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Background: The rise of antibiotic resistance underscores the urgent need
for new antimicrobial agents. Nucleoside antibiotics are a structurally diverse
class with broad biological activities, among which purine-derived N-nucleoside
antibiotics (N-NAs) are of particular interest as their purine-linked frameworks
enable diverse enzymatic modifications that yield compounds with distinct
pharmacological profiles.

Aim of the review: This review summarizes the bioactivity and biosynthetic
logic of representative purine-derived N-NAs, including pentostatin-type
compounds, angustmycins, and deazapurine analogues, to provide insights into
the genome-based discovery of related natural products.

Key scientific concepts of the review: By outlining conserved enzymes and
genetic features within known BGCs, we illustrate how core enzyme probes
can be used for genome-guided mining of putative clusters. This approach
emphasizes both the opportunities and challenges in predicting novel N-NA
producers from genomic data.

Conclusion: Understanding the biosynthesis and genetic organization of
N-NAs not only sheds light on their structural diversity but also provides
a framework for genome mining. Specific subclasses such as pentostatin-,
angustmycin-, and deazapurine-type compounds exhibit Structure—Activity
relationships that could guide the rational design and genome-based discovery
of new nucleoside antibiotics.

KEYWORDS

purine-derived N-nucleoside antibiotics, bioactivity, biosynthetic pathway, gene cluster
mining, genome-guided discovery

1 Introduction

Nucleoside antibiotics (NAs) comprise a diverse group of naturally occurring
compounds derived from nucleosides or nucleotides, predominantly sourced from
microorganisms. Given the pivotal role of nucleosides and nucleotides in fundamental
metabolic processes, their antibiotic analogues demonstrate a broad spectrum of biological
activities (Winn et al., 2010). Nucleoside antibiotics display antibacterial, antiviral,
antifungal, antitumor, and herbicidal effects. Specifically, antibacterial NAs impede
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peptidoglycan synthesis by targeting bacterial cell wall biosynthesis
(Winn et al., 2010). Antifungal NAs typically inhibit fungal chitin
synthases or interfere with protein biosynthesis, while antiviral
NAs hinder translation by blocking peptidyl transferase activity
(Dmitriev et al., 2020; Zhou and Reynolds, 2024). Although these
mechanisms are generally selective for each biological activity,
certain NAs possess structural features that enable multiple modes
of action, leading to overlapping antibacterial or antifungal effects
(Niu and Tan, 2015).

Based on the relationship between sugars and nucleobases,
these NAs can be classified into two distinct categories:
N-nucleosides (C-N bond) and C-nucleosides (C-C bond)
(Shiraishi and Kuzuyama, 2019). Based on the categorization of
nucleoside groups, NAs can be classified into pyrimidine-derived
and purine-derived analogues. Recent years have witnessed
numerous reviews that comprehensively summarize the discovery
and biosynthesis of pyrimidine-derived nucleoside antibiotics,
while there is a scarcity of reports on purine-derived compounds
(McErlean et al., 2021). Specifically, nucleoside antibiotics derived
from guanine have received limited attention in the literature
due to their infrequent discoveries. Structurally, these antibiotics
can be further classified into four distinct classes: base analogues,
simple nucleosides, acyl and glycosyl nucleosides, and nucleotides
(Isono, 1988). Nucleoside analogues exhibit a remarkable chemical
diversity, and their biosynthesis and biological activity are governed
by tailoring enzymes.

Among NAs, purine-derived N-nucleoside antibiotics (N-NAs)
form a distinctive subclass characterized by the attachment of
purine bases to sugar moieties via N-glycosidic bonds. Purine-
derived N-NAs have shown certain pharmacological advantages.
For example, exogenous purine nucleosides such as guanosine
have been reported to act as adjuvants enhancing the efficacy of
B-lactam antibiotics against MRSA in vitro (Nolan Aaron et al,
2022). Furthermore, purine N-NAs analogues can combine potent
antimicrobial activity with modifications that improve in vivo effect
and reduce toxicity in some cases (Motter et al., 2024). These
observations suggest that beyond scarcity of reports, the inherent
bioactivity, structural versatility, and combinatorial potential make
N-NAs promising candidates for antibiotic development.

