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Distinct gut microbial species, but
not phylum-to-genus
composition, associate with
insulin resistance: a unique
perspective from the Kazakh
population
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and Amin Tamadon**

!Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic
of Kazakhstan, Astana, Kazakhstan, 2Corporate Fund “Institute for Innovational and Profilaxy
Medicine”, Astana, Kazakhstan, *Department of Surgery No. 2, West Kazakhstan Marat Ospanov
Medical University, Aktobe, Kazakhstan, *Department of Natural Sciences, West Kazakhstan Marat
Ospanov Medical University, Aktobe, Kazakhstan

Objectives: Links between gut microbiota and insulin resistance (IR) vary across
populations. We profiled the fecal microbiota of Kazakh adults to test whether
community composition associates with IR at broad (phylum — genus) and
species levels.

Methods: In a cross-sectional case control study (N =200; IR =183,
controls = 17), TyG indexed IR status. 16S rRNA sequencing (two primer pools;
nine hypervariable regions) characterized taxa. After CSS normalization,
we compared presence/absence across groups (x?) and modeled species with
univariate and multivariable logistic regressions, using absence of each species
as the predictor.

Results: High-level composition did not differ between IR and controls (phylum,
class, family, genus; allp > 0.05). In contrast, several species differed. In univariate
models, absence of Actinomyces odontolyticus (OR = 25.55, p = 0.010),
Bifidobacterium kashiwanohense (OR =12.69, p = 0.015), Lactobacillus sp.
(OR =571, p=0.020), and Streptococcus lactarius (OR = 6.27, p = 0.044)
associated with higher IR odds, suggesting protection when present; whereas
absence of Alistipes onderdonkii (OR = 0.30, p = 0.044) and Prevotella copri
(OR =0.19, p = 0.003) associated with lower IR odds, suggesting risk when
present. In multivariable models, these signals persisted: absence of P. copri
(OR = 0.146, p = 0.003) and Roseburia inulinivorans (OR = 0.143, p = 0.011)
predicted lower IR odds (risk alignment), while absence of Lactobacillus sp.
(OR = 8.29, p = 0.016) and Coprococcus catus (OR = 7.04, p = 0.004) predicted
higher IR odds (protective alignment).

Conclusion: In this Kazakh cohort, no broad compositional signal emerged, but
species-specific associations were strong and bidirectional. Findings highlight
population-specificity and identify candidate species associated with IR that
may serve as hypothesis-generating targets for future validation. Any attempt
to modulate these taxa for insulin resistance is unproven and requires function-
resolved, diet-measured longitudinal studies and randomized trials before
clinical application. The IR:control imbalance (183:17) increases uncertainty
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for low-prevalence taxa; species-level findings are hypothesis-generating and
require validation in @ more balanced design. Because 16S rRNA profiling does
not measure gene functions or metabolites, these species—IR associations are
hypothesis-generating and warrant validation using shotgun metagenomics

and metabolomics.
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1 Introduction

Insulin resistance (IR) is a metabolic condition characterized by
decreased sensitivity to insulin, a hormone crucial for glucose
regulation. This condition often precedes more severe metabolic
disorders, including type 2 diabetes and cardiovascular diseases,
posing a significant burden on public health (Takeuchi et al., 2023).
IR is a complex disorder influenced by multiple factors, including
genetics, diet, and environmental exposures, which can lead to
alterations in metabolic pathways relevant to insulin sensitivity and
glucose metabolism (Caricilli and Saad, 2013; Lee et al,, 2020). The
complications of IR are far-reaching and devastating. According to the
World Health Organization (WHO), IR is a major risk factor for
developing type 2 diabetes, which affects approximately 422 million
people worldwide. Moreover, IR is a significant contributor to
cardiovascular disease, which is the leading cause of mortality globally,
accounting for approximately 17.9 million deaths annually (Jang and
Lee, 2021). The economic burden of IR is substantial, with estimates
suggesting that the annual cost of treating diabetes and its
complications in the United States alone is over $300 billion (Takeuchi
etal., 2023).

The gut microbiota, a complex community of microorganisms
residing in the gastrointestinal tract, plays a pivotal role in human
health and disease. A healthy gut microbiota is essential for
maintaining metabolic homeostasis, modulating the immune system,
and influencing the development of various diseases (Caricilli and
Saad, 2013; Ghorbani et al., 2021). However, disturbances in the gut
microbiota, often referred to as dysbiosis, have been linked to various
metabolic disorders, including IR. The gut microbiota’s influence on
IR is multifaceted, with alterations in microbial composition and
function contributing to the development and progression of this
condition (Chen et al., 2021; Gurung et al., 2020; Semo et al., 2024).

The relationship between IR and the gut microbiota is complex
and bidirectional. On one hand, alterations in the gut microbiota can
contribute to IR by modulating carbohydrate metabolism, influencing
the host’s inflammatory response, and altering the expression of genes
involved in glucose metabolism (Takeuchi et al., 2023; Semo et al,,
2024). On the other hand, IR can also impact the gut microbiota by
altering the composition and function of the microbiome, leading to
dysbiosis and further exacerbating IR. Understanding the intricate
relationship between IR and the gut microbiota is crucial for the
development of effective therapeutic strategies aimed at modulating
the gut microbiota to manage or prevent IR effectively (Takeuchi et al,,
2023; Ebrahimzadeh Leylabadlo et al., 2020).

One of the important factors that has a huge impact on gut
microbiota is the region. Studies have shown that the gut microbiota
of individuals from distinct ethnic and cultural backgrounds exhibit
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unique profiles, reflecting the influence of dietary habits,
environmental exposures, and genetic factors on the development
and maintenance of the intestinal microbial community (Jang and
Lee, 2021; Fontana et al., 2019; Senghor et al., 2018). These regional
and ethnic variations in gut microbiota composition can have
important implications for susceptibility to various diseases (Jang
and Lee, 2021; Schnorr et al,, 2014). Alterations in the delicate
balance of the gut microbiome have been associated with an
increased risk of developing metabolic disorders, such as IR and type
2 diabetes (Takeuchi et al, 2023; Caricilli and Saad, 2013).
Interestingly, some populations with unique gut microbiota profiles
have been observed to have a lower prevalence of IR and related
metabolic conditions (Deschasaux et al., 2018; Ley et al., 2006). The
relationship between the uniqueness of the gut microbiota and lower
rates of IR in specific regions or countries is a complex and
multifactorial phenomenon (Fontana et al., 2019; Sonnenburg and
Backhed, 2016). Understanding these regional and ethnic differences
in gut microbiota composition and their impact on metabolic health
could provide valuable insights for the development of personalized
interventions aimed at preventing and managing IR and related
metabolic disorders (Deschasaux et al., 2018; Sonnenburg and
Backhed, 2016).

