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Background: The rise of antimicrobial resistance (AMR) in Salmonella
enterica serovar Typhi poses a serious threat to global enteric fever control.
In particular, the emergence of resistance to third-generation cephalosporins
and azithromycin critically undermines available treatment options. Sustained
genomic surveillance of high-risk S. Typhi lineages and resistance determinants
is essential for informing antibiotic policy and optimizing typhoid conjugate
vaccine (TCV) introduction in endemic regions. In this study, we report a
multicenter outbreak of carbapenem-resistant S. Typhi in India and investigate
its genomic epidemiology, resistance mechanisms, and evolutionary origins.
Methods: A total of 31 carbapenem-resistant S. Typhi isolates collected from
multiple tertiary care hospitals were subjected to phenotypic antimicrobial
susceptibility testing and whole-genome sequencing (WGS). Short-read WGS
data were used to analyze core-genome SNPs, infer phylogenetic relationships,
and investigate AMR determinants. Two representative isolates underwent long-
read Oxford Nanopore sequencing for plasmid reconstruction and comparative
genomic analysis with Enterobacterales.

Results: Antimicrobial susceptibility testing of isolates revealed resistance
to ampicillin, ciprofloxacin, ceftriaxone, and carbapenems while retaining
susceptibility to chloramphenicol, cotrimoxazole, and azithromycin. The
genomic analysis identified the presence of two plasmids: IncFIB(K) harboring
blacrym1s, gnrS1, tetA, and IncX3, carrying the blayows gene. Phylogenetic
analysis classified the isolates within a novel genotype, 4.3.1.1.1, belonging to
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genotype 4.3.1.1 (H58 lineage 1). Notably, plasmid comparison revealed high
similarity to resistance plasmids circulating in co-endemic Escherichia coli and
Klebsiella pneumoniae, indicating recent horizontal gene transfer.

Conclusion: This is the first documented outbreak of blaypw-mediated
carbapenem-resistant S. Typhi, highlighting a new stage in the evolution of
drug-resistant typhoid. The acquisition of high-risk plasmids by S. Typhi and
their integration into successful epidemic lineages underscores the urgent need
for strengthened genomic surveillance and inter-species AMR tracking. Our
findings have direct implications for treatment guidelines, TCV implementation
strategies, and efforts to prevent global dissemination of carbapenem-resistant

S. Typhi.

KEYWORDS

Salmonella Typhi, enteric fever, carbapenem-resistant, whole genome sequencing,
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Introduction

Enteric fever, primarily caused by Salmonella enterica serovars
Typhi and Paratyphi A, remains a major public health challenge,
particularly in low- and middle-income countries (LMICs) (Parry
etal, 2002; Crump et al,, 2015). This disease is primarily transmitted
through the ingestion of food or water contaminated with fecal matter,
potentially leading to severe complications, such as intestinal
perforation, if untreated (Radhakrishnan et al., 2018; Crump, 2019).
Recent estimates indicate a global burden of approximately 9.24
million enteric fever cases in 2021,' with South Asia accounting for
62% of the total incidence. Within this region, India bears the highest
burden, contributing 58% of global cases, followed by Pakistan and
Bangladesh (Piovani et al., 2024). Notably, children under 5 years of
age are disproportionately affected, experiencing a significant share of
the disease’s morbidity and mortality, particularly in endemic areas
(John et al., 2023).

The management of typhoid fever has historically relied on
antimicrobial therapy; however, the emergence of antimicrobial-
resistant (AMR) strains has significantly compromised treatment
efficacy (Browne et al., 2024). In the late 20th century, multidrug-
resistant (MDR) S. Typhi strains emerged, exhibiting resistance to
first-line antibiotics such as ampicillin, chloramphenicol, and
trimethoprim-sulfamethoxazole (Crump et al., 2015). This situation
prompted a shift towards fluoroquinolones as the primary
treatment option (Marchello et al., 2020). Unfortunately, the
subsequent rise of fluoroquinolone non-susceptible (FQNS) strains
necessitated the exploration of alternative therapies, including
azithromycin and third-generation cephalosporins (Kirchhelle
et al., 2019). In recent years, the emergence and spread of
ceftriaxone-resistant S. Typhi strains in Pakistan and India has
further complicated the treatment strategies. In Pakistan, the
outbreak of extensively drug-resistant (XDR) S. Typhi, has spread
across the country, with ~5,274 cases reported by December 2018

1 https://www.cdc.gov/mmwr/volumes/72/wr/mm7207a2
htm#:~:text=In%202019%2C%20an%20updated%20modeling%20study%20
estimated,Eastern%20Mediterranean?%20(187)%2C%20and%20African?%20
(111)%20regions
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(Akram et al., 2020). These XDR strains exhibit resistance to first-
line antibiotics, fluoroquinolones, and third-generation
cephalosporins, leaving azithromycin as the primary treatment
options (Akram et al, 2020; Klemm et al, 2018). Similarly,
ceftriaxone-resistant S. Typhi outbreaks have been documented in
India, including in Mumbai and Vadodara (Jacob et al., 2021;
Thirumoorthy et al., 2025). Furthermore, azithromycin-resistant
strains, driven by mutations in the acrB gene, threaten one of the
few remaining oral treatment options, highlighting the urgent need
for new therapeutic strategies (Carey et al.,, 2021).