In this review, we summarize the bioactivities and biosynthetic
pathways of representative N-NAs (Figure 1), highlight common
features of their biosynthetic gene clusters (BGCs), and discuss
strategies for mining putative clusters from genomic databases.
By integrating biosynthetic knowledge with genome-guided
approaches, this review aims to provide a methodological
framework that may accelerate the discovery of new nucleoside
antibiotics.

2 Bioactivity and biosynthesis of
purine-derived N-nucleoside
antibiotics

2.1 Compounds originating from
pentostatin-type BGCs

The compounds grouped in this section due to their similar
biosynthetic origins from Pentostatin-type gene clusters. The
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compounds share a purine-derived core structure linked to a
modified ribose or carbocyclic sugar moiety. These nucleoside
analogues are typically characterized by variations at the 2" or
3’ positions of the sugar and by modifications to the adenine
or related purine base, such as deoxygenation, halogenation, or
amination. The presence of carbocyclic or arabino-configured
sugars confers enhanced metabolic stability and resistance to
enzymatic degradation, features that are closely related to their
potent biological activities.

Pentostatin (PTN, compound 1), an effective inhibitor of
adenosine deaminase, has gained significant utilization in the
clinical management of malignant tumors and has garnered
considerable interest among researchers (Figure 1). The distinctive
1,3-diazepine ring, particularly the R configuration of the chiral
alcohol in the heterocyclic ring, endows it with distinctive biological
activity and potent inhibitory properties against adenosine
deaminase (Hanvey et al., 1987). As an anti-metabolic antitumor
agent, 1 exerts its effects by elevating the levels of deoxyadenosine
triphosphate in patients through the inhibition of adenosine
deaminase activity in tumor cells. This action results in the
suppression of ribonucleotide reductase, leading to a deficiency
in the remaining three deoxynucleotide triphosphates essential
for DNA synthesis. Consequently, the DNA synthesis process is
impeded, thereby inhibiting lymphocyte proliferation (Schramm
and Baker, 1985).

9-B-D-Arabinofuranosyladenine (Vidarabine, Ara-A,
compound 2), initially isolated from a marine sponge, exhibits
significant efficacy as an antiviral agent against various viral DNA
polymerases, making it a valuable therapeutic option for viral
infections (Bergmann and Feeney, 1950). Furthermore, in their
study, Awaya et al. (1979) successfully isolated 2 from Streptomyces
and observed its potent herbicidal activity against Echinochloa
crus-galli, Digitaria adscendens, and Chenopodium ficifolium.

Specifically, compounds 1 and 2 are produced by the same
biosynthetic pathway, and similar biosynthetic relationships are
observed for the pairs aristeromycin (ARM, 4) and coformycin
(COE, 5), as well as 2’-C1 PTN (6) and 2’-amino deoxy-Ara (7) (Gao
et al., 2017). Furthermore, neplanocin A (NEP-A, 8), neplanocin
D (NEP-D, 9), carbocyclic inosine (10), carbocyclic COF (11)
and adecypenol (12) are also considered PTN-related compounds
(Zhang et al., 2020; Figure 1).

Notably, pentostatin-type BGC encodes two distinct product
types through separate biosynthetic pathways. Despite being
biosynthesized from the same gene cluster, these compounds
exhibit complementary roles via a protector-protégé strategy.
In this mechanism, compound 1 acts as a “protector” that
mitigates potential cytotoxicity or metabolic interference caused
by compound 2 (Wu et al., 2017). This strategy ensures that the
biosynthetic production of both compounds can proceed efficiently
within the same organism without self-toxicity, while maintaining
high yields of both products. Figures 2a, b illustrate the distinct yet
interconnected pathways, highlighting the specific enzymatic steps
responsible for the biosynthesis of each compound.