Despite considerable research linking gut microbiota to various
diseases, there is limited information specifically addressing the gut
microbiota’s role in IR among the Kazakh population. This population
may exhibit unique gut microbiota profiles due to their specific dietary
habits and genetic background, which could influence the prevalence
and management of metabolic diseases such as IR. Given this context,
the study aims are to (i) Characterize the gut microbiota by sequencing
the 16S ribosomal RNA of stool samples from insulin-resistant
patients and healthy controls in the Kazakh population. This will help
identify distinct microbial patterns that may be associated with IR. (ii)
Evaluate the differences in microbial composition between insulin-
resistant patients and healthy controls to uncover potential microbial
indicators of IR. This could further guide personalized medical
interventions aimed at modifying the gut microbiota to manage or
prevent IR effectively. (iii) In addition to these aims, we will
systematically interrogate between-group differences in the gut
microbiome across hierarchical taxonomic ranks—from the phylum
level down to individual species—to determine whether
discriminatory signals emerge only at finer resolution. This taxonomy-
spanning analysis is intended to clarify whether broad compositional
shifts or species-specific patterns better explain IR in this cohort. This
study does not only fill a critical gap in understanding the gut
microbiota in the Kazakh population but also potentially inform
targeted therapies that could be developed to manage IR more
effectively within this group.
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Because gut communities vary strongly by geography, diet,
ethnicity, and lab methods, we prioritized within-population contrasts
and species-level resolution rather than cross-population ‘healthy’
comparisons. Prior work shows that disease classifiers trained in one
cohort frequently underperform in external cohorts due to these
sources of heterogeneity. Our design therefore benchmarks findings
against published healthy-adult profiles for plausibility but avoids
direct cross-country performance claims, which can be misleading.
This study’s contribution is species-resolved association within a
genetically and culturally homogeneous Kazakh cohort (Li
etal., 2023).

2 Materials and methods

2.1 Ethical statement

The investigation was conducted in accordance with the ethical
principles laid out in the Declaration of Helsinki (1964 and subsequent
amendments) and the International Council for Harmonisation Good
Clinical Practice (ICH-GCP) guidelines. The protocol received
approval from the Local Ethics Committee of the Medical Center
Hospital of the President’s Affairs Administration of the Republic of
Kazakhstan, Astana (protocol no. 1, dated 05 April 2022). All
participants provided written informed consent permitting the use of
de-identified data for research and educational purposes;
confidentiality safeguards were applied throughout data handling
and reporting.

2.2 Population selection

A cross-sectional case—control study was conducted among
individuals of Kazakh ethnicity registered at a polyclinic in Astana.
The registered population had similar occupational profiles
(government employees), lifestyles, and environmental factors,
potentially minimizing the influence of external factors on the study
results. Participants were randomly selected from individuals
attending the polyclinic for preventive purposes between January and
March 2023.

Inclusion criteria were: age 30-59, Kazakh ethnicity in the third
generation, and voluntary consent to participate. Exclusion criteria
included chronic cardiometabolic or autoimmune diseases, cancer,
and pregnancy. Participants reporting antibiotic use within eight
weeks prior to sampling were excluded to avoid perturbations in
gut microbial communities known to persist for up to two months
after treatment. Individuals who had consumed probiotic
supplements within four weeks preceding enrollment were also
excluded, reflecting evidence that transient probiotic strains can
influence microbiota composition for several weeks.
We documented any antibiotic or probiotic intake during the study
period via weekly questionnaires and excluded any samples
collected within eight weeks of antibiotic use or four weeks of
probiotic use. Ethnicity was self-reported by participants, who
and their

grandparents as ethnically Kazakh. Dietary intake was not collected

identified themselves, their biological parents,

in this study; thus, we could not adjust for diet directly and address
this as a limitation.
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2.3 Participants grouping

Participants were stratified into insulin-resistant (IR+) and control
(IR—) categories using the triglyceride-glucose (TyG) index,
computed as TyG = Ln([fasting glucose, mg/dL X fasting triglycerides,
mg/dL]/2). For primary analyses, individuals with TyG > 4.50 were
assigned to the IR + group (n =183) and those with TyG < 4.49
served as controls (n=17). For descriptive severity within the
IR + group, TyG values of 4.50-4.59 were labeled “moderate IR, and
values > 4.60 were labeled “severe IR”.

2.4 Analyzing serum glucose and
triglyceride

Following a 12-h overnight fast, venous blood was drawn from the
antecubital vein. Plasma was separated by centrifugation at 1,000 x g for
10 min at 4 °C and stored at —30 °C pending batched analyses; serum
aliquots were analyzed the same day. Glucose concentrations were
determined using the hexokinase enzymatic method on the Abbott
ARCHITECT ¢8000 platform (Abbott Laboratories, United States).
Serum triglycerides were quantified spectrophotometrically on the
same analyzer, following manufacturer-recommended procedures.

2.5 Fecal microbiome species composition
of population

Fecal microbiome species composition was analyzed using
targeted semiconductor sequencing of the 16S rRNA gene, employing
next-generation sequencing (NGS) technology with Ion Reporter
software. This technique, using a combination of two primer pools,
enabled the identification of a wide range of bacterial species in
mixed populations.

2.6 Bacterial DNA extraction

Bacterial DNA was extracted from stool samples using the
PurLink Genomic DNA Microbiome kit (Invitrogen, United States)
according to the manufacturer’s protocol. DNA concentration was
measured using the Qubit™ 4 Fluorometer with the Qubit® dsDNA
BR Assay Kit. Library preparation involved several stages:

« PCR amplification of the 16S hypervariable region, followed by
purification and concentration measurement.

o Library preparation through ligation with barcode adapters and
purification of the library adapters.

« Concentration measurement of the resulting DNA libraries using
the QuantStudioTM 12 K Flex system with the Ion Library
TagMan® Quantitation Kit (Thermo Fisher
United States).