Genomic surveillance is a key tool for monitoring AMR
transmission and tracking outbreaks of S. Typhi (Baker et al.,
2018). The GenoTyphi scheme provides a robust framework for
classifying S. Typhi into four major lineages and over 75
genotypes, enabling the identification of distinct transmission
pathways on a global scale (Wong et al., 2016; Dyson and Holt,
2021). Among these, haplotype 58 (H58, genotype 4.3.1) has
become the dominant strain worldwide, primarily due to its
enhanced transmissibility and MDR (Wong et al., 2015; Pragasam
etal., 2020; Carey et al,, 2024). Within this lineage, key subclades
include 4.3.1.1, associated with MDR, 4.3.1.2, linked to FQNS,
and 4.3.1.3, which predominates in Bangladesh, providing critical
epidemiological insights into the evolution and spread of drug-
resistant typhoid (Carey et al., 2023). Further the GenoTyphi
framework has proven effective in managing outbreaks of drug-
resistant S. Typhi. For instance, the XDR S. Typhi outbreak in
Pakistan, attributed to subclade 4.3.1.1.P1, was tracked using this
scheme (Klemm et al., 2018). Similarly, ceftriaxone-resistant
S. Typhi outbreaks in India, including in Mumbai (subclade
4.3.1.2.1) and Vadodara (4.3.1.2.2) were effectively tracked and
characterized (Jacob et al., 2021; Thirumoorthy et al., 2025;
Argimén et al., 2022).

Recently, sporadic reports have highlighted the emergence of
carbapenem-resistant S. Typhi (CRST) in Pakistan, raising
serious concerns about the evolving landscape of antimicrobial
resistance (AMR) in this pathogen (Ain et al., 2022; Nizamuddin
et al., 2023). More alarmingly, similar cases have been reported
in various cities across southern and western India, indicating a
potential regional spread of this resistance profile in a region
where typhoid fever remains endemic. Despite these
developments, the genomic epidemiology and evolutionary
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trajectory of CRST strains in India remain poorly understood. In
this study, we aimed to investigate the genomic characteristics
and evolutionary dynamics of CRST isolates in India, with
particular focus on their rising prevalence and the role of
plasmids in mediating resistance (Tharani Priya et al., 2025). A
deeper understanding of these factors is critical to inform public
health strategies and guide targeted interventions to curb the
spread of CRST in endemic settings.

Methods
Study settings

A total of 32 Salmonella Typhi isolates were obtained between
August 2024 and May 2025 from enteric fever patients treated at
hospitals in various cities in South and West India and from
individuals with recent travel exposure to these regions. Among
the isolates, sixteen originated from St. John’s Medical College
Hospital, Bengaluru, five from Fortis Hospital, Bengaluru, four
from Indira Gandhi Institute of Child Health, Bengaluru, two
from Baby Memorial Hospital, Kozhikode and one each from
Agilus Diagnostics Lab, Mumbai, KIMS Health Hospital,
Trivandrum, P. D. Hinduja Hospital and Medical Research
Centre, Mumbai, Christian Medical College, Chittoor campus,
Andhra Pradesh and Sahyadri Speciality Labs, Pune, Maharashtra.
Participating institutions flagged these isolates due to atypical
antimicrobial resistance profiles detected via phenotypic
susceptibility testing and/or automated VITEK 2 systems.
Detailed patient information, including clinical affiliations and
travel histories, is provided in Supplementary Table S1. For
in-depth analysis of resistance mechanisms, all isolates were
transferred to the Department of Clinical Microbiology at
Christian Medical College (CMC), Vellore, for whole-genome
sequencing and genomic characterization.

