bacterial proteins (PHI database,
http://www.phi-base.org/).

We identified CRISPR spacers within PGD50 genomes using
MinCED with default parameters and performed reciprocal BLASTn
searches against all phage CRISPR spacers. Interactions were
confirmed when spacers mapped to other phage genomes with <1
mismatch and 100% alignment. CRISPR-Cas systems in both phages
and hosts were predicted using CRISPRCasFinder v 4.3.2 (Couvin
et al., 2018) with default parameters. Furthermore, Cas12 proteins
were obtained and the Cas12 phylogeny was reconstructed using
IQ-TREE2 v2.1.3 under the LG + F + G4 model with 1,000 ultrafast
bootstraps, and visualized in iTOL (see text footnote 4).

2.9 Statistical analysis

All statistical analyses were performed using R packages (v4.2.1).

3 Results

3.1 Characterization of phage genomes
with completeness >50% (PGD50) from
diverse environments

To expand phage genome recovery across habitats, we collected
putative viral genomes from our laboratory, 45 public viral datasets,
and an integrated public viral genome database (IGN). Using a custom
pipeline, we identified 5,893,090 phage contigs from 59,652,008 total

5 https://github.com/ctSkennerton/minced
6 https://www.ncbi.nlm.nih.gov/genbank/
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contigs based on: (1) using a custom viral pipeline, (2) removal of
contigs with a genome size <3 kb, (3) retention of contigs encoding >2
virus-specific hallmark genes, (4) retention of contigs with >1 CRISPR
spacer match, (5) using the PhaMer tool, and (6) confirmation using
BUSCO and VPFs. Following validation using multiple methods,
we retained 741,692 high-confidence genomes with completeness
>50% (termed PGD50; Figure la).

We estimated the source distribution of phage genomes from
PGD50, and found that 230,600 and 88,706 phage genomes were
recovered from the human gut and pig gut, respectively (Figure 1b).
Completeness assessment of phage genomes in the PGD50 identified
44,311 complete genomes, which represented a valuable resource for
the known virosphere diversity (Figure 1¢). We further focused on the
lifestyle of phages in the PGD50 and found 55.35% (410,503/741,692)
phage genomes were predicted as virulent phages, highlighting
therapeutic potential against pathogenic infections (Figure 1d).
Taxonomic analysis of phages in the PGD50 using geNomad assigned
93.83% (695,938/741,692) to the Caudoviricetes class, yet only 7.94%
(58,902/741,692) achieved family-level resolution, demonstrating
both substantial novelty and persistent classification challenges
(Figure le and Supplementary Table S3).

3.2 Assessing novelty of PGD50 and global
phylogenetic analysis of complete phage
genomes

To evaluate the novelty of phage genomes in the PGD50,
we clustered 741,692 phage genomes into 420,230 species-level viral
clusters at the threshold of 95% average nucleotide identity (ANI) and
85% coverage. We found 69,198, 45,937, and 23,611 species-level viral
clusters were specifically identified in the human gut, pig gut, and
rumen, respectively. Analysis of the species-level viral clusters
confirmed the substantial novelty of our dataset. Specifically, 37.72%
of the clusters themselves were novel, as they contained no sequences
from the IGN database including IMG/VR, GenBank, and NT. These
novel clusters comprised 28.96% of all the phage genomes analyzed
(Figure 2a). Furthermore, a comparative analysis at the species-level
viral cluster revealed the distinct contribution of our resource: 331,784
(44.73%) of the 741,692 genomes in our PGD50 dataset are not
present in the PhageScope database. In contrast, only 76,410 (22.84%)
of the 334,616 PhageScope genomes with completeness >50% are
absent from our dataset. It demonstrated that our study has
contributed a massive number of novel phage genomes that were
absent from a leading, recently published database.

To resolve global evolutionary relationships of phages,
we constructed phylogenetic trees for five iterations using 44,311
complete phages from this study and 5,658 reference genomes from
the Virus Metadata Resource (VMR) from the International
Committee on Taxonomy of Viruses (VMR_MSL40.v1). Briefly,
we first obtained 353,315 protein clusters and 219,604 HMM profiles
based on protein clustering and HMM profile generating using
MMsegs2 and HMMER. Notably, we filtered and generated core
HMM profiles for these complete phage genomes and performed five
iterations to construct global phylogenetic trees (Figure 2b). Briefly,
this iterative process was essential due to the vast diversity of our
dataset. In each iteration, phage genomes not placed in the phage
phylogenetic tree were identified, their specific marker genes were
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inferred, and these new markers were added to a composite set. This
strategy progressively captured a broader spectrum of phage diversity,
enabling a more inclusive and robust global phylogeny than would
be possible with a single, static marker set. Interestingly, core HMM
profiles of five iterations showed low inter-iteration similarity
(Figure 2¢), confirming representation of distinct phage diversity
subsets. Phylogenetic distance (PD) metrics from all iterations
(Figure 2d) collectively demonstrate significant expansion of known
virosphere diversity.

3.3 Potential divergence analysis with
habitat types using complete phage
genomes

To minimize impacts of the genomic fragmentation and unknown
habitat, we analyzed 26,439 complete phage genomes from seven
known habitats. These were clustered into genus-level viral clusters at
the threshold of <50% average amino acid identity (AAI) or <20% of
shared genes and an inflation factor of 2.0, yielding 2,517 genus-level
viral clusters. Our analysis revealed a substantial number of habitat-
specific genus-level viral clusters, with 687 uniquely identified in the
pig gut, 525 in the human gut, 458 in the rumen, 138 in soil and lake
sediments, 60 in the ocean, and 38 in the non-human primate gut
(Figure 3a). These clusters contained no complete phage genomes
from any other habitat, highlighting the distinct viral populations
endemic to each environment.

To investigate potential divergence with habitat types, we analyzed
327 genus-level clusters containing >4 genomes distributed across >2
habitats (Supplementary Table S4). For each genus-level viral cluster,
phylogenetic trees were constructed to test whether genomes from the
same habitat exhibited closer evolutionary distances than cross-habitat
counterparts. We observed that 62.69% (205/327) of clusters showed
significantly closer phylogenetic distances among same-habitat
genomes (p < 0.05), supporting potential habitat-phage divergence
(Figure 3b). As the examples, genus-level viral clusters 1 and 2
demonstrated clear habitat-based phylogenetic clustering. No
divergent pattern was detected in genus-level viral clusters 3-5,
indicating taxon-specific variation in evolutionary dynamics
(Figure 3c).

3.4 Functional potentials of phage
genomes in the PGD50

We investigated whether phages utilize alternative genetic codes
to maintain low coding density and prevent protein fragmentation.
Using custom Prodigal (v2.50), we evaluated four genetic codes (11,
15,90, 91) based on total potential coding scores. The standard genetic
code (11) dominated (97.97%, 726,601/741,692), while a small
proportion (2.03%, 15,091/741,692) recoded stop codons as glutamine
(Q, genetic codes 15) and Glycine (G, genetic codes 90). Notably, no
genomes recoded TAA as glutamine (Q, genetic code 91) (Figure 4a).
To identify phages employing alternative genetic codes, we applied a
specific threshold during prediction. The use of the correct,
corresponding genetic code for these identified phages then led to a
significant improvement in functional annotation, as evidenced by a
higher match rate against the Pfam-A database.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Wei and Chen

10.3389/fmicb.2025.1686402

3.Three viral genome databases

2.Seven different habitats (IMGVR, GenBank, NT)

45 public viral IGN

v v

combined contigs (n = 59,652,008)

1.Metagenome and Pacbio Hifi sequencing

data (205 samples)

One pig gut dataset from
our lab (contigs)

