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Background: The rise of antibiotic resistance underscores the urgent need

for new antimicrobial agents. Nucleoside antibiotics are a structurally diverse

class with broad biological activities, among which purine-derived N-nucleoside

antibiotics (N-NAs) are of particular interest as their purine-linked frameworks

enable diverse enzymatic modifications that yield compounds with distinct

pharmacological profiles.

Aim of the review: This review summarizes the bioactivity and biosynthetic

logic of representative purine-derived N-NAs, including pentostatin-type

compounds, angustmycins, and deazapurine analogues, to provide insights into

the genome-based discovery of related natural products.

Key scientific concepts of the review: By outlining conserved enzymes and

genetic features within known BGCs, we illustrate how core enzyme probes

can be used for genome-guided mining of putative clusters. This approach

emphasizes both the opportunities and challenges in predicting novel N-NA

producers from genomic data.

Conclusion: Understanding the biosynthesis and genetic organization of

N-NAs not only sheds light on their structural diversity but also provides

a framework for genome mining. Specific subclasses such as pentostatin-,

angustmycin-, and deazapurine-type compounds exhibit Structure–Activity

relationships that could guide the rational design and genome-based discovery

of new nucleoside antibiotics.

KEYWORDS

purine-derived N-nucleoside antibiotics, bioactivity, biosynthetic pathway, gene cluster
mining, genome-guided discovery

1 Introduction

Nucleoside antibiotics (NAs) comprise a diverse group of naturally occurring
compounds derived from nucleosides or nucleotides, predominantly sourced from
microorganisms. Given the pivotal role of nucleosides and nucleotides in fundamental
metabolic processes, their antibiotic analogues demonstrate a broad spectrum of biological
activities (Winn et al., 2010). Nucleoside antibiotics display antibacterial, antiviral,
antifungal, antitumor, and herbicidal effects. Specifically, antibacterial NAs impede
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peptidoglycan synthesis by targeting bacterial cell wall biosynthesis 
(Winn et al., 2010). Antifungal NAs typically inhibit fungal chitin 
synthases or interfere with protein biosynthesis, while antiviral 
NAs hinder translation by blocking peptidyl transferase activity 
(Dmitriev et al., 2020; Zhou and Reynolds, 2024). Although these 
mechanisms are generally selective for each biological activity, 
certain NAs possess structural features that enable multiple modes 
of action, leading to overlapping antibacterial or antifungal eects 
(Niu and Tan, 2015). 

Based on the relationship between sugars and nucleobases, 
these NAs can be classified into two distinct categories: 
N-nucleosides (C-N bond) and C-nucleosides (C-C bond) 
(Shiraishi and Kuzuyama, 2019). Based on the categorization of 
nucleoside groups, NAs can be classified into pyrimidine-derived 
and purine-derived analogues. Recent years have witnessed 
numerous reviews that comprehensively summarize the discovery 
and biosynthesis of pyrimidine-derived nucleoside antibiotics, 
while there is a scarcity of reports on purine-derived compounds 
(McErlean et al., 2021). Specifically, nucleoside antibiotics derived 
from guanine have received limited attention in the literature 
due to their infrequent discoveries. Structurally, these antibiotics 
can be further classified into four distinct classes: base analogues, 
simple nucleosides, acyl and glycosyl nucleosides, and nucleotides 
(Isono, 1988). Nucleoside analogues exhibit a remarkable chemical 
diversity, and their biosynthesis and biological activity are governed 
by tailoring enzymes. 

Among NAs, purine-derived N-nucleoside antibiotics (N-NAs) 
form a distinctive subclass characterized by the attachment of 
purine bases to sugar moieties via N-glycosidic bonds. Purine-
derived N-NAs have shown certain pharmacological advantages. 
For example, exogenous purine nucleosides such as guanosine 
have been reported to act as adjuvants enhancing the eÿcacy of 
β-lactam antibiotics against MRSA in vitro (Nolan Aaron et al., 
2022). Furthermore, purine N-NAs analogues can combine potent 
antimicrobial activity with modifications that improve in vivo eect 
and reduce toxicity in some cases (Motter et al., 2024). These 
observations suggest that beyond scarcity of reports, the inherent 
bioactivity, structural versatility, and combinatorial potential make 
N-NAs promising candidates for antibiotic development. 