Bacterial isolates and phenotypic testing

The isolates, once received at CMC Vellore, was cultured on
blood and MacConkey agar plates to ensure purity. The isolates
were confirmed S. Typhi by conventional biochemical tests,
serotyping (Kauffmann-White scheme), and qPCR (Nair et al.,
2019). Antimicrobial susceptibility (AST) of the study isolates
were evaluated by Kirby-Bauer disk diffusion technique, with
inhibition zone measurements and interpretations adhering to
the Clinical and Laboratory Standards Institute criteria (Clinical
and Laboratory Standards Institute, 2024). The tested antibiotics
(10 pg), (30 pg),
trimethoprim/sulfamethoxazole (1.25/23.75 pg), ciprofloxacin

included ampicillin chloramphenicol
(5 pg), pefloxacin (5 pg), ceftriaxone (30 pg), cefixime (5 pg),
azithromycin (15 pg), meropenem (10 pg), and ertapenem
(10 pg). To complement these findings, the broth microdilution
(BMD) method was employed to assess the minimum inhibitory
concentrations (MICs) of additional antibiotics, namely cefepime,
aztreonam, piperacillin-tazobactam (fixed 4 pg/mL), ceftazidime-
avibactam (fixed 4 pg/mL), aztreonam-avibactam (fixed 4 pg/
mL), and colistin. Colistin MIC was interpreted according to
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EUCAST guidelines (The European Committee on Antimicrobial
Susceptibility Testing, 2024).

DNA extraction and whole genome
sequencing (WGS)

Genomic DNA was isolated from samples using the QlAamp®
Mini Kit (250) (QIAGEN, Hilden, Germany) according to the
manufacturer’s protocol. DNA purity and concentration were
quantified using a Nanodrop One spectrophotometer (Thermo Fisher
Scientific, Waltham, United States) and a Qubit Fluorometer with the
dsDNA HS Assay Kit (Life Technologies, Carlsbad, United States). The
presence of carbapenemase and ESBL genes were identified by
multiplex PCR with an in-house gene panel, adapted from the
methodology described by Poirel et al. (2011).

For short-read sequencing, DNA was fragmented, and paired-end
libraries were prepared using the Illumina Nextera DNA Flex Library
Kit and Nextera DNA CD Indexes (Illumina, Massachusetts,
United States). Equimolar library pools were sequenced on the
Ilumina NovaSeq 6000 platform (available at Unipath Specialty
Laboratory Limited, Ahmedabad, India), generating 2 x 150 bp
paired-end reads. All steps, including tagmentation, library
amplification, and purification, were performed as specified by
the manufacturer.

To complement the short-read data, long-read sequencing was
performed on two isolates using Oxford Nanopore Technology
(ONT). For each sample, approximately 200 ng of DNA was processed
with the Nanopore Rapid Barcoding Kit 96 V14 (SQK-RBK114.96;
Oxford Nanopore Technologies, Oxford, United Kingdom) following
the manufacturer’s protocol. Sequencing was carried out on a
PromethION P2 Solo platform with real-time base-calling enabled
during the run. Basecalling of POD5 files was executed using Dorado
v0.8.3 (Oxford Nanopore Technologies) with the dna_rl10.4.1_
€8.2_400bps_sup@v5.0.0
sequence reconstruction.

model to ensure high-accuracy

Quality control, assembly and annotation

Quality assessment of Illumina reads was performed using
FastQC v0.12.1* followed by adapter and index trimming with
Trimmomatic v0.39 (Bolger et al., 2014). Contaminant screening and
filtering were executed with Kraken v1.1.1 (Wood et al, 2019),’
followed by sequence coverage analysis. High-quality reads (Phred
score >30) were assembled into draft genomes using SKESA (Souvorov
et al., 2018).* For hybrid assembly, the Hybracter pipeline v0.8.0
(Bouras et al., 2024)° was employed to process Oxford Nanopore
(ONT) long reads. This workflow first improved the read quality with
Filtlong, assembled long reads de novo using Flye, and polished the
assemblies iteratively with Medaka. Further refinement was achieved
by polishing Illumina short reads via Polypolish and PyPolca. Final

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/DerrickWood/kraken
https://github.com/ncbi/SKESA
https://github.com/gbouras13/hybracter
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genome completeness and accuracy were evaluated using QUAST
v5.2.0 (Gurevich et al., 2013). Genome annotations were performed
using Bakta v1.10.1 (Schwengers et al., 2021).° Unless specified, default
parameters were applied throughout all analytical steps.

Comparative genome analysis

Draft genome assemblies were analyzed with SeqSero v2.0 (Zhang
et al., 2019)” to verify the antigenic composition of the serotype. In
silico multilocus sequence typing (MLST) (Larsen et al., 2012) was
performed on all isolates using the pipeline provided by the Center for
Genomic Epidemiology.® Antimicrobial resistance (AMR) genes were
identified using NCBI AMRFinderPlus v4.0.3 (Feldgarden et al,
2021).° Plasmid content was determined by querying genome
sequences against the PlasmidFinder database (Carattoli et al., 2014).
Plasmids were compared using the Basic Local Alignment Search Tool
(BLAST), and circular maps were prepared using the Proksee server''
(Grant et al., 2023).

