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Objectives: Links between gut microbiota and insulin resistance (IR) vary across 
populations. We profiled the fecal microbiota of Kazakh adults to test whether 
community composition associates with IR at broad (phylum → genus) and 
species levels.
Methods: In a cross-sectional case control study (N = 200; IR = 183, 
controls = 17), TyG indexed IR status. 16S rRNA sequencing (two primer pools; 
nine hypervariable regions) characterized taxa. After CSS normalization, 
we compared presence/absence across groups (χ2) and modeled species with 
univariate and multivariable logistic regressions, using absence of each species 
as the predictor.
Results: High-level composition did not differ between IR and controls (phylum, 
class, family, genus; all p > 0.05). In contrast, several species differed. In univariate 
models, absence of Actinomyces odontolyticus (OR = 25.55, p = 0.010), 
Bifidobacterium kashiwanohense (OR = 12.69, p = 0.015), Lactobacillus sp. 
(OR = 5.71, p = 0.020), and Streptococcus lactarius (OR = 6.27, p = 0.044) 
associated with higher IR odds, suggesting protection when present; whereas 
absence of Alistipes onderdonkii (OR = 0.30, p = 0.044) and Prevotella copri 
(OR = 0.19, p = 0.003) associated with lower IR odds, suggesting risk when 
present. In multivariable models, these signals persisted: absence of P. copri 
(OR = 0.146, p = 0.003) and Roseburia inulinivorans (OR = 0.143, p = 0.011) 
predicted lower IR odds (risk alignment), while absence of Lactobacillus sp. 
(OR = 8.29, p = 0.016) and Coprococcus catus (OR = 7.04, p = 0.004) predicted 
higher IR odds (protective alignment).
Conclusion: In this Kazakh cohort, no broad compositional signal emerged, but 
species-specific associations were strong and bidirectional. Findings highlight 
population-specificity and identify candidate species associated with IR that 
may serve as hypothesis-generating targets for future validation. Any attempt 
to modulate these taxa for insulin resistance is unproven and requires function-
resolved, diet-measured longitudinal studies and randomized trials before 
clinical application. The IR:control imbalance (183:17) increases uncertainty 
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for low-prevalence taxa; species-level findings are hypothesis-generating and 
require validation in a more balanced design. Because 16S rRNA profiling does 
not measure gene functions or metabolites, these species–IR associations are 
hypothesis-generating and warrant validation using shotgun metagenomics 
and metabolomics.

KEYWORDS

insulin resistance, gut microbiota, 16S ribosomal RNA sequencing, Kazakhstan, 
bacterium

1 Introduction

Insulin resistance (IR) is a metabolic condition characterized by 
decreased sensitivity to insulin, a hormone crucial for glucose 
regulation. This condition often precedes more severe metabolic 
disorders, including type 2 diabetes and cardiovascular diseases, 
posing a significant burden on public health (Takeuchi et al., 2023). 
IR is a complex disorder influenced by multiple factors, including 
genetics, diet, and environmental exposures, which can lead to 
alterations in metabolic pathways relevant to insulin sensitivity and 
glucose metabolism (Caricilli and Saad, 2013; Lee et al., 2020). The 
complications of IR are far-reaching and devastating. According to the 
World Health Organization (WHO), IR is a major risk factor for 
developing type 2 diabetes, which affects approximately 422 million 
people worldwide. Moreover, IR is a significant contributor to 
cardiovascular disease, which is the leading cause of mortality globally, 
accounting for approximately 17.9 million deaths annually (Jang and 
Lee, 2021). The economic burden of IR is substantial, with estimates 
suggesting that the annual cost of treating diabetes and its 
complications in the United States alone is over $300 billion (Takeuchi 
et al., 2023).

The gut microbiota, a complex community of microorganisms 
residing in the gastrointestinal tract, plays a pivotal role in human 
health and disease. A healthy gut microbiota is essential for 
maintaining metabolic homeostasis, modulating the immune system, 
and influencing the development of various diseases (Caricilli and 
Saad, 2013; Ghorbani et al., 2021). However, disturbances in the gut 
microbiota, often referred to as dysbiosis, have been linked to various 
metabolic disorders, including IR. The gut microbiota’s influence on 
IR is multifaceted, with alterations in microbial composition and 
function contributing to the development and progression of this 
condition (Chen et al., 2021; Gurung et al., 2020; Semo et al., 2024).

The relationship between IR and the gut microbiota is complex 
and bidirectional. On one hand, alterations in the gut microbiota can 
contribute to IR by modulating carbohydrate metabolism, influencing 
the host’s inflammatory response, and altering the expression of genes 
involved in glucose metabolism (Takeuchi et al., 2023; Semo et al., 
2024). On the other hand, IR can also impact the gut microbiota by 
altering the composition and function of the microbiome, leading to 
dysbiosis and further exacerbating IR. Understanding the intricate 
relationship between IR and the gut microbiota is crucial for the 
development of effective therapeutic strategies aimed at modulating 
the gut microbiota to manage or prevent IR effectively (Takeuchi et al., 
2023; Ebrahimzadeh Leylabadlo et al., 2020).

One of the important factors that has a huge impact on gut 
microbiota is the region. Studies have shown that the gut microbiota 
of individuals from distinct ethnic and cultural backgrounds exhibit 

unique profiles, reflecting the influence of dietary habits, 
environmental exposures, and genetic factors on the development 
and maintenance of the intestinal microbial community (Jang and 
Lee, 2021; Fontana et al., 2019; Senghor et al., 2018). These regional 
and ethnic variations in gut microbiota composition can have 
important implications for susceptibility to various diseases (Jang 
and Lee, 2021; Schnorr et  al., 2014). Alterations in the delicate 
balance of the gut microbiome have been associated with an 
increased risk of developing metabolic disorders, such as IR and type 
2 diabetes (Takeuchi et  al., 2023; Caricilli and Saad, 2013). 
Interestingly, some populations with unique gut microbiota profiles 
have been observed to have a lower prevalence of IR and related 
metabolic conditions (Deschasaux et al., 2018; Ley et al., 2006). The 
relationship between the uniqueness of the gut microbiota and lower 
rates of IR in specific regions or countries is a complex and 
multifactorial phenomenon (Fontana et al., 2019; Sonnenburg and 
Backhed, 2016). Understanding these regional and ethnic differences 
in gut microbiota composition and their impact on metabolic health 
could provide valuable insights for the development of personalized 
interventions aimed at preventing and managing IR and related 
metabolic disorders (Deschasaux et  al., 2018; Sonnenburg and 
Backhed, 2016).