Scientific,

2.7 Metagenomic sequencing

Metagenomic sequencing of the nine hypervariable regions was
performed using NGS. Gut microbiota structure was determined by
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sequencing the variable regions V2-4-8 and V3-6, 7-9 V3-V4 of the
bacterial 16S rRNA gene. Sequencing reads from each primer pool
targeting the V2-4-8 and V3-6,7-9 regions were independently
subjected to quality filtering (minimum PHRED score >20) and
chimera removal using UCHIME to ensure high-fidelity sequence
data (Edgar et al., 2011). Amplicon sequence variants (ASVs) were
inferred with DADAZ2, with region-specific ASV tables merged via
closed-reference OTU picking at 97% similarity against the SILVA
v138 database to standardize taxonomic assignments (Callahan et al.,
2016). To integrate data from multiple hypervariable regions into a
single phylogenetic framework, we applied SEPP (SATé-Enabled
Phylogenetic Placement), allowing consistent biodiversity analyses
across V2-4-8 and V3-6,7-9 datasets (Kuhn et al, 2011).
Methodological accuracy was validated using the ZymoBIOMICS
Microbial Community Standard as a mock community, achieving
>95% recovery of expected taxa abundances and confirming
sequencing integrity across all variable regions (Kuhn et al., 2011).
Sequencing was carried out on the Ion PGM™ system, and
bioinformatic analysis was conducted using the Ion Reporter™
software and the Ion 16S™ Metagenomics Kit. The use of two primer
pools allowed for the identification of a wide range of bacteria in the
mixed population. The advantage of mass parallel sequencing methods
lies in their culture-independent approach, enabling the detection of
thousands of species. Metagenomic methods include taxonomic
profiling, which describes the diversity of the bacterial community,
and quantitative profiling. This study used 16S rRNA amplicon
profiling only; shotgun metagenomics and metabolomics were not
performed, so functional attributions are literature-based and treated
as hypothesis-generating.

2.8 Statistical analysis

Statistical analysis was performed using GraphPad Prism
software (version 10.0, GraphPad Software, United States). Numerical
data were presented as mean values with standard deviation (x #s).
Quantitative comparisons were made using the Independent Samples
t test. Spearman’s correlation coefficient was used to determine the
relationship between bacterial taxa. Differences were considered
statistically significant at p < 0.05. To account for the unbalanced
sample sizes between the IR-positive (n = 183) and control (n = 17)
groups, we normalized OTU count data using cumulative sum scaling
(CSS) implemented in the metagenomeSeq package, thereby
mitigating compositional bias (Paulson et al., 2013). In addition,
we performed 100 iterations of random subsampling of the
IR-positive group to 17 samples and confirmed that alpha- and beta-
diversity metrics remained stable, demonstrating robustness to
group-size imbalance (Weiss et al., 2017). Differential abundance
testing was conducted with ANCOM-BC, which corrects for biases
due to unequal group sizes and the compositional nature of
microbiome data (Lin and Peddada, 2020). The IR:control ratio
(~10.8:1) can inflate variance for control-group estimates and
increase susceptibility to small-sample artifacts (e.g., quasi-complete
separation). We therefore (i) applied CSS normalization to mitigate
compositional bias; (ii) used ANCOM-BC for differential abundance,
which corrects bias inherent to compositional data; and (iii)
performed random subsampling of the IR group to the control
sample size (n = 17) across 100 iterations to verify that alpha- and
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beta-diversity metrics were not driven by class imbalance. For species
screens, we report effect sizes with 95% Cls and explicitly flag taxa
exhibiting separation; these signals are interpreted cautiously as
hypothesis-generating.

3 Results

3.1 Demographic, anthropometric, and
biochemical characteristics in Kazakh
population showed differences among IR
and control groups

Results of the current study revealed significant differences in
demographic, anthropometric, and biochemical characteristics
between IR individuals and controls in the Kazakh population
(Table 1). Individuals with IR displayed higher fasting blood sugar
(FBS) levels (101.67 +22.71 mg/dL) compared to controls
(89.59 + 6.06 mg/dL, p = 0.030), with a particularly notable difference
among females (p=0.012), suggesting potential gender-based
disparities in glucose metabolism. The TyG index, a marker for IR,
was also significantly elevated in the IR group (4.63 + 0.30) versus
controls (4.40 + 0.17, p < 0.001) for both genders, indicating higher
metabolic dysregulation risk across sexes. Anthropometric measures
showed that IR individuals had higher body mass index (BMI) and
waist circumference, reflecting greater central adiposity. Specifically,
BMI in the IR group was significantly higher (27.18 + 5.04 kg/m?)
than in controls (22.71 +3.56 kg/m?, p<0.001), with waist
circumference also markedly increased (91.10 + 13.06 cm in IR vs.
77.52 + 10.82 cm in controls, p < 0.001), particularly among males.
Lipid profile assessments indicated that IR participants had elevated
total cholesterol (99.02 + 18.87 mg/dL vs. 78.19 + 10.83 mg/dL in
controls, p<0.001) and low-density lipoprotein (LDL) levels
(65.63 + 17.24 mg/dL vs. 44.08 + 10.55 mg/dL in controls, p < 0.001),
alongside lower high-density lipoprotein (HDL) levels
(25.38 £ 7.82 mg/dL vs. 29.96 + 8.20 mg/dL in controls, p = 0.023) and
significantly higher triglycerides (128.40 + 103.50 mg/dL in IR vs.
78.50 £27.55 mg/dL in controls, p=0.049). Collectively, these
findings suggest that the IR group exhibits a cluster of metabolic risk
factors, including hyperglycemia, central adiposity, and dyslipidemia,
which are associated with IR in this population.

3.2 High-level gut microbiota composition
(phylum to genus) shows no significant
association with IR

The gut microbiota composition of all participants (N = 200) was
characterized at multiple taxonomic levels (Figures la-d). At the
(Bacillota), and
Actinobacteria were dominant, with prevalences of 95.5, 97, and

phylum level, Proteobacteria, Firmicutes
96.5%, respectively. The most common classes were Betaproteobacteria
(73.5%), Deltaproteobacteria (74%), Gammaproteobacteria (76%),
Negativicutes (79.5%), and Clostridia (97%). At the family level,
Bacteroidaceae (94.5%), Porphyromonadaceae (89%), Eubacteriaceae
(80%), Prevotellaceae (61%), and Veillonellaceae (35%) were most
prevalent. The leading genera were Bacteroides (98%), Blautia (89.5%),

Roseburia (84.5%), Coprococcus (79%), and Alistipes (76%).
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TABLE 1 Demographic, anthropometric characteristics, and other related factors of the Kazakhstan population analyzed with Independent Samples
Test through control and insulin resistance (IR) groups.