Genotyping and phylogeny

The isolates were assigned to previously defined genotypes using
the GenoTyphi pipeline (available at: https://github.com/katholt/
genotyphi). Unique single nucleotide polymorphisms (SNPs)
characterizing the novel sub-lineage were and subsequently
incorporated into the GenoTyphi framework to track the outbreak in
future investigations.

For phylogenetic analysis, genome assemblies of S. Typhi
(n = 412) representing all major genotypes were obtained from
the curated global collection provided by the Global Typhoid
Genomics Consortium'? (Carey et al., 2023), with data sourced
from NCBI (Supplementary Table S2). The sequencing reads were
aligned to the reference genome of S. Typhi CT18 (GenBank:
AL513382.1) using Snippy v4.6.0.” The resulting full alignment
was first filtered to exclude SNPs located within the 354 kb of
repetitive regions in the S. Typhi CT18 reference chromosome,
using previously established coordinates (Wong et al., 2015)
processed using Gubbins v3.3.3 (Croucher et al.,, 2015). After
masking these regions, the alignment was processed with
Gubbins' to remove recombination sites (Wood et al., 2019).
SNPs were extracted using SNP-sites v2.5.1'° (Page et al., 2016).
A maximum-likelihood phylogeny was then reconstructed from

6 https://github.com/oschwengers/bakta
7 https://github.com/denglab/SeqSero2
8 https://cge.food.dtu.dk/services/MLST/
9 https://github.com/ncbi/amr

10 https://cge.food.dtu.dk/services/PlasmidFinder/

11 https://proksee.ca/

12 https://bridges.monash.edu/articles/dataset/
Global_Typhoid_Genomics_Consortium_2022_-_Genome_
Assemblies/21431883

13 https://github.com/tseemann/snippy

14 https://github.com/nickjcroucher/gubbins

15 https://sanger-pathogens.github.io/snp-sites/
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the filtered alignment using the TVM + F + ASC + G4 model
with 1,000 bootstraps using IQ-TREE v.2.4.0 (Nguyen et al,,
2015) integrated with ModelFinder (Kalyaanamoorthy et al.,
2017). The resulting phylogenetic tree was visualized and
annotated using the Interactive Tree of Life software (iTOL v.5)
(Letunic and Bork, 2021).

Results

Identification of CRST isolates and
resistance profile

A total of 32 non-duplicated S. Typhi isolates were included in this
study, collected from patients diagnosed with typhoid fever across
multiple healthcare institutions in southern and western India,
between 2024 and 2025. All isolates were confirmed as S. Typhi
through standard biochemical tests, conventional serotyping methods,
and qPCR. AST by disk diffusion revealed a consistent resistance
profile across all Salmonella Typhi isolates except one, with resistance
to ampicillin, ciprofloxacin, ceftriaxone, and carbapenems. One isolate
(ERR15187853) was resistant to ampicillin, ciprofloxacin, and
ceftriaxone but susceptible to carbapenems. Conversely, all isolates
remained  susceptible to chloramphenicol, trimethoprim-
sulfamethoxazole, and azithromycin.

MIC testing confirmed high-level resistance to ciprofloxacin,
with
trimethoprim-

ceftriaxone, ertapenem, retained

susceptibility to

and meropenem,
chloramphenicol,
sulfamethoxazole, azithromycin, and aztreonam-avibactam. MIC
values for all antibiotics tested, including p-lactam/f-lactamase
inhibitor combinations and colistin, are provided in Table 1. The
multiplex PCR analysis confirmed the presence of both blaxpy
and blacrxy genes in 31 CRST isolates, while the remaining
isolate carried blacrx v alone. This indicates the predominance of
co-occurring carbapenemase (blaxpy) and extended-spectrum
B-lactamase (blacrx.m) genes among CRST strains.

Genotyping and comparative genome
analysis

The S. Typhi genomes (n =32) were characterized using the
GenoTyphi genotyping scheme (Wong et al., 2016; Dyson and Holt,
2021). All study isolates were identified as belonging to the H58
haplotype (genotype 4.3.1), specifically falling within the 4.3.1.1
genotype (H58 Lineage I) (Supplementary Figure S1). Based on their
shared genomic features and epidemiological significance related to
carbapenem resistance, these isolates have been assigned to a novel
sub-genotype within 4.3.1.1, designated as 4.3.1.1.1.