Despite considerable research linking gut microbiota to various 
diseases, there is limited information specifically addressing the gut 
microbiota’s role in IR among the Kazakh population. This population 
may exhibit unique gut microbiota profiles due to their specific dietary 
habits and genetic background, which could influence the prevalence 
and management of metabolic diseases such as IR. Given this context, 
the study aims are to (i) Characterize the gut microbiota by sequencing 
the 16S ribosomal RNA of stool samples from insulin-resistant 
patients and healthy controls in the Kazakh population. This will help 
identify distinct microbial patterns that may be associated with IR. (ii) 
Evaluate the differences in microbial composition between insulin-
resistant patients and healthy controls to uncover potential microbial 
indicators of IR. This could further guide personalized medical 
interventions aimed at modifying the gut microbiota to manage or 
prevent IR effectively. (iii) In addition to these aims, we  will 
systematically interrogate between-group differences in the gut 
microbiome across hierarchical taxonomic ranks—from the phylum 
level down to individual species—to determine whether 
discriminatory signals emerge only at finer resolution. This taxonomy-
spanning analysis is intended to clarify whether broad compositional 
shifts or species-specific patterns better explain IR in this cohort. This 
study does not only fill a critical gap in understanding the gut 
microbiota in the Kazakh population but also potentially inform 
targeted therapies that could be  developed to manage IR more 
effectively within this group.
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Because gut communities vary strongly by geography, diet, 
ethnicity, and lab methods, we prioritized within-population contrasts 
and species-level resolution rather than cross-population ‘healthy’ 
comparisons. Prior work shows that disease classifiers trained in one 
cohort frequently underperform in external cohorts due to these 
sources of heterogeneity. Our design therefore benchmarks findings 
against published healthy-adult profiles for plausibility but avoids 
direct cross-country performance claims, which can be misleading. 
This study’s contribution is species-resolved association within a 
genetically and culturally homogeneous Kazakh cohort (Li 
et al., 2023).

2 Materials and methods

2.1 Ethical statement

The investigation was conducted in accordance with the ethical 
principles laid out in the Declaration of Helsinki (1964 and subsequent 
amendments) and the International Council for Harmonisation Good 
Clinical Practice (ICH-GCP) guidelines. The protocol received 
approval from the Local Ethics Committee of the Medical Center 
Hospital of the President’s Affairs Administration of the Republic of 
Kazakhstan, Astana (protocol no. 1, dated 05 April 2022). All 
participants provided written informed consent permitting the use of 
de-identified data for research and educational purposes; 
confidentiality safeguards were applied throughout data handling 
and reporting.

2.2 Population selection

A cross-sectional case–control study was conducted among 
individuals of Kazakh ethnicity registered at a polyclinic in Astana. 
The registered population had similar occupational profiles 
(government employees), lifestyles, and environmental factors, 
potentially minimizing the influence of external factors on the study 
results. Participants were randomly selected from individuals 
attending the polyclinic for preventive purposes between January and 
March 2023.

Inclusion criteria were: age 30–59, Kazakh ethnicity in the third 
generation, and voluntary consent to participate. Exclusion criteria 
included chronic cardiometabolic or autoimmune diseases, cancer, 
and pregnancy. Participants reporting antibiotic use within eight 
weeks prior to sampling were excluded to avoid perturbations in 
gut microbial communities known to persist for up to two months 
after treatment. Individuals who had consumed probiotic 
supplements within four weeks preceding enrollment were also 
excluded, reflecting evidence that transient probiotic strains can 
influence microbiota composition for several weeks. 
We documented any antibiotic or probiotic intake during the study 
period via weekly questionnaires and excluded any samples 
collected within eight weeks of antibiotic use or four weeks of 
probiotic use. Ethnicity was self-reported by participants, who 
identified themselves, their biological parents, and their 
grandparents as ethnically Kazakh. Dietary intake was not collected 
in this study; thus, we could not adjust for diet directly and address 
this as a limitation.

2.3 Participants grouping

Participants were stratified into insulin-resistant (IR+) and control 
(IR−) categories using the triglyceride–glucose (TyG) index, 
computed as TyG = Ln([fasting glucose, mg/dL × fasting triglycerides, 
mg/dL]/2). For primary analyses, individuals with TyG ≥ 4.50 were 
assigned to the IR + group (n = 183) and those with TyG ≤ 4.49 
served as controls (n = 17). For descriptive severity within the 
IR + group, TyG values of 4.50–4.59 were labeled “moderate IR,” and 
values ≥ 4.60 were labeled “severe IR”.

2.4 Analyzing serum glucose and 
triglyceride

Following a 12-h overnight fast, venous blood was drawn from the 
antecubital vein. Plasma was separated by centrifugation at 1,000 × g for 
10 min at 4 °C and stored at −30 °C pending batched analyses; serum 
aliquots were analyzed the same day. Glucose concentrations were 
determined using the hexokinase enzymatic method on the Abbott 
ARCHITECT c8000 platform (Abbott Laboratories, United States). 
Serum triglycerides were quantified spectrophotometrically on the 
same analyzer, following manufacturer-recommended procedures.

2.5 Fecal microbiome species composition 
of population

Fecal microbiome species composition was analyzed using 
targeted semiconductor sequencing of the 16S rRNA gene, employing 
next-generation sequencing (NGS) technology with Ion Reporter 
software. This technique, using a combination of two primer pools, 
enabled the identification of a wide range of bacterial species in 
mixed populations.

2.6 Bacterial DNA extraction

Bacterial DNA was extracted from stool samples using the 
PurLink Genomic DNA Microbiome kit (Invitrogen, United States) 
according to the manufacturer’s protocol. DNA concentration was 
measured using the Qubit™ 4 Fluorometer with the Qubit® dsDNA 
BR Assay Kit. Library preparation involved several stages:

	•	 PCR amplification of the 16S hypervariable region, followed by 
purification and concentration measurement.

	•	 Library preparation through ligation with barcode adapters and 
purification of the library adapters.

	•	 Concentration measurement of the resulting DNA libraries using 
the QuantStudioTM 12 K Flex system with the Ion Library 
TaqMan® Quantitation Kit (Thermo Fisher Scientific, 
United States).

2.7 Metagenomic sequencing

Metagenomic sequencing of the nine hypervariable regions was 
performed using NGS. Gut microbiota structure was determined by 
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sequencing the variable regions V2-4-8 and V3-6, 7–9 V3-V4 of the 
bacterial 16S rRNA gene. Sequencing reads from each primer pool 
targeting the V2-4-8 and V3-6,7-9 regions were independently 
subjected to quality filtering (minimum PHRED score ≥20) and 
chimera removal using UCHIME to ensure high-fidelity sequence 
data (Edgar et al., 2011). Amplicon sequence variants (ASVs) were 
inferred with DADA2, with region-specific ASV tables merged via 
closed-reference OTU picking at 97% similarity against the SILVA 
v138 database to standardize taxonomic assignments (Callahan et al., 
2016). To integrate data from multiple hypervariable regions into a 
single phylogenetic framework, we  applied SEPP (SATé-Enabled 
Phylogenetic Placement), allowing consistent biodiversity analyses 
across V2-4-8 and V3-6,7-9 datasets (Kuhn et  al., 2011). 
Methodological accuracy was validated using the ZymoBIOMICS 
Microbial Community Standard as a mock community, achieving 
>95% recovery of expected taxa abundances and confirming 
sequencing integrity across all variable regions (Kuhn et al., 2011). 
Sequencing was carried out on the Ion PGM™ system, and 
bioinformatic analysis was conducted using the Ion Reporter™ 
software and the Ion 16S™ Metagenomics Kit. The use of two primer 
pools allowed for the identification of a wide range of bacteria in the 
mixed population. The advantage of mass parallel sequencing methods 
lies in their culture-independent approach, enabling the detection of 
thousands of species. Metagenomic methods include taxonomic 
profiling, which describes the diversity of the bacterial community, 
and quantitative profiling. This study used 16S rRNA amplicon 
profiling only; shotgun metagenomics and metabolomics were not 
performed, so functional attributions are literature-based and treated 
as hypothesis-generating.