Factors Total population Male Female
Mean + SD p-value Mean + SD p-value Mean + SD p-value

FBS (mg/dl) Control 89.59 + 6.06 0.030% 92.74+5.53 0.405 88.62 % 6.08 0.012%
IR 101.67 + 22.71 106.10 + 31.63 98.97 + 14.38

Triglyceride-glucose Control 440 +0.17 <0.001%#% 4.42+0.10 0.050% 4.39+0.19 0.026*

index (TyG) IR 463030 4754032 4574027

Age Control 4523576 0.016* 4675+ 7.88 0919 4476 £ 526 <0.001%%
IR 49.61£7.24 47.18 £ 834 51.09 + 5.06

Height (cm) Control 166.70 + 8.52 0.818 178.75 £ 6.60 0.181 163.00 + 4.77 0.950
IR 167.19 = 8.41 173.88  7.02 163.11 + 6.34

Weight (kg) Control 62.94 9.55 <0.001 %% 67.50 £ 10.96 0.028% 61.53 £ 9.08 0.034%
IR 76.35 = 16.91 84.97 £ 15.29 71.08 £ 15.70

BMI Control 22714356 <0.0017%% 21.12£333 0.001%% 2320+ 3.61 0.030%
IR 27.18  5.04 27.98 +3.83 26.70 £ 5.62

Waist Control 77.52 % 10.82 <0.001%% 7525 +10.87 0.001%% 7823 +11.15 0.011%

Circumference (cm) IR 91.10 £ 13.06 95.75 + 10.98 88.27 + 13.46

Total Cholesterol Control 78.19 £ 10.83 <0.001%#** 70.49 £ 7.41 0.009%* 80.56 + 10.81 <0.001 %%

(mgy/dl) IR 99.02 + 18.87 96.96 + 19.47 100.28 + 18.47

LDL (mg/d) Control 44.08 £ 10.55 <0.0013%% 43.19+ 401 0.021% 44.35 +12.00 <0.001 %%
IR 65.63 +17.24 62.72 £ 1639 67.41£17.58

HDL (mg/dI) Control 29.96 + 8.20 0.023* 2445+ 1.77 0.486 31.65+ 8.70 0.072
IR 2538+ 7.82 22344598 27244825

Triglycerides (mg/ Control 78.50 + 27.55 0.049% 77.65 +19.68 0.260 78.765 + 30.24 0.006%*

dy IR 128.40 + 103.50 160.22 + 144.33 108.97 + 60.50

*p value <0.05, **p value <0.01, and ***p value <0.001.

To explore whether broad compositional differences in the gut
microbiota were associated with IR, we compared the relative
abundances of bacterial phyla, classes, families and genera in the IR
and control groups using chi-square tests of independence. The
detailed  frequency
Supplementary Tables S1-54, and overall taxonomic profiles are

distributions ~ are  provided in
visualized in Figures 1, 2a—d.

At the phylum level (Supplementary Table S1; Figure 1a), virtually
all participants were positive for the dominant phyla Firmicutes,
Proteobacteria and Actinobacteria. For example, 177 of 183 IR
participants and all 17 controls harbored Firmicutes, while
Proteobacteria was detected in 174 IR subjects and all controls.
Chi-square statistics for Actinobacteria, Proteobacteria and Firmicutes
were 0.774, 0.875 and 0.575, respectively, with corresponding p-values
of 0.37, 0.34, and 0.44—none approaching the 0.05 significance
threshold. These findings indicate no meaningful phylum-level
differences between IR and control groups.

At the class level (Supplementary Table S2; Figure 1b), the five
most prevalent classes—Betaproteobacteria, Deltaproteobacteria,
Gammaproteobacteria, Negativicutes and Clostridia—also showed
very similar distributions across groups. In the IR group, 137-177
individuals were positive for these classes, compared with 10-17 in the
control group (reflecting the unequal sample sizes). Chi-square values
ranged from 0.002 to 2.055 with p-values of 0.15-0.96, again indicating
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no significant association between class-level composition and
IR status.

At the family level (Supplementary Table S3; Figure 1c),
we examined Bacteroidaceae, Porphyromonadaceae, Eubacteriaceae,
Prevotellaceae and Veillonellaceae. These families were present in
64-173 IR participants and 8-16 controls, but none of the
chi-square tests ()*=0.005-0.986) reached significance (all
p>0.32). Thus, did not differ
between groups.

family-level abundances

At the genus level (Supplementary Table S4; Figure 2d), the seven
most common genera—Bacteroides, Blautia, Roseburia, Coprococcus,
Alistipes, Streptococcus and Prevotella—were again widely prevalent
in both groups (positive in 102-179 IR participants and 10-17
controls). Chi-square statistics ranged from 0.065 to 3.229 with
p-values of 0.07-0.79; none were below the 0.05 threshold. Collectively,
these analyses show that high-level taxonomic composition (phylum
through genus) does not differ significantly between insulin-resistant
and control individuals in this Kazakh cohort.

Because no significant associations were found at these broader
taxonomic levels, subsequent analyses focused on species-level
differences. Across phylum, class, family, and genus, )’ statistics
ranged from 0.002-3.229 with all p > 0.05; thus, no significant
between-group differences were observed at these higher taxonomic
ranks (Figures 1, 2).
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3.3 Species-level differences identified by
Chi-square test

The chi-square analysis summarized in Table 2 evaluated
differences in prevalence of 336 bacterial species between the insulin-
resistant (IR) and control groups. Several taxa showed statistically
significant distribution differences (p < 0.05). Species that were more
common in controls included Actinomyces odontolyticus,
Bifidobacterium kashiwanohense, Bacteroides stercoris, Bulleidia

moorei and Megasphaera micronuciformis; these taxa were detected in

10.3389/fmicb.2025.1683885

13-53% of controls but only 0.6-3% of IR participants. Conversely,
Prevotella copri, Alistipes onderdonkii, Alistipes finegoldii, Roseburia
inulinivorans, Ruminococcus spp. (including R. gauvreauii),
Streptococcus thermophilus and Megamonas funiformis were markedly
more prevalent in the IR group (50-86% positive) than in controls
(0-40% positive). These disparities suggest that some taxa may confer
protection against IR, whereas others may be enriched in individuals
with IR. However, these cross-sectional associations do not establish
causality and should be explored further using mechanistic or

longitudinal studies.

TABLE 2 Chi-square test for species which become significant among all species.

Bacteria Frequency* Chi-square test
Negative Positive df p-value

Control 13 2 15 13.768 1 <0.001
Actinomyces odontolyticus

IR 166 1 167
Bifidobacterium Control 13 2 15 9.430 1 0.002
kashiwanohense IR 165 2 167

Control 13 2 15 3.979 1 0.046
Bacteroides stercoris

IR 162 5 167

Control 15 0 15 5212 1 0.022
Alistipes finegoldii

IR 123 44 167

Control 11 4 15 4.461 1 0.035
Alistipes onderdonkii

IR 75 92 167

Control 9 6 15 10.437 1 0.001
Prevotella copri

IR 37 130 167

Control 12 3 15 6.624 1 0.010
Lactobacillus sp.

IR 160 7 167

Control 13 2 15 5.165 1 0.023
Streptococcus lactarius

IR 163 4 167
Streptococcus Control 15 0 15 8.446 1 0.004
thermophilus IR 105 62 167

Control 7 8 15 3.907 1 0.048
Coprococcus catus

IR 119 48 167

Control 12 3 15 5.064 1 0.024
Roseburia inulinivorans

IR 83 84 167

Control 9 6 15 5.145 1 0.023
Ruminococcus sp.