In this review, we summarize the bioactivities and biosynthetic 
pathways of representative N-NAs (Figure 1), highlight common 
features of their biosynthetic gene clusters (BGCs), and discuss 
strategies for mining putative clusters from genomic databases. 
By integrating biosynthetic knowledge with genome-guided 
approaches, this review aims to provide a methodological 
framework that may accelerate the discovery of new nucleoside 
antibiotics. 

2 Bioactivity and biosynthesis of 
purine-derived N-nucleoside 
antibiotics 

2.1 Compounds originating from 
pentostatin-type BGCs 

The compounds grouped in this section due to their similar 
biosynthetic origins from Pentostatin-type gene clusters. The 

compounds share a purine-derived core structure linked to a 
modified ribose or carbocyclic sugar moiety. These nucleoside 
analogues are typically characterized by variations at the 2 or 
3 positions of the sugar and by modifications to the adenine 
or related purine base, such as deoxygenation, halogenation, or 
amination. The presence of carbocyclic or arabino-configured 
sugars confers enhanced metabolic stability and resistance to 
enzymatic degradation, features that are closely related to their 
potent biological activities. 

Pentostatin (PTN, compound 1), an eective inhibitor of 
adenosine deaminase, has gained significant utilization in the 
clinical management of malignant tumors and has garnered 
considerable interest among researchers (Figure 1). The distinctive 
1,3-diazepine ring, particularly the R configuration of the chiral 
alcohol in the heterocyclic ring, endows it with distinctive biological 
activity and potent inhibitory properties against adenosine 
deaminase (Hanvey et al., 1987). As an anti-metabolic antitumor 
agent, 1 exerts its eects by elevating the levels of deoxyadenosine 
triphosphate in patients through the inhibition of adenosine 
deaminase activity in tumor cells. This action results in the 
suppression of ribonucleotide reductase, leading to a deficiency 
in the remaining three deoxynucleotide triphosphates essential 
for DNA synthesis. Consequently, the DNA synthesis process is 
impeded, thereby inhibiting lymphocyte proliferation (Schramm 
and Baker, 1985). 

9-β-D-Arabinofuranosyladenine (Vidarabine, Ara-A, 
compound 2), initially isolated from a marine sponge, exhibits 
significant eÿcacy as an antiviral agent against various viral DNA 
polymerases, making it a valuable therapeutic option for viral 
infections (Bergmann and Feeney, 1950). Furthermore, in their 
study, Awaya et al. (1979) successfully isolated 2 from Streptomyces 
and observed its potent herbicidal activity against Echinochloa 
crus-galli, Digitaria adscendens, and Chenopodium ficifolium. 

Specifically, compounds 1 and 2 are produced by the same 
biosynthetic pathway, and similar biosynthetic relationships are 
observed for the pairs aristeromycin (ARM, 4) and coformycin 
(COF, 5), as well as 2-Cl PTN (6) and 2-amino deoxy-Ara (7) (Gao 
et al., 2017). Furthermore, neplanocin A (NEP-A, 8), neplanocin 
D (NEP-D, 9), carbocyclic inosine (10), carbocyclic COF (11) 
and adecypenol (12) are also considered PTN-related compounds 
(Zhang et al., 2020; Figure 1). 

Notably, pentostatin-type BGC encodes two distinct product 
types through separate biosynthetic pathways. Despite being 
biosynthesized from the same gene cluster, these compounds 
exhibit complementary roles via a protector–protégé strategy. 
In this mechanism, compound 1 acts as a “protector” that 
mitigates potential cytotoxicity or metabolic interference caused 
by compound 2 (Wu et al., 2017). This strategy ensures that the 
biosynthetic production of both compounds can proceed eÿciently 
within the same organism without self-toxicity, while maintaining 
high yields of both products. Figures 2a, b illustrate the distinct yet 
interconnected pathways, highlighting the specific enzymatic steps 
responsible for the biosynthesis of each compound. 

