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Forensic taphonomy and entomology has focused on estimating the post-mortem 
interval (PMI), particularly for surface depositions, using human cadavers and other 
mammalian models by considering morphological changes of the body and insect 
activity during decomposition. The PMI is crucial in forensic investigations as it 
provides key information regarding the victim’s identity, the circumstances of their 
death and can confirm or refute a suspect’s alibi. Gravesoil microbial communities 
are a potential tool that can complement traditional approaches to detect and 
confirm the presence of human remains in clandestine burials, aiding forensic 
investigations. The estimation of the time-since-burial (post-burial interval; PBI), 
and the time-since-translocation (post-translocation interval; PTI), a new concept, 
have potential to aid clandestine grave location but have received relatively little 
attention in forensic ecology research. Advances in massively parallel sequencing 
(MPS) provide a high-throughput means to estimate PBI and PTI by characterising 
soil microbial communities in graves with remains, from early to skeletal stages of 
decomposition, or where remains have been intentionally removed from crime 
scenes and relocated. This review presents a perspective on the use of the soil 
microbiome as an indicator for post-mortem time-since-interval estimations, 
with specific focus on the PBI and PTI. In addition, it provides a framework, 
supported within forensic ecogenomics, on how the PBI and PTI can be used as 
a forensic tool complemented by MPS. The review highlights the need for further 
research to validate microbial community analysis across diverse biogeographical 
regions to enhance its precision and reliability as a forensic investigative tool. 
Such validation could potentially enhance the accuracy of post-burial and post-
translocation interval estimations, ultimately improving methods for clandestine 
grave identification.
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1 Introduction

The timeline of events prior to and after the death of an individual 
can provide crucial information to forensic investigators. The 
information can include, but is not limited to: victim identification, 
time of death estimation, crime scene reconstruction, and confirming 
or refuting a suspect’s alibi (Cockle and Bell, 2015). For this reason, 
extensive research using a range of approaches has been conducted 
focusing on predicting and reliably estimating the time-since-death or 
the post-mortem interval (PMI). The PMI is typically defined as the 
period from the death of an individual until the body is discovered 
(Wilson-Taylor and Dautartas, 2017). The estimation of the PMI has 
advanced in parallel with an understanding of the decomposition 
process (Payne, 1965; Payne et al., 1968). Temperature has traditionally 
been viewed as the primary catalyst for body decomposition (Mann 
et al., 1990; Vass et al., 1992; Bass, 1996; Megyesi et al., 2005). However, 
subsequent investigations involving mammalian cadavers revealed 
that while temperature is crucial for decay, it is not necessarily the 
primary factor driving the decomposition process. Instead, a wide 
range of biotic and abiotic factors have emerged as significant 
contributors to the mammalian decomposition process, both 
individually and in various combinations. Several living components 
(biotic) [such as insects (Rodriguez, 1982; Ames and Turner, 2003; 
Matuszewski and Mądra-Bielewicz, 2022), arthropods (Goff et al., 
1988; Singh et al., 2018; Bonacci et al., 2021), vertebrate scavengers 
(DeVault et al., 2004; Young, 2017; Spies, 2022; Adams et al., 2024), 

fungi (Sagara, 1975; Carter and Tibbett, 2003; Gemmellaro et  al., 
2023), and microbial communities (Carter et al., 2007; Metcalf et al., 
2013; Pechal et al., 2014; Hauther et al., 2015)] and non-living variables 
(abiotic factors) [such as soil pH (Haslam and Tibbett, 2009), 
temperature (Archer, 2004; Laplace et  al., 2021), soil conditions 
(Haslam and Tibbett, 2009; Carter et al., 2010; Quaggiotto et al., 2019), 
burial conditions (Ahmad et al., 2011; Bhadra et al., 2014; Matuszewski 
et al., 2014; Martín-Vega et al., 2017; Pawlett et al., 2018; Cogswell and 
Cross, 2021; Bisker et al., 2024), weather/climate (Voss et al., 2009; 
Englmeier et al., 2023; Maisonhaute and Forbes, 2023) and individual 
characteristics of the victim (Mason et al., 2022)] can affect the body 
after death, impeding the forensic investigations.

Several approaches (Figure 1) have been developed to assess 
the influence of biotaphonomic agents (such as environmental 
and climatic conditions, biotic factors and individual 
characteristics of the deceased like their body mass and height) 
and to monitor geotaphonomic changes (associated with the 
cadaveric processes and ground disturbances, including soil 
colour changes, changes in soil chemistry, changes in vegetation) 
resulting from the burial activity and decomposition process 
(Hochrein, 2002; Nawrocki, 2016; Prada-Tiedemann et al., 2024). 
These approaches have been used complementary to aid PMI 
estimation for remains across the decomposition timeline. Beyond 
the scope of estimating the PMI, forensic entomology (focusing 
on insect behaviour and succession during the decomposition 
process) (Rodriguez, 1982; O’Flynn, 1983; Micozzi, 1986; 

FIGURE 1

Decomposition timeline illustrating the post-mortem changes observed and the forensic subdisciplines used to aid in detecting remains and estimating 
the post-mortem and post-burial intervals. Adapted from Ralebitso-Senior and Olakanye (2018) and Metcalf (2019).
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Galloway et al., 1989; Mann et al., 1990; Campobasso et al., 2001; 
Rai et al., 2022) vegetation growth patterns and forensic botany 
(use of vegetation in forensic investigations) (Watson and Forbes, 
2008; Caccianiga et al., 2012), forensic mycology (use of fungi in 
forensic investigations) (Sagara, 1995; Carter and Tibbett, 2003; 
Bellini et al., 2016) and geophysical approaches (Pringle et al., 
2020) have been used to locate human remains, clandestine 
burials and mass graves and additionally to estimate the time that 
has passed since a body was buried or deposited until it is 
discovered [the post-burial interval (PBI)] (Finley et al., 2015; 
Pringle et al., 2015; Singh et al., 2016).

While traditional approaches used to estimate the PMI and PBI 
are useful, they are nonetheless limited and largely applicable for 
estimating reliable time-since-intervals for remains in early 
decomposition stages (Henßge and Madea, 2004; Pittner et al., 2020; 
Laplace et al., 2021; Heinrich et al., 2024). For extended post-mortem 
intervals (remains in advanced stages of decay), these methods 
provide estimates with different margins of error because 
decomposition proceeds at a highly variable rate (Giles et al., 2022; 
Madea, 2023). In the case of forensic entomology, the PBI for 
advanced stages of decomposition is based on the succession of 
insects rather than oviposition and larval development (Campobasso 
et  al., 2001). Succession patterns for remains in advanced 
decomposition or in prolonged desiccation are less precise because 
insect and arthropod diversity and abundance decrease over time as 
the remains become skeletonised and dry, which also leads to a 
reduction in nutrients and resource availability (Sharanowski et al., 
2008; Rai et al., 2022). The ability of insects to colonise remains as 
well as vegetation to benefit from the release of nutrients from the 
body is further dependent on the treatment of the body and the 
burial depth (Rodriguez and Bass, 1985; VanLaerhoven and 
Anderson, 1999; Congram, 2008; Caccianiga et al., 2012; Pastula and 
Merritt, 2013; Bonacci et  al., 2021). Additionally, due to the 
variability in burial conditions, environmental conditions and 
regional variation in species, further empirically validated studies to 
test the reliability of forensic entomology, forensic botany, and 
forensic mycology approaches in PBI estimation post-skeletonisation 
or in prolonged decomposition are needed (Coyle et  al., 2005; 
Menezes et al., 2008; Sidrim et al., 2010; Bellini et al., 2016; Ventura 
et al., 2016; Watson et al., 2021). Even when biotic and abiotic factors 
are considered, the identification of victims of homicide and mass 
conflicts, and the estimation of the PMI and PBI by extension, 
become increasingly more challenging without their remains. 
Perpetrators can attempt to hide the victim’s remains by recovering 
them from their primary deposition site and intentionally reburying 
and concealing them at secondary locales (Karčić, 2017; Shapiro, 
2020; Anstett, 2023).

The characterisation of the mammalian post-mortem microbiome, 
including the thanatomicrobiome (consisting of microbial 
communities found internally in blood, organs and fluids) (Javan 
et al., 2016b), the epinecrotic microbiome (consisting of microbial 
communities found externally on the surfaces of the body, with their 
roles elucidated in the decomposition of mammals) (Pechal et al., 
2014), and soil microbiome (Olakanye et al., 2014; Procopio et al., 
2019) have provided forensic scientists with a tool to aid in time-since-
interval estimation (Figure 2). The use of microbial communities to 
aid in PMI estimation has become more prominent since proposing 
their application as a post-mortem microbial clock (Metcalf et al., 

2013). Changes in the form of shifts in the abundance (how many) and 
diversity (variety and type) of microbial communities coincide with 
the physiochemical changes of the body as decomposition progresses. 
Understanding the shifts (when microbial communities appear, 
proliferate, and decline) over time, for different burial and 
environmental conditions, provides a microbial timeline that can act 
as a clock, allowing forensic scientist to estimate the PMI of a body 
(Metcalf et al., 2013; Finley et al., 2015).

Several reviews have been undertaken to elucidate the role of 
microbial communities within forensic investigations, specifically to 
present an overview of how microbial communities can be adopted 
for PMI estimation (Metcalf, 2019; Jangid et al., 2023; Moitas et al., 
2023), the succession of the thanatomicrobiome (Javan et al., 2019; 
Zapico and Adserias-Garriga, 2022) and the epinecrotic microbiome 
(Dash and Das, 2020), and their use the PMI estimation of advanced 
decomposition (Franceschetti et  al., 2023), as well as to present a 
comparison of microbial fingerprinting techniques in forensic science 
in estimating the PMI (Finley et al., 2015). Yet, none of the reviews 
consider the role of gravesoil microbial communities for utilisation 
beyond PMI estimation to grave location. Consequently, within the 
reviews, and the broader body of knowledge, there is a lack of clarity, 
which has led to confusion, especially when describing PMI and PBI 
for buried remains (Forbes, 2008), where these two time-since-
intervals are sometimes used interchangeably (Procopio et al., 2019; 
Zhang et al., 2021). For application in criminal investigations and legal 
proceedings it is imperative that a clear distinction on the use, 
meaning and purpose of these post-mortem intervals are made. This 
will ensure that appropriate methods are developed to provide crucial 
and precise information related to the victims remains. Solving crime 
and aiding in victim identification is at the centre of forensic research, 
but it requires targeted approaches that are reliable and robust.

Forensic ecogenomics (Ralebitso-Senior, 2018), a sub-discipline 
of forensic microbiology (Carter et al., 2017), can aid clandestine 
grave identification through the use of molecular microbial ecology 
approaches to analyse gravesoils. Since less than 1% of bacterial 
communities can be  cultured (Amann et  al., 1995), 
microecophysiology approaches such as denaturing gradient gel 
electrophoresis (DGGE) (Muyzer et  al., 1993; Zhang and Fang, 
2000; Olakanye et al., 2014, 2015; Iancu et al., 2015), polymerase 
chain reaction (PCR), and terminal restriction fragment length 
polymorphisms (T-RFLP) (Parkinson et al., 2009; Handke et al., 
2017), are useful tools to measure and characterise shifts in 
microbial communities from gravesoil during decomposition 
(Ralebitso-Senior et al., 2016). The ability of DGGE and T-RFLP 
methods to characterise microbial communities from soils is useful 
due to their low cost and easy data analysis, which makes them 
favourable for quick analysis and in cases where forensic 
laboratories do not have access to massively parallel sequencing 
(MPS) (Lerner et al., 2006; Thies, 2007; Jousset et al., 2010; Lenz and 
Foran, 2010; Bergmann et al., 2014; Jurkevitch and Pasternak, 2021; 
Olakanye and Ralebitso-Senior, 2022). However, these techniques 
are limited by the resolution and depth of taxonomic data (Lerner 
et al., 2006; Handke et al., 2017). Forensic ecogenomic approaches 
paired with MPS can be used to locate clandestine burials through 
the analysis of shifts within gravesoil microbial communities. 
Considering the use of microbial communities in PMI estimation, 
we are positing their use in PBI as well as in a new concept called 
the time-since-translocation [post-translocation interval (PTI)]. It 
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is argued that integrating forensic ecogenomic approaches, which 
uses molecular microbial ecology techniques to analyse changes to 
ecosystems as a result of the decomposition process, could enhance 
the accuracy of PBI and PTI estimations (Ralebitso-Senior, 2018). 
The conceptual framework within this review addresses this by 
discussing the PBI and PTI using gravesoil microbial communities, 
and showing, for the first time, their relationship with the PMI. The 
framework and synthesis of knowledge is based on a broad review 
of literature focused on the application of the post-mortem 
microbiome in forensic science. The literature search was conducted 
between October 2024 and January 2025 using the Web of Science 
and Scopus databases and the Google Scholar academic search 
engine. Searches were conducted using the keywords “microbiome,” 
“post-mortem interval,” “time since death,” “post-burial interval,” 
“time since burial,” “soil microbiome,” “relocation,” and 
“exhumation.” Additionally, reference lists from reviewed articles 
were also scanned for additional citations. This search strategy was 
employed because it affords flexibility in the exploration of concepts 
and the mapping of emerging research themes and approaches 
within the literature. Given the growing research activity that 
emphasises the role of microbial communities in decomposition, 
this review provides more details for the use of forensic 
ecogenomics. The focus will be on time-since-interval estimation 
for terrestrial environments and will not include a discussion on the 
estimation of the post-mortem submersion interval (PMSI) for 
aquatic environments. In-depth discussions regarding the PMSI 

have been conducted previously (Dickson et al., 2011; Humphreys 
et al., 2013; Benbow et al., 2015; Cartozzo et al., 2021).

2 The three time-since-intervals

The three time-since-intervals (PMI, PBI and PTI) offer insight 
regarding the circumstances surrounding the disappearance and 
death of an individual. Their purpose also extends to narrowing the 
investigation window, revealing information regarding the manner 
and time of death (whether it was accidental or intentional), assisting 
in estimating the time gap between death, body movement and 
disposal (or the perimortem and post-mortem behaviour of 
perpetrator) and potentially connecting suspects to crime scenes at 
specific points in time (Turner and Wiltshire, 1999; Introna et al., 
2011; Sharma et al., 2015). The main function of the PMI estimation 
within forensics is used to aid in victim identification. Its estimation 
is based on either the observable physiological changes of the body, 
or from the thanatomicrobiome and the epinecrotic microbiome of 
the body (Can et al., 2014; Pechal et al., 2014, 2018; Damann et al., 
2015; Hauther et al., 2015; Iancu et al., 2015, 2016, 2023, 2024; Javan 
et al., 2016b, 2017; Johnson et al., 2016; DeBruyn and Hauther, 2017; 
Liu et al., 2020; Lutz et al., 2020; Ashe et al., 2021; Deel et al., 2021; 
Zhang et al., 2021; Zhao et al., 2022; Burcham et al., 2024), to provide 
a timeframe for the period that has passed since death. This 
information is useful because it can help to identify individuals, 

FIGURE 2

Intersection of the post-mortem microbiome, including the epinecrobiome, thanatomicrobiome and soil microbiome of mammalian remains. After 
Javan et al. (2016a, 2016b) and Wu et al. (2024). The artwork used in this figure was adapted from Servier Medical Art (https://smart.servier.com/). 
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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generate investigative leads by following up on their behaviour prior 
to the crime (from CCTV footage, for example), and narrow a suspect 
pool (Simmons, 2017).

The time-since-burial (PBI) and the time-since-translocation 
(PTI), while distinct in their function, form two parts that can be used 
to infer information about the broader time-since-death (PMI) 
(Figure  3). The PBI and PTI, while contributing to victim 
identification, are primarily focussed on providing a contextual 
interpretation and temporal estimation of the treatment of the body 
in relation to the grave and deposition site. Here, the burial 
environment and specifically the grave soil becomes the focus. There 
are some caveats that need to be considered regarding the PBI and 
PTI. In cases concerning buried remains, the PBI and PMI can refer 
to the same time-since-interval or to two separate events. The first 
instance occurs when a body is placed in a surface deposition 
environment or a grave within the first couple of hours to a day after 
death (Burcham et al., 2021). In this scenario, the PMI and the PBI, 
within a margin of error, can be used to calculate the time-since-death 
(Forbes, 2008; Singh et al., 2016). However, this information is rarely 
available at the time a body is discovered in forensic cases. Perpetrators 
might try to conceal and destroy the evidence of the crime and prevent 
victim identification to avoid being caught (Kamaluddin et al., 2018). 
To avoid detection by police, perpetrators can delay depositing the 
victim’s remains in a burial environment immediately after death 

(Byard, 2024; Ploeg et al., 2024). Reasons for delaying depositing or 
burying the remains could include that the offender wanted to conceal 
the remains to avoid suspicion or confuse the investigation, which 
delays the likelihood of an arrest or conviction (Tumer et al., 2013; De 
Matteis et al., 2021; Byard, 2024). Since deposition or burial might 
have taken place sometime after death, the estimation of the PBI 
should be considered distinct from the PMI. In which case the PBI 
will be shorter than the PMI (Forbes, 2008; Watson et al., 2021).