2.8 Statistical analysis

Statistical analysis was performed using GraphPad Prism 
software (version 10.0, GraphPad Software, United States). Numerical 
data were presented as mean values with standard deviation (x̅ ±s). 
Quantitative comparisons were made using the Independent Samples 
t test. Spearman’s correlation coefficient was used to determine the 
relationship between bacterial taxa. Differences were considered 
statistically significant at p < 0.05. To account for the unbalanced 
sample sizes between the IR-positive (n = 183) and control (n = 17) 
groups, we normalized OTU count data using cumulative sum scaling 
(CSS) implemented in the metagenomeSeq package, thereby 
mitigating compositional bias (Paulson et  al., 2013). In addition, 
we  performed 100 iterations of random subsampling of the 
IR-positive group to 17 samples and confirmed that alpha- and beta-
diversity metrics remained stable, demonstrating robustness to 
group-size imbalance (Weiss et al., 2017). Differential abundance 
testing was conducted with ANCOM-BC, which corrects for biases 
due to unequal group sizes and the compositional nature of 
microbiome data (Lin and Peddada, 2020). The IR:control ratio 
(~10.8:1) can inflate variance for control-group estimates and 
increase susceptibility to small-sample artifacts (e.g., quasi-complete 
separation). We therefore (i) applied CSS normalization to mitigate 
compositional bias; (ii) used ANCOM-BC for differential abundance, 
which corrects bias inherent to compositional data; and (iii) 
performed random subsampling of the IR group to the control 
sample size (n = 17) across 100 iterations to verify that alpha- and 

beta-diversity metrics were not driven by class imbalance. For species 
screens, we report effect sizes with 95% CIs and explicitly flag taxa 
exhibiting separation; these signals are interpreted cautiously as 
hypothesis-generating.

3 Results

3.1 Demographic, anthropometric, and 
biochemical characteristics in Kazakh 
population showed differences among IR 
and control groups

Results of the current study revealed significant differences in 
demographic, anthropometric, and biochemical characteristics 
between IR individuals and controls in the Kazakh population 
(Table 1). Individuals with IR displayed higher fasting blood sugar 
(FBS) levels (101.67 ± 22.71 mg/dL) compared to controls 
(89.59 ± 6.06 mg/dL, p = 0.030), with a particularly notable difference 
among females (p = 0.012), suggesting potential gender-based 
disparities in glucose metabolism. The TyG index, a marker for IR, 
was also significantly elevated in the IR group (4.63 ± 0.30) versus 
controls (4.40 ± 0.17, p < 0.001) for both genders, indicating higher 
metabolic dysregulation risk across sexes. Anthropometric measures 
showed that IR individuals had higher body mass index (BMI) and 
waist circumference, reflecting greater central adiposity. Specifically, 
BMI in the IR group was significantly higher (27.18 ± 5.04 kg/m2) 
than in controls (22.71 ± 3.56 kg/m2, p < 0.001), with waist 
circumference also markedly increased (91.10 ± 13.06 cm in IR vs. 
77.52 ± 10.82 cm in controls, p < 0.001), particularly among males. 
Lipid profile assessments indicated that IR participants had elevated 
total cholesterol (99.02 ± 18.87 mg/dL vs. 78.19 ± 10.83 mg/dL in 
controls, p < 0.001) and low-density lipoprotein (LDL) levels 
(65.63 ± 17.24 mg/dL vs. 44.08 ± 10.55 mg/dL in controls, p < 0.001), 
alongside lower high-density lipoprotein (HDL) levels 
(25.38 ± 7.82 mg/dL vs. 29.96 ± 8.20 mg/dL in controls, p = 0.023) and 
significantly higher triglycerides (128.40 ± 103.50 mg/dL in IR vs. 
78.50 ± 27.55 mg/dL in controls, p = 0.049). Collectively, these 
findings suggest that the IR group exhibits a cluster of metabolic risk 
factors, including hyperglycemia, central adiposity, and dyslipidemia, 
which are associated with IR in this population.

3.2 High-level gut microbiota composition 
(phylum to genus) shows no significant 
association with IR

The gut microbiota composition of all participants (N = 200) was 
characterized at multiple taxonomic levels (Figures  1a–d). At the 
phylum level, Proteobacteria, Firmicutes (Bacillota), and 
Actinobacteria were dominant, with prevalences of 95.5, 97, and 
96.5%, respectively. The most common classes were Betaproteobacteria 
(73.5%), Deltaproteobacteria (74%), Gammaproteobacteria (76%), 
Negativicutes (79.5%), and Clostridia (97%). At the family level, 
Bacteroidaceae (94.5%), Porphyromonadaceae (89%), Eubacteriaceae 
(80%), Prevotellaceae (61%), and Veillonellaceae (35%) were most 
prevalent. The leading genera were Bacteroides (98%), Blautia (89.5%), 
Roseburia (84.5%), Coprococcus (79%), and Alistipes (76%).
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To explore whether broad compositional differences in the gut 
microbiota were associated with IR, we  compared the relative 
abundances of bacterial phyla, classes, families and genera in the IR 
and control groups using chi-square tests of independence. The 
detailed frequency distributions are provided in 
Supplementary Tables S1–S4, and overall taxonomic profiles are 
visualized in Figures 1, 2a–d.

At the phylum level (Supplementary Table S1; Figure 1a), virtually 
all participants were positive for the dominant phyla Firmicutes, 
Proteobacteria and Actinobacteria. For example, 177 of 183 IR 
participants and all 17 controls harbored Firmicutes, while 
Proteobacteria was detected in 174 IR subjects and all controls. 
Chi-square statistics for Actinobacteria, Proteobacteria and Firmicutes 
were 0.774, 0.875 and 0.575, respectively, with corresponding p-values 
of 0.37, 0.34, and 0.44—none approaching the 0.05 significance 
threshold. These findings indicate no meaningful phylum-level 
differences between IR and control groups.

At the class level (Supplementary Table S2; Figure 1b), the five 
most prevalent classes—Betaproteobacteria, Deltaproteobacteria, 
Gammaproteobacteria, Negativicutes and Clostridia—also showed 
very similar distributions across groups. In the IR group, 137–177 
individuals were positive for these classes, compared with 10–17 in the 
control group (reflecting the unequal sample sizes). Chi-square values 
ranged from 0.002 to 2.055 with p-values of 0.15–0.96, again indicating 

no significant association between class-level composition and 
IR status.