The pen BGC, identified in Streptomyces antibioticus NRRL 
3238, encodes the biosynthesis of both compounds 1 and 2, 
which are synthesized through two distinct pathways originating 
from the same gene cluster. The pen cluster spans a length 
of 10.5 kb and encompasses a total of 10 genes, ranging from 
penA to penJ. Among them, PenA, PenB, and PenC play crucial 
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FIGURE 1 

Chemical structures of representative purine-derived N-nucleoside antibiotics discussed in this review. Compounds are categorized and 
color-coded by structural class: red (1-12): pentostatin-related nucleosides, green (13, 14): angustmycins, orange (15-20): pyrrolopyrimidine 
nucleosides, black (21-27): other purine nucleoside analogs are discussed in detail in Section “2.4 N-NAs without Identified BGCs,” along with their 
names and corresponding references. The chemically synthesized analogues are highlighted with rectangular box. 

roles as key enzymes in the biosynthesis of 1 (Figure 2a). PenA 
exhibits similarity to ATP phosphoribosyltransferase, specifically 
the HisG enzyme, which is responsible for the coupling of 
phosphoribosyl pyrophosphate (PRPP) to dATP in the histidine 
metabolic pathway. Furthermore, PenA has been identified as 
a rate-limiting enzyme in the biosynthetic pathway of 1 (Ren 
et al., 2020). PenB, a member of the short-chain dehydrogenase 
family, plays a crucial role in the final step in the biosynthesis of 
compound 1. On the other hand, the precise function of PenC, 
which shares homology with phosphoribosylaminoimidazole-
succinocarboxamide (SAICAR) synthase, remains unclear. The 
postulated function of Based on its homology, PenC is postulated 

to catalyze an amide- or C–N bond-forming step analogous to 
SAICAR synthase in purine biosynthesis, possibly linking an 
aminoimidazole intermediate to a ribose-phosphate derivative 
during the construction of the compound 1 scaold. The remaining 
six enzymes, namely PenD-I, are associated with the synthesis 
of 2. Among them, PenD and PenG function as S-adenosyl-L-
homocysteine (SAH) hydrolases but with distinct roles. Specifically, 
PenG controls the forward reaction, while PenD is responsible 
for the reverse reaction, enabling the mutual conversion of SAH 
and adenosine. Furthermore, the biosynthesis of 2 involves the 
modification of three phytoene dehydrogenases (PenH-J) as a 
heteromeric complex. Finally, the major facilitator superfamily 
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FIGURE 2 

Proposed biosynthetic pathways of PTN-related compounds (Adapted from references: Wu et al., 2017; Xu et al., 2018; Gao et al., 2017). (a) PTN-like 
gene clusters (genes with the same color indicate enzymes with identical or similar functions), (b) biosynthetic pathway of compounds 1, 5, and 6, 
and (c) biosynthetic pathway of compounds 2, 4, 7, and 8. Enzymes are color-coded by compound pairs: red for compounds 1 and 2, orange for 
compounds 4 and 5, and green for compounds 7 and 8. 

transporter encoded by penE is responsible for the transportation 
of compound 2 (Figure 2b). 

The fungus Cordyceps kyushuensis has been found to possess a 
gene cluster, referred to as BGC of 1, consisting of four genes (ck1-
ck4), which play a crucial role in the biosynthesis of cordycepin 
(3) and 1 (Zhao et al., 2019). Similarly, in the fungi Cordyceps 

militaris, a cluster named cns has been identified, spanning a 
length of 10.3 kb and comprising four genes (cns1 to cns4). 
Among these genes, cns1 and cns2 are responsible for the synthesis 
of 3, while cns3 and cns4 are involved in the biosynthesis and 
transportation of compound 1 (Xia et al., 2017). Similar to the 
bacterial synthesis pathway, the protector-protégé strategy is also 
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observed in fungus Cordyceps kyushuensis. Compound 1 exhibits 
the ability to protect 3 from deamination by adenosine deaminase, 
thereby enhancing the eÿciency of 3 synthesis. The occurrence 
of similar N-NA biosynthetic architectures across bacteria and 
fungi likely reflects convergent recruitment of primary metabolic 
enzymes into specialized pathways, suggesting a functional rather 
than genealogical conservation. 