The pen BGC, identified in Streptomyces antibioticus NRRL
3238, encodes the biosynthesis of both compounds 1 and 2,
which are synthesized through two distinct pathways originating
from the same gene cluster. The pen cluster spans a length
of 10.5 kb and encompasses a total of 10 genes, ranging from
penA to pen]. Among them, PenA, PenB, and PenC play crucial

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1684225
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Wu et al.

10.3389/fmicb.2025.1684225

HQ NH, 5 NH, HO HQ
N N~ N
<1 f) (LJ f) ¢ f /lm
HO N N HO N
HO'
1 3 4
NH. HO
. 2 NH, (6} E HO
2N N~ N N 2
N NH
4 2
s ¢ J < ) < | < | N a
N NS z NN N
HO N HO N N~ HO N— HO N Y
- % T TN T ey
HO  OH HO  ©OH HO  OH HO OH HO  OH
8 9N 10 11 12
NH, NH, W NH, H,N NH, NH,
/N = N </N = N / A N ad Znd JN
| NS
) HO N \N) HO NN
l[() o o
i \\\\ 0
“on HO
S HO  OH
o) ()” HO OH
13 14 15 17 19
NH, H,oN N NH, NH2 H2
\ N
/ / % / \>
) k N
ll()
11»( o)
HO HO
IlO ()II IIO OH ()” HoN ”n OH HO ” NH,
16 18 20
o] NH, HoN NH, Ho—/° o
HN N N—~
Jt / T <’ f{q PPN /N
N \N) ¢ J | P
Ho NN Ho NTONTONH,
0}
HO
OH HO  OH HO __“OH
23 24 25 26 27
FIGURE 1
Chemical structures of representative purine-derived N-nucleoside antibiotics discussed in this review. Compounds are categorized and
color-coded by structural class: red (1-12): pentostatin-related nucleosides, green (13, 14): angustmycins, orange (15-20): pyrrolopyrimidine
nucleosides, black (21-27): other purine nucleoside analogs are discussed in detail in Section "2.4 N-NAs without Identified BGCs,"” along with their
names and corresponding references. The chemically synthesized analogues are highlighted with rectangular box.

roles as key enzymes in the biosynthesis of 1 (Figure 2a). PenA
exhibits similarity to ATP phosphoribosyltransferase, specifically
the HisG enzyme, which is responsible for the coupling of
phosphoribosyl pyrophosphate (PRPP) to dATP in the histidine
metabolic pathway. Furthermore, PenA has been identified as
a rate-limiting enzyme in the biosynthetic pathway of 1 (Ren
et al.,, 2020). PenB, a member of the short-chain dehydrogenase
family, plays a crucial role in the final step in the biosynthesis of
compound 1. On the other hand, the precise function of PenC,
which shares homology with phosphoribosylaminoimidazole-
succinocarboxamide (SAICAR) synthase, remains unclear. The
postulated function of Based on its homology, PenC is postulated
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to catalyze an amide- or C-N bond-forming step analogous to
SAICAR synthase in purine biosynthesis, possibly linking an
aminoimidazole intermediate to a ribose-phosphate derivative
during the construction of the compound 1 scaffold. The remaining
six enzymes, namely PenD-I, are associated with the synthesis
of 2. Among them, PenD and PenG function as S-adenosyl-L-
homocysteine (SAH) hydrolases but with distinct roles. Specifically,
PenG controls the forward reaction, while PenD is responsible
for the reverse reaction, enabling the mutual conversion of SAH
and adenosine. Furthermore, the biosynthesis of 2 involves the
modification of three phytoene dehydrogenases (PenH-J) as a
heteromeric complex. Finally, the major facilitator superfamily
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transporter encoded by penE is responsible for the transportation
of compound 2 (Figure 2b).