2. remove genome
size < 3kb

1. A custom viral
identification pipeline

Viral protein families (Paez-Espino et al. 2016)
VirFinder score (Ren et al. 2017)

Non-viral Pfams (El-Gebali et al. 2019)

Gene strand switch rate (Roux et al. 2015)

putative viral contigs (n = 9,607,235)

1. two or more virus-specific genes 2. PhaMer;
and at least one spacer matching 3. BUSCOs + VPFs

phage contigs (n = 5,893,090, PGD)
N

+ 1. CheckV (2 50 completeness)
\

]
7 ( PGD50 (n = 741,692)

from PGD50 (n = 741,692)

~ " 1.the genome features  ~~
2.function

3.hosts

L
’

|
N

The quality of phage

complete(n = 44311, 5.97%)

>=90% complete(n = 38279, 5.16%)

Checkv quality

50-90% complete(n = 659102, 88.86%)

100k 1000k
741,692 contig length, bp

99.48% 99.48% 99.48%

The distribution of phage genomes from PGD50 (n = 741,692)

B Rumen, 25,636
B Pig guts, 88,706
. Non-human primate guts, 9,064
B Human guts, 230,600
[ soil and lake sediments, 1,728
[ Freshwater and meltwater, 5,810
[l Ocean, 1,804
2 Unknown habitats, 11,450
Refdb (unknown habitats), 366,894

The lifestyle of phage genomes from PGD50 (n = 741,692)

7.92% (n = 15,319)

[ temperate, 252,624
uncertain, 78,565
B virulent, 410,503

Prophages
. Non-prophages

7.94%

99.48%

Thumleimavirales ——

Virus Realm Phylum

FIGURE 1
Identification and characterization of phage genomes from diverse environments. (a)

diverse environments. (b) The distribution of phage genomes (PGD50) in different habitats. Different colors represent phage genomes from different
habitats. (c) The detailed distribution of genome length and quality for phage genomes (PGD50). (d) The lifestyle prediction of phage genomes
(PGD50) and the proportion of prophages in temperate phages. The pie chart (left) represents different lifestyles of phage genomes with different
colors, and the bar chart (right) shows the proportion of prophages in temperate phages. (e) The detailed taxonomy of phage genomes and proportion

of known taxonomy for phages genomes at each taxonomic level. The Sankey diagra

these pie charts show proportion of known taxonomy for phages genomes at each taxonomic level.

Class Order

The pipeline for identification of phage genomes (PGD50) from

m represents the detailed taxonomy of phages genomes and

Frontiers in Microbiology 06

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

10.3389/fmicb.2025.1686402

Wei and Chen
a b 219,604 HMM profiles
o~
. . oo
Species-level viral clusters 256404 Global phage phylogenetic analysis o 5
n = 420,230 species-level clustering 44,311 complete 5,658 VMR complete N )
[ hmmsearch
phages phages e® 00 e
200000 e -3;
. . 4,324,240 proteins coverage 2 50%
8 (44,326 genomes)
@» 1. mmseqs2 2. prodigal average copy
8 PGD50 PhageScope50 redundancy predict proteins. present in 210% of number 1.2
2 331,784 (44.73 76,410 (22.84%) phage genomes average protein length
§ 4,324,240 proteins @, >100 amino acid residues
2 100000 (44,326 genomes) g Core @ 544 HMMs (1)

Iteration Il
Iteration | (37,307 genomes)

Source

Iteration |
Iteration Il

34 49
Iteration V Iteration IV
\\IB W Source
L Sose \“‘ Taxonomy
4 Taxonomy * \\“‘“

’4\? Habitats (novel) 6\\:\\\\\“ \ W Habitats (novel)
,"\ o Iteration Ill (1,311 genomes) l\\\\O O Iteration IV (749 genomes)
Q‘ Source ' ' » Source
S ® This study (1150, PD: 1282 (458)) & ® This study (516, PD: 389 (133) T 4@

VMR (161, PD: 282) VMR (233, PD: 1
(16 82) (233, 50) ....

Tree scale: 10—t -m=
-
\
7
’
Taxonomy Caudoviricetes; Straboviridae sk
B Caudoviricetes;Autographiviridae B Caudoviricetes; Unknown s
B Caudoviricetes;Crassvirales W Inoviridae B Rumen
W Caudoviricetes;Drexlerviridae B Microviridae W Pig guts
I Caudoviricetes;Herelleviridae W others B Non-human primate guts
Unclassified B Human guts

W Caudoviricetes;Schitoviridae

FIGURE 2

this study: 741,692 PhageScope: 334,616 70% coverage | Sequence clustering Core
phage genomes phage genomes 30% identity ¥ MMseqs2 294 HMMs (Il) analysis (PA)
identity, 526878 @ @ @ @ (") €—— ®_ g 37.307 genomes
A £
M rovel, 214814 N A H
. | os) (%) PA ¢ 0®, 32

1+ Non-human primate guts . 353,315 clusters ° PA + ©® " genomes

1 Soil and lake sediments . 776 397209 65 H/MMS v) o 74

J Ocean = HMM MMseqs2 " . «—®

s Unknown habitats . 1 v S enumes conty #® genomes

- Rumen . l I ] H . H 4
— Pig guts . Q
— Humin guts . l[ I l ] l l ll ®-. N 103 HMMs (1Il) 63 HMMs (IV)
L ——) Refdb . o IO Y IO
S Core | —> —>» (o9 Core
200000 100000 O orele e ~pa °® X
Set Size 219,604 HMM profiles H 1,311 genomes H
c d
, Source Source
\ ’ Taxonomy Taxonomy
, Habitats (novel) Habitats (novel)

@ This study (32678, PD: 19420 (10869)) ll
VMR (2349, PD: 190) , VMR (324, PD: 190)
Sy
Tres scale: 10 . Tree scale: 10—t
\ i
J &
\

H H
¢ phylogentic

Iteration Il (3,972 genomes)

Source
@ This study (3648, PD: 2656 (1749))

Source
Taxonomy
1 | 1l Habitats (novel)
Iteration V (332 genomes)
Source
® This study (262, PD: 236 (52))

VMR (70, PD: 53)

- -
1}
sq
> ~.~
\i~
" 29
/7
/19N
=

B Soil and lake sediments
B Freshwater and meltwater
W Ocean
I Unknown habitats

Refdb (unknown habitats)

Assessing novelty of PGD50 and construction of global phylogenetic trees based on complete phage genomes. (a) The assessing novelty of PGD50 at
species-level viral clusters. The pie represents the proportion of novel phages from PGD50 and the UpSet plot compares phage populations among
different habitats. (b) The pipeline of global phage phylogenetic analysis of complete phages and core HMM profiles and number of phage genomes
for five iterations. The pipeline (left) is performed to build all 219,604 HMM profiles based on the MMseqs2 and HMMER software. The pipeline (right) is
performed to generate core HMM profiles and phylogenetic trees for five iterations, and the core HMM profiles for each iteration are generated based
on all 219,604 HMM profiles. The parameters for generating core HMM profiles are shown in first iteration, and the parameters for five iterations are
consistent. Phylogenetic trees for five iterations are constructed based on the method developed by Low et al. (2019) and corresponding core HMM
profiles. (c) The sharing and unique core HMM profiles for five iterations to global phage phylogenetic trees. The distribution of sharing and unique
core HMM profiles are described by the Venn diagram. The red numbers represent the unique core HMM profiles and the black number represent the
sharing core HMM profiles for five iterations. (d) The global phage phylogenetic trees for five iterations and the source distribution of phage genomes
from this study and the VMR database. The different colors OD outer circle for the phylogenetic trees represent phage genomes from different sources
and the red clades represent novel complete phage genomes from this study.