The BGC mac responsible for the production of 4 and 5 pair 
in Micromonospora haikouensis DSM 45626 was identified through 
a BLASTP search in the NCBI database, with PenB and PenC as 
target enzymes (Xu et al., 2018). The cluster mac comprises 24 
genes and spans a length of 25.3 kb. It was determined that the 
genes macWGJK are associated with the synthesis of 4, while the 
genes macXMNO are involved in the synthesis of 5. This confirms 
that the biosynthesis of 4 and 5 occurs through separate pathways. 
Furthermore, analysis of the metabolites of M. haikouensis using 
liquid chromatography-mass spectrometry (LC-MS) revealed the 
simultaneous detection of 8, 9, and 10. Thus, the remaining genes 
in the cluster may related to these compounds. In Streptomyces 
kaniharaensis SF-557, a gene cluster known as cof was identified, 
which is responsible for the synthesis of compound 5. This 
cluster bears a striking resemblance to the pen cluster (Figure 2; 
Ren et al., 2020). 

In Actinomadura sp. ATCC 39365, the ada cluster was reported, 
which is responsible for the synthesis of the 6 and 7 pair (Gao 
et al., 2017). This cluster consists of 13 genes, adaA-M. Through 
bioinformatics analysis, it has been determined that adaA-E, adaF-
J, and adaLM form a distinct transcription unit. The biosynthetic 
pathway of this gene cluster closely resembles that of the pen 
cluster (Figure 2). It is believed that adaABCEKL is involved in the 
biosynthesis of 6, while the other four genes, adaFGJM, may play a 
role in the production of 7. 

2.2 Compounds originating from 
angustmycin-type BGCs 

Angustmycins (AGMs) are a class of purine-derived 
nucleoside analogues featuring an exo-glycal moiety and a 
five-membered sugar ring. The two primary representatives of 
this class are angustmycin A (decoyinine, 13) and angustmycin C 
(psicofuranine, 14) (Yu et al., 2021). Compound 13 and 14 serve as 
analogues of adenosine, distinguished by an extra hydroxymethyl 
group at the C2 position. The structural disparity between 13 
and 14 lies in the presence of an exo-5,6-ene bond in the former 
(Figure 1). 

These two compounds exhibit antibacterial and antitumor 
properties through the inhibition of GMP synthesis. Compound 
13 additionally demonstrates the ability to inhibit spore formation 
in Bacillus subtilis and other bacteria (Hanka, 1960; Ochi, 1987). 
Research indicates that compound 13 eectively suppresses the 
invasion of melanoma cells in vitro and reduces tumorigenicity 
in immunocompromised mice, suggesting its potential as a novel 
anti-melanoma drug (Bianchi-Smiraglia et al., 2015). Furthermore, 
recent findings reveal that compound 13 acts as a cytokinin, 
known as linfusu, capable of inducing adventitious root or bud 
dierentiation (Yu et al., 2021). 

In characterizing the BGC encoding for the biosynthetic 
enzymes producing AGMs, Shiraishi et al. (2021) used 
conserved protein sequences such as Ari9 and MacI/T as probe. 
BLASTP searches was conducted on two Streptomyces strains, 
S. angustmyceticus NBRC 3934 and S. decoyicus NRRL 2666, both 
known to produce AGMs. This search identified agm1 and dcy1 
in the respective genomes. Further examination of the flanking 
regions revealed that agm1-6 and dcy1-6 are associated with AGMs 
biosynthesis. Each cluster also contains a single transcriptional 
repressor gene: agmR in the Streptomyces strain harboring the agm 
cluster, and dcyR in the strain with the dcy cluster (Shiraishi et al., 
2021). 