IR 52 115 167

Control 5 10 15 4.046 1 0.044
Ruminococcus gauvreauii

IR 23 144 167
Subdoligranulum Control 12 3 15 4.074 1 0.044
variabile IR 157 10 167
Bulleidia moorei Control 13 2 15 13.768 1 <0.001
(Solobacterium moorei) IR 166 1 167
Megasphaera Control 13 2 15 13.768 1 <0.001
micronuciformis IR 166 1 167

Control 13 2 15 3.979 1 0.046
Megamonas funiformis

IR 162 5 167

*Cells with expected counts <5; estimates for these taxa are less stable given the small control group. Results should be interpreted cautiously in conjunction with effect sizes and 95% Cls.
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3.4 Univariate logistic regression identifies
protective and risk-associated species

Table 3 presents univariate logistic regression models where the
outcome is IR and the predictor is the absence of a given species (i.e., a
positive f value indicates that lacking the species increases the odds of
IR; see Figure 3A for the forest plot of univariate odds ratios). The
absence of A. odontolyticus was associated with a more than 25-fold
increase in the odds of IR (OR =25.55, p=0.010), implying that
harboring this species may be protective. Similar patterns were observed
for B. kashiwanohense (OR=12.69, p=0.015), Lactobacillus sp.
(OR=5.71,p =0.020) and S. lactarius (OR = 6.27, p = 0.044), where the
absence of these taxa was linked to higher odds of IR. In contrast, the
absence of A. onderdonkii and P. copri was associated with lower odds
of IR (OR =0.30, p = 0.044 and OR =0.19, p = 0.003, respectively),
suggesting that these taxa may contribute to IR when present. Estimates
for A. finegoldii and S. thermophilus were unstable due to quasi-complete
separation and were not statistically significant. These findings highlight
that both the presence of potentially protective bacteria and the over-
representation of potentially deleterious bacteria can influence
metabolic health. Because the control group is small, estimates for
low-prevalence species are inherently less precise, and quasi-complete
separation can occur; we therefore highlight effect sizes with 95% ClIs
and interpret such signals cautiously.

3.5 Multivariate logistic regression confirms
independent associations

The (Table 4)
simultaneously included taxa that were significant or borderline in the

multivariate logistic regression model
univariate analyses to identify independent predictors (see Figure 3B
for the multivariate model results). After adjustment, the absence of
P copri (OR=0.146; 95% CI 0.042-0.509; p=0.003) and
R. inulinivorans (OR = 0.143; 95% CI 0.032-0.645; p = 0.011) was
associated with significantly lower odds of IR, reinforcing the notion
that the presence of these species may contribute to IR. Conversely,
the absence of Lactobacillus sp. (OR =8.29; 95% CI 1.48-46.41;
p =0.016) and C. catus (OR = 7.04; 95% CI 1.85-26.78; p = 0.004) was
independently associated with higher odds of IR, indicating that these
taxa may have protective roles. These multivariate results underscore

10.3389/fmicb.2025.1683885

that specific microbial taxa maintain their associations with IR even
when analyzed in combination, and they provide potential targets for
future microbiome-based interventions. These associations derive
from taxonomic (16S) data and do not by themselves establish
functional roles or causality. As a complementary check, ANCOM-BC
differential-abundance analysis at the species level generally
recapitulated the directionality observed in the absence-coded models
for highlighted taxa. Given zero-inflation and compositional
constraints, we present presence/absence-based ORs as the primary,
clinically interpretable effect estimates.

4 Discussion
4.1 Overview and key findings

IR is a multifactorial condition, and the gut microbiota has been
proposed as one of the modifiable drivers of metabolic dysregulation
(Abdelsalam et al., 2023; Mohammad and Thiemermann, 2020). In
the present study we profiled the fecal microbiota of IR and control
Kazakh individuals and observed no significant associations between
IR and microbiota composition at the phylum, class, family or genus
levels. This absence of high-level associations emphasizes that broad
taxonomic summaries may mask important species-specific signals
and that microbiome-disease relationships are population-specific
(Abdelsalam et al., 2023; Chiang and Ferrell, 2020). By focusing on
species-level differences using chi-square and logistic regression
analyses, we identified several taxa whose presence was strongly
associated with metabolic phenotype. The absence of A. odontolyticus,
B. kashiwanohense, Lactobacillus sp., S. lactarius and C. catus was
linked to increased odds of IR, whereas the absence of P. copri,
R. inulinivorans and A. onderdonkii was associated with lower odds of
IR. These findings suggest that a small number of species, rather than
broad taxonomic shifts, may influence metabolic status in this cohort
(Davis et al., 2021). Interpretation of absence-coded models. Presence/
absence modeling targets the occupancy dimension of species—
phenotype relationships and is less sensitive to zero inflation and
compositional artifacts than raw relative abundances. This choice
yields straightforward clinical interpretation (ORs reflect IR odds
when a species is absent). Future work will extend these models with
quantitative pathways from shotgun metagenomics and metabolomics.

TABLE 3 Univariate logistic regression of bacterial species according to insulin resistance status in the Kazakh population.

Bacteria B SE (0] 95% ClI p-value
A. odontolyticus 3.240 1.258 25.552 2.169-300.702 0.010
B. kashiwanohense 2541 1.041 12.692 1.651-97.579 0.015
B. stercoris 1.606 0.885 4.985 0.880-28.241 0.069
A. finegoldii ~19.099 6059.32 0.000 NA 0.997
A. onderdonkii -1216 0.604 0.296 0.091-0.969 0.044
P. copri ~1.662 0.559 0.190 0.063-0.568 0.003
Lactobacillus sp. 1.743 0.752 5714 1.308-24.958 0.020
S. lactarius 1.836 0913 6.269 1.048-37.508 0.044
S. thermophilus -19.257 5104.51 0.000 NA 0.997
C. catus 1.606 0.885 4.985 0.974-8.246 0.056
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Forest plot of the (A) univariate and (B) multivariate regression analysis of the species of the gut microbiota among Kazakh population. The horizontal
axis is on a logarithmic scale; points to the right of the dotted line (OR > 1) indicate that the absence of the species is associated with higher odds of
insulin resistance, whereas points to the left (OR < 1) indicate that its absence is associated with lower odds (suggesting a potential deleterious role
when present). Red asterisks denote statistical significance (*p < 0.05; **p < 0.01). Predictors are absence-coded (1 = species absent; 0 = present). OR
> 1 — higher IR odds when absent (protective when present); OR < 1 — lower IR odds when absent (risk-aligned when present).