Frontiers in Microbiology

07

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Wei and Chen 10.3389/fmicb.2025.1686402
a b
'
Genus-level viral clusterings n = 2,517 1.00 | Genus-level viral clusterings
: n =327
687
1
600 :
525 |
g 0.75 i
@ 458 62.69%
H . : Divergence
g 400 3 i
§ g
g H -
= @ 1 ® Divergence, 205
255 g 050 1 by
[ ® Notdivergence, 11
g ! Not-signification, 111
2 1
k] 1
= 1
1
0.25
1 1
1
] Ocean . 1
M Non-human primate guts . 1
B Soil and lake sediments . ] | p-value = 0.05
A e
I Rumen . I l 0.00 \ ‘
I Human guts . I 1
I Pig guts L] 0.00 0.25 0.50 0.75 1.00
1000750 500 250 0O Divergence (p-value)
et Size
[+

Tree scale: 0.1 ———

Tree scale: 0.1

p-value = 3.77E-63

Genus-level viral clustering 1 |/, o _3

I Human guts seq 7251008
Rumens seq 8818994
[ Pig quts seq 8589460
[0 Pig quts seq 7926559
[ Pig quts seq 7940323
[ Pig guts seq 7931288
M Pig guts seq 7917371
Bl Human guts seq 7205585
[ Human guts seq 7203302
I Human guts seq 7201252
I Human guts seq 7201184
I Human guts seq 7208803
Bl Human guts seq 7206345
[ Human guts seq 7206892
B Human guts seq 7206668
[ Human guts seq 7206004
I Human guts seq 7206921
I Human guts seq 7206904
I Human guts seq 7204370
I Human guts seq 7201106
I Human guts seq 7207341
M Human guts seq 7206786
Bl Human guts seq 7206088
Bl Human guts seq 7206068
Ml Human guts seq 7206290
Bl Human guts seq 7206243
B Human guts seq 7206167
Bl Human guts seq 7206158
B Human guts seq 7206132
B Human guts seq 7138478
[ Non-human primate quts seq 9015794

p-value = 0.33146541
p-value = 0.66919874

Genus-level viral clustering 3

[ Pig guts seq 8201545
Rumens seq 8766715
[ P outs seq 7461657
Rumens seq 8860312
I Non-human primate guts seq 9045656
[l Non-human primate guts seq 9045650
Human guts seq 7248940
Human guts seq 7386333
Human guts seq 7389038
Il Fumen uts seq 7386377
Human guts seq 9605927
1 Pig auts seq 0485740
[ Human guts seq 7102218
151 Pig quts seq 8308598
Il Non-human primate guts seq 9045621
I Non-human primate guts seq 9045615

1 Pig guts seq 8510671
[l Human guts seq 7113293

——

FIGURE 3

habitats.

I Human guts seq 7113327
Human guts seq 7163787
Human guts seq 9594172

oman guts seq 7102220

Tt

Potential divergence analysis for complete phage genomes with habitat types. (a) Comparing genus-level viral clusters among six habitats. (b) Potential
divergence analysis of genus-level viral clusters with different habitat types. The dot plot shows the likelihood (p-values) distributions of 327 genus-
level viral clusters that were diverged (black green dots) or not diverged (red dots) with habitat types. The pie chart shows the proportion of divergent
and not-divergent genus-level viral clusters. (c) Five examples of genus-level viral clusters potentially diverged or did not diverge with habitat types.
The blue p-value (p < 0.05) and the red p-value (p < 0.05) represent the significant divergence and significant not divergence for phage genomes with

2 p-value = 4.86E-29
p-value =1
Rumens seq 8675224
Rumens seq 8803842
Rumens seq 8731956
Rumens seq 8804830
Rumens seq 8668866
Rumens seq 8350142
Rumens seq 8766554
Rumens seq 8862798

Tree scale: 0.1 —————— Genus-level viral clustering
B Pig guts seq 8400411
Rumens seq 8711197

1 Pig guts seq 8516977

— [l Human gus seq 7318648
Il Human guts seq 7187326
Human guts seq 7183711
Human guts seq 7182660
Non-human primate guts seq 9017499
Non-human primate guts seq 9020734
Non-human primate guts seq 9029730
Non-human primate guts seq 9029728
Non-human primate guts seq 9029726
Non-human primate guts seq 9026722
Non-human primate guts seq 9029721
Non-human primate guts seq 9029724
Non-human primate guts seq 9029733
Non-human primate guts seq 9029727
Non-human primate guts seq 9029725
Non-human primate guts seq 9029723
Bl Non-human primate guts seq 9029720
B Non-human primate guts seq 9029719
p-value = 0.98899284
p-value = 0.01111741
Bl Human guts seq 7232487

Genus-level viral clustering 4

Tree scale: 0.1

man guts seq 9659765
ig guts seq 9164093

man guts seq 6782723
iman guts seq 6782574
iman guts seq 7252622

)

Genus-level viral clustering 5

I Human guts seq 6773606

p-value = 0.98224272

p-value = 0.01833118
Rumens seq 8765537
Rumens seq 8742145
Rumens seq 8655821
Rumens seq 8779933

A, g qusseqaosons

Rumens seq 8658882
Rumens seq 8769551

Tree scale: 0.1

Rumens seq 8661586
Human guts seq 7176165
Human guts seq 7156130
Rumens seq 8861153
Rumens seq 8681083

Viral proteins were highly divergent even within the same virus

family, limiting the utility of sequence-based similarity searches when

amino acid identity fell below 30%. To overcome the limitations of
sequence-based annotation (e.g., for hits with <30% AA identity),
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we performed structural similarity searches. This approach leverages
the fact that protein structural domains were often more conserved
than their amino acid sequences, allowing for the detection of distant
evolutionary relationships that were otherwise missed (Figure 4b).
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FIGURE 4

Functional annotations of phage genomes in the PGD50. (a) The proportion of using alternative genetic codes for phages genomes (pie chart), the
number of proteins annotated by the Pfam-A database for phages using five alternative genetic codes (bar chart). (b) The pipeline of functional
annotations for 55,294,737 phage genes. (c) The proportion of annotated phage genes for 55,294,737 phage genes. (d) Functional items with the
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using structure searching method for genes of top 100 clusters from no hit. The pie chart represents the proportion of annotated phage genes using
structure searching method, and the 3D structures of phage genes were compared with Alphafold2 and Foldseek.

Interestingly, 87.42% (48,339,065/55,294,737) proteins were annotated
(Figure 4c) and we further classified these genes into functional items,
and the items with the number of annotated genes in the top 50 were
listed. Among them, functional items related to the structure,
assembly and packaging, DNA replication and transcription, and lysis,
all of which were typical functional capacities of phages were enriched
by annotated genes (Figure 4d). Critically, structural searches resolved
53% (53/100) of previously unannotated proteins (top 100 clusters
with no sequence hits), demonstrating its power for annotating
divergent viral proteins (Figure 4e and Supplementary Table S5).

3.5 Revealing phage—host relationships
and pathogen targeting potential via
CRISPR spacer matching

The distribution of host bacteria or archaea is a strong determinant
for the distribution of phages, and the indigenous phage community
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also greatly affects the structure and function of the host bacterial or
archaeal community. To establish phage-host linkages, we leveraged
CRISPR spacer similarity, a key determinant linking phage
distribution to their bacterial or archaeal hosts. Analysis of 741,692
phage genomes identified putative hosts for 56.75% (420,907/741,692)
phages through spacer matches (Supplementary Table S5). Our
analysis revealed that 35.38% (262,423/741,692) of phage genomes
were linked via CRISPR spacers to multiple bacterial genera, with
some connections spanning different phyla (Figure 5a). There were
21.37% (158,484/741,692) phage genomes only targeting one host
genus, and host for these specialist host viruses mainly belonged to the
keystone genera Bacteroides and Prevotella, critical in gut or
hypersaline ecosystems.