In the study conducted by Yu et al. (2021), the cluster agm, 
which is responsible for the synthesis of AGMs, was directly cloned 
from S. angustmyceticus JCM 4053. This cluster has a total length 
of 9.8 kb and consists of 9 genes, namely agmA-E, agmR, and 
agmT1/T2. The successful heterologous expression of the agm 
cluster was achieved in Streptomyces coelicolor M154, allowing 
for the analysis of the AGM synthesis pathway. The function of 
AgmA was determined to be AMP phosphoribohydrolase. In vitro 
experiments confirmed that AgmA utilizes AMP/dAMP as a 
substrate to produce adenine, thus enabling the synthesis of AGMs. 
AgmB has been demonstrated to possess AMP phosphatase activity, 
facilitating the conversion of AMP to adenosine. AgmC functions 
as a ribose 5-P pyrophosphokinase, catalyzing the conversion of 
ATP to AMP during the synthesis of AGMs. AgmD is presumed 
to exhibit a 3-epimerase function akin to AlsE, while AgmE acts as 
a phosphoallulosyltransferase, playing a role similar to APRTase in 
AGMs biosynthesis. Notably, a particularly intriguing step in the 
AGMs synthesis pathway involves the final dehydration reaction 
carried out by AgmF, resulting in the dehydration of 14 to yield 
13. When 14 is utilized as a substrate for the purpose of verifying 
the enzymatic reaction of AgmF, it is observed that the substrate 
undergoes incomplete transformation during the conversion to 
13. Consequently, it can be inferred that the dehydration reaction 
mediated by AgmF is reversible, as depicted in Figure 3 (Shiraishi 
et al., 2021; Yu et al., 2021). 

In summary, the biosynthesis process of AGMs, as illustrated in 
Figure 3, involves the glycosyl epimerization (AgmD), followed by 
phosphorylation, adenine incorporation, dephosphorylation, and 
final dehydration (AgmF), yielding 13 from 14. 

2.3 Compounds originating from 
pyrrolopyrimidine-type BGCs 

Pyrrolopyrimidine nucleosides analogues, commonly known 
as deazapurines, constitute an important class of compounds 
with remarkably diverse modifications. The distinctive feature 
of these compounds is the connection between the deazapurine 
core and the ribose moiety through N-glycosidic linkage. This 
review mainly summarizes the reported biological activities and 
biosynthetic pathways of deazapurine-containing compounds, 
namely toyocamycin (15), sangivamycin (17), tubercidin (19), 
along with analogues such as 5-deoxy-toyocamycin (16), 5-deoxy-
sangivamycin (18), and 3-deoxy-tubercidin (20) (Figure 1). 

Compounds 15 and 17 were first identified and investigated 
in the 1970s (Uematsu and Suhadolnik, 1974). Compound 15 
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FIGURE 3 

The biosynthesis pathways of AGMs [Adapted from references (Shiraishi et al., 2021; Yu et al., 2021)]. AgmA–F correspond to S. angustmyceticus 
JCM 4053, while agm1–6 correspond to S. angustmyceticus NBRC 3934. AMP is the abbreviation for adenosine monophosphate. 

exhibits notable eÿcacy against diverse plant pathogenic fungi, thus 
presenting promising prospects for its utilization as an agricultural 
fungicide. On the other hand, compound 17 and its chemically 
modified derivatives hold considerable importance in clinical 
applications, demonstrating biological activities encompassing 
anti-tumor, anti-viral, and anti-bacterial properties (Uematsu and 
Suhadolnik, 1974, 1975; Zhang et al., 2022). Compounds 16 and 18, 
derived through chemical total synthesis, represent dehydroxylated 
analogues of 15 and 17 (Dong et al., 2019). 