TABLE 4 Multivariate logistic regression of bacterial species according to insulin resistance status in the Kazakh population.

Bacteria B SE (O] 95% CI p value
P. copri -1.925 0.637 0.146 0.042-0.509 0.003
Lactobacillus sp. 2115 0.879 8.292 1.482-46.410 0.016
C. catus 1.952 0.682 7.040 1.850-26.782 0.004
R. inulinivorans -1.948 0.770 0.143 0.032-0.645 0.011

4.2 Species enriched in insulin-resistant
individuals

Among the species enriched in IR participants, P. copri stood out
as the most consistent risk-associated taxon. Previous studies have
shown that strains of P. copri capable of producing branched-chain
amino acids (BCAAs) are more common in individuals with type 2
diabetes, and elevated circulating BCA As correlate with obesity and
IR (Abdualkader et al., 2024). In both humans and mouse models,
overabundance of P. copri has been linked to higher BCAA
concentrations and the development of IR (Abdelsalam et al., 2023;
Abdualkader et al., 2024). The outer membrane of P. copri contains
lipopolysaccharide, which can translocate into the circulation,
causing metabolic endotoxemia and low-grade inflammation that
disrupts insulin signaling (Abdelsalam et al., 2023; Mohammad and
Thiemermann, 2020; Kim and Sears, 2010; Liang et al., 2022). Our
finding that P. copri presence is associated with IR in the Kazakh
population aligns with these mechanistic observations and suggests
that dietary or environmental factors promoting P. copri expansion
may contribute to metabolic dysfunction in this cohort (Abdualkader
etal, 2024). A. onderdonkii also showed a positive association with
IR. While the genus Alistipes has been implicated in protection
against metabolic inflammation in some settings, animal
experiments demonstrate that different species can exert divergent
effects: oral administration of A. indistinctus reduces intestinal
carbohydrate accumulation and ameliorates IR in mice (Zhang,
2024), whereas other Alistipes species have been linked to
pro-inflammatory responses. The detrimental association of
A. onderdonkii observed here may reflect species-specific metabolite
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production or interactions with host diet that warrant
further investigation.

Interestingly, the presence of R. inulinivorans was positively
associated with IR, despite this bacterium being a known butyrate
producer. In independent cohorts, R. inulinivorans abundance is
significantly lower in individuals with type 2 diabetes than in healthy
controls, and the species is inversely correlated with measures of IR
(Geetal., 2022). Butyrate supplementation improves insulin sensitivity
and reduces adiposity in mice (Gao et al., 2009), and R. inulinivorans
participates in butyrate production alongside other species such as
C. catus (Davis et al,, 2021). Our finding that R. inulinivorans is
enriched in IR subjects therefore contradicts most prior reports and
may reflect distinct dietary patterns or functional variants in the
Kazakh population. It is possible that strains of R. inulinivorans
prevalent in this cohort preferentially metabolize proteins to
branched-chain fatty acids rather than fermenting fibre to butyrate, a
metabolic shift that has been linked to inflammation and IR (Davis
et al., 2021). Further metagenomic and metabolomic analyses are
required to clarify the functional capacity of R. inulinivorans in
this setting.

4.3 Species enriched in controls and
putative protective microbes

Several taxa were less prevalent in IR participants and may exert
protective effects. A. odontolyticus is an oral commensal that rarely
causes disease (Negrini et al., 2021), and its presence in stool may
reflect ingestion and transit of upper-airway microbes. Although
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we found no prior evidence directly linking A. odontolyticus to
insulin sensitivity, our results suggest that individuals harboring this
species have substantially lower odds of IR. B. kashiwanohense
showed a similar protective association; this is consistent with the
broader observation that Bifidobacterium species improve metabolic
health. Systematic reviews of probiotic interventions show that
supplementation with Bifidobacterium and Lactobacillus species
improves IR, lipid profiles and inflammatory markers in animal
models, and that mixtures of these genera enhance insulin sensitivity
in human trials (Salles et al., 2020; Park et al., 2015). Lactobacillus
species ferment dietary carbohydrates to lactic acid and short-chain
fatty acids, modulate immune responses and reinforce gut barrier
integrity, providing plausible mechanisms for their protective effects
(Salles et al., 2020; Carretta et al., 2021; Pham et al., 2024). Similarly,
S. lactarius was less common in IR participants; although little is
known about this species in human metabolic health, related lactic
acid bacteria have been reported to improve glucose tolerance and
reduce inflammation in animal models (Salles et al., 2020; Park
et al., 2015).

The absence of C. catus was independently associated with
increased odds of IR. C. catus is a member of the Lachnospiraceae
family and an efficient producer of butyrate (Davis et al., 2021).
Butyrate enhances insulin sensitivity by increasing energy expenditure,
improving mitochondrial function and suppressing inflammation
(Gao et al., 2009; Carretta et al., 2021; Pham et al., 2024). Therefore,
the reduced prevalence of C. catus in IR participants is consistent with
the notion that diminished butyrate production may contribute to
metabolic dysregulation (Tolhurst et al., 2012; Psichas et al., 2015). In
contrast to R. inulinivorans, which displayed an unexpected positive
association with IR, C. catus exhibited the anticipated protective
pattern, suggesting that different butyrate producers may have
divergent roles depending on their metabolic outputs and interactions
with other community members.

4.4 Implications for regional differences
and mechanistic insights

The discrepancy between our findings and previous literature
underscores the importance of considering region-specific factors in
microbiome studies. The Kazakh diet is rich in fermented dairy
products and animal proteins, with relatively low intake of fermentable
fibers; such a diet could favor expansion of protein-fermenting
bacteria and modulate the production of branched-chain amino acids
and short-chain fatty acids (Abdelsalam et al., 2023; Abdualkader
et al., 2024). Genetic polymorphisms affecting immune responses to
bacterial metabolites may also modify the impact of specific taxa on
host metabolism (Abdelsalam et al., 2023; Chiang and Ferrell, 2020).
Our observation that A. onderdonkii and R. inulinivorans show risk
associations despite some evidence for protective roles in other
populations emphasizes that microbial functions, not just taxonomic
identities, determine metabolic outcomes. Integrating metagenomic,
metabolomic and host transcriptomic analyses will be essential to
elucidate these functional differences (Zhang, 2024). The Kazakh diet
traditionally includes fermented dairy (e.g., kumis/‘qymyz’; shubat)
and relatively higher animal-source foods with comparatively lower
fermentable-fiber intake, factors known to shape taxa like Prevotella
and butyrate producers. These dietary patterns likely modulate our
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observed species-phenotype links and should be measured directly in
future work (Martuzzi et al., 2024).