The movement of the body from its original deposition or burial 
site can complicate the interpretation of the crime scene and the PMI 
estimation. Post-mortem translocation of a body from its original 
burial or deposition site can occur due to several reasons, such as the 
post-mortem movement or contractions after death, shifting a body 
from its original location (Wilson et al., 2020), religious or cultural 
exhumation or reburial, as has been observed in the archaeological 
record (Weiss-Krejci, 2005; Carroll, 2009), natural disasters (Magni 
and Guareschi, 2021) or through scavenger activity (Haglund et al., 
1989; Berryman, 2002; Young, 2017). Bodies are also moved as part of 
legal case work (Morovic-Budak, 1965), or as part of ongoing 
humanitarian work related to conflict, as exemplified by Ferrándiz 
(2013) for mass graves in Spain. Post-mortem translocation can also 
occur within forensic contexts. After a victim has been murdered, 
perpetrators, depending on their relationship with the victim, the 
context and the location of the crime, might use a range of body 

FIGURE 3

Schematic showing the ordering and overlap of the post-mortem timelines at a primary deposition or burial site. The PMI is inclusive of the PBI and the 
PTI.
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disposal methods as their modus operandi (Beauregard and Field, 
2008; Chai et al., 2021; Terribile et al., 2024; Whitehead Apm et al., 
2024). One such approach could be to hide the body or move it from 
the primary crime scene or hiding place to a shallow grave (Davenport, 
2001; Hawksworth and Wiltshire, 2011; Berezowski et al., 2022). To 
distinguish this post-mortem movement of the body from the time-
since-death (PMI) and time-since-burial (PBI), we define the period 
since remains were intentionally removed and relocated by 
perpetrators as the post-translocation interval (PTI). The estimation 
of the PTI as a post-mortem clock can be used in cases involving the 
intentional post-mortem movement of buried remains to a secondary 
locale away from the original crime scene in forensic investigations. 
Within the broader time-since-death interval, the PTI occurs after 
body deposition or burial at a primary locale. Once the remains are 
moved to a secondary (or sometimes a tertiary) location the secondary 
PBI (or tertiary PBI) commences. While PMI and PBI, depending on 
the context, can refer to one or two separate post-mortem events, the 
PTI will be the period in the post-mortem timeline, after the PBI, 
when a body is excavated and translocated to a secondary locale. 
There have been limited studies investigating the post-mortem 
movement of remains by perpetrators. The limited number of reported 
or published cases in which perpetrators have removed remains from 
the primary locales and translocated them to secondary locales could 
potentially explain why relatively little attention has been directed to 
PTI estimations. Notwithstanding this, cases of translocated remains 
have been reported, as exemplified by incidents where the remains of 
victims were moved by perpetrators in Bosnia and Serbia (Skinner 

et  al., 2001; Jessee and Skinner, 2005; Congram, 2008; Tuller and 
Hofmeister, 2014; Klinkner, 2016), and more recently in the 
United States (Shapiro, 2020). The estimation of the PBI and PTI 
contributes to investigations as the intervals may be useful to link a 
suspect to a crime scene, especially in cases where there is no reliable 
witness testimony or other circumstantial evidence. Collectively, this 
information is needed by police for crime reconstructions to address 
key questions of who, what, why, when and how; and crucially by 
prosecutors to make sound judgments in court proceedings, avoiding 
wrongful prosecutions (Introna et al., 2011).

3 The intersection between microbial 
communities, forensic ecogenomics 
and post-mortem time-since-interval 
estimations

3.1 Microbial activity during 
decomposition: the post-mortem interval

The microbiome of individual human beings is unique and 
consists of a diversity and abundance of bacteria, archaea, fungi, and 
algae across different regions of the body (Huttenhower et al., 2012), 
where they vary depending on their “theatre of activity” (Whipps 
et al., 1988; Berg et al., 2020). The “theatre of activity” encompasses 
the collective genetic material of the microbes, the products of their 
metabolic activities, and molecules produced in the environment in 

FIGURE 4

Theatre of decomposition activity based on the microbial “theatre of activity” modelled after Whipps et al. (1988) and Berg et al. (2020).
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which they function and interact (Whipps et al., 1988; Berg et al., 
2020). Microbial communities like bacteria, that live on skin and 
within the digestive system, genital tract, and oral cavity of mammals, 
play a crucial role in maintaining immune systems, protecting against 
pathogens and breaking down and metabolising complex molecules 
(Jordán et al., 2015; Cundell, 2018; Rowland et al., 2018; Lambring 
et al., 2019; Moeller and Sanders, 2020). In death, these microbial 
communities play an equally central role during decomposition, 
taking centre stage in what we  designate as the ‘theatre of 
decomposition activity’ (Figure 4). During decomposition of the body, 
they are crucial in the biochemical breakdown of structural elements 
(Janaway, 1995; Gill-King, 1996; Hopkins et al., 2000; Parkinson et al., 
2009) as complex molecules like proteins, lipids, carbohydrates, and 
nucleic acids are broken down into simple molecules (Mackie et al., 
1991; Vass et al., 2002; Hyde et al., 2013; Fiedler et al., 2015; Forbes 
et al., 2017; Lutz et al., 2020; Nolan et al., 2020; Burcham et al., 2024). 
During the biochemical breakdown, microbial metabolites, or the 
byproducts of the decomposition process, are released (Agapiou et al., 
2015; Irish et al., 2019; Furuta et al., 2024). A combination of biotic 
and abiotic factors can alter, impede or accelerate the decomposition 
process and the biochemical breakdown of the structural elements 
(Carter, 2005; Schotsmans et al., 2017, 2022; Young, 2017; Spies et al., 
2020, 2024). Within terrestrial ecosystems decomposer communities 
such as bacteria and fungi have evolved to take advantage of decaying 
organic matter (DeBruyn et al., 2024). The sensitivity and transiency 
of microbial communities in response to the pulse of nutrients that are 
released into the soil, creating a Cadaver Decomposition Island (CDI) 
(Carter, 2005), make them a valuable indicator of internment and 
exhumation of bodies (Humphreys et al., 2013; Pechal et al., 2013; 
Benbow et al., 2015; Cobaugh et al., 2015; Hyde et al., 2017). This is 
especially the case considering the impact of decomposition and decay 
on the soil biogeochemistry and microbial community composition 
(Hopkins et al., 2000).

Temporal and compositional shifts in the post-mortem 
mammalian microbiome (thanatomicrobiome, and the epinecrotic), 
have facilitated the estimation of the PMI (Metcalf et  al., 2013; 
Bergmann et al., 2014; Can et al., 2014; Olakanye et al., 2014; Pechal 
et al., 2014; Javan et al., 2016b, 2016a, 2017). The analysis of microbial 
community composition through MPS has revolutionised forensic 
researchers’ ability to rapidly characterise diverse microbial 
communities from the soil microbiome, the thanatomicrobiome, and 
the epinecrotic microbiome, thereby enhancing forensic analyses 
(Table 1). MPS is becoming the preferred method to sequence the 
hypervariable V3-4 region of the 16S rRNA (Gao et al., 2021) because 
of its improved capacity to characterise diverse microbial communities 
rapidly from the body (gut, oral, anal cavities and skin and organs) 
(Hyde et al., 2013; Pechal et al., 2013, 2014; Iancu et al., 2016, 2024; 
Javan et al., 2016a; Burcham et al., 2024) and gravesoil (Finley et al., 
2016; Cui et al., 2022; Olakanye and Ralebitso-Senior, 2022). Complex 
computational microbial community analysis is achieved through a 
bioinformatics pipeline [QIIME (Caporaso et  al., 2010), QIIME2 
(Bolyen et al., 2019), and Mothur (Schloss et al., 2009)] (Table 2). 
These pipelines allow for the characterisation of raw sequence data 
into Operational Taxonomic Units (OTU), with a cutoff at 97%, or 
more recently into Amplicon Sequence Variants (ASV), with a cutoff 
at 99%, due to the need for higher taxonomic resolution (Gao et al., 
2021; Fasolo et al., 2024). Taxonomic assignment is achieved through 
reference databases, such as the Ribosomal Database Project (RDP) 

(Wang et al., 2007) which is useful for genus-level assignments or with 
SILVA (Quast et al., 2013) and Greengenes (DeSantis et al., 2006) 
which are databases preferred for species-level classification, and 
visualisation options (phylogenetic tree generation) (Liu et al., 2024).

To evaluate the reliability of the post-mortem microbiome, a 
diverse range of models [human donors (Can et al., 2014; Damann 
et al., 2015; Hauther et al., 2015; Johnson et al., 2016; DeBruyn and 
Hauther, 2017; Javan et al., 2017; Ashe et al., 2021; Deel et al., 2021; 
Iancu et al., 2023; Burcham et al., 2024), corpses from casework (Javan 
et al., 2016a; Pechal et al., 2018; Lutz et al., 2020; Zhang et al., 2021), 
rodent (Liu et al., 2020; Zhao et al., 2022) and pig (Pechal et al., 2014; 
Iancu et al., 2015, 2016, 2024)] have been tested in indoor and outdoor 
scenarios. Sample collection to characterise the thanatomicrobiome, 
and the epinecrotic microbiome generally consisted of vigorously 
swabbing anatomical sites, such as the oral cavity, nose, hands, the 
torso and rectum (Pechal et al., 2014, 2018; Iancu et al., 2015, 2016, 
2023, 2024; Johnson et al., 2016; Ashe et al., 2021; Zhang et al., 2021; 
Zhao et al., 2022; Burcham et al., 2024), as well as collecting tissue 
samples from skeletal elements (ribs) (Damann et al., 2015; Deel et al., 
2021) and internal organs (blood, heart, brain, liver, spleen and 
cecum) (Can et al., 2014; Hauther et al., 2015; Javan et al., 2016a; 
DeBruyn and Hauther, 2017; Liu et  al., 2020; Lutz et  al., 2020). 
Different anatomical regions of the body harbour a unique 
microbiome in life. In the early post-mortem period after death, these 
regions exhibit distinct successional shifts in microbial community 
diversity and abundance between body regions, tissues and organs 
(Can et al., 2014; Pechal et al., 2014, 2018; Javan et al., 2016a; Lutz 
et al., 2020). While the early post-mortem preserves the individuality 
of anatomical-site microbial signature, as decomposition progresses 
microbial communities from the gut, oral cavity and rectum migrate 
and colonise the body (Javan et al., 2016a; Moitas et al., 2023).

Identification of core bacterial taxa within numerous empirically 
validated studies lends additional support towards forming a universal 
network of decomposers with a finer taxonomic resolution that would 
ensure the estimation of more consistent time-since-intervals and the 
development of a reliable “microbial clock” (Metcalf et  al., 2013; 
Lauber et al., 2014; Pechal et al., 2014; Burcham et al., 2024). For PMI 
estimation shifts at the phylum level (Actinobacteria, Bacteroidetes, 
Firmicutes and Proteobacteria) (Metcalf et al., 2013; Pechal et al., 
2014; Iancu et  al., 2015) have been observed providing a board 
overview of microbial changes during death (Table 1). Specific shifts 
during decomposition of taxa at genus, family and species level within 
these phyla require that a finer taxonomic resolution is developed for 
reliable post-mortem clocks using microbial communities. Specific 
families of bacterial taxa have been identified from the phyla 
Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria found 
in the gut/abdominal cavity (Clostridiaceae, Lactobacillaceae, 
Bacteroidaceae, Xanthomonadaceae, Enterococcaceae) (Metcalf et al., 
2013; Hauther et al., 2015; DeBruyn and Hauther, 2017), on the skin 
[Campylobacteraceae, Pseudomonadaceae, Sphingobacteriaceae, 
Streptococcaceae, Clostridiaceae, Lactobacillaceae and 
Xanthomonadaceae] (Metcalf et al., 2013; Iancu et al., 2023), and in 
the oral cavity [Prevotellaceae (Prevotella), Streptococcaceae 
(Streptococcus), Veillonellaceae (Veillonella), Micrococcaceae (Rothia), 
Pseudomonadaceae (Pseudomonas), and Moraxellaceae 
(Psychrobacter)] (Hyde et al., 2013; Iancu et al., 2015; Javan et al., 
2016b; Ashe et al., 2021; Wang et al., 2024). These taxa exhibit changes 
in diversity and richness during decomposition, which can be used as 
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TABLE 1  Study matrix summarising experimental models, environmental conditions, sequencing approaches, and key findings in reviewed studies estimating the PMI from microbial communities.

Study Characteristics of the burial 
environment

Sampling location and days Key taxa shifts Findings and accuracy

Can et al. (2014)

Human donor cadaver (n = 11)

PMI: 20–240 h

Environment: Alabama Department of 

Forensic Sciences Medical Laboratory’s 

morgue

Sample: Dissection of organs with a sterile 

scalpel into sterile bags; blood was drawn 

from the heart with sterile syringes

Controls: –

Sampling time: Single samples from 

blood and internal organs (brain, heart, 

liver, spleen)

Clostridium sordellii, Clostridium difficile, Clostridium 

bartlettii, Clostridium bifermentans and Clostridium limosum 

are dominant in shorter PMI

Clostridium haemolyticum, Clostridium botulinum, and 

Clostridium novyi, as well as Escherichia coli and Escherichia 

albertii are dominant in longer PMI

Thanatomicrobiome signatures are similar 

within the same individual cadaver’s organs, but 

differ across the cadavers, likely due to different 

PMIs

Lauber et al. (2014)

Mice (n = 80)

PMI: 48 days

Deposition condition: Placed on its right side 

on top of the soil

Environment: University of Colorado. Juget 

series and classified as sandy-skeletal, mixed, 

frigid lithic Haplustolls

Sample: Sample with sterile swabs the 

skin on the head, belly, and the 

abdominal cavity, as well as gravesoil

Control: –

Sampling time: Day 0, 3, 6, 9, 13, 20, 34, 

48

Untreated soil: Morganella and Proteus increased abundance 

in late decomposition

Sterilized soil: Burkholderia, Novosphingobium, Staphylococcus, 

and Stenotrophomonas were more abundant during active and 

advanced decay. Bacillus spp. higher in abundance during 

active and advanced decay

Sterilized soils slow down decomposition

Pechal et al. (2014)

Pigs (n = 3)

PMI: 7 days

Deposition conditions: Randomly placed on 

surface 20 m apart, covered with anti-

scavenging cages

Environment: Midwestern temperate forest 

habitat, Xenia, OH, USA

Sample: Sampling by swabbing of the 

buccal cavity and the skin with sterile 

cotton applicators

Control: –

Sampling time: Days 0, 1, 3, and 5

Phylum: Proteobacteria was the dominant followed by 

Firmicutes

Proteobacteria decreased over the 5 days. Firmicutes became 

the dominant as decomposition progressed

Family:

Moraxellaceae was the most dominant, followed by 

Pasteurellaceae, Enterobacteriaceae, and Aerococcaceae. On the 

fifth day Planococcaceae was dominant, followed by 

Clostridiales incertae sedis XI and Clostridiaceae

Bacterial communities estimated PMI within 

2–3 h after death (up to 94.4% with specific 

family-level taxa)

Damann et al. (2015)

Human donor cadaver (n = 12)

PMI: 27–1,692 days

Deposition conditions: Bodies placed on the 

ground surface

Environment: Anthropological Research 

Facility, Knoxville, USA. Deciduous forest 

biome. Coghill–Corryton soil complex

Sample: Single lower rib from each 

cadaver

Control: Soil samples from 1 km south of 

the facility

Sampling time: One sampling point 

(when body decomposed enough to 

facilitate rib collection)

Phylum: Proteobacteria were the most dominant phyla across 

all four-sample group, followed by Firmicutes and 

Bacteroidetes. Actinobacteria and Acidobacteria were more 

dominant in the dry remains and soil samples than in the first 

two decay stages.

For groups A, B, and C, Alphaproteobacteria increased. While 

Gammaproteobacteria decreased.