AMR gene profiling identified the presence of blaxpy.s, blacrx.
Mas gnrS, and tetA among the isolates. In addition, resistance-
associated point mutation analysis revealed an S83Y substitution
in gyrA within the quinolone resistance-determining region
(QRDR). The presence of blaypy s correlates with resistance to
carbapenems, blacrx s confers resistance to third-generation
cephalosporins (3GCs), tetA is linked to tetracycline resistance,
while both the S83Y mutation in gyrA and gnrS contribute to
fluoroquinolone resistance. Among the two plasmids identified
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TABLE 1 Antimicrobial susceptibility profile and minimum inhibitory concentration (MIC) in pg/mL of different antibiotics against S. Typhi isolates.

Isolates ID CHL® SXT® CIp® CTR® AZ|P FEP? ATM? VA CZA® ATM- colL?

AVI¢
ERR14867532 48 <0.128 2R >1,024 R 48 >128 R >128 R >128 R 64 R 0.06 S 0.121
(B2288)
ERR14867535 48 0128 2R >1,024 R 48 >128 R >128 R >128 R 64 R 0.03S 0.0151
(BT-10862)
ERR14867539 28 0128 4R >1,024 R 2S 128 R 128 R 128 R 64 R 0.06 S 0.121
(BT-12236)
ERR14867533 48 <0.12§ 2R >1,024 R 48 >128 R >128 R >128 R 32R 0.12S 0.0151
(B5777)
ERR14867544 48 <0.12S 1R >1,024 R 2S >128 R >128 R >128 R 32R 0.06 S 0.008 I
(B5971)
ERR14867538 1S <0.128 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(BT14177)
ERR14867545 28 <0.12§ 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(BC248)
ERR14867543 48 <0.12S 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(PDH2)
ERR14867534 4S 0.12S 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(BT-15499)
ERR14867537 48 <0.12S 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(BT15401)
ERR14867546 28 <0.12S 1R >1,024 R 2S >128 R >128 R >128 R 32R 0.03S 0.0151
(BT-15515)
ERR14867536 48 <0.128 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.008 I
(BT-15709)
ERR14867541 2S <0.12S 1R >1,024 R 28 >128 R >128 R >128 R 64 R 0.06 S 0.008 I
(BT-15985)
ERR15187847 48 <0.12S 2R >1,024 R 2S >128 R >128 R >128 R 32R 0.03S 0.0151
(ADLM-01)
ERR14867540 48 <0.128 2R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(BT-17157)
ERR14867542 28 0128 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(FBO1)
ERR15187850 48 <0.128 2R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(BT-1949)
ERR15187848 48 <0.12§ 1R >1,024 R 28 >128 R >128 R >128 R 64 R 0.06 S 0.008 I
(BA4920)
ERR15187849 48 <0.12S 1R >1,024 R 2S >128 R >128 R >128 R 32R 0.03S 0.0151
(480/16319)
ERR15187851 28 0.12S 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(336/11763)
ERR15187852 48 0128 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(FB02)
ERR15187853 28 <0.12S 2R >1,024 R 2S 128 R >64 R 48 0.58S 28 0.008 I
(BT-17019)
ERR15663529 28 <0.128 2R >1,024 R 4S >128 R >128 R >128 R 32R 0.128 0.0151
(BT0149A)
ERR15663527 28 <0.12S 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06 S 0.0151
(BC-29)

(Continued)
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TABLE 1 (Continued)
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Isolates ID CHL® CIP® CTR® AZIP FEP? CZA? ATM-

AVIc
ERR15663528 48 <0128 1R >1,024 R 28 >128 R >128 R >128 R 32R 0.06S 0.0151
(BC-474)
ERR15663530 28 <0128 2R >1,024 R 28 >128 R >128 R >128 R 32R 0.03$ 0.0151
(BT-4233)
ERR15663532 45 <0128 2R >1,024 R 28 >128 R >128 R >128 R 32R 0.03S 0.0151
(BT-4326)
ERR15663531 48 <0128 2R >1,024 R 48 >128 R >128 R >128 R 32R 0128 0.0151
(BT-4277)
ERR15663526 28 0.128 IR >1,024 R 28 >128 R >128 R >128 R 32R 0.06S 0.0151
(B-1295)
ERR15663535 48 <0128 2R >1,024R 48 >128 R >128 R >128 R 64R 0.06S 0121
(FB03)
ERR15663533 28 0128 IR >1,024 R 28 >128 R >128 R >128 R 32R 0.06S 0.0151
(BT-5665)
ERR15663534 28 0128 IR >1,024 R 28 >128 R >128 R >128 R 32R 0.06S 0.0151
(BT-6355)

CIP, ciprofloxacin; CTR, ceftriaxone; AZI, azithromycin; FEP, cefepime; ATM, aztreonam; TZP, piperacillin-tazobactam; CZA, ceftazidime-avibactam; ATM-AV], aztreonam-avibactam; COL,

colistin.