The fungus Cordyceps kyushuensis has been found to possess a
gene cluster, referred to as BGC of 1, consisting of four genes (ckI-
ck4), which play a crucial role in the biosynthesis of cordycepin
(3) and 1 (Zhao et al., 2019). Similarly, in the fungi Cordyceps
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militaris, a cluster named cns has been identified, spanning a
length of 10.3 kb and comprising four genes (cnsl to cus4).
Among these genes, cnsl and cns2 are responsible for the synthesis
of 3, while ¢ns3 and cus4 are involved in the biosynthesis and
transportation of compound 1 (Xia et al., 2017). Similar to the
bacterial synthesis pathway, the protector-protégé strategy is also

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1684225
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Wu et al.

observed in fungus Cordyceps kyushuensis. Compound 1 exhibits
the ability to protect 3 from deamination by adenosine deaminase,
thereby enhancing the efficiency of 3 synthesis. The occurrence
of similar N-NA biosynthetic architectures across bacteria and
fungi likely reflects convergent recruitment of primary metabolic
enzymes into specialized pathways, suggesting a functional rather
than genealogical conservation.

The BGC mac responsible for the production of 4 and 5 pair
in Micromonospora haikouensis DSM 45626 was identified through
a BLASTP search in the NCBI database, with PenB and PenC as
target enzymes (Xu et al., 2018). The cluster mac comprises 24
genes and spans a length of 25.3 kb. It was determined that the
genes macWGJK are associated with the synthesis of 4, while the
genes macXMNO are involved in the synthesis of 5. This confirms
that the biosynthesis of 4 and 5 occurs through separate pathways.
Furthermore, analysis of the metabolites of M. haikouensis using
liquid chromatography-mass spectrometry (LC-MS) revealed the
simultaneous detection of 8, 9, and 10. Thus, the remaining genes
in the cluster may related to these compounds. In Streptomyces
kaniharaensis SF-557, a gene cluster known as cof was identified,
which is responsible for the synthesis of compound 5. This
cluster bears a striking resemblance to the pen cluster (Figure 2;
Ren et al., 2020).

In Actinomadura sp. ATCC 39365, the ada cluster was reported,
which is responsible for the synthesis of the 6 and 7 pair (Gao
et al., 2017). This cluster consists of 13 genes, adaA-M. Through
bioinformatics analysis, it has been determined that adaA-E, adaF-
J, and adaLM form a distinct transcription unit. The biosynthetic
pathway of this gene cluster closely resembles that of the pen
cluster (Figure 2). It is believed that adaABCEKL is involved in the
biosynthesis of 6, while the other four genes, adaFGJM, may play a
role in the production of 7.

2.2 Compounds originating from
angustmycin-type BGCs

(AGM:s)
nucleoside analogues featuring an exo-glycal moiety and a

Angustmycins are a class of purine-derived
five-membered sugar ring. The two primary representatives of
this class are angustmycin A (decoyinine, 13) and angustmycin C
(psicofuranine, 14) (Yu et al.,, 2021). Compound 13 and 14 serve as
analogues of adenosine, distinguished by an extra hydroxymethyl
group at the C2’ position. The structural disparity between 13
and 14 lies in the presence of an exo-5,6-ene bond in the former
(Figure 1).

These two compounds exhibit antibacterial and antitumor
properties through the inhibition of GMP synthesis. Compound
13 additionally demonstrates the ability to inhibit spore formation
in Bacillus subtilis and other bacteria (Hanka, 1960; Ochi, 1987).
Research indicates that compound 13 effectively suppresses the
invasion of melanoma cells in vitro and reduces tumorigenicity
in immunocompromised mice, suggesting its potential as a novel
anti-melanoma drug (Bianchi-Smiraglia et al., 2015). Furthermore,
recent findings reveal that compound 13 acts as a cytokinin,
known as linfusu, capable of inducing adventitious root or bud
differentiation (Yu et al., 2021).
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In characterizing the BGC encoding for the biosynthetic
producing AGMs, (2021)
conserved protein sequences such as Ari9 and Macl/T as probe.

enzymes Shiraishi et al. used
BLASTP searches was conducted on two Streptomyces strains,
S. angustmyceticus NBRC 3934 and S. decoyicus NRRL 2666, both
known to produce AGMs. This search identified agml and dcyl
in the respective genomes. Further examination of the flanking
regions revealed that agm1-6 and dcyl-6 are associated with AGMs
biosynthesis. Each cluster also contains a single transcriptional
repressor gene: agmR in the Streptomyces strain harboring the agm
cluster, and dcyR in the strain with the dcy cluster (Shiraishi et al.,
2021).