Our analysis focused on Escherichia coli and Klebsiella pneumoniae
given their predominant role in the global burden of antimicrobial
resistance. This focused approach allows for a deeper investigation
into phage solutions for these clinically paramount threats (Murray

et al., 2022). We analyzed virulent phages targeting pathogens
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including Escherichia coli and Klebsiella pneumoniae, and first
estimated the distribution of PBP proteins, VFs, and ARGs in collected
pathogenic bacteria genomes from the GenBank database.
Interestingly, we found virulent phage genomes in the PGD50 could
target 67.83% (4,295/6,332) Escherichia Coli and 31.08% (1,288/4,050)
Klebsiella pneumoniae based on CRISPR spacer matching (Figure 5b),
suggesting that these virulent phages in the PGD50 might be an ideal
tool for phage therapy via targeted lysis of pathogenic bacteria.

3.6 Competitive phage networks and
CRISPR-Cas system distribution

We identified 37,708 CRISPR spacers within 4,430 phage genomes
in the PGD50. Among these, 8.35% (3,149/37,708) targeted 52,909
phage genomes, establishing extensive phage-phage interaction
networks (Figure 6a). Target pair analysis revealed single-directed
relationships (where one phage targets another without reciprocal
targeting) dominated these interactions at 89.83% (237,936/264,882),
while double-directed pairs (reciprocal targeting) constituted the
remaining 10.17%. Critically, 94.60% (250,585/264,882) of targeted
pairs consisted of phages infecting the same host, revealing a high
prevalence of potential competitive relationships
(Supplementary Table S6).

CRISPR-Cas systems are adaptive immune systems widespread in
hosts but rarely found in phage genomes. We identified 243
CRISPR-Cas systems within phage genomes that specifically target
other phages, with the most prevalent subtypes being I-C, I-F, and
II-C (Figure 6b and Supplementary Table S7). Among these, 37
systems (15.23%) were complete. More broadly, a total of 299
CRISPR-Cas systems were identified across all phage genomes. In
contrast, we found 30,222 CRISPR-Cas systems encoded by host
genomes, which were predominantly subtypes I-C, II-A, and I-E
(Figure 6¢ and Supplementary Table S8). Notably, phage-encoded
CRISPR-Cas systems (83.61%, 250/299) frequently lacked spacer
acquisition proteins (Casl, Cas2, and Cas4), suggesting partial
horizontal gene transfer (HGT) during acquisition. Furthermore,
focusing on the two most prevalent subtypes, we found that 96.97%
(116/120) of the I-C systems and 17.86% (5/28) of the II-C systems
were missing these Cas proteins. Given the biotechnological
significance of Casl2 proteins, particularly their compact size for
gene-editing applications, we performed a phylogenetic analysis to
explore their diversity in phages. Our analysis incorporated a total of
1,311 Cas12 sequences, comprising 1,310 derived from host genomes
(spanning subtypes Cas12a, Cas12b, Cas12f, and Cas12k) and a single,
notable Cas12a sequence identified from a phage genome in our study.
The resulting phylogenetic tree (Figure 6d) revealed distinct clustering
of Cas12 subtypes, with the phage-encoded Cas12a nesting within the
diversity of host-encoded Cas12a sequences. This placement suggested
a potential evolutionary history of horizontal gene transfer between
phages and their bacterial hosts for this particular system. While the
single phage sequence precluded a conclusion on phage-specific
diversity, its presence alone was significant. The Casl2 protein
identified in the phage contained the conserved RuvC nuclease
domain. This domain was critically important as it was responsible for
the DNA cleavage activity that formed the foundation for all
DNA-targeting applications of Cas12 in biotechnology (Makarova
etal., 2020). The preservation of this functional domain in the phage

Frontiers in Microbiology

10.3389/fmicb.2025.1686402

protein underscored its potential as a functional nuclease and a
valuable resource for mining novel gene-editing tools.

4 Discussion

Phages play a key role in maintaining the balance of microbial
ecosystems (Rascovan et al., 2016; Emerson et al., 2018), but their
interactions with hosts and other phages are largely unknown. This
study presents a comprehensive and expansive resource of phage
genomes, significantly augmenting our understanding of global phage
diversity, evolutionary dynamics, and functional potential. By
integrating massive datasets from diverse habitats, we have assembled
a collection of 741,692 medium-to-high-quality phage genomes, vastly
exceeding the scale of most previous individual studies and
significantly enriching existing public databases like the IMG/VR
(Roux et al., 2021), GenBank (Benson et al., 2013), and NT (Sayers
etal,, 2022) (IGN). The sheer number of phage genomes analyzed here
provides unprecedented resolution for exploring the virosphere.

The most striking finding is the immense proportion (28.96%) of
phage genomes clustering into 158,522 species-level viral clusters that
lack any representatives in the IGN. This underscores a profound gap
in our current cataloging of viral diversity. These novel species-level
viral clusters likely represent phages endemic to understudied
environments, highly divergent lineages, or those infecting uncultured
hosts. Their discovery dramatically reshapes our perception of the
virosphere’s true breadth and complexity, suggesting that known
phages represent merely a fraction of the total diversity. The
construction of global phylogenetic trees reveals that our dataset
substantially expands the known diversity of the Caudoviricetes, filling
critical phylogenetic gaps and introducing novel, deep-branching
lineages. This expansion was particularly pronounced in previously
underexplored habitats such as the pig gut and rumen. However,
we must acknowledge that this apparent “expansion” is partially
shaped by the inherent unevenness of existing genomic databases. The
deeper sequencing of certain environments like the human gut
naturally allows for the resolution of finer-scale genetic diversity, while
the true evolutionary breadth of under-sampled habitats likely
remains underestimated (Nayfach et al., 2021b). Consequently, the
present evolutionary map should be viewed as a robust yet interim
framework, one that will be refined as future metagenomic surveys
encompass a broader spectrum of global ecosystems.

Beyond cataloging diversity, our genomic analyses revealed
distinct evolutionary patterns reflected in the association between
phages and their habitats. While the observed signals are consistent
with potential divergence with habitats, we interpret these patterns as
strong evidence of environmental filtering and habitat adaptation.
Phages are likely finely tuned to the physicochemical and biological
conditions of their respective niches, a phenomenon driven by factors
such as host availability, nutrient constraints, and inter-phage
competition (Koskella and Brockhurst, 2014; Sharma et al., 2018).
However, caution is warranted in ascribing these distribution patterns
solely to strict co-evolution. Habitat filtering, where environmental
conditions selectively favor both compatible hosts and their phages
represents a powerful, alternative mechanism shaping these ecological
relationships (Lennon and Martiny, 2008). In other words, the signal
we detect may reflect phage adaptation to their host’s ecological niche,
rather than direct, synchronous genome evolution between phage and
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host. For instance, a longitudinal study of Aeromonas and its phages
demonstrated that their interaction dynamics oscillated over time
between “arms race” and “fluctuating selection” modes (Marston et al.,
2012). Our cross-sectional study may have captured only a single
snapshot of this complex, dynamic process. Disentangling these
possibilities will require future longitudinal time-series sampling of
the same habitats, combined with experimental validation through
controlled co-evolution experiments of specific host-phage pairs
(McGrath, 2024). Furthermore, the detection of alternative genetic
code usage in some phages highlights an intriguing evolutionary
strategy (Devoto et al., 2019), possibly conferring advantages like
evasion of host defenses or optimization of replication efficiency
under specific conditions, warranting deeper investigation.