Currently, three Streptomyces strains, namely S. rimosus ATCC 
14673, S. diastatochromogenes 1628, and S. ahygroscopicus S91, have 
been reported to possess gene clusters associated with biosynthesis 
of 15 (McCarty and Bandarian, 2008; Xu et al., 2019; Ma et al., 2020; 
Liu et al., 2022; Zhang et al., 2022). Notably, the gene cluster in 
S. rimosus consists of 13 genes, denoted as toyA-M, responsible for 
the synthesis of both 15 and 17. Conversely, the gene clusters in 
the other two strains, toyA-I and M, lack toyJKL, resulting in the 
exclusive synthesis of compound 15. 

McCarty and Bandarian (2008) conducted a study on the 
biosynthesis pathway of the toyA-M gene cluster in S. rimosus 
ATCC 14673. According to the synthesis process, the 13 genes are 
categorized into three catalytic steps. Specifically, genes toyB, C, 
D, and M encode enzymes for deazapurin synthesis, while genes 
toyE-I encode enzymes for purine salvage (Figure 4b; McCarty 
and Bandarian, 2008). It is worth noting that genes toyJ-L encode 
Toyocamycin nitrile hydratase (TNHase), which play a role in 
the third step involving the hydration of cyanide-containing 
compounds from 15 to 17. However, these three genes are solely 
associated with the synthesis of compound 17. Consequently, in 
S. diastatochromogenes and S. albulus, only genes toyA-I and M 
are present. The organization and sequence of the toy cluster 
exhibited variations among the three bacterial stains (Figure 4a; 
Xu et al., 2019). Notably, TNHase distinguishes itself from other 
nitrile hydratase (NHase) enzymes by comprising three subunits, 
as opposed to the typical two subunits (Kobayashi et al., 1992). 
The regulatory gene toyA, which encodes a substantial ATP-binding 

regulator belonging to the LuxR family (LAL-family), plays an 
essential role in the synthesis of 15. Disruption of the toyA gene 
led to a near-complete abolished 15 production. 

Compound 19 has been recognized for its biological activity 
for many years, and recent studies have revealed additional 
bioactivities. Its notable in vitro inhibitory activity against drug-
resistant strains of Mycobacterium tuberculosis and reference 
strains of no tuberculosis Mycobacteria renders it a valuable 
candidate for further investigation as a potential treatment for 
mycobacterial infections (Sun et al., 2023). Additionally, the 
compound has exhibited significant antiviral activity against both 
classical and variant strains of porcine epidemic diarrhea virus 
(PEDV) (Wang et al., 2024). Furthermore, compound 19 exhibited 
substantial anti-small cell lung cancer (SCLC) activity both in vitro 
and in vivo, while demonstrating minimal or negligible cytotoxic 
eects on normal primary/tracheal bronchial epithelial cells 
(PBTECs), thus indicating its high selectivity toward SCLC cells 
and its potential suitability for targeted drug development (Chen 
et al., 2022). Additionally, the eÿcacy of 19 and its chemically 
synthesized analogue 20 has been demonstrated in the treatment of 
life-threatening conditions such as African trypanosomiasis caused 
by Trypanosoma brucei parasites, Chagas disease, and sleeping 
sickness (Hulpia et al., 2019a,b; Aldfer et al., 2022). 

The biosynthetic pathway of compound 19 was characterized 
through the reconstruction of the tub cluster from S. tubercidicus 
NBRC 13090 in a heterologous host, as depicted in Figure 4a 
(Liu et al., 2018). Similar to the biosynthetic pathways of 15 
and 17, the first step in biosynthesis of 19 is the conversion of 
GTP to CDG (7-carboxy-7-deazaguanine), as shown in Figure 4b 
(McCarty and Bandarian, 2008; McCarty and Bandarian, 2012). 
In both toyocamycin and tubercidin biosynthesis, 7-carboxy-7-
deazaguanine (preQ0) serves as a key intermediate linking the 
common deazapurine scaold formation to subsequent tailoring 
reactions. The functions of TubA-E and G exhibit similarities 
to those of ToyB-E, H, and I. TubF has been confirmed as an 
atypical decarboxylase that likely utilizes prenylated-FMN as a 
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FIGURE 4 