In the study conducted by Yu et al. (2021), the cluster agm,
which is responsible for the synthesis of AGMs, was directly cloned
from S. angustmyceticus JCM 4053. This cluster has a total length
of 9.8 kb and consists of 9 genes, namely agmA-E, agmR, and
agmT1/T2. The successful heterologous expression of the agm
cluster was achieved in Streptomyces coelicolor M154, allowing
for the analysis of the AGM synthesis pathway. The function of
AgmA was determined to be AMP phosphoribohydrolase. In vitro
experiments confirmed that AgmA utilizes AMP/dAMP as a
substrate to produce adenine, thus enabling the synthesis of AGMs.
AgmB has been demonstrated to possess AMP phosphatase activity,
facilitating the conversion of AMP to adenosine. AgmC functions
as a ribose 5-P pyrophosphokinase, catalyzing the conversion of
ATP to AMP during the synthesis of AGMs. AgmD is presumed
to exhibit a 3-epimerase function akin to AISE, while AgmE acts as
a phosphoallulosyltransferase, playing a role similar to APRTase in
AGMs biosynthesis. Notably, a particularly intriguing step in the
AGMs synthesis pathway involves the final dehydration reaction
carried out by AgmF, resulting in the dehydration of 14 to yield
13. When 14 is utilized as a substrate for the purpose of verifying
the enzymatic reaction of AgmF, it is observed that the substrate
undergoes incomplete transformation during the conversion to
13. Consequently, it can be inferred that the dehydration reaction
mediated by AgmF is reversible, as depicted in Figure 3 (Shiraishi
etal., 2021; Yu et al., 2021).

In summary, the biosynthesis process of AGMs, as illustrated in
Figure 3, involves the glycosyl epimerization (AgmD), followed by
phosphorylation, adenine incorporation, dephosphorylation, and
final dehydration (AgmF), yielding 13 from 14.

2.3 Compounds originating from
pyrrolopyrimidine-type BGCs

Pyrrolopyrimidine nucleosides analogues, commonly known
as deazapurines, constitute an important class of compounds
with remarkably diverse modifications. The distinctive feature
of these compounds is the connection between the deazapurine
core and the ribose moiety through N-glycosidic linkage. This
review mainly summarizes the reported biological activities and
biosynthetic pathways of deazapurine-containing compounds,
namely toyocamycin (15), sangivamycin (17), tubercidin (19),
along with analogues such as 5'-deoxy-toyocamycin (16), 5'-deoxy-
sangivamycin (18), and 3’-deoxy-tubercidin (20) (Figure 1).

Compounds 15 and 17 were first identified and investigated
in the 1970s (Uematsu and Suhadolnik, 1974). Compound 15
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The biosynthesis pathways of AGMs [Adapted from references (Shiraishi et al., 2021; Yu et al., 2021)]. AgmA—F correspond to S. angustmyceticus
JCM 4053, while agm1-6 correspond to S. angustmyceticus NBRC 3934. AMP is the abbreviation for adenosine monophosphate.

exhibits notable efficacy against diverse plant pathogenic fungi, thus
presenting promising prospects for its utilization as an agricultural
fungicide. On the other hand, compound 17 and its chemically
modified derivatives hold considerable importance in clinical
applications, demonstrating biological activities encompassing
anti-tumor, anti-viral, and anti-bacterial properties (Uematsu and
Suhadolnik, 1974, 1975; Zhang et al., 2022). Compounds 16 and 18,
derived through chemical total synthesis, represent dehydroxylated
analogues of 15 and 17 (Dong et al., 2019).