The functional annotation of phage genomes, particularly for
proteins with no known homologs, remains a major challenge
(Nomburg et al., 2024). Our application of 3D structural similarity
searches represents a significant methodological advance. By moving
beyond sequence-based homology, this approach provided functional
predictions for 53% of the top 100 previously unannotated viral
proteins based on 3D structural resolution. This not only enhances our
understanding of the functional repertoire encoded within this novel
phage diversity but also provides a powerful strategy for future viral
metagenomic studies.

Our analysis of phage-host interactions, leveraging CRISPR
spacer matching, provided crucial insights into the ecological
networks connecting phages and their potential hosts (Tisza and
Buck, 2021; Johansen et al., 2023). A key finding was that a substantial
proportion (35.38%) of phage genomes were linked via spacer
matches to hosts spanning multiple genera or even phyla, suggesting
the potential for broad host ranges (Nishijima et al., 2022; Bignaud
et al,, 2025). However, these in silico predictions warrant a nuanced
interpretation. True ecological generalists capable of productively
infecting distantly related hosts are considered rare in nature. The
observed patterns may therefore stem from several alternative
factors: the presence of common integrative genetic elements shared
across diverse hosts, the inherent limitations of predictive
bioinformatics, or the fact that spacer matches can reflect past,
non-productive infection events rather than active, concurrent
replication. Despite these important caveats, this spacer-based
approach proved highly valuable for generating specific, testable
hypotheses, robustly predicting potential hosts for numerous phages,
including those with links to clinically relevant pathogenic bacteria
(Lopez-Beltran et al., 2024) and thereby highlighting promising
candidates for further therapeutic exploration. This approach not
only revealed complex ecological networks of phage competition and
co-existence mediated through shared CRISPR targets (Tisza and
Buck, 2021) but also proved particularly valuable for identifying
strictly lytic (virulent) phages with therapeutic potential. The strictly
Iytic life cycle of these virulent phages makes them ideal therapeutic
candidates, as it enables the direct and rapid eradication of target
pathogens. However, translating these foundational discoveries into
clinical practice faces significant challenges. Two of the most
prominent hurdles are the typically narrow host range of phages,
which can limit their applicability against diverse bacterial strains,
and concerns regarding the potential transduction of bacterial
virulence factors (Petrovic Fabijan et al., 2023). The vast and diverse
reservoir of virulent phages uncovered in our study provides a
unique resource to address these challenges. The many genes of
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unknown function within these genomes may encode novel proteins
capable of modulating or evading host immune responses. Through
rational genetic engineering, such as modifying phage tail fibers to
broaden host range or knocking out highly immunogenic,
non-essential genes, we can leverage these natural blueprints to
develop next-generation phage-based therapeutics that are safer,
more effective, and better suited to clinical application (Meile
etal., 2022).

A particularly exciting and unexpected finding was the detection
of diverse CRISPR-Cas systems within the phage genomes themselves
(Al-Shayeb et al., 2020; Al-Shayeb et al., 2022). Phage-encoded
CRISPR-Cas systems open fascinating new avenues for research into
phage-host arms races, where phages may utilize these systems to
compete against other mobile genetic elements (including other
phages) or even manipulate host defenses (Al-Shayeb et al., 2020).
Beyond their biological significance, these phage-borne systems
represent a vast, largely untapped reservoir of novel CRISPR-Cas
variants with potentially unique properties (e.g., smaller size, different
PAM specificities) (Pausch et al., 2020; Carabias et al., 2021; Al-Shayeb
et al., 2022). This positions our phage genome collection as an
extraordinarily rich source for mining the next generation of gene
editing tools with enhanced capabilities for biotechnology
and medicine.

While this study provides a landmark resource for viral
ecology, several limitations inherent to metagenomic analysis
must be acknowledged. First, our reliance on a genome
completeness threshold (PGD50) ensured high-quality analysis
but may have systematically excluded abundant, fragmented viral
sequences, leading to an underestimation of the diversity of
certain phage groups. Second, although our functional inference
was augmented by structural similarity searches to reveal distant
homologies (van Kempen et al., 2024), it remains constrained by
homology-based methods; proteins with truly novel folds
represent a fundamental blind spot, and all predictions require
biochemical confirmation. Finally, our host prediction strategy
relies solely on CRISPR spacer matches. While this method
provides high-specificity links, it is inherently limited by the
incompleteness of microbial genome catalogs and reflects
historical infection events rather than active replication.
Furthermore, this singular approach leaves phage interactions
with many uncultured or un-sequenced hosts undetected; future
work incorporating complementary methods, such as k-mer
composition analysis, would be essential to systematically expand
host assignment coverage and obtain a more comprehensive view
of phage-host interaction networks. Future efforts combining
more permissive assembly strategies, multi-faceted host
prediction, and experimental validation will be crucial to
overcome these biases. In total, this study delivers an unparalleled
genomic resource that fundamentally expands our knowledge of
phage diversity on Earth. We have uncovered a vast reservoir of
novel phages, revealed intricate patterns of potential divergence
and adaptation, developed innovative methods for functional
annotation, and uncovered critical insights into phage-host
interactions and competitive networks. Most significantly, we have
demonstrated the immense, dual application potential of this
resource: firstly, as a targeted library for discovering potent phage
therapy agents against pathogenic bacteria, and secondly, as a
treasure trove for mining the next generation of innovative
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CRISPR-Cas-based gene editing technologies. This dataset
provides an essential foundation for future research aimed at
understanding the intricate roles of phages in global ecosystems,
antibiotic resistance, and

combating advancing

genetic engineering.

5 Conclusion

In conclusion, this study constructed the PGD50 database, a
unified resource of 741,692 high-quality phage genomes, which
enabled a systematic reassessment of global phage diversity and
ecology. Our key advance lies not in the initial reporting of phage
diversity or phage-encoded CRISPR-Cas systems, but in the
substantial expansion of their documented scale and diversity.
Specifically, we identified a significant number of novel, deep-
branching lineages, represented by 158,522 species-level viral clusters
that were absent from existing references. Furthermore, our analysis
reframed the observed ecological patterns not as definitive
“co-evolution,” but as a distinct “habitat divergence” This pervasive
phylogeographic signal indicates a strong environmental imprint on
phage evolution, which may arise from co-evolutionary dynamics,
environmental filtering, or a combination of both. Beyond diversity,
our integrated approach including combining structural annotation,
CRISPR spacer analysis, and comparative genomics, provided
foundational insights into phage function, host interaction networks,
and the expanded distribution of CRISPR-Cas subtypes within phages,
underscoring their potential as future therapeutic and biotechnological
tools. Collectively, this work provides a refined framework and
resource for future research into phage biology and application.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary material.

Author contributions

CW: Data curation, Formal analysis, Methodology, Software,
Validation, Visualization, Writing - original draft. ZC: Formal
analysis, Validation, Writing - review & editing.