At the family level (Supplementary Table S3; Figure  1c), 
we examined Bacteroidaceae, Porphyromonadaceae, Eubacteriaceae, 
Prevotellaceae and Veillonellaceae. These families were present in 
64–173 IR participants and 8–16 controls, but none of the 
chi-square tests (χ2 = 0.005–0.986) reached significance (all 
p > 0.32). Thus, family-level abundances did not differ 
between groups.

At the genus level (Supplementary Table S4; Figure 2d), the seven 
most common genera—Bacteroides, Blautia, Roseburia, Coprococcus, 
Alistipes, Streptococcus and Prevotella—were again widely prevalent 
in both groups (positive in 102–179 IR participants and 10–17 
controls). Chi-square statistics ranged from 0.065 to 3.229 with 
p-values of 0.07–0.79; none were below the 0.05 threshold. Collectively, 
these analyses show that high-level taxonomic composition (phylum 
through genus) does not differ significantly between insulin-resistant 
and control individuals in this Kazakh cohort.

Because no significant associations were found at these broader 
taxonomic levels, subsequent analyses focused on species-level 
differences. Across phylum, class, family, and genus, χ2 statistics 
ranged from 0.002–3.229 with all p > 0.05; thus, no significant 
between-group differences were observed at these higher taxonomic 
ranks (Figures 1, 2).

TABLE 1  Demographic, anthropometric characteristics, and other related factors of the Kazakhstan population analyzed with Independent Samples 
Test through control and insulin resistance (IR) groups.

Factors Groups Total population Male Female

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

FBS (mg/dl) Control 89.59 ± 6.06 0.030* 92.74 ± 5.53 0.405 88.62 ± 6.08 0.012*

IR 101.67 ± 22.71 106.10 ± 31.63 98.97 ± 14.38

Triglyceride-glucose 

index (TyG)

Control 4.40 ± 0.17 <0.001*** 4.42 ± 0.10 0.050* 4.39 ± 0.19 0.026*

IR 4.63 ± 0.30 4.75 ± 0.32 4.57 ± 0.27

Age Control 45.23 ± 5.76 0.016* 46.75 ± 7.88 0.919 44.76 ± 5.26 <0.001***

IR 49.61 ± 7.24 47.18 ± 8.34 51.09 ± 5.06

Height (cm) Control 166.70 ± 8.52 0.818 178.75 ± 6.60 0.181 163.00 ± 4.77 0.950

IR 167.19 ± 8.41 173.88 ± 7.02 163.11 ± 6.34

Weight (kg) Control 62.94 ± 9.55 <0.001*** 67.50 ± 10.96 0.028* 61.53 ± 9.08 0.034*

IR 76.35 ± 16.91 84.97 ± 15.29 71.08 ± 15.70

BMI Control 22.71 ± 3.56 <0.001*** 21.12 ± 3.33 0.001** 23.20 ± 3.61 0.030*

IR 27.18 ± 5.04 27.98 ± 3.83 26.70 ± 5.62

Waist 

Circumference (cm)

Control 77.52 ± 10.82 <0.001*** 75.25 ± 10.87 0.001** 78.23 ± 11.15 0.011*

IR 91.10 ± 13.06 95.75 ± 10.98 88.27 ± 13.46

Total Cholesterol 

(mg/dl)

Control 78.19 ± 10.83 <0.001*** 70.49 ± 7.41 0.009** 80.56 ± 10.81 <0.001***

IR 99.02 ± 18.87 96.96 ± 19.47 100.28 ± 18.47

LDL (mg/dl) Control 44.08 ± 10.55 <0.001*** 43.19 ± 4.01 0.021* 44.35 ± 12.00 <0.001***

IR 65.63 ± 17.24 62.72 ± 16.39 67.41 ± 17.58

HDL (mg/dl) Control 29.96 ± 8.20 0.023* 24.45 ± 1.77 0.486 31.65 ± 8.70 0.072

IR 25.38 ± 7.82 22.34 ± 5.98 27.24 ± 8.25

Triglycerides (mg/

dl)

Control 78.50 ± 27.55 0.049* 77.65 ± 19.68 0.260 78.765 ± 30.24 0.006**

IR 128.40 ± 103.50 160.22 ± 144.33 108.97 ± 60.50

*p value <0.05, **p value <0.01, and ***p value <0.001.
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FIGURE 1

Prevalence of the bacterial types in the stool samples of all participants (N = 200). (a) Phylum level, (b) class level, (c) family level, (d) genus level. No 
significant between-group differences at phylum or class (χ2, all p > 0.05). Panels show overall prevalence for context; subsequent analyses therefore 
focus on species-level signals.

FIGURE 2

Prevalence of the bacterial types in the stool samples. Differences in species classification between the control and experimental groups. Control 
group (non-diabetic), main group (selectivity of insulin resistance). (a) Phylum level, (b) class level, (c) family level, (d) genus level. No significant 
between-group differences at family or genus (χ2, all p > 0.05). Profiles are shown for completeness; inference proceeds at the species level.
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3.3 Species-level differences identified by 
Chi-square test

The chi-square analysis summarized in Table  2 evaluated 
differences in prevalence of 336 bacterial species between the insulin-
resistant (IR) and control groups. Several taxa showed statistically 
significant distribution differences (p < 0.05). Species that were more 
common in controls included Actinomyces odontolyticus, 
Bifidobacterium kashiwanohense, Bacteroides stercoris, Bulleidia 
moorei and Megasphaera micronuciformis; these taxa were detected in 

13–53% of controls but only 0.6–3% of IR participants. Conversely, 
Prevotella copri, Alistipes onderdonkii, Alistipes finegoldii, Roseburia 
inulinivorans, Ruminococcus spp. (including R. gauvreauii), 
Streptococcus thermophilus and Megamonas funiformis were markedly 
more prevalent in the IR group (50–86% positive) than in controls 
(0–40% positive). These disparities suggest that some taxa may confer 
protection against IR, whereas others may be enriched in individuals 
with IR. However, these cross-sectional associations do not establish 
causality and should be  explored further using mechanistic or 
longitudinal studies.

TABLE 2  Chi-square test for species which become significant among all species.