Currently, three Streptomyces strains, namely S. rimosus ATCC
14673, S. diastatochromogenes 1628, and S. ahygroscopicus S91, have
been reported to possess gene clusters associated with biosynthesis
of 15 (McCarty and Bandarian, 2008; Xu et al., 2019; Ma et al., 2020;
Liu et al,, 2022; Zhang et al., 2022). Notably, the gene cluster in
S. rimosus consists of 13 genes, denoted as toyA-M, responsible for
the synthesis of both 15 and 17. Conversely, the gene clusters in
the other two strains, toyA-I and M, lack toyJKL, resulting in the
exclusive synthesis of compound 15.

McCarty and Bandarian (2008) conducted a study on the
biosynthesis pathway of the toyA-M gene cluster in S. rimosus
ATCC 14673. According to the synthesis process, the 13 genes are
categorized into three catalytic steps. Specifically, genes toyB, C,
D, and M encode enzymes for deazapurin synthesis, while genes
toyE-I encode enzymes for purine salvage (Figure 4b; McCarty
and Bandarian, 2008). It is worth noting that genes toyJ-L encode
Toyocamycin nitrile hydratase (TNHase), which play a role in
the third step involving the hydration of cyanide-containing
compounds from 15 to 17. However, these three genes are solely
associated with the synthesis of compound 17. Consequently, in
S. diastatochromogenes and S. albulus, only genes toyA-I and M
are present. The organization and sequence of the foy cluster
exhibited variations among the three bacterial stains (Figure 4a;
Xu et al,, 2019). Notably, TNHase distinguishes itself from other
nitrile hydratase (NHase) enzymes by comprising three subunits,
as opposed to the typical two subunits (Kobayashi et al., 1992).
The regulatory gene toyA, which encodes a substantial ATP-binding
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regulator belonging to the LuxR family (LAL-family), plays an
essential role in the synthesis of 15. Disruption of the foyA gene
led to a near-complete abolished 15 production.

Compound 19 has been recognized for its biological activity
for many years, and recent studies have revealed additional
bioactivities. Its notable in vitro inhibitory activity against drug-
resistant strains of Mpycobacterium tuberculosis and reference
strains of no tuberculosis Mycobacteria renders it a valuable
candidate for further investigation as a potential treatment for
mycobacterial infections (Sun et al, 2023). Additionally, the
compound has exhibited significant antiviral activity against both
classical and variant strains of porcine epidemic diarrhea virus
(PEDV) (Wang et al., 2024). Furthermore, compound 19 exhibited
substantial anti-small cell lung cancer (SCLC) activity both in vitro
and in vivo, while demonstrating minimal or negligible cytotoxic
effects on normal primary/tracheal bronchial epithelial cells
(PBTECsS), thus indicating its high selectivity toward SCLC cells
and its potential suitability for targeted drug development (Chen
et al,, 2022). Additionally, the efficacy of 19 and its chemically
synthesized analogue 20 has been demonstrated in the treatment of
life-threatening conditions such as African trypanosomiasis caused
by Trypanosoma brucei parasites, Chagas disease, and sleeping
sickness (Hulpia et al., 2019a,b; Aldfer et al., 2022).

The biosynthetic pathway of compound 19 was characterized
through the reconstruction of the tub cluster from S. tubercidicus
NBRC 13090 in a heterologous host, as depicted in Figure 4a
(Liu et al, 2018). Similar to the biosynthetic pathways of 15
and 17, the first step in biosynthesis of 19 is the conversion of
GTP to CDG (7-carboxy-7-deazaguanine), as shown in Figure 4b
(McCarty and Bandarian, 2008; McCarty and Bandarian, 2012).
In both toyocamycin and tubercidin biosynthesis, 7-carboxy-7-
deazaguanine (preQO) serves as a key intermediate linking the
common deazapurine scaffold formation to subsequent tailoring
reactions. The functions of TubA-E and G exhibit similarities
to those of ToyB-E, H, and I. TubF has been confirmed as an
atypical decarboxylase that likely utilizes prenylated-FMN as a
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19, and the enzymes marked black are involved in PreQO biosynthesis.