“Interpretation based on CLSI 2024 guidelines (Enterobacteriales excluding Salmonella and Shigella).
“Interpretation based on CLSI 2024 guidelines (Enterobacteriales including Salmonella and Shigella).

“Interpretation based on EUCAST v.14.

IncFIB(K) carried blacrx mis qntS, and tetA, while blaypy s was
harbored by IncX3 plasmid.

Population structure of CRST isolates from
India

A core genome SNP-based phylogenetic analysis, incorporating the
31 CRST study isolates and 311 global reference isolates, revealed that the
CRST isolates formed a distinct subclade within the H58 lineage
I (genotype 4.3.1.1) (Figure 1). This CRST subclade was distinguished
from its parent clade by seven unique SNPs, underscoring its genetic
distinctiveness (Supplementary Table S3). Notably, the CRST isolates
exhibited the closest genetic relatedness (10 SNP difference) to a
previously sequenced cluster of six S. Typhi isolates from India, identified
through the Surveillance for Enteric Fever in India (SEFI) study. These six
isolates were collected from two geographic locations Anantapur, Andhra
Pradesh (ERR4790795, ERR5200930, ERR4790761, ERR5201325,
ERR5201273) and Bengaluru, Karnataka (ERR5200874). All isolates were
sequenced between 2018 and 2020 as part of the SEFI initiative
(Supplementary Figure S2). Isolates closely related to the CRST clone but
lacking resistance plasmids have been circulating in India since at least
2018, indicating a pre-existing susceptible lineage that subsequently
acquired plasmid-mediated resistance determinants. This finding suggests
that the CRST clone likely evolved locally from these endemic lineages
through the recent acquisition of resistance plasmids. Furthermore, the
CRST isolates sequenced in this study were phylogenetically distinct from
both the previously reported CRST isolate from Pakistan (SRR22801806;
35 SNPs difference) and the ceftriaxone-resistant outbreak isolates
recently identified in Gujarat, India (31 SNPs difference).
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Characterization of plasmids

All CRST isolates carried AMR genes located on both
IncFIB(K) and IncX3 plasmids. AMR gene analysis revealed that
the ~73 kb IncFIB(K) plasmid harbored blacrx yis, gnrS1, and
tet(A), while the ~47 kb IncX3 plasmid carried blaypy s gene. To
investigate the origin of these plasmids, complete circular
sequences of IncFIB(K) and IncX3 plasmids from the study
isolates were BLAST-compared with previously reported plasmids
in the NCBI database. The IncFIB(K) plasmid (Accession No.
CP189855) showed 100% sequence identity to an E. coli
IncFIB(K) plasmid (CP116920), as well as to plasmids previously
reported in ceftriaxone-resistant S. Typhi isolates from Gujarat,
India (CP173298 and CP168964). However, the sequence
coverage was 98% for E. coli and 93% for S. Typhi, indicating that
while highly similar, the plasmids are not identical. Consistent
with previous reports (Thirumoorthy et al., 2025), blacry .15 gene
in the IncFIB(K) plasmid was located downstream of an I1S1380
family ISEcp1 element, suggesting a potential association with its
mobilization (Figure 2A).

A similar BLAST analysis of the IncX3 plasmid (Accession No.
CP189856) carrying blaxpy s revealed 100% sequence identity and
query coverage with IncX3 plasmids previously reported in E. coli
(CP086557) and K. pneumoniae (CP080448). Notably, the IncX3
plasmid from this study showed only 83% query coverage with the
SHV-carrying IncX3 plasmid (CP052768) identified from the S. Typhi
outbreak in Mumbai, suggesting it is genetically distinct. The blaypy.s
was located within the characteristic genetic structure ISAbal25-1S5-
blayp s-bleyp-trpF-dsbC-1S26  found in IncX3 type plasmids
(Figure 2B).
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FIGURE 1