4.5 Mechanistic pathways linking gut
microbiota to IR

The mechanisms summarized here are biologically plausible but
hypothetical given our 16S-only data, which cannot resolve gene
content, strain differences, or metabolite profiles. Accordingly,
we interpret the species-IR links as functional hypotheses to be tested
with multi-omics. Multiple mechanistic pathways have been proposed
to explain how gut bacteria influence host insulin sensitivity
(Figure  4).
lipopolysaccharides (LPS) from Gram-negative bacteria to enter the

Disruption of gut barrier integrity allows
circulation and activate Toll-like receptor 4 (TLR4) (Mohammad and
Thiemermann, 2020; Liang et al., 2022). Elevated plasma LPS levels
correlate negatively with muscle insulin sensitivity, and exposure of
human myotubes to LPS increases pro-inflammatory cytokine
expression while reducing insulin-stimulated IRS-1 and Akt
phosphorylation; pharmacological or genetic inhibition of TLR4
abrogates these effects (Kim and Sears, 2010; Liang et al., 2022; Liang
et al.,, 2013). This inflammatory cascade links dysbiosis to chronic
low-grade inflammation and impaired insulin signaling (Mohammad
and Thiemermann, 2020). Conversely, short-chain fatty acids (SCFAs)
produced by fermentation of dietary fiber—particularly acetate,
propionate and butyrate—stimulate secretion of glucagon-like peptide
1 (GLP-1) and peptide YY (PYY) from enteroendocrine cells and
induce intestinal gluconeogenesis; these actions promote satiety and
improve glucose homeostasis (Carretta et al., 2021; Pham et al., 2024;
Psichas et al., 2015; Tang and Li, 2021). Reduced fiber intake in the
Kazakh diet may limit SCFA production and attenuate these beneficial
signaling pathways (Chiang and Ferrell, 2020; Pham et al., 2024).
Bile acids serve not only as emulsifiers but also as metabolic
hormones (Chiang and Ferrell, 2020). Primary bile acids are converted
to secondary bile acids by intestinal bacteria and activate the nuclear
receptor FXR and membrane receptor TGR5 (Chiang and Ferrell,
2020). Activation or inhibition of intestinal FXR improves insulin and
glucose sensitivity, and TGR5 signaling has anti-inflammatory effects
and stimulates GLP-1 secretion (Chiang and Ferrell, 2020; Chiang
et al, 2017). Dietary patterns that alter bile acid pools or the
abundance of bile salt hydrolase-producing bacteria could therefore
influence metabolic outcomes in this cohort (Chiang and Ferrell,
2020). Other host systems are intertwined with the microbiota. The
gut endocannabinoid system, expressed in epithelial and
enteroendocrine cells, modulates gut motility, permeability and
inflammatory  responses; microbiota composition  shapes
endocannabinoid tone and thereby influences metabolic and
behavioral responses (Srivastava et al., 2022; Tagliamonte et al., 2021).
Elevated levels of BCAAs, produced by taxa such as P. copri, activate
the mammalian target of rapamycin complex 1 (mTORC1) and are
associated with obesity and IR (Abdualkader et al., 2024; Yoon, 2016).
Defective BCAA catabolism or overabundance of BCAA-producing
bacteria may thus contribute to IR via mTORCI activation and
accumulation of toxic intermediates. Figure 4 integrates these
pathways and illustrates how microbial metabolites and host receptors
converge to modulate inflammation, hormone secretion and

energy metabolism.
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FIGURE 4

Mechanistic pathways linking gut microbes to insulin resistance. Schematic of four convergent axes: (1) LPS-TLR4 inflammation reduces insulin
signaling (IRS-1/Akt); (2) SCFAs (butyrate/propionate) signal via FFAR2/3, increasing GLP-1/PYY and improving glycemic control; (3) Bile acids act
through FXR/TGR5 to modulate glucose and inflammation; (4) BCAA production (e.g., Prevotella strains) can activate mTORC1 and promote insulin
resistance. Species observed in this study map onto these pathways: P. copri (BCAA/LPS; risk-aligned), C. catus and Lactobacillus spp. (SCFA/barrier;
protective-aligned), and R. inulinivorans (butyrate-capable but population-specific association). Arrows indicate direction of effect hypothesized from
prior literature. Mechanistic links are hypothesis-generating and require shotgun metagenomic and metabolomic validation in this population.

Multiple, convergent microbe-to-host axes plausibly link our  activate mTORCI, and worsen insulin sensitivity (Abdualkader et al.,

species-level signals to IR. First, metabolic endotoxemia—  2024; Yoon, 2016). These pathways provide biologically plausible
translocation of Gram-negative LPS—activates TLR4, driving  routes through which specific taxa observed here could contribute to
low-grade inflammation that impairs IRS-1/Akt signaling in insulin-  metabolic dysfunction.

responsive tissues (Mohammad and Thiemermann, 2020; Kim and Species-to-pathway mapping. The risk-aligned association of

Sears, 2010; Liang et al., 2022; Zhang, 2024; Ge et al., 2022; Gao etal., P, copri in our cohort is consistent with reports of BCAA biosynthesis
2009). Second, SCFAs (particularly butyrate and propionate) engage  and potential LPS-mediated inflammation contributing to IR
FFAR2/3, stimulate GLP-1/PYY, and promote intestinal  (Abdelsalam et al, 2023; Mohammad and Thiemermann, 2020;
gluconeogenesis, thereby improving glucose homeostasis (Carretta ~ Abdualkader et al., 2024; Kim and Sears, 2010; Liang et al., 2022;
etal,, 2021; Pham et al., 2024; Tolhurst et al,, 2012; Psichas et al., 2015).  Zhang, 2024; Yoon, 2016). Conversely, taxa aligned with insulin
Third, bile-acid signaling via FXR/TGR5 modulates glycemic control  sensitivity—C. catus and Lactobacillus spp.—are linked to butyrate/
and inflammation (Chiang and Ferrell, 2020; Chiang et al., 2017). SCFA production, barrier support, and immune modulation,
Fourth, microbial BCAA production can elevate circulating BCAAs,  mechanisms that improve insulin signaling (Negrini et al., 2021; Park
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et al., 2015; Carretta et al., 2021; Pham et al., 2024; Tolhurst et al.,
2012). The unexpected positive association of R. inulinivorans with IR
in this population may reflect strain-level functional variation or diet-
dependent metabolic routing, underscoring the need for
metagenomic/metabolomic resolution to disambiguate function
(Davis et al., 2021; Ge et al., 2022; Carretta et al., 2021; Pham et al.,
2024; Tolhurst et al., 2012). Together, these links motivate testing
whether diet and microbial metabolites mediate species-IR

associations in Kazakh adults.