Family:

Bone samples: Pseudomonadaceae, Clostridiaceae, 

Tissierellaceae, Caulobacteracea, and Sphingobacteriaceae,

Soil samples: Hyphomicrobiaceae, Koribacteraceae, 

Solibacteraceae, and Flavobacteriaceae

Differences in microbial composition can 

be observed between partially skeletonised and 

fully skeletonised dry remains

(Continued)
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TABLE 1  (Continued)

Study Characteristics of the burial 
environment

Sampling location and days Key taxa shifts Findings and accuracy

Hauther et al. (2015)

Human donor cadavers 

(n = 12); 6 bodies were controls

PMI: 20 days

Deposition conditions: Placed on site 

unclothed and uncovered

Environment: Anthropological Research 

Facility, Knoxville, USA. Deciduous forest 

biome. Coghill–Corryton soil complex

Sample: Swabbing of cecum through an 

incision covered with duct tape. Six 

individuals were sampled daily

Controls: Six cadavers were used as 

controls and were sampled only once

Sample time: Individual sampling for the 

six bodies were at: 9 days (205 cumulative 

degree hours (CDH)), 14 days (408 

CDH), 14 days (313 CDH), 15 days (330 

CDH), 20 days (478 CDH), and 20 days 

(595 CDH)

Control samples were collected at 0, 0, 44, 

224, 230, and 330 CDH

Bacteroides and Lactobacillus declined in all individuals Individual variability was noted; these 

differences could not be explained by cause of 

death, sex, or weight

Bacteroides and Lactobacillus are reliable 

indicators for PMI

Javan et al. (2016a)

Human donor cadaver (n = 27)

PMI: 3.5–240 h

Study condition: Alabama and Florida 

morgues

Environment: Indoor

Sample: Samples derived from blood, 

brain, buccal cavity, heart, liver, and 

spleen. Swab samples were collected using 

a sterile cotton tip CultureSwab applicator 

(buccal cavities and blood). Sections of 

the internal organs were dissected using 

sterile scalpels and placed in polyethylene 

bags. Blood samples (heart and femoral 

veins) were placed in 10 mL BD 

vacutainer EDTA tubes

Control: –

Sampling time: Single sampling time in 

morgue

Most abundant order in females Clostridiales, and the most 

abundant genus in females was Pseudomonas. The most 

abundant taxa in the mouth were Clostridium, Clostridiales, 

and Streptococcus and Rothia

Taxa changed in abundance over time across sexes and sample 

types, unknown Clostridium sp., Clostridium novyi, Prevotella 

bivia and Prevotella timonensis.

C. novyi was more abundant during late PMI; while unknown 

Clostridium species was more abundant during early 

decomposition

Specific organ dependant changes in microbial 

composition were observed during the 

decomposition

Additionally, Clostridium spp. appears to be a 

key biomarker of PMI estimation in human 

cadavers

Johnson et al. (2016)

Human donor cadaver (n = 21)

PMI: 500 accumulated degree 

days (ADD)

Deposition conditions: Bodies placed 

unclothed on the ground in a prostrate 

position

Environment: Anthropological Research 

Facility, University of Tennessee at Knoxville, 

USA. Temperate deciduous forest, well-

drained fine textured clayey soils

Sample: The mose and ear canal was 

swabbed which was then placed in a 

collection tube, wrapped in a sterile 

collection bag

Control: –

Sampling time: Single collection per 

cadaver. An exception is 4 cadavers were 

swabbed continuously for 2–3 days after 

placement

The phyla Actinobacteria and Armatimonadetes were most 

predicative, followed by Planctomycetes, Verrucomicrobia, 

and Cyanobacteria

Genus and family are more informative for the 

development of a predictive models for PMI 

estimation. In the ear samples, microbial 

diversity decreased as PMI progressed

PMI of unknown samples: MAE of ±55 ADD

(Continued)
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TABLE 1  (Continued)

Study Characteristics of the burial 
environment

Sampling location and days Key taxa shifts Findings and accuracy

DeBruyn and Hauther (2017)

Human donor cadaver (n = 4), 

Controls (n = 6)

PMI: 30 days

Deposition conditions: Surface placement

Environment: Anthropological Research 

Facility University of Tennessee at Knoxville, 

USA. Temperate deciduous forest, well-

drained fine-textured clayey soils

Summer season

Sample: Swabbing of the cecum through a 

small incision that was covered with tape

Control: Swabbing of the cecum through 

a small incision

Sampling time: Re-sampled daily until 

remains were in too advanced 

decomposition, control samples were only 

collected once

Early Communities: Bacteroides and Parabacteroides (Phylum: 

Bacteroidetes), and the Firmicutes Faecalibacterium, 

Phascolarctobacterium, Blautia, Lachnospiraceae incertae sedis.

Late Communities: Clostridiales within phylum Firmicutes 

(Clostridium, Peptostreptococcus, and Anaerosphaera), and 

Gammaproteobacteria (Wohlfahrtiimonas, Ignatzschineria, 

Acinetobacter and Providencia)

Decreased diversity as decomposition 

progressed

Generally, there was a decline in Bacteroides 

and an increase in Clostridium

Javan et al. (2017)

Human donor cadaver (n = 45)

PMI: 4–78 h

Study condition: Alabama Department of 

Forensic Sciences in Montgomery and the 

Office of the District One Medical Examiner 

in Pensacola, USA

Environment: Indoor

Sample: 10 mg of liver and spleen tissues 

were dissected using sterile scalpels and 

placed in polyethylene bags

Control: –

Sampling time: Single collection per 

cadaver

Clostridium spp. dominant in majority (95%) of samples (liver 

and spleen), and detected in the early post-mortem period

Forensically relevant bacteria identified in the 

V3 region compared to the V3-4 region

Pechal et al. (2018)

Human cadavers from routine 

death investigations (n = 188)

PMI: 24–48 h

Deposition conditions: Case-specific natural 

deaths, accidental deaths, suicides and 

homicides

Environment: Collected at Wayne County 

Medical Examiner’s Office, Michigan, USA

Sample: Swabs with DNA-Free sterile 

cotton-tipped applicators from the ear, 

eyes, nose, mouth, umbilicus, and rectum

Control: –

Sampling time: Single collection point

24,25–48 h: High abundance of Streptococcus in eyes, while 

Haemophilus parainfluenzae and Streptococcus were more 

abundant in the mouth

Mouth: Dominant taxa in the 24 h: Streptococcus, 

Haemophilus, Veillonella; anaerobic genera (Prevotella, 

Fusobacterium), and Rothia

For all anatomical areas, at phylum level Actinobacteria and 

Bacteroidetes decreased in abundance after 2 days post-

mortem, while Proteobacteria abundance increased. 

Firmicutes (Staphylococcus and Streptococcus) also decrease 

after 2 days, expect for the nose

Post-mortem microbiome diversity changes 

over time and between anatomical sites

Lutz et al. (2020)

Human cadavers from criminal 

casework (n = 40)

PMI: 24–432 h

Deposition conditions: Case-specific natural 

deaths, accidental deaths, suicides and 

homicides

Environment: Department of Public Health, 

Experimental and Forensic Medicine Morgue, 

University of Pavia in Pavia, Italy

Sample: Tissue samples (brain, heart, 

liver, spleen, prostate, and uterus). Tissue 

samples were collected and placed into 

labelled sterile polyethylene bags

Control: –

Sampling time: Single collection point

Clostridiales and the family Saprospiraceae were the most 

dominant taxa identified form internal organs. 

Burkholderiales (heart) and Clostridiales (all organs except 

uterus) increased as decomposition progressed, while taxa 

from order MLE1-12 decreased (brain, heart, liver, and spleen) 

as decomposition progressed

Individual characteristics (sex, age, cause of 

death, PMI, and BMI) affect microbial diversity

Microbial succession in internal organs can 

be used to estimate PMI

Ashe et al. (2021)

Human donor cadavers (n = 3)

PMI: 253–392 ADD

Deposition conditions: Placed on the ground 

in a supine position

Environment: Forensic Osteology Research 

Station, Western Carolina University, 

Cullowhee, USA. Southern Appalachian 

Mountains

Spring season

Sample: Oral samples collected using 

sterile swabs, placed in a microcentrifuge 

tube

Control: –

Sampling time: 5–7 times based on 

decomposition

Firmicutes dominated the early and middle sampling times, 

followed by Proteobacteria and then Actinobacteria. Rothia 

spp. and Lactobacillus spp. found in early decomposition, 

while in middle to late decomposition common taxa were 

Streptococcus spp., Bacillales spp., and Planococcaceae spp. 

Pseudomonas spp. present in later decomposition

Temperature differences at the deposition site 

affected the microbial communities

Microbial shifts could be observed at Phylum 

level, but the Genus level provided better 

resolution of PMI estimation from the oral 

microbiome

(Continued)
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TABLE 1  (Continued)

Study Characteristics of the burial 
environment

Sampling location and days Key taxa shifts Findings and accuracy

Liu et al. (2020)

Mice (n = 240)

PMI: 15 days

Deposition conditions: Placed on sterile plates 

with ambient temperature and moderate 

relative humidity

Environment: Experimental Animal Centre of 

Xi’an Jiaotong University, China

Sample: Internal organs (brains, hearts 

and ceca)

Control: –

Sampling time: 0 h, 8 h, 12 h, 1 day, 

2 days, 4 days, 7 days, 10 days, 13 days 

and 15 days

Brain: Family level Enterobacteriaceae and 

Peptostreptococcaceae,

Heart: Family level Enterobacteriaceae and Lactobacillaceae,

The heart and brain: Genus Morganella and Proteus. At the 

species level Clostridium novyi, Proteusvulgaris, 

Anaerosalibacter bizertensis, and clostridium butyricum

Cecum: Family level Lactobacillaceae, Enterococcaceae and 

Erysipelotrichaceae. At genus level, Lactobacillus, Enterococcus 

and Dubosiella, and at the species level, Lactobacillus reuteri, 

Enterococcus faecalis and Firmicutes bacterium M10-2

Advanced decomposition in the brain, heart and cecum 

dominant taxa: Enterococcus faecalis, Clostridium cochlearium 

and A. bizertensis

As decomposition progressed, the microbial 

communities of the brain, heart, and cecum 

became more similar

MAE of 1.5 ± 0.8 h within 24-h of 

decomposition and 14.5 ± 4.4 h within 15-day 

decomposition

Deel et al. (2021)

Human donor cadaver (n = 6)

PMI: 1–9 months

Deposition condition: Three bodies were 

placed in cages per season

Environment: Southeast Texas Applied 

Forensic Science Facility, Huntsville, USA

Spring and summer seasons

Sample: Right and left lower ribs (a total 

of 8 bones from each individual)

Control: –

Sampling time: ampled every 3 weeks

Dominated by Proteobacteria

Fresh to advanced decay: Gammaproteobacteria and 

Actinobacteria, and taxa unclassified Pseudomonadaceae, 

Pseudomonas, Acinetobacter, and two different 

Corynebacterium.

Phyllobacteriaceae and Devosia increased in abundance as 

decomposition progressed.

Bone decomposer microbiome is distinct from 

the skin microbiome and the soil microbiome 

in decomposition, this also varies by season

Summer model: MAEs from 724 to 853 ADD 

over a total of 5,201 ADD, error of ± 39 days

Summer and spring model: MAEs from 793.33, 

error of ± 34 days

Zhang et al. (2021)

Human cadavers from routine 

death investigations (n = 188) 

(Data from the Pechal et al. 

(2018) study)

PMI: 24–48 h

Deposition conditions: Case-specific natural 

deaths, accidental deaths, suicides and 

homicides

Environment: Collected at Wayne County 

Medical Examiner’s Office, Michigan, USA

Sample: Swabs with DNA-Free sterile 

cotton-tipped applicators from the ear, 

eyes, nose, mouth, umbilicus, and rectum

Control: –

Sampling time: Single collection point

48 h PMI: Dominated by Streptococcus sp.

PMI between 49 and 72 h: Dominated by Moraxellaceae

73 h or higher PMI: Increased Veillonella dispar sp. and 

Proteus sp.

Accuracy of methods:

	•	 xgboost method highest accuracy 

(74.5–87.6%)

	•	 Neural network (70.7–83.0%)

	•	 Random forest (73.6–86.3%)

Highest accuracy was achieved for xgboost 

when considering a combination of the five 

anatomic areas: ears, eyes, nose, mouth, and 

rectum (77.5%)

Zhao et al. (2022)

Rats (n = 96)

PMI: 59 days

Deposition conditions: Placed on room to 

decompose

Environment: In an animal room at Nanjing 

Agricultural University, Nanjing, China

Sample: Swabs of oral cavity

Control: –

Sampling time: 0 h, day 1, day 3, day 5, 

day 10, day 15, day 20, day 24, day 30, day 

40, day 52 and day 59

Phylum:

Pre-rupture: Proteobacteria dominant

After 20 days: Firmicutes are dominant

Genus:

0 h: Acinetobacter dominant

Enterococcus, Bacteroides and Proteus were dominant between 

Day 3 to 5, but decreased after 10 days

Later PMI: Ignatzschineria and Cerasibacillus more abundant

Oral microbiome shifts during decomposition

R2 = Model accuracy was 93.94% for PMI 

estimation

(Continued)
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TABLE 1  (Continued)

Study Characteristics of the burial 
environment

Sampling location and days Key taxa shifts Findings and accuracy

Iancu et al. (2023)

Human donor cadaver (n = 8)

PMI: 0–12 h

Deposition conditions: Bodies observed for 

12 h in the morgue

Environment: Institute of Legal Medicine Iasi, 

Romania

Sample: Samples of face and hands skin 

collected with sterile cotton swabs.

Control: –

Sampling time: Sampled twice over 12 h 

(0 h on arrival and 12 h later)

Phylum:

Firmicutes and Actinobacteria higher at 0 h, as decomposition 

progressed, Proteobacteria and Bacteroidetes abundance 

increased

Genus:

Staphylococcus and Peptoniphilus are present at 0 h, but 

increase in Streptococcus, Lactobacillus, Clostridium, 

Micrococcus and Enterobacter after 12 h

Antemortem health and lifestyle conditions 

affect the post-mortem microbiome

Burcham et al. (2024)

Human donor cadaver (n = 36)

PMI: 21 days

Deposition conditions: Placed supine and 

unclothed on the soil surface

Environment: Colorado Mesa University 

Forensic Investigation Research Station 

(FIRS), Sam Houston State University 

Southeast Texas Applied Forensic Science 

(STAFS) Facility and University of Tennessee 

Anthropology Research Facility (ARF)

Spring, summer, fall and winter seasons

Sample: Sample of skin surface (head), 

torso (hip) and gravesoils with a sterile 

swab

Control: Control soil samples

Sampling time: 21 days

Key microbial decomposers: identified: O. alkaliphila, 

Ignatzschineria, Wohlfahrtiimonas, Bacteroides, Vagococcus 

lutrae, Savagea, Acinetobacter rudis and Peptoniphilaceae

Inter-domain microbial decomposers found on 

cadavers during decomposition

Estimate PMI within ±3 days

Iancu et al. (2024)

Pigs (n = 3)

PMI: 23 weeks

Deposition conditions: Placed on the ground 

at a distance of 20 m between each covered 

with a wire cage

Environment: Mekinock Field Station, 

University of North Dakota, Grand Forks, 

North Dakota, USA. Located between 

agricultural fields (corn, soybeans, and wheat 

crops). Characterized by tallgrass prairie. 

Field covered with snow (depth up to 130 cm)

Winter season

Sample: Triplicate tissue swabs from the 

nose (externally and internally)

Control: –

Sampling time: Samples collected weekly 

for 23 weeks

Phylum

Firmicutes (Clostridia and Bacilli) dominated weeks 1–7, 

followed by Proteobacteria (mainly Gammaproteobacteria) 

and Actinobacteriota (mainly Actinobacteria).

Proteobacterial becomes dominant at week 8.

From week 12–16 Proteobacterial and Firmicutes have 

relatively similar abundance.

Week 17–23 Protrerobacteria dominant.

Week 23 an increase in Campylobacterota (Campylobacteria) 

and Bacteroidota

Genus:

Psychrobacter increased from week 5–10, Pseudomonas 

increased weeks 5–9 and week 18. Moraxella abundance 

decreased after week 5, Clostridium abundance fluctuates, 

high abundance from weeks 1–7, decreases by weeks 8–10 and 

increased weeks 11–16

Best model based on internal and external 

swabs: MAE of 1.36 weeks

Accurate PMI of 9.52 days in severe cold 

weather
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TABLE 2  Summary of the methodological confounders and control measures in several studies applying microbial data for PMI estimation.