Phylogenetic relationship and genetic characteristics of 32 S. Typhi strains from India. A maximum likelihood phylogenetic tree was constructed using
core genome SNPs from the study isolates (marked with red circles at the branch tips) along with 311 global H58 isolates, revealing an overall SNP
difference of 1,149 among the H58 isolates. The tree is rooted against outgroup isolate belonging to genotype 4.3.1 (ERR1764570) and inferred using
IQ-TREE2 (http://www.igtree.org/), with bootstrap support values calculated from 1,000 replicates. Previously reported high-risk clones of cephalosporin-
resistant clusters in the tree, including 4.3.1.2.1.1 (blue), 4.3.1.1.P1 (yellow), and 4.3.1.2.2 (green). The color-coded metadata strips adjacent to the tree
represent: strip 1 denotes genotype, strip 2 indicates the country location, and strip 3 shows the year of isolation of each isolate. The heatmap alongside
the tree depicts the distribution of antimicrobial resistance (AMR) genes, point mutations, and plasmid replicons, which are predominantly concentrated
within the H58 cluster. The scale bar indicates substitutions per site. The tree was visualized and annotated using iTOL (https://itol.embl.de/).
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Discussion

The emergence of CRST signifies a critical evolutionary
escalation, building on the shift from MDR to XDR strains observed
in Pakistan by 2016 (Klemm et al., 2018). Before 2016, resistance in
S. Typhi was primarily limited to first-line antibiotics and
fluoroquinolones (FQNS), with the H58 lineage dominating across
South Asia and Africa (Carey et al.,, 2024). Within this lineage,
subclades 4.3.1.1 (MDR) and 4.3.1.2 (FQNS) were distinguishable via

Frontiers in Microbiology

GenoTyphi genotyping (Wong et al., 2016). Subsequent emergence of
ceftriaxone-resistant and XDR S. Typhi in India and Pakistan,
respectively, was further mapped through finer subclade resolution
(Dyson and Holt, 2021; Carey et al., 2023). For example, the Sindh
XDR outbreak (4.3.1.1-P1) diverged by six SNPs from its nearest
contemporaries (Klemm et al., 2018), while the Vadodara outbreak in
India (4.3.1.2.1) exhibited 21 SNPs from its closest relative
(Thirumoorthy et al., 2025). Notably, the CRST isolates in this study
have chromosomal mutations

accumulated seven unique
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FIGURE 2

(A) Comparison of IncFIB(K) plasmid: The IncFIB(K) plasmid from the carbapenem-resistant Salmonella Typhi (CRST) isolate was BLAST-searched

against the NCBI BLASTn database and compared with Enterobacteriales carrying plasmids of the same incompatibility group [(CP116920), (CP173298),
(Continued)
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FIGURE 2 (Continued)

(CP168964), (CP123602), (CP049607)] with 90-100% identity. The selected plasmids were then annotated and visualized using Proksee.

(B) Comparison of IncX3 plasmid: The IncX3 plasmid from the carbapenem-resistant Salmonella Typhi (CRST) isolate was BLAST-searched against the
NCBI BLASTh database and compared with Enterobacteriales carrying plasmids of the same incompatibility group [(CP086557), (CP080448),
(CP043333), (CP137132), (CP052768)] with 90-100% identity. The selected plasmids were then annotated and visualized using Proksee.

(Supplementary Table S3) while acquiring a blaxpys harboring
plasmid. Given the low mutation rate of S. Typhi (0.63 SNPs per
genome per year; Wong et al., 2016), this shift appears to be a
plasmid-driven phenotypic leap rather than gradual chromosomal
adaptation, underscoring the role of horizontal gene transfer under
selective antibiotic pressure (Rodriguez-Beltran et al., 2021). These
findings highlight unregulated antibiotic use in South Asia as a key
driver of resistance evolution, emphasizing the urgent need for
antimicrobial stewardship interventions.

The acquisition of diverse plasmids has played a pivotal role in
the evolution of antimicrobial resistance in S. Typhi, driving the
transition from MDR strains to emerging CRST variants. MDR
S. Typhi strains harbored IncHI1 pST6 plasmids, almost exclusively
within the H58 lineage, which became the dominant clade in South
Asia and Africa (Holt et al., 2011). Resistance escalated further with
the acquisition of blacrxumis-carrying IncY plasmids, likely
originating from E. coli, which facilitated the emergence of third-
generation cephalosporin-resistant strains (Klemm et al., 2018).
Subsequent ceftriaxone-resistant S. Typhi outbreaks in Mumbai and
Vadodara, India, were linked to the horizontal acquisition of
distinct plasmids, specifically IncX3 and IncFIB(K), respectively,
likely sourced from co-circulating Enterobacteriaceae (Jacob et al.,
2021; Thirumoorthy et al., 2025). This pattern indicates that
S. Typhi has repeatedly leveraged plasmid pools from E. coli and
Klebsiella spp., allowing it to bypass previously effective antibiotic
therapies. The CRST isolates in this study represent the next stage
in this evolutionary trajectory, having acquired an IncX3 plasmid
harboring blaypy s and an IncFIB(K) plasmid carrying blacrx s,
both likely derived from Enterobacteriaceae (Figure 2). Notably, the
IncFIB(K) plasmid in the Vadodara outbreak differs from that
found in CRST isolates, suggesting independent acquisition events
rather than clonal dissemination. Similarly, the first reported
carbapenem-resistant S. Typhi case in Peshawar, Pakistan (July
2022), carried blaypys on an IncN plasmid, again resembling
plasmids found in other Enterobacteriaceae (Nizamuddin et al.,
2023). The presence of multiple plasmid types (IncX3 and IncN)
conferring carbapenem resistance suggests that CRST has arisen
independently across different settings, rather than spreading from
a single source. These findings highlight a rapidly evolving
resistance landscape, where S. Typhi continues to integrate plasmid-
borne resistance genes from Enterobacteriaceae, facilitating
stepwise antibiotic resistance escalation.