Bacteria Group Frequency* Chi-square test

Negative Positive Total χ2 df p-value

Actinomyces odontolyticus
Control 13 2 15 13.768 1 <0.001

IR 166 1 167

Bifidobacterium 

kashiwanohense

Control 13 2 15 9.430 1 0.002

IR 165 2 167

Bacteroides stercoris
Control 13 2 15 3.979 1 0.046

IR 162 5 167

Alistipes finegoldii
Control 15 0 15 5.212 1 0.022

IR 123 44 167

Alistipes onderdonkii
Control 11 4 15 4.461 1 0.035

IR 75 92 167

Prevotella copri
Control 9 6 15 10.437 1 0.001

IR 37 130 167

Lactobacillus sp.
Control 12 3 15 6.624 1 0.010

IR 160 7 167

Streptococcus lactarius
Control 13 2 15 5.165 1 0.023

IR 163 4 167

Streptococcus 

thermophilus

Control 15 0 15 8.446 1 0.004

IR 105 62 167

Coprococcus catus
Control 7 8 15 3.907 1 0.048

IR 119 48 167

Roseburia inulinivorans
Control 12 3 15 5.064 1 0.024

IR 83 84 167

Ruminococcus sp.
Control 9 6 15 5.145 1 0.023

IR 52 115 167

Ruminococcus gauvreauii
Control 5 10 15 4.046 1 0.044

IR 23 144 167

Subdoligranulum 

variabile

Control 12 3 15 4.074 1 0.044

IR 157 10 167

Bulleidia moorei 

(Solobacterium moorei)

Control 13 2 15 13.768 1 <0.001

IR 166 1 167

Megasphaera 

micronuciformis

Control 13 2 15 13.768 1 <0.001

IR 166 1 167

Megamonas funiformis
Control 13 2 15 3.979 1 0.046

IR 162 5 167

*Cells with expected counts <5; estimates for these taxa are less stable given the small control group. Results should be interpreted cautiously in conjunction with effect sizes and 95% CIs.
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3.4 Univariate logistic regression identifies 
protective and risk-associated species

Table 3 presents univariate logistic regression models where the 
outcome is IR and the predictor is the absence of a given species (i.e., a 
positive β value indicates that lacking the species increases the odds of 
IR; see Figure 3A for the forest plot of univariate odds ratios). The 
absence of A. odontolyticus was associated with a more than 25-fold 
increase in the odds of IR (OR = 25.55, p = 0.010), implying that 
harboring this species may be protective. Similar patterns were observed 
for B. kashiwanohense (OR = 12.69, p = 0.015), Lactobacillus sp. 
(OR = 5.71, p = 0.020) and S. lactarius (OR = 6.27, p = 0.044), where the 
absence of these taxa was linked to higher odds of IR. In contrast, the 
absence of A. onderdonkii and P. copri was associated with lower odds 
of IR (OR = 0.30, p = 0.044 and OR = 0.19, p = 0.003, respectively), 
suggesting that these taxa may contribute to IR when present. Estimates 
for A. finegoldii and S. thermophilus were unstable due to quasi-complete 
separation and were not statistically significant. These findings highlight 
that both the presence of potentially protective bacteria and the over-
representation of potentially deleterious bacteria can influence 
metabolic health. Because the control group is small, estimates for 
low-prevalence species are inherently less precise, and quasi-complete 
separation can occur; we therefore highlight effect sizes with 95% CIs 
and interpret such signals cautiously.

3.5 Multivariate logistic regression confirms 
independent associations

The multivariate logistic regression model (Table  4) 
simultaneously included taxa that were significant or borderline in the 
univariate analyses to identify independent predictors (see Figure 3B 
for the multivariate model results). After adjustment, the absence of 
P. copri (OR = 0.146; 95% CI 0.042–0.509; p = 0.003) and 
R. inulinivorans (OR = 0.143; 95% CI 0.032–0.645; p = 0.011) was 
associated with significantly lower odds of IR, reinforcing the notion 
that the presence of these species may contribute to IR. Conversely, 
the absence of Lactobacillus sp. (OR = 8.29; 95% CI 1.48–46.41; 
p = 0.016) and C. catus (OR = 7.04; 95% CI 1.85–26.78; p = 0.004) was 
independently associated with higher odds of IR, indicating that these 
taxa may have protective roles. These multivariate results underscore 

that specific microbial taxa maintain their associations with IR even 
when analyzed in combination, and they provide potential targets for 
future microbiome-based interventions. These associations derive 
from taxonomic (16S) data and do not by themselves establish 
functional roles or causality. As a complementary check, ANCOM-BC 
differential-abundance analysis at the species level generally 
recapitulated the directionality observed in the absence-coded models 
for highlighted taxa. Given zero-inflation and compositional 
constraints, we present presence/absence-based ORs as the primary, 
clinically interpretable effect estimates.

4 Discussion

4.1 Overview and key findings

IR is a multifactorial condition, and the gut microbiota has been 
proposed as one of the modifiable drivers of metabolic dysregulation 
(Abdelsalam et al., 2023; Mohammad and Thiemermann, 2020). In 
the present study we profiled the fecal microbiota of IR and control 
Kazakh individuals and observed no significant associations between 
IR and microbiota composition at the phylum, class, family or genus 
levels. This absence of high-level associations emphasizes that broad 
taxonomic summaries may mask important species-specific signals 
and that microbiome–disease relationships are population-specific 
(Abdelsalam et al., 2023; Chiang and Ferrell, 2020). By focusing on 
species-level differences using chi-square and logistic regression 
analyses, we  identified several taxa whose presence was strongly 
associated with metabolic phenotype. The absence of A. odontolyticus, 
B. kashiwanohense, Lactobacillus sp., S. lactarius and C. catus was 
linked to increased odds of IR, whereas the absence of P. copri, 
R. inulinivorans and A. onderdonkii was associated with lower odds of 
IR. These findings suggest that a small number of species, rather than 
broad taxonomic shifts, may influence metabolic status in this cohort 
(Davis et al., 2021). Interpretation of absence-coded models. Presence/
absence modeling targets the occupancy dimension of species–
phenotype relationships and is less sensitive to zero inflation and 
compositional artifacts than raw relative abundances. This choice 
yields straightforward clinical interpretation (ORs reflect IR odds 
when a species is absent). Future work will extend these models with 
quantitative pathways from shotgun metagenomics and metabolomics.

TABLE 3  Univariate logistic regression of bacterial species according to insulin resistance status in the Kazakh population.

Bacteria β SE OR 95% CI p-value

A. odontolyticus 3.240 1.258 25.552 2.169–300.702 0.010

B. kashiwanohense 2.541 1.041 12.692 1.651–97.579 0.015

B. stercoris 1.606 0.885 4.985 0.880–28.241 0.069

A. finegoldii −19.099 6059.32 0.000 NA 0.997

A. onderdonkii −1.216 0.604 0.296 0.091–0.969 0.044

P. copri −1.662 0.559 0.190 0.063–0.568 0.003

Lactobacillus sp. 1.743 0.752 5.714 1.308–24.958 0.020

S. lactarius 1.836 0.913 6.269 1.048–37.508 0.044

S. thermophilus −19.257 5104.51 0.000 NA 0.997

C. catus 1.606 0.885 4.985 0.974–8.246 0.056
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4.2 Species enriched in insulin-resistant 
individuals