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

Can et al. (2014) Handling: Samples were transported in a cooler and placed in a 

freezer at −80 °C until analysis

Extraction: Two extraction methods for thanatomicrobiome 

analysis:

	1.	 Modified method (Urakawa et al., 2010) using 50 μL of blood 

or approximately 10 mg of thawed organ tissue. Consists of 

bead-beating with phenol/chloroform/isoamyl alcohol 

precipitation

	2.	 A sterile cotton applicator tip was dipped into the organ and 

swabbed on the surface and the tip was deposited into a 

centrifuge tube containing 1 mL of PBS buffer

16S rRNA gene

Platform: Roche 454 pyrosequencing

Primers: -

MG-RAST open-source web application

	•	 Quality filtering

	•	 Annotated against M5RNA database (contains data from SILVA, 

Greengenes and RDP)

Normalization in MG-RAST

Diversity and statistical analysis:

	•	 Shannon diversity

	•	 Principle component analysis (PCA) on matrix on distances

	•	 Clustering dendrograms of microbial communities by organ tissue and 

blood sample

Lauber et al. (2014) Handling: Samples stored at −20 °C until further analysis

Extraction: DNA extraction based on Earth Microbiome Project 

standard protocols and Metcalf et al. (2019) PowerSoil DNA 

isolation kit (MoBio Laboratories)

16S rRNA gene V4 region

Platform: HiSeq 2000 (Illumina)

Primers: 515F-806R

QIIME Pipeline:

	•	 Quality filtering

	•	 Operational taxonomic unit (OTU) picking

	•	 Reference database (Greengenes, 2012)

	•	 Phylogenetic tree generation (PyNAST)

	•	 Taxonomy assigned (RDP classifier)

Normalisation: 3,000 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity using Faith’s phylogenetic diversity

	•	 Beta diversity: PCoA with UniFrac unweighted distances

	•	 PERMANOVA to test between treatments at each sample site

Pechal et al. (2014) Handling: Samples were stored at 4 °C. Processing took place 

within 12 h of sampling

Extraction: Modified chloroformphenol extraction

16S rRNA V1–3 regions

Platform: Roche 454 FLX Titanium pyrosequencing

Primers: Gray28F/Gray519R

Pipeline:

	•	 Non-bacterial ribosome sequence and chimera removal (B2C2)

	•	 Taxonomic classification: (Ribosomal Database Project (RDP))

	•	 Taxonomic Classifier: Naïve Bayesian rRNA classifier version 

2.2 in RDP

Diversity and statistical analysis:

	•	 PERMANOVA for differences in taxon richness

	•	 Bray–Curtis distance with nonmetric multidimensional scaling (NMDS) to 

analyse operational taxonomic units

	•	 Multi-response permutation procedure (MRPP) to test differences between 

decomposition day and region of sampling of bacterial 

community composition

Machine learning algorithm:

	•	 Random forest

Validation

(Continued)
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TABLE 2  (Continued)

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

Damann et al. (2015) Handling: Ribs were individually bagged and transported on dry 

ice and stored at −20 °C until analysis. Soil samples were 

collected 5 cm below the remains, sieved through a 2 mm mesh, 

collected in a plastic bag, transported on dry ice, and stored at 

−20 °C until analysis

Extraction:

Bone: Modified demineralisation protocol with MinElute kit 

(Qiagen) (Loreille et al., 2007)

Soil: Fast DNA Spin Kit for Soil (MP Biomedicals, UK)

16S rRNA gene V3 region

Platform: GS FLX Titanium 454 pyrosequencing

Primers: F338/R533

QIIME Pipeline:

	•	 Chimera removal (UCHIME via USEARCH 6.1)

	•	 OTU clustering at ≥97% similarity (UCLUST)

	•	 Representative sequence alignment (pyNAST)

	•	 Phylogenetic tree building with FastTree

	•	 Classified (RDP)

Normalization: 4000 reads per sample

Diversity and statistical analysis:

	•	 UniFrac distances and PCoA for differences in microbial community 

membership and structure

Hauther et al., 2015 Handling: Swabs were collected in a sterile tube, stored on ice 

and stored at −20 °C until analysis

Extraction: PowerSoil DNA Isolation Kit (MoBio Laboratories, 

Inc.)

16S rRNA gene

Bacteroides with Taqmanâ qPCR assay, Lactobacillus and 

Bifidobacterium with SYBR Green PCR assay

Quantification: qPCR (Opticon Monitor III/CFX96 (BioRad, 

Hercules, CA, USA))

Primers: Universal based on (Buchan et al., 2009)

Normalisation: To total 16 s rRNA bacterial load

Diversity and statistical analysis:

	•	 Linear and nonlinear models for best fit

	•	 t-tests to determine if the variability between individual’s characteristics 

(body mass, sex, or cause of death) was significant

Javan et al. (2016a) Handling: All samples were placed in a freezer at −80 °C until 

further analysis

Extraction: By the phenol/chloroform method

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515F/806R

Pipeline:

	•	 Denoising and chimera detection

	•	 Clustering the reads into OTUs

	•	 Taxonomic classification

Diversity and statistical analysis:

	•	 Alpha diversity: Chao1 richness estimator and Shannon-Wiener 

diversity index

	•	 Analysis of variance (ANOVA) to screen for microbial diversity for organ, 

manner of death, ethnicity, sex, age, PMI, and ambient temperature

	•	 Multivariate differences among organ, manner of death, ethnicity, sex, age, 

PMI, and ambient temperature with Permutational Multivariate Analysis of 

Variance Using Distance Matrices function (ADONIS)

	•	 PCoA to visualise relationships and differences between organ, manner of 

death, ethnicity, sex, age, PMI, and ambient temperature

Machine learning algorithm:

	•	 Random forest

Validation

Johnson et al. (2016) Handling: All samples were placed in a freezer at −80 °C until 

further analysis

Extraction: PowerLyzer PowerSoil DNA Isolation Kit (MoBio 

Laboratory)

16S rRNA gene V3 and V4 regions

Platform: MiSeq (Illumina)

Primers: –

Pipeline: BaseSpace program (Illumina).

Normalisation: Column-based normalisation

Machine learning algorithm:

	•	 Regressors: Support Vector Regression, K-neighbors Regression, Ridge 

Regression, Lasso Regression, Elastic Net Regression, Random Forest 

Regression, and Bayesian Ridge Regression

Validation: Cross-validation on the training set

(Continued)
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TABLE 2  (Continued)

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

DeBruyn and Hauther 

(2017)

Samples were kept at −20 °C until further analysis

PowerLyzer PowerSoil DNA Isolation Kit (MoBio Laboratory)

16S rRNA gene V3 and V4 regions

Platform: MiSeq (Illumina)

Primers: –

Mothur (v.1.37.0) Pipeline:

	•	 Chimaera removal (UCHIME)

	•	 Sequences aligned (SILVA database)

	•	 Clustering the reads into OTUs

	•	 Taxonomic classification

Normalisation: 25,082 sequences per sample

Diversity and statistical analysis:

	•	 Alpha-diversity: Good’s coverage estimates, richness (number of OTUs), 

Simpson’s Diversity index

	•	 Beta diversity

	•	 Bray-Curtis distances between samples

	•	 PERMANOVA to test significant differences in multivariate structure

	•	 Non-parametric Spearman’s rank between the top 30 most abundant OTUs

Javan et al. (2017) Handling: Samples were kept at −80 °C until further analysis

Extraction: Lysing matrix E tubes (MP Biomedicals) with 

phenol/chloroform/isoamyl alcohol

16S rRNA gene V3 and V3-4 regions

Platform: MiSeq (Illumina)

Primers: 515F/806R (V3) and 357wF/785R (V3-4)

PCR Control: Negative control reaction mix with not template 

DNA

Sequencing:

	•	 Denoising reads

	•	 Chimaera removal (UCHIME)

	•	 Clustering the reads into OTUs (UPARSE)

	•	 Taxonomic alignment (USEARCH)

Normalisation: 25,000 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Chao1 richness estimator and Shannon-Wiener diversity

index

	•	 Analysis of variance (ANOVA) to screen for microbial diversity for region, 

organ, gender, manner of death, PMI, season, location, weight, and height

	•	 Multivariate differences among region, organ, gender, manner of death, 

PMI, season, location, weight, and height with Permutational Multivariate 

Analysis of Variance Using Distance Matrices function (ADONIS)

	•	 PCoA to visualise relationships and differences between region, organ, 

gender, manner of death, PMI, season, location, weight, and height

Pechal et al. (2018) Handling: Samples were kept at −20 °C until further analysis

Extraction: PureLink Genomic DNA Mini Kit (Invitrogen, 

USA)

16S rRNA gene V3 and V3-4 regions

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME Pipeline:

	•	 Sequences clustered (UCLUST)

	•	 Chimaera identification and removal (ChimeraSlayer)

	•	 Taxonomy assignment: RDP classifier

	•	 Identification: BLAST against Greengenes (2013) 97% reference

	•	 Taxonomy alignment (PyNAST)

Normalisation: 1,000 sequences per sample

Diversity and statistical analysis:

	•	 Alpha-diversity: Chao1, Shannon-Wiener diversity, Heip’s evenness, and 

Faith’s phylogenetic diversity

	•	 Beta diversity: PCoA with weighted UniFrac distance to examine umbilicus 

samples and analyse their differences in microbial communities

	•	 PCoA to measure the significance of sex, ethnicity, event location, weight, 

season, manner of death, and PMI

	•	 PERMANOVA to test differences in communities

	•	 Nonparametric one-way analysis of variance (Kruskal-Wallis, ANOVA) 

with multiple comparisons after Mann-U t-tests to evaluate how diversity, 

richness and evenness changes after death

Machine learning algorithm:

	•	 Stochastic gradient boosting

Validation: 10-fold cross-validation

(Continued)
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TABLE 2  (Continued)

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

Lutz et al. (2020) Handling: Samples were transported on dry ice to Montgomery, 

USA and stored at −80 °C

Extraction: Phenol phenol-chloroform method

16S rRNA gene V4 region

Platform: HiSeq (Illumina)

Primers: 515F/806R

QIIME2 Pipeline:

	•	 Chimaera removal and sequence variants (ASVs) identification 

(Deblur)

	•	 Taxonomic assignment: Greengenes database (2013)

Normalisation: 1000 sequences per sample

Diversity and statistical analysis:

	•	 Alpha-diversity: Shannon index

	•	 Kruskal–Wallis rank sum test to evaluate the significance of mean values for 

each diversity calculation

	•	 Beta diversity: Unweighted UniFrac and weighted UniFrac using relative 

abundances of ASVs

	•	 PERMAONVA with Bonferroni correction to test marginal effects for organ 

type, sex, age, cause of death, PMI, and BMI

Ashe et al. (2021) Handling: Samples transported on dry ice and stored at −80 °C

Extraction: RNeasy PowerMicrobiome Kit (Qiagen)

16S rRNA gene V6-V8 region

Platform: MiSeq (Illumina)

Primers: B969F/BA1406R

QIIME2 Pipeline:

	•	 Quality control and denoised (Deblur)

	•	 Taxonomic assignment (SILVA database)

Normalisation: To the sample with the lowest total number of 

sequences.

Additional sequencing: Metagenomic and Metatranscriptomic 

analyses

Diversity and statistical analysis:

	•	 Alpha-diversity: Shannon index

	•	 ANOVA to test significance by grouping samples by donor, ADD, and 

decomposition stage

	•	 PCA at the phylum and genus level between sequencing methods

Liu et al. (2020) Handling: Samples stored at −80 °C

Extraction: QIAamp DNA Mini Kit (Qiagen)

Controls: DNA extraction and PCR amplification included 

negative controls

16S rRNA gene V3 and V4 region

Platform: IonS XL

Primers: 341F/806R

Mothur Pipeline:

	•	 Quality Control and filter (Cutadapt)

	•	 Chimaeras were filtered and trimmed (VSEARCH)

	•	 OUT classification (UPARSE)

	•	 Taxonomic assignment: SSUrRNA database in SILVA132

	•	 Taxonomic alignment (Greengenes reference (MUSCLE))

Normalisation: All samples set to the same number of reads, based 

on the sample with the lowest read count

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon, Chao1, Simpson and ACE indexes

	•	 PCoA and NMDS to visualize the similarities or dissimilarities of variables

Machine learning algorithms:

	•	 Random forest

	•	 Support vector machine

	•	 Artificial neural network

Validation: Internal validation by repeating the model 15 times

Deel et al. (2021) Handling: Ribs individually bagged and frozen at −10 °C, 

transported on dry ice to Colorado State University and stored 

at −20 °C

Extraction: Pulverised rib bone (0.2 to 0.5 g) used for DNA 

extraction, following a protocol that includes SDS (10%) for cell 

membrane lysis and Proteinase K for protein digestion.

Controls: 15 extraction blanks included for controls

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: Standard primers from the Earth Microbiome Project

QIIME2 (2018.4) Pipeline:

	•	 Quality filtered and denoised (Deblur)

	•	 Taxonomic assignment (Greengenes 13_8 99%)

	•	 Phylogenetic tree generation (SEPP)

Normalised: 17,098 reads per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Faith’s phylogenetic diversity

	•	 Beta diversity: Weighted and unweighted UniFrac distances

	•	 PCoA for data visualization

	•	 PERMANOVA to test effect sizes between season, hosts, and the first and 

last ADDs

Machine learning algorithms

	•	 Random forest

(Continued)
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TABLE 2  (Continued)

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

Zhang et al. (2021) Handling: Samples were kept at −20 °C until further analysis

Extraction: PureLink Genomic DNA Mini Kit (Invitrogen, 

USA)

16S rRNA gene V3 and V3-4 regions

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME Pipeline:

	•	 Sequences clustered (UCLUST)

	•	 Chimaera identification and removal (ChimeraSlayer)

	•	 Taxonomy assignment: RDP classifier

	•	 Identification: BLAST against Greengenes (2013) 97% reference

	•	 Taxonomy alignment (PyNAST)

Normalisation: 1000 sequences per sample

Machine learning algorithms:

Metadata and taxonomic data merged

	•	 Random forest

	•	 xgboost method,

	•	 Neural network

Validation: 5-fold cross-validation

Zhao et al. (2022) Handling: Samples were kept at −20 °C until further analysis, 

and extractions were stored at −80 °C

Extraction: DNA Mini Kit (Qiagen)

16S rRNA gene V3-V4 regions

Platform: Ion S5 XL platform

Primers: 341F/806R

Mothur Pipeline:

	•	 Filter and trim reads (Cutadapt V1.9.1)

	•	 Chimaera removal (UCHIME)

	•	 Assigned to OTUs (UPARSE)

	•	 Taxonomic assignment (Silva (v132) database)

Diversity and statistical analysis:

	•	 Alpha diversity: Chao1, abundance-based coverage estimator, Shannon and 

Simpson indexes

	•	 Beta diversity

	•	 ANOVA to test variance in alpha diversity and beta diversity 

between groups

Machine learning algorithms

	•	 Random forest

Validation: Cross-validation for feature screening

Iancu et al. (2023) Handling: Samples stored at −20 °C until further analysis 

Shipped on ice to the University of North Dakota, USA

Extraction: Blood and Tissue modified protocol (Qiagen)

16S rRNA gene V3-V4 regions, as well as metagenomics analysis 

(METAGENassist)

Platform: MiSeq (Illumina)

Primers: 357F/806R

QIIME2 (2019.7) Pipeline:

	•	 Sequences filtered (q2-demux)

	•	 Denoising, phiX chimaera removal, and identification of 

ASVs (DADA2)

	•	 Phylogeny tree generation (FastTree)

	•	 ASV classification (SILVA SSU)

Normalisation: 49,578 reads per sample

Diversity and statistical analysis:

	•	 Alpha diversity and beta diversity analyses: Shannon’s diversity index and 

Bray-Curtis index

	•	 Kruskal-Wallis pair-wise test to test the alpha group of significance and the 

difference between groups

	•	 PCoA for visualisation

	•	 PERMANOVA to determine distances between groups

Validation: Cross-validation in the metagenomics analysis

(Continued)
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TABLE 2  (Continued)

Study Sample handling and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model 
handling

Burcham et al. (2024) Handling: Samples stored at −20 °C until further analysis. All 

samples were shipped to CU Boulder or Colorado State 

University on dry ice and stored at −20 °C

Extraction: PowerSoil DNA isolation kit 96-htp (MoBio 

Laboratories)

Controls: DNA extraction negative and no-template PCR control 

samples

16S rRNA gene V3-V4 regions, as well as metabolite extraction and 

Shotgun metagenomic sequencing

Platform: MiSeq (Illumina)

Primers: 515F/806RB

QIIME2 Pipeline:

	•	 Taxonomic assignment (SILVA 132 99%)

	•	 Phylogenetic tree generation (SEPP method)

Diversity and statistical analysis:

	•	 Alpha diversity: SV richness and Faith’s phylogenetic diversity formulas.

	•	 Beta diversity: Generalised UniFrac method to calculate dissimilarity

	•	 PERMANOVA for statistical comparisons

Machine learning algorithms

	•	 Random forest 

Batch Effect: Samples were randomly assigned to runs to negate 

batch effects.

Validation: Internal validation and on an independent test set and nested 

cross-validation

Iancu et al. (2024) Handling: Samples stored at −20 °C until further analysis

Extraction: Blood and Tissue modified protocol (Qiagen)

16S rRNA gene V3-V4 regions

Platform: MiSeq (Illumina)

Primers: 341F/805R

QIIME2 (v0.99.6) Pipeline:

	•	 Denoising, chimaera removal (DADA2 (v.1.26.0))

	•	 Taxonomic assignment (SILVA 132 99%)

Normalised: 46191.9 mean reads per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Between different individuals, locations, and snow

	•	 ANOVA to test for significance

Machine learning algorithms

	•	 Random forest
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a microbial clock for PMI estimation (Metcalf et al., 2013, 2016). Shifts 
in the abundance and diversity of microbial communities have been 
correlated with internal biochemical changes of the body (Pechal et al., 
2018; Deel et al., 2021). For instance, the decline of anaerobic bacteria, 
Bacteroides and Lactobacilus, has been found to coincided with the 
shift in conditions of the body cavity as oxygen is reintroduced post-
rupture (Hauther et al., 2015), while Pseudomonas and Clostridium 
have been cited to release collagenases to break down bone (Deel et al., 
2021). The “Post-mortem Clostridium Effect” (PCE), a concept 
introduced by Javan et al. (2017) refers to the ubiquitous nature of 
Clostridium spp. found throughout decomposition, making it a key 
microbial marker in the PMI. The effect is characterised by the rapid 
colonisation of the body by this species as conditions become more 
anaerobic (Can et al., 2014; Iancu et al., 2016; DeBruyn and Hauther, 
2017; Liu et  al., 2020) and due to their proteolytic function for 
breaking down collagen (Javan et  al., 2017). A diverse range of 
Clostridium spp. have been characterised in the early post-mortem 
period from the thanatomicrobiome at 4 h (112), 12 h (Iancu et al., 
2023), as well as at 24h and 58 h (Can et al., 2014) (Table 2), making 
it an essential biomarker for PMI estimation.