Gene clusters and the biosynthetic pathways of pyrrolopyrimidine nucleosides analogous (Adapted from references: McCarty and Bandarian, 2008;
Xu et al,, 2019; Liu et al,, 2018). (a) The toy and tub gene clusters derived from S. rimosus ATCC14673, S. diastatochromogenes 1628,

S. ahygroscopocus S91, and S. tubercidicus NBRC13090, respectively, where genes of the same color represent homologous functions. (b)
Color-coded functions in the biosynthetic pathway; red box denotes the deazapurin biosynthesis stage in the production of compound 15, green
box represents the purine salvage stage, blue dotted box is solely relevant to the biosynthesis of 17, orange box is associated with the biosynthesis of

cofactor, while the functions of ToyH and I have yet to be verified
(Liu et al., 2018).

2.4 N-NAs without Identified BGCs

including 3’-amino-
Gerber, 1963),
2017), 2’-amino-
2'-deoxyguanosine (23), neplanocin B (24), neplanocin C (25),

Additional compounds,
3’-deoxyadenosine  (21)  (Pugh
2’-amino-2’-deoxyadenosine (22) (Gao et al,

and
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1985; Hamon et al.,
1985),

2010) and
are also classified as

neplanocin F (26) (De Clercq,
cadeguomycin (27) (Yuan et al,
purine-derived N-NAs (Figure 1).

Among these compounds, 21, 22, and 27 have been reported
to inhibit tumor growth and metastasis, demonstrating clear
antitumor activity (Pugh and Gerber, 1963; Shigeura, 1975;
Nakanishi et al.,, 1976; Sato et al.,, 1979; Tanaka, 1983; Yuan
et al, 1985). Compounds 24-26 were obtained from the soil
fungus Ampullariella regularis along with 8 and 9. Compound
8, which serves as a lead compound in the neplanocins
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FIGURE 5
Probe-based genome mining of three types of purine-derived
N-nucleoside antibiotics.

family, has demonstrated antiviral effects, and both 8 and 26
exhibit antitumor activities in mice (Hayashi et al., 1980; De
Clercq, 1985; Hamon et al., 2010). However, the majority of
existing research on the aforementioned compounds primarily
examines their biological activity and chemical synthesis, with
no literature reporting their biosynthetic pathways. However,
plausible probes can be proposed based on their structural features
and likely biosynthetic logic. These compounds share purine-
based scaffolds and exhibit aminotransferase- or dehydrogenase-
dependent modifications similar to those found in pentostatin- and
angustmycin-type pathways. Therefore, genes encoding adenosine
deaminase like enzymes, ribose 5-phosphate pyrophosphokinases,
or aminotransferases could serve as potential probes for mining
related clusters in actinobacterial or fungal genomes.

3 Mining for biosynthetic gene
clusters encoding for enzymes
responsible for production of
purine-derived N-nucleoside
antibiotics

A widely used approach in genome-guided discovery of natural
products is to employ experimentally characterized core enzymes
as sequence probes to identify homologous BGCs (Shi et al., 2019;
Bauman et al,, 2021). For example, the pen BGC and the mac BGC
mentioned in Section “2 Bioactivity and biosynthesis of purine-
derived N-nucleoside antibiotics” were both identified by using
their respective core enzyme as sequence probes (Wu et al.,, 2017;
Xu et al, 2018). This strategy has been successfully applied to
various classes of secondary metabolites and is increasingly used
for nucleoside antibiotics (Du et al., 2023). By focusing on enzymes
that are essential for scaffold construction and contain conserved
catalytic motifs, researchers can retrieve candidate BGCs from
genome databases and generate hypotheses about the possible
products encoded by these clusters (Figure 5).