Among the species enriched in IR participants, P. copri stood out 
as the most consistent risk-associated taxon. Previous studies have 
shown that strains of P. copri capable of producing branched-chain 
amino acids (BCAAs) are more common in individuals with type 2 
diabetes, and elevated circulating BCAAs correlate with obesity and 
IR (Abdualkader et al., 2024). In both humans and mouse models, 
overabundance of P. copri has been linked to higher BCAA 
concentrations and the development of IR (Abdelsalam et al., 2023; 
Abdualkader et al., 2024). The outer membrane of P. copri contains 
lipopolysaccharide, which can translocate into the circulation, 
causing metabolic endotoxemia and low-grade inflammation that 
disrupts insulin signaling (Abdelsalam et al., 2023; Mohammad and 
Thiemermann, 2020; Kim and Sears, 2010; Liang et al., 2022). Our 
finding that P. copri presence is associated with IR in the Kazakh 
population aligns with these mechanistic observations and suggests 
that dietary or environmental factors promoting P. copri expansion 
may contribute to metabolic dysfunction in this cohort (Abdualkader 
et al., 2024). A. onderdonkii also showed a positive association with 
IR. While the genus Alistipes has been implicated in protection 
against metabolic inflammation in some settings, animal 
experiments demonstrate that different species can exert divergent 
effects: oral administration of A. indistinctus reduces intestinal 
carbohydrate accumulation and ameliorates IR in mice (Zhang, 
2024), whereas other Alistipes species have been linked to 
pro-inflammatory responses. The detrimental association of 
A. onderdonkii observed here may reflect species-specific metabolite 

production or interactions with host diet that warrant 
further investigation.

Interestingly, the presence of R. inulinivorans was positively 
associated with IR, despite this bacterium being a known butyrate 
producer. In independent cohorts, R. inulinivorans abundance is 
significantly lower in individuals with type 2 diabetes than in healthy 
controls, and the species is inversely correlated with measures of IR 
(Ge et al., 2022). Butyrate supplementation improves insulin sensitivity 
and reduces adiposity in mice (Gao et al., 2009), and R. inulinivorans 
participates in butyrate production alongside other species such as 
C. catus (Davis et  al., 2021). Our finding that R. inulinivorans is 
enriched in IR subjects therefore contradicts most prior reports and 
may reflect distinct dietary patterns or functional variants in the 
Kazakh population. It is possible that strains of R. inulinivorans 
prevalent in this cohort preferentially metabolize proteins to 
branched-chain fatty acids rather than fermenting fibre to butyrate, a 
metabolic shift that has been linked to inflammation and IR (Davis 
et al., 2021). Further metagenomic and metabolomic analyses are 
required to clarify the functional capacity of R. inulinivorans in 
this setting.

4.3 Species enriched in controls and 
putative protective microbes

Several taxa were less prevalent in IR participants and may exert 
protective effects. A. odontolyticus is an oral commensal that rarely 
causes disease (Negrini et al., 2021), and its presence in stool may 
reflect ingestion and transit of upper-airway microbes. Although 

FIGURE 3

Forest plot of the (A) univariate and (B) multivariate regression analysis of the species of the gut microbiota among Kazakh population. The horizontal 
axis is on a logarithmic scale; points to the right of the dotted line (OR > 1) indicate that the absence of the species is associated with higher odds of 
insulin resistance, whereas points to the left (OR < 1) indicate that its absence is associated with lower odds (suggesting a potential deleterious role 
when present). Red asterisks denote statistical significance (*p < 0.05; **p < 0.01). Predictors are absence-coded (1 = species absent; 0 = present). OR 
> 1 → higher IR odds when absent (protective when present); OR < 1 → lower IR odds when absent (risk-aligned when present).

TABLE 4  Multivariate logistic regression of bacterial species according to insulin resistance status in the Kazakh population.

Bacteria B SE OR 95% CI p value

P. copri −1.925 0.637 0.146 0.042–0.509 0.003

Lactobacillus sp. 2.115 0.879 8.292 1.482–46.410 0.016

C. catus 1.952 0.682 7.040 1.850–26.782 0.004

R. inulinivorans −1.948 0.770 0.143 0.032–0.645 0.011
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we  found no prior evidence directly linking A. odontolyticus to 
insulin sensitivity, our results suggest that individuals harboring this 
species have substantially lower odds of IR. B. kashiwanohense 
showed a similar protective association; this is consistent with the 
broader observation that Bifidobacterium species improve metabolic 
health. Systematic reviews of probiotic interventions show that 
supplementation with Bifidobacterium and Lactobacillus species 
improves IR, lipid profiles and inflammatory markers in animal 
models, and that mixtures of these genera enhance insulin sensitivity 
in human trials (Salles et al., 2020; Park et al., 2015). Lactobacillus 
species ferment dietary carbohydrates to lactic acid and short-chain 
fatty acids, modulate immune responses and reinforce gut barrier 
integrity, providing plausible mechanisms for their protective effects 
(Salles et al., 2020; Carretta et al., 2021; Pham et al., 2024). Similarly, 
S. lactarius was less common in IR participants; although little is 
known about this species in human metabolic health, related lactic 
acid bacteria have been reported to improve glucose tolerance and 
reduce inflammation in animal models (Salles et  al., 2020; Park 
et al., 2015).

The absence of C. catus was independently associated with 
increased odds of IR. C. catus is a member of the Lachnospiraceae 
family and an efficient producer of butyrate (Davis et  al., 2021). 
Butyrate enhances insulin sensitivity by increasing energy expenditure, 
improving mitochondrial function and suppressing inflammation 
(Gao et al., 2009; Carretta et al., 2021; Pham et al., 2024). Therefore, 
the reduced prevalence of C. catus in IR participants is consistent with 
the notion that diminished butyrate production may contribute to 
metabolic dysregulation (Tolhurst et al., 2012; Psichas et al., 2015). In 
contrast to R. inulinivorans, which displayed an unexpected positive 
association with IR, C. catus exhibited the anticipated protective 
pattern, suggesting that different butyrate producers may have 
divergent roles depending on their metabolic outputs and interactions 
with other community members.

4.4 Implications for regional differences 
and mechanistic insights

The discrepancy between our findings and previous literature 
underscores the importance of considering region-specific factors in 
microbiome studies. The Kazakh diet is rich in fermented dairy 
products and animal proteins, with relatively low intake of fermentable 
fibers; such a diet could favor expansion of protein-fermenting 
bacteria and modulate the production of branched-chain amino acids 
and short-chain fatty acids (Abdelsalam et al., 2023; Abdualkader 
et al., 2024). Genetic polymorphisms affecting immune responses to 
bacterial metabolites may also modify the impact of specific taxa on 
host metabolism (Abdelsalam et al., 2023; Chiang and Ferrell, 2020). 
Our observation that A. onderdonkii and R. inulinivorans show risk 
associations despite some evidence for protective roles in other 
populations emphasizes that microbial functions, not just taxonomic 
identities, determine metabolic outcomes. Integrating metagenomic, 
metabolomic and host transcriptomic analyses will be essential to 
elucidate these functional differences (Zhang, 2024). The Kazakh diet 
traditionally includes fermented dairy (e.g., kumis/‘qymyz’; shubat) 
and relatively higher animal-source foods with comparatively lower 
fermentable-fiber intake, factors known to shape taxa like Prevotella 
and butyrate producers. These dietary patterns likely modulate our 

observed species-phenotype links and should be measured directly in 
future work (Martuzzi et al., 2024).