Complex algorithms leveraging machine learning (Table  2) 
(Johnson et al., 2016; Metcalf, 2019; Liu et al., 2020; Cui et al., 2022; 
Yang et  al., 2023), allows for interpretation of the microbiome 
composition data through diversity and richness calculations, as well 
as the development of predictive modelling through machine learning 
algorithms (random forest regression, xgboost method and neural 
networks) (Pechal et al., 2014, 2018; Johnson et al., 2016; Liu et al., 
2020; Zhao et al., 2022; Burcham et al., 2024; Iancu et al., 2024). These 
models have demonstrated robust performance, with accuracy 
assessed by metrics such as mean absolute error (MAE), which 
quantifies the average deviation between predicted and actual PMI 
values. Studies have shown that random forest models built on 
microbiome data from skin, organ and in some cases gravesoil 
samples, particularly using 16S rRNA gene markers, provide reliable 
PMI estimates, often within a small error margin over decomposition 
periods of up to several weeks. This has been demonstrated using 
mouse models where the PMI was estimated within approximately 
3 days over a period of 48 days (Metcalf et al., 2013, 2016). Models 
leveraging random forest regression algorithms appear to be  the 
preferred machine learning method used for PMI estimation 
(DeBruyn and Hauther, 2017; Liu et al., 2020; Lutz et al., 2020; Deel 
et al., 2021; Zhang et al., 2021; Zhao et al., 2022; Burcham et al., 2024; 
Iancu et al., 2024). Random forest algorithms are based on supervised 
learning and use multiple decision trees to make predictions (Berk, 
2008). Random forest have effectively been used for PMI estimation 
because they can work with and process large datasets (Pechal et al., 
2018; Zhang et al., 2021; Burcham et al., 2024), reduce errors, increase 
reliability for PMI estimation (Pechal et al., 2018; Namkung, 2020; Li 
et al., 2023; Wu et al., 2024) and allow for the integration of various 
multi-omics datasets (Burcham et  al., 2024; Li et  al., 2024). In 
principle, each decision tree is constructed from different subsets of 
microbiome sequencing data, capturing patterns in the microbial taxa 
present in the samples (Namkung, 2020; Schonlau and Zou, 2020). 
The algorithm combines the outputs into a final prediction. Despite 
growing interest, the predictive performance of random forest models 
remains variable across studies, species, and sampling strategies. Using 
a mouse model Liu et  al. (2020) predicted PMI from microbial 
communities in the internal organs with a high accuracy of 1.5 ± 0.8 h 

within 24-h decomposition and 14.5 ±  4.4 h within 15-day 
decomposition. Yet in human cadavers Deel et al. (2021) reported a 
MAE of 724 to 853 ADD ± 39 days over a total of 5,201 ADD, and a 
MAE of 793.33 ± 34 days over two seasons using multiple ribs. Yang 
et al. (2023) further highlighted seasonal affects from swab samples 
collected from the rectum and gravesoil of pig carcasses. The winter 
trail rectal samples yielded a MAE of 2.478 days, while gravesoil 
performed slightly better with a MAE of 2.001 days. In summer, rectal 
samples had a MAE of 1.375 days and the gravesoil sample had a MAE 
of 1.567 days (Yang et al., 2023). In a severe cold environment Iancu 
et  al. (2024) found the best model for PMI prediction, combined 
internal and external swabs of pig carcasses for a MAE of 1.36 weeks. 
It is worth noting that the cross-validation of predictive models 
improve the accuracy and objectivity of PMI estimates by minimising 
human bias, while training and test datasets add to the robustness of 
the findings (Johnson et al., 2016; Pechal et al., 2018; Liu et al., 2020; 
Deel et al., 2021; Hu et al., 2021; Zhang et al., 2021; Burcham et al., 
2024; Iancu et  al., 2024). Leveraging similar machine learning 
approaches for gravesoil microbiome signatures could be applied to 
the estimation of the PBI and PTI.

3.2 Microbial succession for post-burial 
and post-translocation interval estimation

Anthropogenic activities, such as the act of burying and 
translocating a body, can disturb the natural stratigraphy of soil, 
impacting ecosystems and microbial communities (Jansson et  al., 
2023) to accommodate the needs of humans. Studies of Vindolanda, 
a Roman auxiliary fort in the UK, revealed the significance of the 
interplay between human intervention in the environment, local 
ecological conditions and soil microbial communities, and the lasting 
impact it can have (Driel-Murray, 2001; Birley, 2009; Orr et al., 2021). 
For example, microbial analysis by Orr et al. (2021) revealed that soils 
dating to the earliest occupation of the Vindolanda site were 
dominated by the phyla Bacteroidetes, Firmicutes and Proteobacteria, 
and contained better preserved artefacts when compared to control 
soils, which were characterised by increased abundances of 
Acidobacteria, Actinobacteria and Planctomycetes. This study 
highlights the interconnectedness of microbial community shifts and 
human activity in combination with the unique environmental 
conditions, which collectively led to better preservation at Vindolanda. 
Similarly, a study from Western Kazakhstan showed the long-term 
impact of human intervention on soil microbial communities, 
specifically relating to palaeosoils below a burial mound, dating to 
2,500 years ago (Kichko et al., 2023). In contrast to surface control 
soils, the specific burial conditions, including reduction of air, water 
and organic material in buried soils, led to decreases in the abundances 
of Actinobacteria clades of Gaiella, Solirubrobacteriales, and 
Frankiales. Conversely, there were increases in the diversities of 
Actinobacteria (Acidimicrobiia, Propionibacteriales, 
Micromonosporales, Euzebyales), Firmicutes (Bacilli), Chloroflexi 
(Thermomicrobiales), Acidobacteria (Subgroup 6), and Proteobacteria 
(Tistrellales) (Kichko et al., 2023). These studies are examples of how 
microbial communities in soils impacted by human intervention have 
distinctive compositions that differ from the microbial communities 
found within natural soils in that specific environment, with no 
human impact. Moreover, these studies highlight that the occurrence, 
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distribution and abundance of these distinctive microbial communities 
are influenced by specific environmental and burial conditions.

The decomposition of a body has a similar effect on soil microbial 
communities. Shifts in soil microbial composition for surface 
depositions of mammalian or human donor cadaver remains have 
been reported in studies conducted in China (Guo et al., 2016; Yang 
et al., 2023), and the USA (Lauber et al., 2014; Cobaugh et al., 2015; 
Weiss et  al., 2016; Burcham et  al., 2024). Studies considering soil 
microbial shifts for buried human, pig or rodent (mice or rats) 
carcasses have been conducted in China (Zhang et al., 2021; Cui et al., 
2022; Yang et al., 2023; Wang et al., 2024), the USA (Keenan et al., 
2018), and the UK (Olakanye et al., 2017; Olakanye and Ralebitso-
Senior, 2018; Olakanye and Ralebitso-Senior, 2022; Procopio et al., 
2019; Bisker et al., 2021, 2024). Underpinning these studies is the 
focus to develop more reliable methods for PMI estimation by using 
gravesoil, sometimes complemented by the analysis of the post-
mortem human microbiome (Lauber et al., 2014; Yang et al., 2023; 
Burcham et  al., 2024). Similar to predicting PMI from the 
thanatomicrobiome and epinectrotic microbiome, PMI estimation 
from gravesoil is also sensitive to species (rodent, pig and human) and 
seasonal context. Zhang et  al. (2021) used gravesoil microbial 
community from buried rat models to achieve a MAE of 
2.04 ± 0.35 days, which improved to a MAE of 1.82 ± 0.33 days when 
the biomarker set was considered during 60-day decomposition. Cui 
et al. (2022) refined this approach by focusing on the 18 dominant 
genera from buried mice to obtain an MAE of 1.27 ± 0.18 day within 
36 days. Seasonality affected the generalizability of the models. Yang 
et al. (2023) found that gravesoil from buried pigs produced a MAE 
of 1.567 days for summer, but the accuracy decreased for winter with 
a MAE of 2.001 days. Wang et al. (2024) investigated a different effect 
by introducing fresh and buried pig femurs and reported a MAE of 
55.65 ADD. Placed in the correct interpretive frame, the results of 
studies analysing gravesoil yield meaningful information about the 
dynamics of microbial shifts in clandestine graves, and the PBI. The 
analysis of gravesoil in these studies, alters the parameter of interest 
(specifically the biological process being captured and the timeframe 
being estimated). Rather than providing an estimate of the PMI, as is 
commonly assumed, this experimental design directs researchers 
toward estimating PBI instead. Previous studies have undoubtedly laid 
an important foundation for PMI estimation, and their methodological 
contributions and statistical analysis remain valid. However, the 
concern arises from how their findings have been interpreted. Since 
soil microbial communities shift after the inclusion (deposition or 
burial) of mammalian remains (and not at the start of death unless 
death occurs at the exact same time and place), the presented evidence 
about PMI is, in fact, evidence for PBI estimation. An example of the 
difference between the PMI and PBI has been highlighted by Damann 
et al. (2015) who reported the two intervals, the first is the interval 
between the time of death and sample collection (the PMI), and 
second is the interval between placement and sampling (the PBI). As 
illustrated in the study, the PBI is shorter than the PMI as it begins 
once a body is deposited (or buried), with microbial change in the 
burial environment shifting at the moment of placement and not 
at death.

Estimating the PBI and PTI relies on characterising non-native 
microbial taxa in soil, which serve as markers to distinguish natural 
soils from gravesoils (Tables 3, 4). During decomposition, microbial 
communities will migrate into the soil, exploiting the resources that 

are available and forming a microbial community that is unique to 
that CDI (Weiss et  al., 2016). Changes in bacterial community 
structure over time and season for buried pig tissue and plant litter 
samples have been observed by Olakanye and Ralebitso-Senior (2018). 
Changes were recorded for the phyla Actinobacteria 
(Micromonosporaceae), Bacteroidetes (Sphingobacteriaceae), 
Firmicutes (Planococcaceae) and Proteobacteria (Rhizobiaceae, 
Hyphomicrobiaceae and Xanthomonadaceae) with unique microbial 
shifts persisting up to day 365 after burial. Control soils were 
characterised by Actinobacteria (Nocardioidaceae), Firmicutes 
(Alicyclobacillaceae), and Proteobacteria (Comamonadaceae and 
Bradyrhizobiaceae). Microcosms containing pig tissue were 
characterised by Actinobacteria (Nocardiaceae and Micrococcaceae), 
Proteobacteria (Alcaligenaceae and Hyphomicrobiaceae) (Olakanye 
and Ralebitso-Senior, 2018). These findings are also consistent with 
Procopio et  al. (2019), who identified that mammal-derived 
Bacteroides (Bacteroidacea) could be identified in grave soils collected 
directly next to the superior part of the carcass, and distinguished 
from control soils 6 months post-burial. Human-derived Bacteroides 
have also been detected in soils collected from underneath the body, 
198 days after cadaver surface placement (Cobaugh et al., 2015). Other 
studies have reported the existence of decomposition-related 
microbial taxa at post-burial intervals of 120 days (Wang et al., 2024) 
for soils collected from pig femurs burials and 720 days from 
homogenised soil samples collected at 4 sides of the grave (Bisker 
et al., 2021). These findings indicated further that non-native taxa do 
persist in gravesoils and that they might serve as a universal microbial 
marker for buried remains, demonstrating the value of using microbial 
succession. Studies have attempted to map shifts in microbial 
composition over several years to determine whether gravesoils return 
to basal levels after decomposition. Singh et al. (2018) showed that 
decomposition-impacted soils from 0 to 10 cm below human cadavers 
did not recover to basal levels even after 732 days, reflecting similar 
findings by Cobaugh et al. (2015). A second study by Keenan et al. 
(2018) reported on the impact of human cadaver decomposition on 
the soil microbial communities and soil composition, which still 
measurable after 4 years. Additionally, in the same study human-
associated Bacteroides was still detectable at the bottom of the grave 
(Keenan et al., 2018), reflecting similar findings by Cobaugh et al. 
(2015). The Burcham et  al. (2021) study highlighted that faint 
microbial signatures from soils collected directly underneath 
cadaveric remains could be  used to differentiate gravesoils from 
natural soils after 10 years. The strongest distinction between 
gravesoils and natural soils was up until 12 months after deposition, 
after which the soil microbial communities began to return to basal 
levels (Burcham et al., 2021).

The decomposition of mammalian remains has a lasting 
spatiotemporal effect on soil microbial communities (DeBruyn et al., 
2024; Taylor et al., 2024), which can potentially be used as markers for 
PBI estimations. The persistence of specific bacterial phyla, such as 
Acidobacteria, Firmicutes, and Proteobacteria for extended periods 
post-burial in gravesoil, underscores their potential as indicators for 
mammalian decomposition and for PBI estimation. Given these 
studies leveraging gravesoil two things are clear: first the 
decomposition of mammalian remains has a lasting spatiotemporal 
effect on soil microbial communities (DeBruyn et al., 2024; Taylor 
et al., 2024), which can be used as markers for PBI estimations; and 
secondly currently for the extended burial period, gravesoil 
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identification relies primarily on the detection, inclusion, or 
persistence of specific microbial taxa that differ from the background, 
undisturbed soil community. For more reliable PBI estimations, 
research should prioritise the development of models that incorporate 
finer taxonomic classifications, beyond phylum and genus. 
Additionally, further research and results need to be  tested and 
evaluated across different biogeographic locations and burial 
conditions. For more reliable PBI estimations, research should 
prioritise the development of predictive regression models.

Although few cases involving the translocation of single 
clandestine graves are published, the PTI is an important time-since-
interval and can provide valuable information to forensic investigators 
regarding the context of the crime, body disposal patterns and 
treatment of a victim after death. The need to investigate the 
translocation of remains, and hence for PTI estimations, has been 
highlighted in previous publications. In their paper discussing the use 
of ninhydrin reactive nitrogen in soil to detect graves, Carter et al. 
(2008) stated that “Bodies can be moved from the original site of death 
(and subsequent scenes).” As such, depending on when the body was 
moved and translocated from the original burial or deposition site, it 
is possible that the “removed human may leave a persistent effect in 
former gravesoil” (Carter et al., 2008). The persistence and uniqueness 
of microbial communities from the human microbiome that are found 
in soil have also been posited by Cobaugh et al. (2015) as a forensic 
tool which could “prove useful in cases where body remains have been 
moved from the original location of decomposition.” Considering this, 
the potential of shifts and the persistence of soil microbial 
communities during the decomposition process and after 
translocation, can offer further insight as a “microbial clock” beyond 
PMI estimations (Metcalf et  al., 2013) to estimate the PBI and 
PTI. Ralebitso-Senior et  al. (2016) proposed that the microbial 
communities found within gravesoils could be used as a means to link 
a victim to a crime scene, which could be especially useful in instances 
where “remains have been moved and/or decomposed.” Building on this 
concept, it is also possible that the PTI could provide evidence linking 
suspects to both primary and secondary locales as crime scenes, and 
at specific temporal intervals such as time of deposition or burial. Fu 
et al. (2019) also stated that the “dissimilarity in soil communities may 
help experts to identify the original location from which a cadaver has 
been moved.” Although Gemmellaro et al. (2023) referred specifically 
to fungal communities, their recommendation highlights the need for 
further research to investigate how the translocation of buried 
mammalian carcasses and human donor cadavers affects the 
decomposition process and the microorganisms that drive it. 
Therefore, there is potential for soil microbial communities to not only 
provide a post-mortem time-since-interval for when remains were 
translocated but also to aid investigators in narrowing down the 
original location the remains were moved from if discovered at the 
secondary locale. The use of multidisciplinary approaches such as 
forensic ecogenomics, forensic archaeology, and forensic geology to 
determine when remains were intentionally recovered and reburied 
by perpetrators, would offer insight into creating a potential timeline 
of events, which can aid investigators in linking suspects to specific 
sites and crime scenes, aiding the investigation and prosecution 
process (Dirkmaat and Cabo, 2016; Ralebitso-Senior et al., 2016).