Gene clusters and the biosynthetic pathways of pyrrolopyrimidine nucleosides analogous (Adapted from references: McCarty and Bandarian, 2008; 
Xu et al., 2019; Liu et al., 2018). (a) The toy and tub gene clusters derived from S. rimosus ATCC14673, S. diastatochromogenes 1628, 
S. ahygroscopocus S91, and S. tubercidicus NBRC13090, respectively, where genes of the same color represent homologous functions. (b) 
Color-coded functions in the biosynthetic pathway; red box denotes the deazapurin biosynthesis stage in the production of compound 15, green 
box represents the purine salvage stage, blue dotted box is solely relevant to the biosynthesis of 17, orange box is associated with the biosynthesis of 
19, and the enzymes marked black are involved in PreQ0 biosynthesis. 

cofactor, while the functions of ToyH and I have yet to be verified 
(Liu et al., 2018). 

2.4 N-NAs without Identified BGCs 

Additional compounds, including 3-amino-
3-deoxyadenosine (21) (Pugh and Gerber, 1963), 
2-amino-2-deoxyadenosine (22) (Gao et al., 2017), 2-amino-
2-deoxyguanosine (23), neplanocin B (24), neplanocin C (25), 

neplanocin F (26) (De Clercq, 1985; Hamon et al., 2010) and 

cadeguomycin (27) (Yuan et al., 1985), are also classified as 
purine-derived N-NAs (Figure 1). 

Among these compounds, 21, 22, and 27 have been reported 

to inhibit tumor growth and metastasis, demonstrating clear 

antitumor activity (Pugh and Gerber, 1963; Shigeura, 1975; 
Nakanishi et al., 1976; Sato et al., 1979; Tanaka, 1983; Yuan 

et al., 1985). Compounds 24–26 were obtained from the soil 
fungus Ampullariella regularis along with 8 and 9. Compound 

8, which serves as a lead compound in the neplanocins 
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FIGURE 5 

Probe-based genome mining of three types of purine-derived 
N-nucleoside antibiotics. 

family, has demonstrated antiviral eects, and both 8 and 26 
exhibit antitumor activities in mice (Hayashi et al., 1980; De 
Clercq, 1985; Hamon et al., 2010). However, the majority of 
existing research on the aforementioned compounds primarily 
examines their biological activity and chemical synthesis, with 
no literature reporting their biosynthetic pathways. However, 
plausible probes can be proposed based on their structural features 
and likely biosynthetic logic. These compounds share purine-
based scaolds and exhibit aminotransferase- or dehydrogenase-
dependent modifications similar to those found in pentostatin- and 
angustmycin-type pathways. Therefore, genes encoding adenosine 
deaminase like enzymes, ribose 5-phosphate pyrophosphokinases, 
or aminotransferases could serve as potential probes for mining 
related clusters in actinobacterial or fungal genomes. 

3 Mining for biosynthetic gene 
clusters encoding for enzymes 
responsible for production of 
purine-derived N-nucleoside 
antibiotics 

A widely used approach in genome-guided discovery of natural 
products is to employ experimentally characterized core enzymes 
as sequence probes to identify homologous BGCs (Shi et al., 2019; 
Bauman et al., 2021). For example, the pen BGC and the mac BGC 
mentioned in Section “2 Bioactivity and biosynthesis of purine-
derived N-nucleoside antibiotics” were both identified by using 
their respective core enzyme as sequence probes (Wu et al., 2017; 
Xu et al., 2018). This strategy has been successfully applied to 
various classes of secondary metabolites and is increasingly used 
for nucleoside antibiotics (Du et al., 2023). By focusing on enzymes 
that are essential for scaold construction and contain conserved 
catalytic motifs, researchers can retrieve candidate BGCs from 
genome databases and generate hypotheses about the possible 
products encoded by these clusters (Figure 5). 