4.5 Mechanistic pathways linking gut 
microbiota to IR

The mechanisms summarized here are biologically plausible but 
hypothetical given our 16S-only data, which cannot resolve gene 
content, strain differences, or metabolite profiles. Accordingly, 
we interpret the species–IR links as functional hypotheses to be tested 
with multi-omics. Multiple mechanistic pathways have been proposed 
to explain how gut bacteria influence host insulin sensitivity 
(Figure  4). Disruption of gut barrier integrity allows 
lipopolysaccharides (LPS) from Gram-negative bacteria to enter the 
circulation and activate Toll-like receptor 4 (TLR4) (Mohammad and 
Thiemermann, 2020; Liang et al., 2022). Elevated plasma LPS levels 
correlate negatively with muscle insulin sensitivity, and exposure of 
human myotubes to LPS increases pro-inflammatory cytokine 
expression while reducing insulin-stimulated IRS-1 and Akt 
phosphorylation; pharmacological or genetic inhibition of TLR4 
abrogates these effects (Kim and Sears, 2010; Liang et al., 2022; Liang 
et al., 2013). This inflammatory cascade links dysbiosis to chronic 
low-grade inflammation and impaired insulin signaling (Mohammad 
and Thiemermann, 2020). Conversely, short-chain fatty acids (SCFAs) 
produced by fermentation of dietary fiber—particularly acetate, 
propionate and butyrate—stimulate secretion of glucagon-like peptide 
1 (GLP-1) and peptide YY (PYY) from enteroendocrine cells and 
induce intestinal gluconeogenesis; these actions promote satiety and 
improve glucose homeostasis (Carretta et al., 2021; Pham et al., 2024; 
Psichas et al., 2015; Tang and Li, 2021). Reduced fiber intake in the 
Kazakh diet may limit SCFA production and attenuate these beneficial 
signaling pathways (Chiang and Ferrell, 2020; Pham et al., 2024).

Bile acids serve not only as emulsifiers but also as metabolic 
hormones (Chiang and Ferrell, 2020). Primary bile acids are converted 
to secondary bile acids by intestinal bacteria and activate the nuclear 
receptor FXR and membrane receptor TGR5 (Chiang and Ferrell, 
2020). Activation or inhibition of intestinal FXR improves insulin and 
glucose sensitivity, and TGR5 signaling has anti-inflammatory effects 
and stimulates GLP-1 secretion (Chiang and Ferrell, 2020; Chiang 
et  al., 2017). Dietary patterns that alter bile acid pools or the 
abundance of bile salt hydrolase-producing bacteria could therefore 
influence metabolic outcomes in this cohort (Chiang and Ferrell, 
2020). Other host systems are intertwined with the microbiota. The 
gut endocannabinoid system, expressed in epithelial and 
enteroendocrine cells, modulates gut motility, permeability and 
inflammatory responses; microbiota composition shapes 
endocannabinoid tone and thereby influences metabolic and 
behavioral responses (Srivastava et al., 2022; Tagliamonte et al., 2021). 
Elevated levels of BCAAs, produced by taxa such as P. copri, activate 
the mammalian target of rapamycin complex 1 (mTORC1) and are 
associated with obesity and IR (Abdualkader et al., 2024; Yoon, 2016). 
Defective BCAA catabolism or overabundance of BCAA-producing 
bacteria may thus contribute to IR via mTORC1 activation and 
accumulation of toxic intermediates. Figure  4 integrates these 
pathways and illustrates how microbial metabolites and host receptors 
converge to modulate inflammation, hormone secretion and 
energy metabolism.
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Multiple, convergent microbe-to-host axes plausibly link our 
species-level signals to IR. First, metabolic endotoxemia—
translocation of Gram-negative LPS—activates TLR4, driving 
low-grade inflammation that impairs IRS-1/Akt signaling in insulin-
responsive tissues (Mohammad and Thiemermann, 2020; Kim and 
Sears, 2010; Liang et al., 2022; Zhang, 2024; Ge et al., 2022; Gao et al., 
2009). Second, SCFAs (particularly butyrate and propionate) engage 
FFAR2/3, stimulate GLP-1/PYY, and promote intestinal 
gluconeogenesis, thereby improving glucose homeostasis (Carretta 
et al., 2021; Pham et al., 2024; Tolhurst et al., 2012; Psichas et al., 2015). 
Third, bile-acid signaling via FXR/TGR5 modulates glycemic control 
and inflammation (Chiang and Ferrell, 2020; Chiang et al., 2017). 
Fourth, microbial BCAA production can elevate circulating BCAAs, 

activate mTORC1, and worsen insulin sensitivity (Abdualkader et al., 
2024; Yoon, 2016). These pathways provide biologically plausible 
routes through which specific taxa observed here could contribute to 
metabolic dysfunction.

Species-to-pathway mapping. The risk-aligned association of 
P. copri in our cohort is consistent with reports of BCAA biosynthesis 
and potential LPS-mediated inflammation contributing to IR 
(Abdelsalam et  al., 2023; Mohammad and Thiemermann, 2020; 
Abdualkader et al., 2024; Kim and Sears, 2010; Liang et al., 2022; 
Zhang, 2024; Yoon, 2016). Conversely, taxa aligned with insulin 
sensitivity—C. catus and Lactobacillus spp.—are linked to butyrate/
SCFA production, barrier support, and immune modulation, 
mechanisms that improve insulin signaling (Negrini et al., 2021; Park 

FIGURE 4

Mechanistic pathways linking gut microbes to insulin resistance. Schematic of four convergent axes: (1) LPS–TLR4 inflammation reduces insulin 
signaling (IRS-1/Akt); (2) SCFAs (butyrate/propionate) signal via FFAR2/3, increasing GLP-1/PYY and improving glycemic control; (3) Bile acids act 
through FXR/TGR5 to modulate glucose and inflammation; (4) BCAA production (e.g., Prevotella strains) can activate mTORC1 and promote insulin 
resistance. Species observed in this study map onto these pathways: P. copri (BCAA/LPS; risk-aligned), C. catus and Lactobacillus spp. (SCFA/barrier; 
protective-aligned), and R. inulinivorans (butyrate-capable but population-specific association). Arrows indicate direction of effect hypothesized from 
prior literature. Mechanistic links are hypothesis-generating and require shotgun metagenomic and metabolomic validation in this population.
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et al., 2015; Carretta et al., 2021; Pham et al., 2024; Tolhurst et al., 
2012). The unexpected positive association of R. inulinivorans with IR 
in this population may reflect strain-level functional variation or diet-
dependent metabolic routing, underscoring the need for 
metagenomic/metabolomic resolution to disambiguate function 
(Davis et al., 2021; Ge et al., 2022; Carretta et al., 2021; Pham et al., 
2024; Tolhurst et  al., 2012). Together, these links motivate testing 
whether diet and microbial metabolites mediate species–IR 
associations in Kazakh adults.