The utility of microbial communities in forensic investigations 
also lies in their ability to provide valuable information about post-
mortem treatment of the body and a timeline of events after death, 

and becomes useful in cases where bodies have been moved 
(Demanèche et al., 2017; Karadayı, 2021). In their study using surface 
deposition of human donor cadavers, Cobaugh et al. (2015) reported 
increases in the abundance of Proteobacteria and Firmicutes, while 
Acidobacteria abundance decreased during active decay. The 
researchers argued that microbial communities from the human 
microbiome, including Actinobacteria (Eggerthella), Firmicutes 
(Phascolarctobacterium and Tissierella) and Proteobacteria 
(Paenalcaligenes), that were introduced into the surrounding soil 
during decomposition, would not persist for long outside of their 
natural environment. This study found that once the dry remains were 
removed from the site, there was a decrease in microbial community 
abundance. It was also found that members of the genus Bacteroides 
(human-associated) persisted within the CDI 198 days after cadaver 
deployment on site. Once the dry remains were removed from the 
deposition site, there was a decrease in their abundance by day 126 
and taxa was not detectable in the grave by day 204 (Cobaugh et al., 
2015). Subsequently, a 180-day study by Olakanye and Ralebitso-
Senior (2022) characterised microbial shifts in gravesoil mesocosms 
before and after the exhumation of whole piglets and demonstrated 
that microbial community structure and composition can be used in 
PTI estimation. Their study showed changes at 150 days post-burial at 
which point Proteobacteria (Xanthomonadales and 
Xanthomonadaceae) and Verrucomicrobiota (Verrucomicrobiaceae) 
were abundant. On the other hand, Bacteroidetes (Bacteroidales), 
Firmicutes (Clostridiales and Clostridiaceae_1) and Proteobacteria 
(Hydrogenophilales and Hydrogenophilaceae) were abundant in 
homogenised soils samples collected from random mesocosm 
positions 120 days after exhumation, indicating a potential 
decomposer network for translocated remains and PTI estimation 
(Olakanye and Ralebitso-Senior, 2022). Considering the impact of a 
decomposition event, which alters the biochemical signature of soils 
(Benninger et al., 2008; Macdonald et al., 2014; DeBruyn et al., 2021), 
the burial and exhumation of mammalian remains will induce specific 
shifts in the composition of the soil microbial community throughout 
the post-mortem period, driven by the decomposition process 
(Olakanye et al., 2014, 2015). This allows a unique gravesoil microbial 
community to develop which will be  distinct from microbial 
communities in the natural background soil. Similar to how 
environmental conditions aided in the uniqueness of microbial 
communities in Vindolanda and Western Kazakhstan, surface 
depositions and subsurface burials can preserve microbial signatures, 
allowing them to be used as evidence in forensic investigations, for the 
estimation of PBI and PTI, and as markers to distinguish natural 
control and gravesoils.

4 Framework for PBI and PTI

The dynamics of, and shift in, gravesoil microbial communities 
can provide a substantial contribution to the estimation of the PBI and 
PTI. Specifically, the distinct microbial communities resulting from 
decomposition provide a reliable means of identifying grave sites. The 
temporal persistence of these microbial communities in terrestrial 
burial environments indicates that they could be a potential tool in the 
estimation of post-mortem time-since-intervals for forensic 
investigations and aid in clandestine grave location. Just as these 
communities can be used to estimate the PMI, they could also serve 
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as a post-mortem “microbial clock” to estimate the time-since-burial 
as well as the time since a body was removed from its burial or 
depositional environment. This approach leverages the same 
principles used for time-since-death estimation using the microbiome, 
extending their application to scenarios involving intentional 
exhumation and translocation of remains in forensic cases. 
We  propose a framework (Figure  5) showcasing how microbial 
communities from gravesoil can be incorporated into case work to 
estimate the PBI and PTI.

Once a clandestine grave site is located, investigators would 
collect soil from the grave pits. For graves that contain a body or 
skeletonised remains, in situ soil samples can be  collected from 
around and underneath the remains using sterilized soil corers or 
metal spatulas. In the case of empty grave pits soil samples can 
be collected from the bottom of the grave. To avoid contamination 
of the crime scene and grave environment, any tools used in the 
excavation and recovery of the remains must be sterilised before and 
after use according to the preferred protocol of the research 
laboratory or crime investigation unit. Soil should be collected from 
4 cardinal points in and at the centre of the grave, to ensure a 
representative sample of the entire microbial community at the time 
the grave is discovered. Sterile sample tubes that are DNA/RNA-free 
and DNase/RNase-free need to be  labelled clearly with the case 
number, location and sample date. Triplicate control soil samples 
can be collected from around the grave site at 2 m, 5 m, and 10 m 
intervals to serve as reference samples for the site from undisturbed 
natural areas. On-site and during transport, all the samples must 
be packed individually and kept in an icebox. Once in the laboratory, 
the samples can be stored in a − 20 °C freezer until analysis. Control 
soils need to be sieved through 2 mm mesh to remove any twigs, 
small stones, or debris, while ensuring no contamination from the 
laboratory environment. After microbial DNA extraction, the 
samples can be  prepared for 16S rRNA sequencing through 
MPS. During the bioinformatic pipeline, sequences should 
be  classified, and the microbial composition and relative 
abundance determined.

At this stage, the sequence data can be used to determine based 
on the presence or absence of microbial biomarkers whether a sample 
comes from a human-derived gravesoil , with reference to previously 
published data for the specific environment and conditions (Tables 3, 
4). The sequence data and microbial relative abundances in the 
samples can also be  used to estimate the PBI and PTI. This can 
be done by comparing the community abundance of the sample to a 
trained regression/classification model, such as a machine learning 
random forest model. While the regression and classification models 
central to this approach are still under development, the framework is 
grounded in established principles of machine learning, forensic 
ecology and forensic ecogenomics from previous studies (Johnson 
et al., 2016; Liu et al., 2020; Burcham et al., 2024). As a conceptual tool, 
it highlights a path for future empirical research. By outlining the 
process from sampling to predictive modelling, the proposed 
framework aims to bridge the gap in current post-mortem time-since-
interval estimation, specifically for the use of gravesoil to contribute 
to the PBI and the PTI.

In order to establish the PBI and PTI as a reliable framework for time-
since-interval estimation, it needs to pass through the three categories of 
validation, which are development, internal validation and external 
validation to prove reliability (Budowle et al., 2008). This includes setting 

up empirically sound experimental proof-of-concept or pilot study 
designs to develop and optimise the PBI and PTI protocol for gravesoil, 
from collection to sequencing, as well as developing a regression-based 
model for predictive estimation. The field and laboratory protocol based 
on the framework in Figure 5, and predictive model can be validated 
internally by assessing its performance, sensitivity and reliability against 
control samples as well as additional empirical studies. Finally, the 
robustness of the entire framework can be validated externally through 
collaboration between independent laboratories. The validation process 
can involve two stages. The first stage can entail future research that 
contributes to building, testing and validating of such a predictive 
succession model using data from diverse geographic regions and burial 
conditions. The second stage can align with inter-laboratory proficiency 
where the framework’ and model performances are assessed 
independently by multiple laboratories. In so doing, the developed 
knowledge would contribute to the growing discourse of using microbial 
communities as a high-resolution and reliable tool in forensic 
investigations, particularly for use as a temporal indicator not only for 
time-since-death, but also the time-since-burial and time-since-
translocation of a victim’s remains.

Lastly, complementing the validation process is a protocol that 
delineates essential information required for reporting (Table 5), 
thereby promoting reproducibility and standardization across 
studies. This template addresses the variability in methodological 
approaches and reporting of findings across current microbiome 
studies and aims to foster more inclusive and detailed reporting of 
key elements that form part of experimental designs from sampling 
to sequencing. Ultimately, the inclusion of the information 
highlighted in the table will allow for the advancement of forensic 
ecogenomics and use of soil microbial communities to aid PBI and 
PTI estimations, contributing to the admissibility and 
reproducibility within forensic science.

The framework proposed in this review is modelled after 
established forensic microbial workflows to estimate physiological 
time (Pechal et al., 2014). The framework proposed by Pechal et al. 
(2014) is specifically designed for human-associated microbial 
succession. Although similar to the Pechal et al. (2014) framework, 
the analytical flow for the current proposed framework is adapted 
specifically for gravesoil-based samples and the PBI and PTI time-
since-intervals being estimated. However, due to the shared focus on 
16S rRNA gene profiling, there is a methodological overlap. By 
maintaining methodological continuity, the current framework allows 
for easier integration into existing or recommended forensic and post-
mortem microbial clock workflows from sample collection to analysis, 
thereby contributing to a streamlined overall forensic workflow.

To aid in crime scene reconstruction, multidisciplinary empirical 
research are crucial for developing and refining novel and sensitive 
forensic methods for post-mortem time-since-interval estimation and 
clandestine grave location (Mansegosa et al., 2021; Berezowski et al., 
2022). As a complementary approach, microbial data can also 
be  integrated into multidisciplinary forensic workflows alongside 
forensic entomology (Iancu et al., 2015, 2016, 2018), forensic botany 
(Coyle et  al., 2005; Wiltshire, 2009), drone-based remote sensing 
(Bodnar et al., 2019; de Bruyn et al., 2025) and geophysical approaches 
(Molina et  al., 2015; Berezowski et  al., 2022). The value-added 
outcome will be enhanced strength of the generated and collected 
data, and subsequent interpretation related to the temporality and 
treatment of the victims remains.
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TABLE 3  Study matrix summarizing experimental models, environmental conditions, sequencing approaches, and key findings in reviewed studies from gravesoil microbial communities.

Study Characteristics of the burial 
environment

Sampling location and 
days

Key taxa shifts Findings and accuracy

Cobaugh et al. (2015)

Human donor cadavers (n = 4)

PBI: 83–198 days

Burial conditions: Placed on the surface

Environment: University of Tennessee 

Anthropology Research Facility, Knoxville, 

Tennessee, USA. Temperate deciduous forest, 

well-drained fine-textured clayey soil

Summer and fall seasons

Sample: Ceacum swabbed before 

placement through a small incision, 

soil samples collected prior to 

placement

Control: Control soils collect 

alongside experimental soils

Sampling time: 8 sampling periods: 

Initial, bloat, bloat-active, Active, 

Advanced active, Advanced I, 

Advanced II and Advanced III

Acidobacteria, Nitrospira, Verrucomicrobia and Armatimonadetes 

abundant before cadaver placement but declined during later 

decomposition. Planctomycetes decreased during Bloat-Active to 

Advanced decay II, but returned during Advance III. Firmicutes 

increased during decomposition but decreased during Advanced 

III

Human microbiome:

Active decay: Increase in Bacteroides, Staphylococcus and 

Enterococcus.

Advanced decay: Increase in Lactobacillus, Phascolarctobacterium, 

and Eggerthella

Bacteroides persisted within soil for 198 days post burial. Deline in 

Bacteroides after dry remains were removed (PTI). Decrease in 

abundance by day 126 and taxa undetectable by day 204

The soil microbial community is 

impacted by cadaver placement

Human-derived Bacteroides survives in 

soil outside of the body and persists for 

sometime after remains are removed 

from the site

Weiss et al. (2016)

Pigs (n = 4)

PBI: 9 days (144 ADD)

Burial conditions: Placed 5 m apart on the surface 

on a polypropylenemesh frame

Environment: Mead, Nebraska, USA. Grassland. 

Soil: Silty, clay loam (15.1% sand, 53.6% silt, and 

31.3% clay)

Summer season

Sample: Gravesoil collected 

underneath carcasses (0–5 cm) using a 

soil probe

Control: Control soils.

Sampling time: 0, 1, 2, 4, 5 6, 9, and 

15 days post-mortem (day 3 and 8 

skipped due to thunderstorms)

Candidatus Chthoniobacteraceae dominated all soils during early 

decomposition but decrease as remains decayed. Taxa Gaiellaceae, 

Acidobacteria, and Rhodoplanes also decreased during 

decomposition. Increase in taxa Planococcaceae, Sporosarcina sp., 

Ignatzschineria sp., and Chitinophagaceae as decomposition 

progressed

The presence of bacterial communities 

can distinguish between the gravesoil 

and the control soils

There is a difference in the microbial 

communities depending on the size of 

the associated carcass (1 kg vs. 50 kg)

Olakanye et al. (2017)

Stillborn piglets, leaf litter and 

control graves 

Pigs (n=3), oak leaf litter (n=3), 

and control burials (n=3)

PBI: 270 days

Burial conditions: Each pit was 

50 cm × 30 cm × 40 cm, and 2 m apart

Environment: Site near North Yorkshire, UK. Soil: 

Loam soil constituted by (w/w) 22% clay, 32% silt 

and 46% sand.

Winter, spring, summer, autumn

Sample: 4 soil samples collected from 

each pit, that was homogenised

Control: Control soils from control 

burials

Sampling time: Collected monthly

Dominant phyla: Proteobacteria, Acidobacteria, Verrucomicrobia, 

Bacteroidetes and Actinobacteria

Day 180: Decrease in abundance of Acidobacteria_Gp6_order 

(7.02–14.44%) between the control and treatments. 

Planctomycetales dominant in pig burials (treatment). 

Anaerolineales and Acidobacteria_Gp7_- order increased in leaf 

litter soil

D210: Acidobacteria_Gp6_order and Acidobacteria_Gp16_order 

increased for all samples. Planctomycetales abundance decreased

D240: Increase in abundance of Methylococcales and 

Anaerolineales in leaf litter soil

D270: Increase in abundance of Xanthomonadales and a decrease 

of Acidobacteria_Gp6_order for control soils

Gravesoils from pig burials could 

be distinguished from leaf litter soil

(Continued)
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TABLE 3  (Continued)

Study Characteristics of the burial 
environment

Sampling location and 
days

Key taxa shifts Findings and accuracy

Keenan et al. (2018)

Human donor cadaver (n = 3)

PBI: 4 years

Burial conditions: Two grave pits (~2 m × 2 m × 

0.7 m); mass grave with 3 individuals and empty 

control grave

Environment: University of Tennessee 

Anthropological Research Facility, Tennessee, USA. 

Temperate mixed deciduous forest. Soil type: Plant 

material and loam in the O-A horizons (0–10 cm), 

underlain by clay loam and channery clay loam 

extending to bedrock (limestone, shale, and 

sandstone)

Sample: Destructive sampling through 

excavation; samples collected from 

around the grave (linearly moving 

away from pit), inside the grave and 

under the remains

Control: soils from control burial

Sampling time: Single collection at 

destructive sampling

Human-associated Bacteroides were not detected in the transects, 

but were detected in the bottom grave after 4 years

Human-associated Bacteroides persist 

in graves under remains for 4 years

Olakanye and Ralebitso-Senior 

(2018)

Pig tissue (n = 24), leaf plant litter 

and control soil (80 g)

PBI: 365 days

Burial conditions: Outdoor microcosms

Environment: Sieved soil collected from Bishop 

Burton College of Agriculture, Lincolnshire, UK

July 2013 (summer), January 2014 (winter) and July 

2014 (summer)

Sample: Destructive sampling

Control: Control soils

Sampling time: 7, 14, 28, 60, 120, 180, 

300 and 365

Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes are 

dominant in all microcosms. Sphingobacterium and Pedobacter are 

dominant in the pig soil. While Rhodanobacter and Shinella are 

dominant in the plant litter soil

Day 0: Proteobacteria and Alphaproteobacteria (Hyphomicrobium) 

are dominant

Day 28: Rhizobiaceae increased in plant litter soil. Planococcaceae 

and Micromonosporaceae increased in soil containing pig tissue

Bacteroidetes increased by Day 365 for the soil containing pig 

tissue

Several taxa identified that can be used 

as biomarkers to distinguish soils from 

pig and plant litter seasonally

Procopio et al. (2019)

Pig (n = 4)

PBI: 1–6 months

Burial conditions: Buried in 40 cm deep gravepits

Environment: HuddersFIELD outdoor taphonomy 

facility, University of Huddersfield, UK

May–November 2016 End of spring to the end of 

autumn

Sample: Destructive sampling; samples 

collected from around the remains 

and bagged together

Control: Control soils taken at the 

same depth but in areas with no pig 

remains

Sampling time: 1,2,4, and 6 months

Proteobacteria were the most abundant, followed by Bacteroidetes, 

Acidobacteria, Actinobacteria, and lastly by Firmicutes.

Pig burials: Proteobacteria (Xanthomonadaceae and 

Alcaligenaceae) increased in their abundance, but at 4 months 

post-mortem, Bacteroidetes (Flavobacteriaceae) increased in 

abundance as decomposition progressed. Sphingobacteriaceae 

were abundant after the first month but decreased after 6 months. 

Firmicutes increased in the later deposition stages.

Control burials: Dominant by Acidobacteria followed by 

Proteobacteria.

Shifts in gravesoil microbial 

communities can be distinguished from 

natural control soils

Bisker et al. (2021)

Pig (n = 3), oak leaves (n = 3), 

control burials (n = 3)

PBI: 24 months

Burial conditions: Triplicate burials with either 

piglet or leaf litter. Pigs placed in wire mesh before 

burial

Environment: North Yorkshire, UK. Woodland 

(oak trees). Soil: Clay (22%), silt (32%) and sand 

(46%)

December 2014–December 2015

Sample: Soil samples collected from 4 

regions of each grave (at 20–60 cm 

depth)

Control: Samples from control burials

Sampling time: Sampled monthly for 

12 months, and again at 24 months

Acidobacteria, Proteobacteria, Firmicutes, Planctomycetes, and 

Chloroflexi were dominant in year 2 of the pig burial soils

Methylococcales,

Sinobacteraceae, Candidatus, and Flavobacterium, found in plant 

and pig burials, compared to control soils

Family: Most abundant taxa for extended PBI: RB40_family, 

mn2424_family, Chloroflexi, Chtoniobacteraceae,

Hyphomacrobiaceae, Pirellulaceae, Chitinophagaceae,

Gemmataceae, Sinobacteraceae, Gaiellaceae, and Cytophagaceae.