References

Almeida, A., Nayfach, S., Boland, M., Strozzi, E, Beracochea, M., Shi, Z. J., et al.
(2021). A unified catalog of 204,938 reference genomes from the human gut microbiome.
Nat. Biotechnol. 39, 105-114. doi: 10.1038/s41587-020-0603-3

Al-Shayeb, B., Sachdeva, R., Chen, L.-X., Ward, E, Munk, P, Devoto, A., et al. (2020).
Clades of huge phages from across Earth’s ecosystems. Nature 578, 425-431. doi:
10.1038/s41586-020-2007-4

Al-Shayeb, B., Skopintsev, P,, Soczek, K. M., Stahl, E. C,, Li, Z., Groover, E., et al.
(2022). Diverse virus-encoded CRISPR-Cas systems include streamlined genome
editors. Cell 185, 4574-4586.e16. doi: 10.1016/j.cell.2022.10.020

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, L., Lipman, D. J., Ostell, J.,
et al. (2013). GenBank. Nucleic Acids Res. 41, D36-D42. doi: 10.1093/nar/gks1195

Frontiers in Microbiology

10.3389/fmicb.2025.1686402

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors appreciate the colleagues in the National Key
Laboratory of Pig Genetic Improvement and Germplasm Innovation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.1686402/
full#supplementary-material

Bignaud, A., Conti, D. E., Thierry, A., Serizay, J., Labadie, K., Poulain, J., et al. (2025).
Phages with a broad host range are common across ecosystems. Nat. Microbiol. 10,
2537-2549. doi: 10.1038/s41564-025-02108-2

Brown, T. L., Charity, O. J., and Adriaenssens, E. M. (2022). Ecological and functional
roles of bacteriophages in contrasting environments: marine, terrestrial and human gut.
Curr. Opin. Microbiol. 70:102229. doi: 10.1016/j.mib.2022.102229

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment
using DIAMOND. Nat. Methods 12, 59-60. doi: 10.1038/nmeth.3176

Burstein, D., Harrington, L. B., Strutt, S. C., Probst, A. ], Anantharaman, K.,
Thomas, B. C,, et al. (2017). New CRISPR-Cas systems from uncultivated microbes.
Nature 542, 237-241. doi: 10.1038/nature21059

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1686402/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1686402/full#supplementary-material
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41586-020-2007-4
https://doi.org/10.1016/j.cell.2022.10.020
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1038/s41564-025-02108-2
https://doi.org/10.1016/j.mib.2022.102229
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nature21059

Wei and Chen

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al.
(2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:
10.1186/1471-2105-10-421

Camargo, A. P, Nayfach, S., Chen, I. A,, Palaniappan, K., Ratner, A., Chu, K,, et al.
(2023a). IMG/VR v4: an expanded database of uncultivated virus genomes within a
framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids
Res. 51, D733-D743. doi: 10.1093/nar/gkac1037

Camargo, A. P, Roux, S., Schulz, F, Babinski, M., Xu, Y., Hu, B,, et al. (2023b).
Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303-1312.
doi: 10.1038/541587-023-01953-y

Capella-Gutierrez, S., Silla-Martinez, J. M., and Gabaldon, T. (2009). trimAL: a tool for
automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25,
1972-1973. doi: 10.1093/bioinformatics/btp348

Carabias, A., Fuglsang, A., Temperini, P, Pape, T., Sofos, N., Stella, S., et al. (2021).
Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nat. Commun.
12:4476. doi: 10.1038/s41467-021-24707-3

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P, and Parks, D. H. (2022). GTDB-Tk v2:
memory friendly classification with the genome taxonomy database. Bioinformatics 38,
5315-5316. doi: 10.1093/bioinformatics/btac672

Chen, C., Zhou, Y., Fu, H., Xiong, X., Fang, S., Jiang, H., et al. (2021). Expanded
catalog of microbial genes and metagenome-assembled genomes from the pig gut
microbiome. Nat. Commun. 12:1106. doi: 10.1038/s41467-021-21295-0

Clokie, M. R, Millard, A. D,, Letarov, A. V., and Heaphy, S. (2011). Phages in nature.
Bacteriophage 1, 31-45. doi: 10.4161/bact.1.1.14942

Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Neron, B.,
etal. (2018). CRISPRCasFinder, an update of CRISRFinder, includes a portable version,
enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46,
W246-W251. doi: 10.1093/nar/gky425

Devoto, A. E., Santini, J. M., Olm, M. R., Anantharaman, K., Munk, P, Tung, J., et al.
(2019). Megaphages infect Prevotella and variants are widespread in gut microbiomes.
Nat. Microbiol. 4, 693-700. doi: 10.1038/s41564-018-0338-9

Dion, M. B., Oechslin, E, and Moineau, S. (2020). Phage diversity, genomics and
phylogeny. Nat. Rev. Microbiol. 18, 125-138. doi: 10.1038/s41579-019-0311-5

Emerson, J. B., Roux, S., Brum, J. R, Bolduc, B., Woodcroft, B. J., Jang, H. B., et al.
(2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol.
3, 870-880. doi: 10.1038/s41564-018-0190-y

Federici, S., Kredo-Russo, S., Valdes-Mas, R., Kviatcovsky, D., Weinstock, E.,
Matiuhin, Y., et al. (2022). Targeted suppression of human IBD-associated gut
microbiota commensals by phage consortia for treatment of intestinal inflammation.
Cell 185, 2879-2898.¢24. doi: 10.1016/j.cell.2022.07.003

Gregory, A. C., Zablocki, O., Zayed, A. A., Howell, A., Bolduc, B., and
Sullivan, M. B. (2020). The gut virome database reveals age-dependent patterns of
virome diversity in the human gut. Cell Host Microbe 28, 724-740.e8. doi:
10.1016/j.chom.2020.08.003

Haft, D. H., Selengut, J. D., and White, O. (2003). The TIGRFAMs database of protein
families. Nucleic Acids Res. 31, 371-373. doi: 10.1093/nar/gkg128

Hockenberry, A. J., and Wilke, C. O. (2021). BACPHLIP: predicting bacteriophage
lifestyle from conserved protein domains. Peer] 9:e11396. doi: 10.7717/peer;j.11396

Hu, ], Chen, J., Ma, L., Hou, Q, Zhang, Y., Kong, X,, et al. (2024). Characterizing core
microbiota and regulatory functions of the pig gut microbiome. ISME J. 18:wrad037.
doi: 10.1093/ismejo/wrad037

Hyatt, D., Chen, G. L., Locascio, P. F, Land, M. L., Larimer, F. W,, and Hauser, L. J.
(2010). Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119

Ivanova, N. N., Schwientek, P, Tripp, H. J., Rinke, C., Pati, A., Huntemann, M., et al.
(2014). Stop codon reassignments in the wild. Science 344, 909-913. doi:
10.1126/science.1250691

Johansen, J., Atarashi, K., Arai, Y., Hirose, N., Sorensen, S. J., Vatanen, T., et al. (2023).
Centenarians have a diverse gut virome with the potential to modulate metabolism and
promote healthy lifespan. Nat. Microbiol. 8,1064-1078. doi: 10.1038/s41564-023-01370-6

Kembel, S. W.,, Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H.,
Ackerly, D. D, et al. (2010). Picante: R tools for integrating phylogenies and ecology.
Bioinformatics 26, 1463-1464. doi: 10.1093/bioinformatics/btq166

Koskella, B., and Brockhurst, M. A. (2014). Bacteria—phage coevolution as a driver of
ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev.
38,916-931. doi: 10.1111/1574-6976.12072

Lennon, J. T., and Martiny, J. B. H. (2008). Rapid evolution buffers ecosystem impacts
of viruses in a microbial food web. Ecol. Lett. 11, 1178-1188. doi:
10.1111/j.1461-0248.2008.01225.x

Loépez-Beltrdn, A., Botelho, J., and Iranzo, J. (2024). Dynamics of CRISPR-mediated
virus-host interactions in the human gut microbiome. ISME J. 18:wrael34. doi:
10.1093/ismejo/wrael34

Lou, Y. C,, Chen, L., Borges, A. L., West-Roberts, J., Firek, B. A., Morowitz, M. J., et al.