In South Asia, MDR and FQNS S. Typhi infections are primarily
treated with oral cefixime or azithromycin for outpatient cases, while
intravenous ceftriaxone and azithromycin are used in combination
for severe infections (Dolecek et al., 2019; Kuehn et al., 2022). For
XDR or ceftriaxone resistant strains azithromycin remains the
primary oral therapy for uncomplicated typhoid fever, whereas
intravenous meropenem and azithromycin are recommended for
severe cases (Qureshi et al., 2020; Parry et al., 2023). However, the
emergence of CRST in India, co-producing blaxpy and blacrx.m
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enzymes, renders both ceftriaxone and meropenem ineffective (Park
et al., 2024). If CRST isolates remain susceptible to azithromycin
(MIC < 16 pg/mL), azithromycin remains the preferred oral
treatment, leveraging its intracellular efficacy. Alarmingly, the first
report of CRST from Peshawar, Pakistan, identified co-carriage of the
mphA gene, conferring phenotypic resistance to azithromycin
(Nizamuddin et al., 2023). In such cases, ceftazidime-avibactam +
aztreonam combination therapy is recommended for severe infections
(Tamma et al., 2021). Where aztreonam-avibactam is unavailable,
colistin, fosfomycin, or tigecycline monotherapy may serve as
alternative options (Parry et al., 2019). Given the limited clinical
evidence for treating CRST, treatment decisions should be guided by
individual patient factors, local resistance patterns, and
expert consultation.

The rapid evolution of S. Typhi resistance, culminating in CRST,
signals an urgent public health crisis in South Asia, where the failure of
ceftriaxone and meropenem leaves severely limited treatment options for
typhoid fever (Nabarro et al., 2022). Given the increasing ineffectiveness
of antibiotics, preventive strategies must take priority to reduce disease
burden and slow resistance evolution. One of the most effective
interventions is the widespread adoption of the typhoid conjugate vaccine
(TCV), which successfully curbed the Sindh XDR outbreak in Pakistan
by reducing case numbers and lowering antibiotic selective pressure
(Nampota-Nkomba et al., 2023; Qamar et al., 2024). Expanding TCV
coverage across India and South Asia is critical to prevent CRST from
becoming endemic (Mogasale et al, 2024). Beyond vaccination,
strengthening water, sanitation, and hygiene (WASH) infrastructure is
essential, as poor sanitation fuels S. Typhi’s fecal-oral transmission,
sustaining high infection rates and increasing exposure to resistant strains
(Luby et al., 2018). Enhanced genomic surveillance is also crucial for
tracking CRST’s plasmid-driven spread and emerging resistance
mutations—particularly acrB-R717Q/L mutations and mphA-mediated
azithromycin resistance, as seen in Peshawars first CRST case
(Nizamuddin et al., 2023). Finally, urgent antibiotic stewardship reforms
are needed to curb the unregulated use of broad-spectrum antibiotics, a
key driver of resistance escalation. Preserving azithromycin's efficacy and
ensuring restricted use of last-resort drugs like aztreonam-avibactam will
be essential to maintaining effective treatment options for future cases.

In conclusion, the emergence of high-risk S. Typhi clones,
particularly those harboring carbapenem resistance, underscores
the urgent need for a comprehensive, multi-pronged strategy to
contain their spread. Robust genomic surveillance is critical for
tracking resistance trends, deciphering genetic evolution, and
understanding transmission dynamics. Strengthening national
antibiotic stewardship policies can help curb selective pressure and
slow resistance escalation. Additionally, widespread typhoid
conjugate vaccine (TCV) deployment can significantly reduce
disease burden and limit antibiotic exposure. A coordinated global
response, integrating surveillance, stewardship, and vaccination, is
essential to mitigate the growing threat posed by carbapenem-

resistant S. Typhi.
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