Phylum and genus level classification 

can distinguish pig and plant litter 

burials from control soils, but a finer 

resolution is needed to distinguish 

between plant litter and pig burials

(Continued)
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TABLE 3  (Continued)

Study Characteristics of the burial 
environment

Sampling location and 
days

Key taxa shifts Findings and accuracy

Burcham et al. (2021)

Pigs (n = 2)

PBI: 10 years

Burial conditions: Placed on the soil surface, wire 

cages placed above pigs

Environment: Benton County near Philomath, 

Oregon, USA. Temperate coniferous forest, 

consisting of Vine Maple, Ocean Spray, salal, and 

bracken fern, and with soils are characterized as the 

Price-MacDunn- Ritner soil series complex

Sample: Soils collected with a 

centrifuge tube underneath and next 

to carcasses at 4 location: 2 control 

samples from sites 10 m away (north 

and south), one sample 1 m north of 

the carcass, and one sample 

underneath the carcass

Control: Soil samples collected on site

Sampling time: Over 10 years: 2 weeks 

(pig 1 only), 1 month, 6 months, 

1 year, 2 years (pig 2 only), 6 years, 

7 years, 10 years

EB1017 genus and Chthoniobacter decreased underneath the 

carcass from 0–24 months. From 24 to 84 months post-mortem 

Chthoniobacter increased in abundance underneath the carcass. 

From 1–12 months post-mortem Rhodospirillaceae genus 

decreased, but increased in abundance from 24–84 months. 

Devosio increased in abundance from 6–24 months post-mortem, 

but decreased underneath the pig carcass from 24–84 months

Distinct gravesoil microbial 

communities can be distinguished from 

control soils 10 years after pig cadaver 

placement

Zhang et al. (2021)

Rats (n = 50)

PBI: 60 days

Burial conditions: Buried 20 cm deep in an open 

space

Environment: Shanxi Medical University, China

Sample: Destructive sampling at each 

time point. Sterile swabs are used to 

collect samples from the gravesoil, 

rectum and skin

Control: Five sterile swabs

Sampling time: Day 0.5, 1, 2, 3, 7, 14, 

30, 45 and 60

Day 0: Proteobacteria, Acidobacteria, Chloroflexi and 

Actinobacteria were dominant

Day 60: Bacteroidetes, Firmicutes and Proteobacteria were the 

dominant phylum. At the family level, the family Bacillaceae, 

Flavobacteriaceae, Alcaligenaceae, Sphingobacteriaceae and 

Caulobacteraceae were dominant.in later post-mortem period

At the beginning of decomposition, the 

3 sites had distinct microbial 

community abundance. During later 

decomposition, the abundance 

becomes similar across all sites

Gravesoil provides the most accurate 

prediction

All OTUs:

Gravesoil: MAE of 2.04 ± 0.35 days

Rectum: MAE of 2.24 ± 0.38 days

Skin: MAE of 2.15 ± 0.40 days

Models with biomarker set:

Gravesoil: MAE of 1.82 ± 0.33 days

Rectum: MAE of 2.06 ± 0.38 days

Skin: MAE of 2.12 ± 0.40 days

Cui et al. (2022)

Mice (n = 65)

PBI: 36 days

Burial conditions: Buried individual in single 

graves (20 cm × 20 cm × 20 cm)

Environment: Forest with loose soil

Sample: 5 mice were destructively 

sampled every 3 days. Gravesoil 

collected from under buried carcasses

Control: Day 0 soils

Sampling time: Days 0, 3, 6, 9, 12, 15, 

18, 21, 24, 27, 30, 33, and 36

Dominant taxa: Proteobacteria, Acidobacteria, Actinobacteria, 

Chloroflexi, Nitrospirae, Bacteroidetes, Thaumarchaeota, 

Gemmatimonadetes, errucomicrobia, Firmicutesand 

Latescibacteria

Proteobacteria and Bacteroidetes increased during decomposition, 

while Acidobacteria, Actinobacteria, Chloroflexi and Nitrospirae 

decreased

Pseudomonas is dominant genera. Oxalobacteraceae, members of 

the family Comamonadaceae, (Vitreoscilla and Sphingobacterium) 

abundance increased during decomposition, while 

Gemmatimonadaceae, RB41 (subgroup 4), Roseiflexus, GR-

WP33-30, Xanthobacteraceae and MB-A2-108 decreased

Soil samples from different PMI can 

be separated from each other

MAE of 1.27 ± 0.18 days within 36 days

(Continued)
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TABLE 3  (Continued)

Study Characteristics of the burial 
environment

Sampling location and 
days

Key taxa shifts Findings and accuracy

Olakanye and Ralebitso-Senior 

(2022)

Pig (n = 1), control (n = 1)

PBI: 180 days (6 months)

PTI: 120 days (4 months)

Burial conditions: Mesocosms consisting of 

stillborn pig and soil control burial (empty)

Environment: Homogenised soil (sandy clay loam) 

from Framwellgate Moor, County Durham, UK

November 2014 (late autumn–winter) to September 

2015 (early autumn)

Sample: Random soil samples 

collected

Control: Soils from the control burial

Sampling time: At 2 and 4 weeks, then 

monthly for a total of 10 months

Pre-exhumation and post-exhumation dominant Phylum: 

Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, 

Actinobacteria and Planctomycetes

Pre-exhumation – Day 14: Increased abundances of 

Pseudomonadales and Flavobacteriales

Day 60 dominated by Pseudomonadales, Flavobacteriales, 

Burkholderiales, and Campylobacterales in the piglet mesocosm

Soil only control mesocosm dominated by were predominance of 

Acidobacteria_Gp6_order, Spartobacteria order, Planctomycetales 

and Rhizobiales

Day 150 with increased Xanthomonadales, Burkholderiales, 

Nitrosomonadales, Sphingobacteriales, and Flavobacteriales in the 

piglet mesocosm

On Day 210 (30 days after grave exhumation) decreased 

dominances in piglet mesocosm of Xanthomonadales and 

Burkholderiales, while Sphingobacteriales, Verrucomicrobiales and 

Sphingomonadales increased in abundance

Xanthomonadales subsequently showed its highest abundance day 

240 (60 days after the pig exhumation)

Day 270 increased abundances of Flavobacteriales and 

Alphaproteobacteria_order but decreased abundance of 

Xanthomonadales of the piglet mesocosm

Day 300 (120 days since exhumation) increased abundances of 

Hydrogenophilales, Clostridiales, Bacteroidales, and 

Flavobacteriales

After exhumation (day 180) 

experimental and control soil could 

be distinguished from each other based 

on family level characterization

Seasonal changes had an effect on the 

microbial activity over time

Yang et al. (2023)

Pig (n = 3)

PBI: 32–40 days

Burial conditions: Placed in a shallow grave

Environment: Animal Care and Use Committee of 

the Nanjing Agricultural University, Nanjing, 

China

Winter and summer seasons

Sample: Rectal samples were collected 

with swab, gravesoil samples were 

collected with a sampler

Control: Day 0 samples

Sampling time:

Winter sampling (40 days): 0, 8, 16, 

24, 32, and 40.

Summer sampling (32 days): 0, 8, 16, 

22, and 32

Phylum:

Firmicutes and Bacteroidota were the abundant in both the winter 

and summer from rectum samples. Proteobacteria was more 

abundant in the rectum samples collected in winter for late 

decomposition

Winter:

The genera Vagococcus, Myroides, and Carnobacterium

Summer:

	•	 The genera Proteus, Candidatus_Soleaferrea, Tepidimicrobium, 

Savagea, and Sporosarcina

Seasonality has an impact on the 

microbial community succession, 

which can impact PMI estimation

Winter pig rectal with MAE of 

2.478 days

Winter pig soil samples with MAE of 

2.001 days

Summer pig rectal samples with MAE 

of 1.375 days

Summer pig soil samples with MAE of 

1.567 days

(Continued)
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5 Laboratory and data analysis: biases 
and limitations

16S rRNA-based techniques are useful for characterising the 
microbiome of terrestrial ecosystems (Gkarmiri et  al., 2017; 
DiLegge et  al., 2022), aquatic ecosystems (Méndez-Pérez et  al., 
2020; Burtseva et al., 2021), the human body (Huttenhower et al., 
2012; Kho and Lal, 2018) and for forensic analyses (Akutsu et al., 
2012; Jesmok et al., 2016; Yang et al., 2024). Several challenges can, 
however, influence sequencing data, resulting in misrepresentation 
of the results, downstream interpretation and overall reliability of 
the derived PMI, PBI and PTI estimations. For instance, a 
considerable issue can be primer bias, where the primers do not 
align with the target DNA template to be amplified (Green et al., 
2015). This can lead to distortions in the data as communities are 
either under- or over-represented in a sample (Lee et  al., 2012; 
Poretsky et al., 2014; Silverman et al., 2021). During the sequencing 
run, it is also possible that cross-sample contamination can occur 
when indexes are misassigned to the wrong samples (sequences) 
due to barcode mismatching or index hoping (Guenay-Greunke 
et  al., 2021). Additionally, a common problem in molecular 
laboratories is contamination of samples with low biomass input 
from shared reagents, equipment or workflows (Salter et al., 2014; 
Minich et  al., 2019). Many of these challenges can lead to 
skewed results.

16S rRNA-based techniques are also limited by their reliance on 
the relative abundance of microbial communities (Poretsky et  al., 
2014). For microbial studies, raw sequence data are reported as 
proportions, as data are normalised by dividing counts for microbial 
features (OTUs or ASVs) by the total number of reads resulting in 
relative abundances (Zemb et  al., 2020; Xia, 2023). However, the 
challenge of transforming counts to proportions to normalise data is 
that the observed microbial shifts are not necessarily reflective of the 
actual change in the total microbial community of the sample 
(Tsilimigras and Fodor, 2016). Instead, they could indicate 
compositional artefacts related to the expression of microbiome data 
as proportions normalised to a constant sum (Weiss et al., 2017; Alteio 
et  al., 2021). While normalisation such as through rarefying 
(McMurdie and Holmes, 2014; Hong et al., 2022) is an important step 
in the bioinformatics workflow to correct for technical read depth or 
amplification biases, and to allow for the cross-sample comparisons, 
it can affect the reported microbial community composition (Weiss 
et al., 2017; Kumar et al., 2018; Swift et al., 2023). Apparent shifts in 
the relative abundance of one microbial community might be due to 
a decrease in the relative abundance of another microbial community, 
rather than reflecting biological change within the sample (Poretsky 
et al., 2014; Weiss et al., 2017; Swift et al., 2023). This can confound the 
results by obscuring increases, or overemphasising declines, as a 
portion of the data is removed (Tsilimigras and Fodor, 2016; Xia, 
2023). Understanding the compositional bias within samples is 
important, especially when the total microbial load matters, such as 
in developing post-mortem microbial clocks for forensic investigations 
(Kaszubinski et al., 2020; Tozzo et al., 2022).

Transforming 16S data from relative to absolute abundances can 
be achieved through quantitative PCR (qPCR) (Zemb et al., 2020) or by 
for instance, cell counts through flow cytometry (Frossard et al., 2016; 
Vandeputte et al., 2017). When paired with appropriate internal standards, 
techniques such as qPCR (Dreier et al., 2022) and shotgun metagenomics T
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TABLE 4  Summary of the methodological confounders and control measures in several studies applying microbial data from gravesoil.

Study Sample collection and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model handling

Cobaugh et al. (2015) Handling: Samples stored at −20 °C until further 

analysis

Extraction: PowerLyzer PowerSoil DNA Isolation Kit 

(Mobio Laboratories, Inc.)

16S rRNA gene V4 region

Quantification:

qPCR Primers: 1055F/1392R

Primers: HuBac566f/HuBac692r

Targeted for human-specific Bacteroides

Platform: MiSeq (Illumina)

Primers: 515F/806R

Mothur (v.1.33.3) Pipeline:

	•	 Chimaera removal (UCHIME)

	•	 Taxonomic classification OTUs

	•	 Taxonomic alignment (SILVA database)

Normalisation: 121,340 reads per sample

Diversity and statistical analysis:

	•	 Alpha Diversity: Simpson Diversity index and Chao richness

	•	 ANOVA to measure statistical differences in microbial activity

	•	 NMDS to visualise Bray–Curtis similarity between microbial communities

Weiss et al. (2016) Handling: Soil probe cleaned with ethanol between 

samples; samples stored at −20 °C until further 

analysis

Extraction: DNA extraction based on Earth 

Microbiome Project standard protocols and Metcalf 

et al. (2013)

16S rRNA gene V4 region

Platform: HiSeq (Illumina)

Primers: –

QIIME Pipeline followed Metcalf et al. (2013) piprline:

	•	 Pipeline alignment (Greengenes database) 

Normalisation: 14,000 reads per sample; additionally, also ran 

cumulative sum scaling (CSS)

Diversity and statistical analysis:

	•	 UniFrac unweighted and weighted distances to explore abundances and patterns of 

community dissimilarity

	•	 PERMANOVA for statistical significance of sampling groups based non-weighted 

and weighted distances

Olakanye et al. (2017) Handling: Samples stored at −20 °C until further 

analysis

Extraction: FastDNA1Spin Kit for Soil (MP 

Biomedicals, UK)

Control: PCR negative controls

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: Based on Kozich et al. (2013) (Kozich et al., 2013)

Mothur Pipeline:

	•	 Quality checked and filtered (UCHIME)

	•	 Taxonomic alignment (SILVA database)

	•	 Taxonomy assignment (RDP classifier)

Normalised: 6750 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon diversity

	•	 ANOVA: TO evaluate all data

	•	 Bray-Curtis (BC) distance un-weighted pair-group using arithmetic average 

(UPGMA) to test taxa similarities between the controls and treatments 

clustering algorithm

	•	 Spearman’s rank correlation coefficient between soil pH, temperature and phyla 

relative abundance

Keenan et al. (2018) Handling: Soil samples stored at −80 °C until 

extraction; extraction stored at −20 °C until further 

analysis

Extraction: DNeasy Powerlyzer Powersoil kit (Qiagen)

qPCR

Femto Bacterial DNA Quantification kit

Targeted to human-associated Bacteroides

Statistical Analysis:

	•	 One-way ANOVA: Differences between samples at depth and transects

	•	 Two-way ANOVA: Effects of depth and distance along the transect

	•	 PCA: overall differences in soil biogeochemistry between all samples

(Continued)
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TABLE 4  (Continued)

Study Sample collection and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model handling

Olakanye and Ralebitso-

Senior (2018)

Handling: Samples stored at −20 °C until further 

analysis

Extraction: FastDNA1Spin Kit for Soil (MP 

Biomedicals, UK)

Control: Triplicate extracts from control soil pooled

16S rRNA gene V1-3 region

Platform: MiSeq (Illumina)

Primers: 28F/519R

Pipeline:

	•	 Operational taxonomic unit selection (UPARSE)

	•	 Chimaera removal (UCHIME)

	•	 Taxonomy assignment (USEARCH)

	•	 Phylogenetic tree generation (MUSCLE version 2.2.4)

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon diversity

	•	 Phylogenetic distance matrices: Bray–Curtis dissimilarity with NMDS

	•	 PERMANOVA (PAST 3.10, 2015): Differences at family-level taxonomic resolution 

between control and treatments (plant litter and pig)

	•	 Pair wise multiple comparisons after a multi-way ANOVA for significant differences 

in OTUs between the control, treatments and seasons

Procopio et al. (2019) Handling: Samples stored at −20 °C until further 

analysis

Extraction: FastDNA1Spin Kit for Soil (MP 

Biomedicals, UK)

Controls: PCR negative controls included

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515FB/806RB

Pipeline:

	•	 Clustering into clustered into OTUs (VSEARCH v2.3.4)

	•	 Taxonomic assignment (Greengenes v.13–8 database)

Normalised: 38,684 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon diversity index, Simpson index, Fisher index, Chao1, 

abundance-based coverage estimator

	•	 Beta diversity: NMDS for visualisation of Bray-Curtis distances

	•	 PERMANOVA to assess whether communities were statistically significant

Bisker et al. (2021) Handling: Soil samples stored at −20 °C; extractions 

stored at −20 °C

Extraction: FastDNA Spin Kit for Soil (MP

Biomedicals, UK)

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME2 Pipeline:

	•	 Denoised (DADA2)

	•	 Taxonomic assignment (Greengenes)

Normalisation: 4000 samples per read

Diversity and statistical analysis:

	•	 Kruskal-Wallis test: To determine significant differences in alpha-diversity

	•	 PERMANOV: To test differences in beta-diversity

Burcham et al. (2021) Handling: Soil samples transported to lab and stored at 

−80 °C

Extraction: MoBio PowerSoil DNA extraction kit 

(MoBio Laboratories)

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME2 Pipeline:

	•	 Trimmed reads and denoised (Deblur v.1.1.0)

	•	 ASVs creation and taxonomic assignment (Greengenes 13.8)

	•	 Phylogentic tree generation (SEPP)

Diversity and statistical analysis:

	•	 Alpha and Beta diversity: Shannon’s diversity, Pielou’s evenness, observed ASVs 

(richness), Faith’s phylogenetic diversity, and weighted and unweighted 

UniFrac distances

	•	 PCoA for visualisation

	•	 PERMANOVA: beta diversity metrics were analysed at 120 months, comparing the 

soil locations

Machine learning algorithm:

	•	 Random forest

Validation:

(Continued)
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TABLE 4  (Continued)

Study Sample collection and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model handling

Zhang et al. (2021) Handling: Samples stored at −80 °C until further 

analysis

Extraction: DNeasy PowrSoil Kit (Qiagen)

16S rRNA gene V3-V4 regions

Platform: MiSeq (Illumina)

Primers: 341F/806R

QIIME Pipeline:

	•	 Sequences merged, quality controlled, filtered and clustered 

(cutadapt, VSEARCH and USEARCH)

	•	 Chimaera removal (UCHIME)

	•	 Clustered into Operational Taxonomic Units (OTUs)

	•	 Taxonomic assignment (SILVA (v132) database)

Normalisation: 6982 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon diversity index

	•	 Bray-Curtis distance: Microbial community successions, community similarities

	•	 PCoA based on Bray-Curtis distance: To visualise differences between samples of 

various time points

	•	 PERMANOVA: to investigate the effect of PMI and sampling body sites on bacterial 

communities of burial cadavers

Machine learning algorithms:

	•	 Random forest

Validation: 10-fold cross-validation

Cui et al. (2022) Handling: Soil samples transported on ice to lab and 

stored at −80 °C

Extraction: FastDNA Spin Kit for Soil (MP 

Biomedicals, UK)

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME2 Pipeline:

	•	 Read filtered, denoised, merged and chimaera 

removed (DADA2)

	•	 Amplicon sequence variants (ASVs) creation and taxonomix 

assignment (Greengenes 13.8)

	•	 Phylogentic tree generation (SEPP)

Normalised: 21,310 sequences per sample

Diversity and statistical analysis:

	•	 Alpha-diversity: Shannon and Chao 1 indices

	•	 NMDS was used to determine the clustering of different soil samples based on the 

Bray–Curtis distance

	•	 PERMANOVA was used to examine the difference in bacterial 

community compositions

	•	 Redundancy analysis (RDA) was performed to arrange bacterial communities based 

on environmental factors

	•	 One-way ANOVA with the Student–Newman–Keuls

	•	 (SNK) test was used to compare the differences among samples

Machine learning algorithms

	•	 Random forest

Validation: 10-fold cross-validation

Olakanye and Ralebitso-

Senior (2022)

Handling: Soil samples stored at −20 °C

Extraction: FastDNA Spin kits for Soil (MP 

Biomedicals, UK)

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: SB701-702/SA501-508

Mothur (v.1.36.1) Pipeline:

	•	 Sequences filtered and quality checked (UCHIME)

	•	 Taxonomic classification (RDP)

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon–Wiener indices and Simpson diversity

	•	 PCA was then applied to demonstrate temporal clustering and the differences in 

fungal and bacterial diversity

	•	 Bray–Curtis dissimilarity with NMDS for phylogenetic distance matrices

(Continued)
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Study Sample collection and extraction Sequencing design and bioinformatics 
workflow

Diversity analysis, statistical treatment, model handling

Yang et al. (2023) Handling: Samples stored at −80 °C until further 

analysis, and extraction stored at −20 °C

Extraction: E. Z. N. A. Soil DNA Kit (Omega Bio-tek, 

Inc., Norcross, GA, USA)

16S rRNA gene V3-V4 regions

Platform: MiSeq (Illumina)

Primers: 341F/806R

QIIME Pipeline:

	•	 Reads quality controlled and filtered (Pear (v0.9.6), Vsearch 

(v2.7.1), and UCHIME)

	•	 Sequences clustered into OTUs

Diversity and statistical analysis:

	•	 Alpha diversity: Chao1, Shannon, and Simpson indexes

	•	 PCA and NMDS for visualisation

Machine learning algorithms

	•	 Random forest

Validation: 10-fold cross-validation

Bisker et al. (2024) Handling: Soil samples transported on ice to lab and 

stored at −20 °C, extractions stored at −20 °C

Extraction: FastDNASpin Kit for Soil (MP 

Biomedicals, UK)

16S rRNA gene V4 region

Platform: MiSeq (Illumina)

Primers: 515F/806R

QIIME2 Pipeline:

	•	 Denoised (DADA2)

	•	 Quality filtered (UCHIME)

	•	 Taxonomic assignment (RDP14 reference database)

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon diversity and Simpson index

	•	 Kruskal-Wallis test was used to determine significant differences in alpha-diversity 

between groups.

	•	 Two-way ANOVA for time and decomposition aboveground vs. in the subsurface

Wang et al. (2024) Handling: –

Extraction: FastDNA spin kit for soil (MP 

Biomedicals, UK)

16S rRNA gene V3-V4 regions

Platform: MiSeq (Illumina)

Primers: 341F/806R

QIIME Pipeline:

	•	 Clustered into OTUs

	•	 taxonomix assignment (Greengenes 13.8)

Normalised: 5631 sequences per sample

Diversity and statistical analysis:

	•	 Alpha diversity: Shannon index

	•	 Bray–Curtis distance: for differences in microbial community composition between 

groups of diversity

	•	 Kruskal–Wallis test was used to test significant differences between burial and 

control soils.

	•	 Spearman correlation analysis was used to evaluate the correlation between ADD and 

the relative abundance of each soil bacterial family

Machine learning algorithms

	•	 Random forest

Validation: 10-fold cross-validation

TABLE 4  (Continued)

https://doi.org/10.3389/fmicb.2025.1684366
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


de Bruyn et al.� 10.3389/fmicb.2025.1684366

Frontiers in Microbiology 32 frontiersin.org

(Poretsky et al., 2014) can complement 16S rRNA sequencing. By basing 
sequencing output on known quantities or absolute abundances, these 
approaches enable researchers to detect actual changes in microbial 
community abundance within samples (Durazzi et al., 2021). 16S rRNA, 
qPCR, and shotgun metagenomics are limited by the inherent variability 
of the experimental design and the preferred protocol for DNA extraction 
(Sui et al., 2020; Shaffer et al., 2022) and molecular microbial analysis 
(Schloss et  al., 2011; Zhao et  al., 2023). This inherent variability 
underscores the need for reliable absolute standards for reproducibility 
and comparison of sample data across biogeographic regions and time 
periods. Also, incorporating internal standards can aid in overcoming 
compositionality issues (Poretsky et al., 2014; Harrison et al., 2021). This 
is especially the case for interpreting shifts in microbial community 
abundance and diversity across different samples, time periods and 
environmental conditions. Spike-in control via the inclusion of a known 
amount of synthetic DNA to samples can help track the loss of DNA from 
the initial extraction, purification and amplification process (Poretsky 
et al., 2014; Tourlousse et al., 2016; Camacho-Sanchez, 2024). As part of 
good scientific practice and for quality control purposes, the inclusion of 
several controls in sample collection, processing and analysis is essential 
for veracity in forensic research. The inclusion of negatives and positive 
controls (Edmonds and Williams, 2018) and field blanks (Hornung et al., 
2019) is useful to monitor contamination at different stages of the 
molecular analysis workflow, particularly in cases of outdoor field 
sampling. The inclusion of blanks during the extraction process can aid 
in further detecting any contaminated reagents in extraction kits 
(“kitome”) (Salter et al., 2014; Olomu et al., 2020). Ultimately, the controls 

incorporated into the workflow from sampling to analysis, including the 
potential contamination identified, should be  reported transparently 
(Hornung et al., 2019).

Equally important is the appropriate use of machine learning 
approaches in microbiome research for forensic application to ensure they 
are scientifically sound and practical for real-world forensic cases. 
Currently, the limitations of machine learning for post-mortem time-
since-interval estimation are that for datasets to be comparable, models 
are generated based on data from overlapping periods of decomposition, 
i.e., sample data from different studies are cut to the same decomposition 
timeline or post-mortem days. This means data from longer PMI and PBI 
periods are excluded from the datasets (Belk et al., 2019). Additionally, 
models are based on biases inherent in the dataset and experimental 
design, such as sampling site, project study period (weeks, months), 
environmental conditions, and molecular microbial analysis protocols 
(Metcalf, 2019; Namkung, 2020). As such, the same abiotic and biotic 
factors impacting the decomposition will also limit the application of 
machine learning models as universal predictive models (Chourasia et al., 
2025). Because machine learning does not perform well at extreme ends 
of PMI (Belk et  al., 2018), it is recommended that datasets need to 
be expanded to include microbiome data for extended post-mortem 
periods, applied further to prolonged post-burial and post-translocation 
intervals. The integration of machine learning into the development of 
PMI, PBI and PTI microbial clocks necessitates the standardisation of 
analytical protocols. Key methodological considerations include: cross-
validation of data to prevent overfitting (Namkung, 2020) through 
holdouts, where machine learning models are trained on datasets, e.g., 

FIGURE 5

Conceptual framework for using gravesoil microbial communities to estimate the PBI and the PTI. This framework is modelled after the Pechal et al. 
(2014) framework to estimate PMI using microbial communities from the body.
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from specific sites, while withholding a single dataset such as a single site 
to validate the algorithm’s performance (Sharma et al., 2020; Papoutsoglou 
et al., 2023); and reporting of the variance of the model performance, i.e., 
sensitivity of the model’s predictions to changes in the training set (Ma 
et al., 2025; Romano et al., 2025).

To avoid inadvertently boosting model performance due to data 
leakage (Papoutsoglou et al., 2023), research and practitioner teams 
must ensure that, for example, temporally distinct samples from the 
same source (cadaver or gravesoil) are not unintentionally mixed 
into the training dataset. While the use of AI allows for the inclusion 
of large and complex datasets, their predictive models raise 
questions regarding generalizability and applicability to real-world 
forensic cases (Metcalf, 2019; Chourasia et al., 2025). Thus, further 
model testing is needed to capture more nuanced shifts in microbial 
communities after death for more reliable time-since-interval 
estimations across regions and seasons. Models need to be tested 
and cross-validated on diverse datasets including different burial 
conditions, different host models, different environmental 
conditions, and unknown training data to assess the generalizability 
of the machine learning models (Kubinski et al., 2022; Papoutsoglou 
et al., 2023), and to develop better predictive outcomes for post-
mortem time-since-intervals using microbial data. However, there 
is currently a lack of complete and available datasets for PBI and 
PTI estimations, limiting their incorporation in machine learning 
algorithms to develop more reliable time-since-interval estimations. 
Finally, to make PMI, PBI and PTI results comparable and 
transferable between species and biogeographic regions, 
standardised protocols are needed to ensure the scientific rigour 
and robustness of data and the reproducibility and validity of results 
(Poussin et  al., 2018; Schloss, 2018; Singh and Agarwal, 2024; 

Swayambhu et al., 2025), ultimately contributing to admissibility in 
forensic investigations.

6 Conclusion: challenges and future 
directions

Traditional methods, such as forensic entomology, forensic botany 
and forensic taphonomy, for estimating time-since-intervals in forensic 
investigations exhibit significant limitations due to the variability 
introduced by biotic and abiotic factors influencing the decomposition 
process. Additionally, these approaches rely largely on the experience and 
knowledge of the practitioner and the availability of regional databases for 
specimen identification (insects and plants), both of which are often 
lacking. Moreover, current experimental research designs fall short, often 
lacking replication and control burials, and failing to reflect current 
forensic casework. The characterization of the soil microbiome is a useful 
tool for clandestine grave identification. This review aimed to enhance the 
discussion related to post-mortem microbial clocks with an overview and 
introduction to the time-since-burial (PBI) and newly introduced concept 
of time-since-translocation (PTI).

This review recommends that microbial molecular ecology analysis 
through forensic ecogenomics offers a promising avenue for achieving 
accurate post-mortem time-since-interval estimations, encompassing 
PMI, PBI and PTI. Leveraging molecular approaches from ecology, 
we argue that forensic ecogenomics provides a viable tool to investigate 
clandestine burials through the analysis of shifts within gravesoil 
microbial communities for more precise post-mortem time-since-interval 
estimations. MPS and other molecular techniques, such as proteomics 
and transcriptomics have shown potential in characterising microbial 

TABLE 5  Recommended structured reporting template outlining the essential information and methodological elements for reproducible, standardized 
and transparent forensic ecogenomics workflows.

Description Key elements

Metadata Site locations

Case ID (if available)

Date and time of site visits

Site description

Burial/deposition conditions

Season

Other multidisciplinary approaches incorporated

Sampling methodology Sampling rational

Sample site location

Sample collection depth

Sampling frequency

Equipment used for sampling

Contamination controls

Sterilization procedures

Sample handling Conditions for sample storage and transportation from the field to the laboratory, as well as storage conditions at the laboratory

Controls and standards Sampling: Inclusion of controls and field blanks during sample collection

Microbial analysis: Positive and negative controls for the extraction and amplification process

MPS Analysis Bioinformatics pipeline: Framework and version, plugins and packages (version number and year), reference database (version)

Reporting of read depth, normalization procedures and validation

Diversity analysis and statistical analysis

Data availability Supplemental information

Code or data storage and accessibility
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communities, offering an innovative approach for reliable time-since 
estimations. Advancements in MPS have significantly enhanced our 
understanding of post-mortem microbial communities 
(thanatomicrobiome, epinecrotic microbiome, and soil microbiome) 
involved in decomposition. These microbial communities demonstrate 
considerable potential to be used as a universal microbial network for 
forensic applications.

The several examples presented in this perspective indicate that shifts 
in soil microbial communities for buried remains cannot only be used as 
a “microbial clock” to estimate the PMI. Instead, depending on the burial 
and environmental conditions, they can distinguish gravesoils months to 
years after deposition and burial. Additionally, the persistence of microbial 
communities in gravesoils is useful because it allows for the differentiation 
of gravesoils from equivalent undisturbed natural soils due to the presence 
of non-native bacterial taxa. This is useful not only for PBI estimation but 
also for locating clandestine graves. Emerging evidence from the reviewed 
studies indicates that the soil microbiome offers a useful tool that can 
contribute to post-mortem time-since intervals. The decomposition of a 
body leaves a lasting impression on the soil composition and microbial 
communities, which can persist from weeks to years depending on the 
burial conditions and the treatment of the body. For PBI and PTI 
estimations, this review identified bacterial phyla, Acidobacteria, 
Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, and 
Proteobacteria, as consistent and informative biomarkers in burial 
contexts. At genus level, studies have reported that the presence or absence 
of specific microbial communities can be used to distinguish experimental 
(decomposition) soils from control soils without decomposing remains. 
However, a finer resolution, most likely species level characterisation is 
needed to distinguish plant litter from mammalian decomposition soils, 
and potentially animal from human derived decomposition. Additionally, 
considering that soil microbial communities undergo further shifts once 
remains are translocated, they could be useful in establishing a “microbial 
clock” for translocated remains. However finer taxonomic classification 
of microbial communities is needed for a more robust approach. By 
leveraging the changes in microbial community structure over time, 
forensic scientists can develop models to estimate both PBI and PTI.

This review highlights the need for further research to validate 
microbial community analysis across diverse biogeographical regions 
to enhance its precision and reliability as a tool for forensic 
investigations. Such validation could potentially improve the accuracy 
of post-burial interval (PBI) and post-translocation interval (PTI) 
estimations, ultimately enhancing methods for clandestine grave 
identification. To address the variability in reporting and 
methodological approaches across current microbiome studies, there 
is a need for standardisation and validation of experimental designs 
across diverse biogeographic regions and seasonal conditions to ensure 
broader applicability and reliability. Parallel with scenarios of surface 
depositions, future research should also focus on remains that have 
been buried in the sub-surface or relocated to refine and validate these 
models. To support standardization, transparency and reproducibility, 
it is recommended that methodological details and metadata related to 
the experimental designs, bioinformatics pipeline and machine 
learning protocol be included in future studies following community 
standards such as the Minimum Information about any (x) Sequence 
(MIxS) (Yilmaz et al., 2011). This review introduces a novel conceptual 
framework for PBI and PTI estimation alongside a reporting template. 
The reporting template outlines key information and methodological 
elements that must be systematically recorded and reported, including 
site metadata, sampling methodology, sample handling, the inclusion 

of controls and standards, microbial analysis and sequencing pipelines, 
and data availability. Along with standardised, reproducible and 
transparent outcomes, the recommended approaches will also allow for 
the cross-study comparisons and the inclusive integration of forensic 
ecogenomics into other multidisciplinary workflows. Integration of 
PBI and PTI estimation into the broader post-mortem time-since-
interval estimations provides a more comprehensive approach, 
contributing to forensic investigations. The proposed conceptual 
framework, while still in the developmental stages, can contribute to 
and enhance ongoing efforts toward stringent practices and external 
validation for forensic acceptance. Ultimately, continued research and 
validation across diverse biogeographic regions are essential to 
establish forensic ecogenomics approaches as a standard practice, 
thereby enhancing the precision and reliability of forensic 
investigations, contributing to the resolution of crimes.
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