(2024). Infant gut DNA bacteriophage strain persistence during the first 3 years of life.
Cell Host Microbe 32, 35-47.e6. doi: 10.1016/j.chom.2023.11.015

Frontiers in Microbiology

15

10.3389/fmicb.2025.1686402

Low, S. J., Dzunkova, M., Chaumeil, P. A., Parks, D. H., and Hugenholtz, P. (2019).
Evaluation of a concatenated protein phylogeny for classification of tailed double-
stranded DNA viruses belonging to the order Caudovirales. Nat. Microbiol. 4,
1306-1315. doi: 10.1038/s41564-019-0448-z

Makarova, K. S., Wolf, Y. I, Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S,
Brouns, S. J. J., et al. (2020). Evolutionary classification of CRISPR-Cas systems: a
burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67-83. doi:
10.1038/541579-019-0299-x

Mangalea, M. R., and Duerkop, B. A. (2020). Fitness trade-offs resulting from
bacteriophage resistance potentiate synergistic antibacterial strategies. Infect. Immun.
88:00926-19. doi: 10.1128/IAL1.00926-19

Marston, M. E, Pierciey, E J., Shepard, A., Gearin, G., Qi, ], Yandava, C,, et al. (2012).
Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl. Acad.
Sci. U.S.A. 109, 4544-4549. doi: 10.1073/pnas.1120310109

McGrath, C. (2024). Highlight: forging cheaters in iron-limited microbial
communities. Mol. Biol. Evol. 41:msae072. doi: 10.1093/molbev/msae072

Meile, S., Du, J., Dunne, M., Kilcher, S., and Loessner, M. J. (2022). Engineering
therapeutic phages for enhanced antibacterial efficacy. Curr. Opin. Virol. 52, 182-191.
doi: 10.1016/j.coviro.2021.12.003

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L.
L., et al. (2021). Pfam: the protein families database in 2021. Nucleic Acids Res. 49,
D412-D419. doi: 10.1093/nar/gkaa913

Murray, C.J. L., Ikuta, K. S., Sharara, E, Swetschinski, L., Robles Aguilar, G., Gray, A.,
et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic
analysis. Lancet 399, 629-655. doi: 10.1016/S0140-6736(21)02724-0

Nayfach, S., Camargo, A. P, Schulz, E, Eloe-Fadrosh, E., Roux, S., and Kyrpides, N. C.
(2021a). CheckV assesses the quality and completeness of metagenome-assembled viral
genomes. Nat. Biotechnol. 39, 578-585. doi: 10.1038/s41587-020-00774-7

Nayfach, S., Paez-Espino, D., Call, L., Low, S. J., Sberro, H., Ivanova, N. N, et al.
(2021b). Metagenomic compendium of 189,680 DNA viruses from the human gut
microbiome. Nat. Microbiol. 6, 960-970. doi: 10.1038/s41564-021-00928-6

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a
fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
Mol. Biol. Evol. 32, 268-274. doi: 10.1093/molbev/msu300

Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M.,
et al. (2022). Extensive gut virome variation and its associations with host and
environmental factors in a population-level cohort. Nat. Commun. 13:5252. doi:
10.1038/s41467-022-32832-w

Nomburg, J., Doherty, E. E., Price, N., Bellieny-Rabelo, D., Zhu, Y. K., and
Doudna, J. A. (2024). Birth of protein folds and functions in the virome. Nature 633,
710-717. doi: 10.1038/s41586-024-07809-y

Olm, M. R,, Brown, C. T, Brooks, B., and Banfield, J. E (2017). dRep: a tool for fast
and accurate genomic comparisons that enables improved genome recovery from
metagenomes  through de-replication. ISME ] 11, 2864-2868. doi:
10.1038/isme;j.2017.126

Page, A. J., Cummins, C. A, Hunt, M., Wong, V. K., Reuter, S., Holden, M. T, et al.
(2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31,
3691-3693. doi: 10.1093/bioinformatics/btv421

Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics
and evolutionary analyses in R. Bioinformatics 35, 526-528. doi:
10.1093/bioinformatics/bty633

Pausch, P,, Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C. A, Li, Z., Cress, B. E, et al.
(2020). CRISPR-CasF from huge phages is a hypercompact genome editor. Science 369,
333-337. doi: 10.1126/science.abb1400

Petrovic Fabijan, A., Iredell, J., Danis-Wlodarczyk, K., Kebriaei, R., and Abedon, S. T.
(2023). Translating phage therapy into the clinic: recent accomplishments but continuing
challenges. PLoS Biol. 21:¢3002119. doi: 10.1371/journal.pbio.3002119

Potter, S. C., Luciani, A., Eddy, S. R, Park, Y., Lopez, R., and Finn, R. D. (2018).
HMMER web server: 2018 update. Nucleic Acids Res. 46, W200-W204. doi:
10.1093/nar/gky448

Price, M. N, Dehal, P. S, and Arkin, A. P. (2010). FastTree 2—approximately
maximum-likelihood trees for large alignments. PLoS One 5:€9490. doi:
10.1371/journal.pone.0009490

Rascovan, N., Duraisamy, R., and Desnues, C. (2016). Metagenomics and the human
virome in asymptomatic individuals. Ann. Rev. Microbiol. 70, 125-141. doi:
10.1146/annurev-micro-102215-095431

Ren, J., Ahlgren, N. A,, Lu, Y. Y., Fuhrman, J. A., and Sun, F. (2017). VirFinder: a novel
k-mer based tool for identifying viral sequences from assembled metagenomic data.
Microbiome 5:69. doi: 10.1186/s40168-017-0283-5

Resch, G., Brives, C., Debarbieux, L., Hodges, F. E., Kirchhelle, C., Laurent, E, et al.
(2024). Between centralization and fragmentation: the past, present, and future of phage
collections. PHAGE 5, 22-29. doi: 10.1089/phage.2023.0043

Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M.,
Krupovic, M, et al. (2019). Minimum information about an uncultivated virus genome
(MIUViG). Nat. Biotechnol. 37, 29-37. doi: 10.1038/nbt.4306

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/nar/gkac1037
https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1093/bioinformatics/btp348
https://doi.org/10.1038/s41467-021-24707-3
https://doi.org/10.1093/bioinformatics/btac672
https://doi.org/10.1038/s41467-021-21295-0
https://doi.org/10.4161/bact.1.1.14942
https://doi.org/10.1093/nar/gky425
https://doi.org/10.1038/s41564-018-0338-9
https://doi.org/10.1038/s41579-019-0311-5
https://doi.org/10.1038/s41564-018-0190-y
https://doi.org/10.1016/j.cell.2022.07.003
https://doi.org/10.1016/j.chom.2020.08.003
https://doi.org/10.1093/nar/gkg128
https://doi.org/10.7717/peerj.11396
https://doi.org/10.1093/ismejo/wrad037
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1126/science.1250691
https://doi.org/10.1038/s41564-023-01370-6
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.1111/1574-6976.12072
https://doi.org/10.1111/j.1461-0248.2008.01225.x
https://doi.org/10.1093/ismejo/wrae134
https://doi.org/10.1016/j.chom.2023.11.015
https://doi.org/10.1038/s41564-019-0448-z
https://doi.org/10.1038/s41579-019-0299-x
https://doi.org/10.1128/IAI.00926-19
https://doi.org/10.1073/pnas.1120310109
https://doi.org/10.1093/molbev/msae072
https://doi.org/10.1016/j.coviro.2021.12.003
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1038/s41587-020-00774-7
https://doi.org/10.1038/s41564-021-00928-6
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1038/s41467-022-32832-w
https://doi.org/10.1038/s41586-024-07809-y
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1126/science.abb1400
https://doi.org/10.1371/journal.pbio.3002119
https://doi.org/10.1093/nar/gky448
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1146/annurev-micro-102215-095431
https://doi.org/10.1186/s40168-017-0283-5
https://doi.org/10.1089/phage.2023.0043
https://doi.org/10.1038/nbt.4306