It is noteworthy that most purine-derived N-NA biosynthetic
gene clusters cannot be predicted by antiSMASH, and only one
cluster among the reported examples is recognized, emphasizing
the need for probe-based genome mining approaches. To illustrate

Frontiers in Microbiology

10.3389/fmicb.2025.1684225

this concept, we summarize three representative groups of purine-
derived N-NAs and the enzymes most commonly used as probes.
For PTN-type compounds, enzymes such as PenABC play a
crucial role in the synthesis of PTN-related compounds. These
proteins are highly conserved and widely distributed, making them
potential candidates for identifying new PTN-related biosynthetic
pathways in existing microbial genomes (Wu et al., 2017). For
AGMs, the minimal conserved set AgmB-E was employed, and
retrieved sequences may suggest variants that differ from known
AGMs by the presence or absence of specific tailoring steps (e.g.,
absence of AgmF may be linked to bacterial adaptation to the
surrounding environment, and the lack of AgmA allows for the
utilization of adenine as a substrate for AGM production in
certain bacterial strains or the potential involvement of alternative
phosphoribohydrolases in a manner akin to AgmA, without being
confined to a gene cluster) (Mitani et al, 1977; Yu et al., 2021).
For deazapurine analogues (e.g., toyocamycin, tubercidin), the
biosynthesis of preQq necessitates the involvement of four enzymes
(ToyB-D and M). Subsequently, preQq is converted to 15 and
17 by ToyE-I (McCarty et al., 2009; Battaglia et al., 2011; Yuan
etal, 2018). Therefore, the presence of ToyB-D/TubA-C is essential
for the biosynthesis of deazapurines. Additionally, ToyH/TubE
and Toyl/TubG perform analogous functions in adenylosuccinate
synthesis and dephosphorylation, respectively. Consequently, it
can be inferred that a BGC containing enzymes similar to ToyB-
D, H, and I may be involved in deazapurines biosynthesis.
Therefore, ToyB-D and TubA-E are suitable probes; retrieved hits
indicate potential producers of toyocamycin-like scaffolds, though
variations in cluster composition may lead to novel analogues
distinct from those already characterized.

In this way, the conceptual flow from probe enzyme,
through homologous sequence identification and candidate cluster
recognition, to predicted compound provides a framework
for genome mining.

4 Conclusions and perspectives

Purine-derived N-NAs constitute a structurally diverse and
biologically versatile family of natural products. Their remarkable
range of activities-spanning antibacterial, antifungal, antiviral,
and antitumor effects—underscores their potential as valuable
therapeutic agents. Advances in elucidating the biosynthetic
pathways of representative compounds, including PTNs, AGMs,
and deazapurine analogues, have revealed a set of conserved
enzymatic transformations that underpin scaffold construction and
structural diversification.

The increasing availability of microbial genome sequences,
coupled with refined genome mining strategies, provides
new opportunities to uncover additional N-NA BGCs. Core
biosynthetic enzymes, once biochemically characterized, can serve
as informative probes for identifying homologous clusters in
diverse microorganisms. Nevertheless, bioinformatic predictions
should be regarded as hypothesis-generating: the functional
assignment of putative clusters requires experimental validation
through genetic, biochemical, and metabolomic approaches.

Looking forward, several challenges remain. First, the structural
complexity of N-NAs often involves tailoring steps that are
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poorly understood, complicating the prediction of final products.
Second, the functional redundancy of enzyme homologs across
different BGCs increases the difficulty of distinguishing genuine
N-NA clusters from unrelated pathways. Third, translating genome
mining leads into practical drug discovery will require efficient
heterologous expression systems and advanced analytical pipelines
for metabolite detection.

Despite these challenges, the integration of genomics,
synthetic biology, and high-resolution metabolomics is expected
to accelerate the discovery of novel N-NAs. By linking conserved
enzymology with innovative mining approaches, researchers can
expand the known chemical space of nucleoside antibiotics and
identify promising leads to address the urgent demand for new
antimicrobial and anticancer agents.
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