4.6 External context and generalizability

We contextualized our cohort’s dominant taxa against large healthy-
adult references, noting broad agreement at high taxonomic ranks while 
emphasizing our core finding that only species-level features 
discriminated IR within this population. Given well-documented cross-
study domain shift in microbiome diagnostics, we intentionally refrained 
from cross-country ‘performance’ claims and instead report effect sizes 
with CIs for species signals that are most likely to translate. Prospective, 
diet-measured, multi-site validation is warranted (Li et al., 2023).

4.7 Implications for protecting a 
metabolically favorable gut ecology

Our species-level signals suggest pragmatic, testable strategies: (1) 
increase fermentable fiber (whole grains, inulin, resistant starch) to 
support butyrate producers such as C. catus; (2) consider fermented 
dairy or probiotics containing Bifidobacterium/Lactobacillus, which 
have shown improvements in IR in trials; (3) moderate dietary patterns 
that may favor expansion of BCAA-producing taxa such as P. copri, 
balancing protein with fiber-rich foods. These proposals are hypothesis-
generating and require randomized, diet-measured trials in Kazakh 
adults (Salles et al., 2020; Pham et al., 2024; Martuzzi et al., 2024).

4.8 Practical implications and 
hypothesis-generating

Practical implications (hypothesis-generating, population-specific). 
Our species-resolved findings suggest pragmatic levers to protect a 
metabolically favorable gut ecology in this population. First, increasing 
fermentable fiber is expected to support butyrate-producing taxa such 
as C. catus, with potential downstream benefits via SCFA-mediated 
enteroendocrine signaling. Second, culturally congruent fermented 
dairy and/or probiotic products containing Bifidobacterium and 
Lactobacillus may help sustain taxa aligned with insulin sensitivity in our 
cohort. Third, maintaining overall diet quality and physical activity—
independent determinants of insulin sensitivity—may act synergistically 
with microbiota-derived metabolites. Conversely, given the risk-aligned 
signal for P. copri, dietary patterns that balance higher protein intake 
with adequate fermentable fiber are a reasonable, testable approach. 
We emphasize that these actions are hypothesis-generating rather than 
prescriptive and may be population-specific; they require validation in 
diet-measured randomized trials incorporating stool/serum 
metabolomics (SCFAs, bile-acid species, BCAAs, LPS-related markers) 
to test mediation of species–IR associations in Kazakh adults. These 

ideas are investigational only; causality and efficacy cannot be inferred 
from 16S associations and require validation via shotgun metagenomics/
metabolomics and prospective randomized studies in Kazakh adults.

4.9 Strengths, limitations, and future 
directions

This study benefits from a well-characterized cohort and 
comprehensive species-level analysis, yet several limitations must 
be acknowledged. The cross-sectional design precludes causal inference; 
longitudinal studies are needed to determine whether changes in specific 
species precede the onset of IR or result from metabolic alterations. 
Sample size in the control group was modest, which may limit power to 
detect associations for less prevalent taxa. Finally, functional inferences 
are speculative because our 16S rRNA sequencing cannot determine 
metabolic capacities; metagenomic and metabolomic profiling would 
clarify whether protective taxa produce beneficial metabolites such as 
butyrate or lactate, and whether risk taxa increase circulating BCAAs or 
endotoxin (Abdelsalam et al., 2023; Chiang and Ferrell, 2020; Davis 
et al., 2021; Abdualkader et al., 2024; Carretta et al., 2021; Pham et al., 
2024; Tagliamonte et al., 2021). Despite these limitations, our findings 
highlight candidate species for microbiome-targeted interventions. 
Strategies that enrich Bifidobacterium, Lactobacillus and Coprococcus 
while reducing P. copri may improve insulin sensitivity; this notion is 
supported by evidence that probiotic supplementation with 
Bifidobacterium and Lactobacillus improves IR (Salles et al., 2020; Park 
et al., 2015; Carretta et al., 2021; Pham et al., 2024). The contrasting roles 
of R. inulinivorans and A. onderdonkii demonstrate that therapeutic 
approaches must be tailored to the functional characteristics of strains 
prevalent in a given population. Future studies should incorporate 
dietary assessments, host genotyping and longitudinal sampling to 
unravel the complex interplay between diet, microbiota and IR. Diet was 
not measured; given its strong influence on microbiota and insulin 
sensitivity, future studies will include validated FFQs and dietary 
biomarkers (SCFAs, bile acids) to enable diet-adjusted models. Although 
our mechanistic inferences are biologically grounded, 16S rRNA profiles 
are taxonomic and not functional. Future work will include validated 
diet assessment and stool/serum metabolomics (SCFAs, bile-acid 
species, BCAAs, LPS markers) to test mediation of species–IR 
associations and to resolve strain-level functional heterogeneity.

A key limitation is the IR:control imbalance (183:17). This 
asymmetry may increase uncertainty for low-prevalence taxa and 
contribute to OR instability or separation in logistic models. 
We mitigated these risks through CSS normalization, ANCOM-BC 
for bias-corrected differential abundance, and IR-subsampling checks 
for alpha/beta-diversity. Nonetheless, residual sensitivity to sample 
size cannot be excluded; accordingly, we emphasize effect sizes with 
95% CIs and treat species-level findings as hypothesis-generating. 
Future studies will prioritize larger and/or matched control sampling, 
and may employ penalized likelihood or Bayesian shrinkage models 
to further stabilize estimates.

Another key limitation is that 16S rRNA sequencing lacks 
functional resolution. To validate and extend these findings, future 
work will integrate (i) shotgun metagenomics to quantify pathway 
genes with strain-level resolution, and (ii) targeted metabolomics to 
measure stool SCFAs (acetate/propionate/butyrate), fecal/serum bile 
acids, serum BCAAs, and endotoxemia markers. These data will 
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enable mediation analyses to test whether microbial functions/
metabolites statistically explain species–IR associations. Because our 
data are taxonomic (16S), we cannot claim that manipulating specific 
taxa will improve IR; instead, these species represent prioritized, 
testable targets for function-resolved and interventional studies.

5 Conclusion

In this Kazakh cohort, broad taxonomic profiles from phylum 
to genus were not informative for IR, whereas species-level 
composition was. A restricted set of species differentiated 
metabolic status: Lactobacillus sp. and C. catus aligned with 
insulin sensitivity, while P. copri and R. inulinivorans aligned with 
IR, with additional signals involving A. odontolyticus, 
B. kashiwanohense, and A. onderdonkii. These findings indicate 
that coarse community summaries are insufficient for this 
population and that species-resolved characterization is required 
to capture metabolically relevant variation. This work reframes 
microbiome–IR research toward strain- and function-focused 
analyses tailored to regional diets and host backgrounds and 
motivates hypothesis-driven trials to test whether modulating 
community functions or the abundance of candidate taxa affects 
insulin sensitivity. Causal effects and clinical efficacy cannot 
be inferred from these 16S data.
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