It is noteworthy that most purine-derived N-NA biosynthetic 
gene clusters cannot be predicted by antiSMASH, and only one 
cluster among the reported examples is recognized, emphasizing 
the need for probe-based genome mining approaches. To illustrate 

this concept, we summarize three representative groups of purine-
derived N-NAs and the enzymes most commonly used as probes. 
For PTN-type compounds, enzymes such as PenABC play a 
crucial role in the synthesis of PTN-related compounds. These 
proteins are highly conserved and widely distributed, making them 
potential candidates for identifying new PTN-related biosynthetic 
pathways in existing microbial genomes (Wu et al., 2017). For 
AGMs, the minimal conserved set AgmB-E was employed, and 
retrieved sequences may suggest variants that dier from known 
AGMs by the presence or absence of specific tailoring steps (e.g., 
absence of AgmF may be linked to bacterial adaptation to the 
surrounding environment, and the lack of AgmA allows for the 
utilization of adenine as a substrate for AGM production in 
certain bacterial strains or the potential involvement of alternative 
phosphoribohydrolases in a manner akin to AgmA, without being 
confined to a gene cluster) (Mitani et al., 1977; Yu et al., 2021). 
For deazapurine analogues (e.g., toyocamycin, tubercidin), the 
biosynthesis of preQ0 necessitates the involvement of four enzymes 
(ToyB-D and M). Subsequently, preQ0 is converted to 15 and 
17 by ToyE-I (McCarty et al., 2009; Battaglia et al., 2011; Yuan 
et al., 2018). Therefore, the presence of ToyB-D/TubA-C is essential 
for the biosynthesis of deazapurines. Additionally, ToyH/TubE 
and ToyI/TubG perform analogous functions in adenylosuccinate 
synthesis and dephosphorylation, respectively. Consequently, it 
can be inferred that a BGC containing enzymes similar to ToyB-
D, H, and I may be involved in deazapurines biosynthesis. 
Therefore, ToyB-D and TubA-E are suitable probes; retrieved hits 
indicate potential producers of toyocamycin-like scaolds, though 
variations in cluster composition may lead to novel analogues 
distinct from those already characterized. 

In this way, the conceptual flow from probe enzyme, 
through homologous sequence identification and candidate cluster 
recognition, to predicted compound provides a framework 
for genome mining. 

4 Conclusions and perspectives 

Purine-derived N-NAs constitute a structurally diverse and 
biologically versatile family of natural products. Their remarkable 
range of activities–spanning antibacterial, antifungal, antiviral, 
and antitumor eects–underscores their potential as valuable 
therapeutic agents. Advances in elucidating the biosynthetic 
pathways of representative compounds, including PTNs, AGMs, 
and deazapurine analogues, have revealed a set of conserved 
enzymatic transformations that underpin scaold construction and 
structural diversification. 

The increasing availability of microbial genome sequences, 
coupled with refined genome mining strategies, provides 
new opportunities to uncover additional N-NA BGCs. Core 
biosynthetic enzymes, once biochemically characterized, can serve 
as informative probes for identifying homologous clusters in 
diverse microorganisms. Nevertheless, bioinformatic predictions 
should be regarded as hypothesis-generating: the functional 
assignment of putative clusters requires experimental validation 
through genetic, biochemical, and metabolomic approaches. 

Looking forward, several challenges remain. First, the structural 
complexity of N-NAs often involves tailoring steps that are 
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poorly understood, complicating the prediction of final products. 
Second, the functional redundancy of enzyme homologs across 
dierent BGCs increases the diÿculty of distinguishing genuine 
N-NA clusters from unrelated pathways. Third, translating genome 
mining leads into practical drug discovery will require eÿcient 
heterologous expression systems and advanced analytical pipelines 
for metabolite detection. 

Despite these challenges, the integration of genomics, 
synthetic biology, and high-resolution metabolomics is expected 
to accelerate the discovery of novel N-NAs. By linking conserved 
enzymology with innovative mining approaches, researchers can 
expand the known chemical space of nucleoside antibiotics and 
identify promising leads to address the urgent demand for new 
antimicrobial and anticancer agents. 
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