4.6 External context and generalizability

We contextualized our cohort’s dominant taxa against large healthy-
adult references, noting broad agreement at high taxonomic ranks while
emphasizing our core finding that only species-level features
discriminated IR within this population. Given well-documented cross-
study domain shift in microbiome diagnostics, we intentionally refrained
from cross-country ‘performance’ claims and instead report effect sizes
with CIs for species signals that are most likely to translate. Prospective,
diet-measured, multi-site validation is warranted (Li et al., 2023).

4.7 Implications for protecting a
metabolically favorable gut ecology

Our species-level signals suggest pragmatic, testable strategies: (1)
increase fermentable fiber (whole grains, inulin, resistant starch) to
support butyrate producers such as C. catus; (2) consider fermented
dairy or probiotics containing Bifidobacterium/Lactobacillus, which
have shown improvements in IR in trials; (3) moderate dietary patterns
that may favor expansion of BCAA-producing taxa such as P. copri,
balancing protein with fiber-rich foods. These proposals are hypothesis-
generating and require randomized, diet-measured trials in Kazakh
adults (Salles et al., 2020; Pham et al., 2024; Martuzzi et al., 2024).

4.8 Practical implications and
hypothesis-generating

Practical implications (hypothesis-generating, population-specific).
Our species-resolved findings suggest pragmatic levers to protect a
metabolically favorable gut ecology in this population. First, increasing
fermentable fiber is expected to support butyrate-producing taxa such
as C. catus, with potential downstream benefits via SCFA-mediated
enteroendocrine signaling. Second, culturally congruent fermented
dairy and/or probiotic products containing Bifidobacterium and
Lactobacillus may help sustain taxa aligned with insulin sensitivity in our
cohort. Third, maintaining overall diet quality and physical activity—
independent determinants of insulin sensitivity—may act synergistically
with microbiota-derived metabolites. Conversely, given the risk-aligned
signal for P, copri, dietary patterns that balance higher protein intake
with adequate fermentable fiber are a reasonable, testable approach.
We emphasize that these actions are hypothesis-generating rather than
prescriptive and may be population-specific; they require validation in
diet-measured randomized trials incorporating stool/serum
metabolomics (SCFAs, bile-acid species, BCAAs, LPS-related markers)
to test mediation of species-IR associations in Kazakh adults. These
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ideas are investigational only; causality and efficacy cannot be inferred
from 168 associations and require validation via shotgun metagenomics/
metabolomics and prospective randomized studies in Kazakh adults.

4.9 Strengths, limitations, and future
directions

This study benefits from a well-characterized cohort and
comprehensive species-level analysis, yet several limitations must
be acknowledged. The cross-sectional design precludes causal inference;
longitudinal studies are needed to determine whether changes in specific
species precede the onset of IR or result from metabolic alterations.
Sample size in the control group was modest, which may limit power to
detect associations for less prevalent taxa. Finally, functional inferences
are speculative because our 16S rRNA sequencing cannot determine
metabolic capacities; metagenomic and metabolomic profiling would
clarify whether protective taxa produce beneficial metabolites such as
butyrate or lactate, and whether risk taxa increase circulating BCAAs or
endotoxin (Abdelsalam et al., 2023; Chiang and Ferrell, 2020; Davis
et al.,, 2021; Abdualkader et al., 2024; Carretta et al., 2021; Pham et al.,
2024; Tagliamonte et al., 2021). Despite these limitations, our findings
highlight candidate species for microbiome-targeted interventions.
Strategies that enrich Bifidobacterium, Lactobacillus and Coprococcus
while reducing P. copri may improve insulin sensitivity; this notion is
supported by evidence that probiotic supplementation with
Bifidobacterium and Lactobacillus improves IR (Salles et al., 2020; Park
etal., 2015; Carretta etal,, 2021; Pham et al., 2024). The contrasting roles
of R. inulinivorans and A. onderdonkii demonstrate that therapeutic
approaches must be tailored to the functional characteristics of strains
prevalent in a given population. Future studies should incorporate
dietary assessments, host genotyping and longitudinal sampling to
unravel the complex interplay between diet, microbiota and IR. Diet was
not measured; given its strong influence on microbiota and insulin
sensitivity, future studies will include validated FFQs and dietary
biomarkers (SCFAs, bile acids) to enable diet-adjusted models. Although
our mechanistic inferences are biologically grounded, 16S rRNA profiles
are taxonomic and not functional. Future work will include validated
diet assessment and stool/serum metabolomics (SCFAs, bile-acid
species, BCAAs, LPS markers) to test mediation of species-IR
associations and to resolve strain-level functional heterogeneity.

A key limitation is the IR:control imbalance (183:17). This
asymmetry may increase uncertainty for low-prevalence taxa and
contribute to OR instability or separation in logistic models.
We mitigated these risks through CSS normalization, ANCOM-BC
for bias-corrected differential abundance, and IR-subsampling checks
for alpha/beta-diversity. Nonetheless, residual sensitivity to sample
size cannot be excluded; accordingly, we emphasize effect sizes with
95% CIs and treat species-level findings as hypothesis-generating.
Future studies will prioritize larger and/or matched control sampling,
and may employ penalized likelihood or Bayesian shrinkage models
to further stabilize estimates.

Another key limitation is that 16S rRNA sequencing lacks
functional resolution. To validate and extend these findings, future
work will integrate (i) shotgun metagenomics to quantify pathway
genes with strain-level resolution, and (ii) targeted metabolomics to
measure stool SCFAs (acetate/propionate/butyrate), fecal/serum bile
acids, serum BCAAs, and endotoxemia markers. These data will
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enable mediation analyses to test whether microbial functions/
metabolites statistically explain species-IR associations. Because our
data are taxonomic (16S), we cannot claim that manipulating specific
taxa will improve IR; instead, these species represent prioritized,
testable targets for function-resolved and interventional studies.

5 Conclusion

In this Kazakh cohort, broad taxonomic profiles from phylum
to genus were not informative for IR, whereas species-level
composition was. A restricted set of species differentiated
metabolic status: Lactobacillus sp. and C. catus aligned with
insulin sensitivity, while P. copri and R. inulinivorans aligned with
IR, with additional
B. kashiwanohense, and A. onderdonkii. These findings indicate

signals involving A. odontolyticus,
that coarse community summaries are insufficient for this
population and that species-resolved characterization is required
to capture metabolically relevant variation. This work reframes
microbiome-IR research toward strain- and function-focused
analyses tailored to regional diets and host backgrounds and
motivates hypothesis-driven trials to test whether modulating
community functions or the abundance of candidate taxa affects
insulin sensitivity. Causal effects and clinical efficacy cannot
be inferred from these 16S data.
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