Wei and Chen

Roux, S., Paez-Espino, D., Chen, I. A., Palaniappan, K., Ratner, A., Chu, K,, et al.
(2021). IMG/VR v3: an integrated ecological and evolutionary framework for
interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764-D775. doi:
10.1093/nar/gkaa946

Sayers, E. W,, Bolton, E. E., Brister, J. R, Canese, K., Chan, J., Comeau, D. C,, et al.
(2022). Database resources of the national center for biotechnology information. Nucleic
Acids Res. 50, D20-D26. doi: 10.1093/nar/gkab1112

Shang, J., Tang, X., Guo, R., and Sun, Y. (2022). Accurate identification of
bacteriophages from metagenomic data using transformer. Brief. Bioinform. 23:bbac258.
doi: 10.1093/bib/bbac258

Sharma, U., Vipra, A., and Channabasappa, S. (2018). Phage-derived lysins as
potential agents for eradicating biofilms and persisters. Drug Discov. Today 23, 848-856.
doi: 10.1016/j.drudis.2018.01.026

Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I, Gootenberg, J. S.,
Semenova, E., et al. (2015). Discovery and functional characterization of diverse class 2
CRISPR-Cas systems. Mol. Cell 60, 385-397. doi: 10.1016/j.molcel.2015.10.008

Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and
Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics 31, 3210-3212. doi:
10.1093/bioinformatics/btv351

Steinegger, M., and Soding, J. (2017). MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026-1028. doi:
10.1038/nbt.3988

Tisza, M. ], and Buck, C. B. (2021). A catalog of tens of thousands of viruses from
human metagenomes reveals hidden associations with chronic diseases. Proc. Natl.
Acad. Sci. US.A. 118:€2023202118. doi: 10.1073/pnas.2023202118

Tomofuji, Y., Kishikawa, T., Maeda, Y., Ogawa, K., Otake-Kasamoto, Y., Kawabata, S.,
et al. (2022). Prokaryotic and viral genomes recovered from 787 Japanese gut
metagenomes revealed microbial features linked to diets, populations, and diseases. Cell
Genom. 2:100219. doi: 10.1016/j.xgen.2022.100219

Touchon, M., Moura de Sousa, J. A., and Rocha, E. P. C. (2017). Embracing the
enemy: the diversification of microbial gene repertoires by phage-mediated
horizontal ~gene transfer. Curr. Opin. Microbiol. 38, 66-73. doi:
10.1016/j.mib.2017.04.010

Frontiers in Microbiology

16

10.3389/fmicb.2025.1686402

Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T, Zielinski, M., Zidek, A., et al. (2021).
Highly accurate protein structure prediction for the human proteome. Nature 596,
590-596. doi: 10.1038/s41586-021-03828-1

van Dongen, S. (2008). Graph clustering via a discrete uncoupling process. SIAM J.
Matrix Anal. Appl. 30, 121-141. doi: 10.1137/040608635

van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L. M.,
et al. (2024). Fast and accurate protein structure search with Foldseek. Nat. Biotechnol.
42, 243-246. doi: 10.1038/541587-023-01773-0

Wang, B., Liang, Y., Lian, K., Zhang, C., Han, M., Wang, M., et al. (2025). Correlation
with viruses enhances network complexity and stability of co-occurrence prokaryotes
across the oceans. mSystems 10:e0053925. doi: 10.1128/msystems.00539-25

Wang, R. H,, Yang, S., Liu, Z., Zhang, Y., Wang, X., Xu, Z., et al. (2024). PhageScope:
a well-annotated bacteriophage database with automatic analyses and visualizations.
Nucleic Acids Res. 52, D756-D761. doi: 10.1093/nar/gkad979

Wang, T., Zhang, P, Anantharaman, K., Wang, H., Zhang, H., Zhang, M., et al. (2025).
Metagenomic analysis reveals how multiple stressors disrupt virus—host interactions in
multi-trophic ~ freshwater ~ mesocosms.  Nat. ~ Commun.  16:7806.  doi:
10.1038/541467-025-63162-2

Wei, C., Wang, Y., and Chen, Z. (2025). Comprehensive discovery and functional
characterization of diverse prophages in the pig gut microbiome. Front. Microbiol.
16:1662087. doi: 10.3389/fmicb.2025.1662087

Wu, Y., Gao, N,, Sun, C,, Feng, T,, Liu, Q,, and Chen, W. H. (2024). A compendium of
ruminant gastrointestinal phage genomes revealed a higher proportion of lytic phages
than in any other environments. Microbiome 12:69. doi: 10.1186/s40168-024-01784-2

Yan, W. X, Chong, S., Zhang, H., Makarova, K. S., Koonin, E. V., Cheng, D. R., et al.
(2018). Casl3d is a compact RNA-targeting type VI CRISPR effector positively
modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327-339.e5.
doi: 10.1016/j.molcel.2018.02.028

Yan, M., and Yu, Z. (2024). Viruses contribute to microbial diversification in the
rumen ecosystem and are associated with certain animal production traits. Microbiome
12:82. doi: 10.1186/s40168-024-01791-3

Zeng, S., Almeida, A., Li, S., Ying, ., Wang, H., Qu, Y,, et al. (2024). A metagenomic catalog
of the early-life human gut virome. Nat. Commun. 15:1864. doi: 10.1038/s41467-024-45793-z

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1686402
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1093/nar/gkaa946
https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1093/bib/bbac258
https://doi.org/10.1016/j.drudis.2018.01.026
https://doi.org/10.1016/j.molcel.2015.10.008
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1073/pnas.2023202118
https://doi.org/10.1016/j.xgen.2022.100219
https://doi.org/10.1016/j.mib.2017.04.010
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1137/040608635
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.1128/msystems.00539-25
https://doi.org/10.1093/nar/gkad979
https://doi.org/10.1038/s41467-025-63162-2
https://doi.org/10.3389/fmicb.2025.1662087
https://doi.org/10.1186/s40168-024-01784-2
https://doi.org/10.1016/j.molcel.2018.02.028
https://doi.org/10.1186/s40168-024-01791-3
https://doi.org/10.1038/s41467-024-45793-z

	Comprehensive analysis of phage genomes from diverse environments reveals their diversity, potential applications, and interactions with hosts and other phages
	1 Introduction
	2 Methods
	2.1 Construction of a phage genome database (PGD50)
	2.2 Lifestyle prediction and taxonomy assignment of phage genomes (PGD50)
	2.3 Clustering phage genomes to species-level viral clusters and identification of potential novel phage genome clusters
	2.4 Performing global phylogenetic analysis for phage genomes based on five iterations
	2.5 Potential divergence analysis of complete phage genomes with habitat types
	2.6 Identifying alternative genetic codes in phage genomes (PGD50)
	2.7 Functional annotation of phage genomes (PGD50)
	2.8 Host prediction for phage genomes (PGD50) and identification of phage–phage interactions
	2.9 Statistical analysis

	3 Results
	3.1 Characterization of phage genomes with completeness ≥50% (PGD50) from diverse environments
	3.2 Assessing novelty of PGD50 and global phylogenetic analysis of complete phage genomes
	3.3 Potential divergence analysis with habitat types using complete phage genomes
	3.4 Functional potentials of phage genomes in the PGD50
	3.5 Revealing phage–host relationships and pathogen targeting potential via CRISPR spacer matching
	3.6 Competitive phage networks and CRISPR-Cas system distribution

	4 Discussion
	5 Conclusion

	References

