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1 Introduction

Microbes (fungi, bacteria, and viruses) are the major cause of plant diseases and
are responsible for devastating yield reductions that translate into enormous economic
burdens. Global annual losses with regard to plant diseases account for $220 billion (Savary
et al,, 2019), posing a significant threat to global food security (Sharma et al., 2020).
Various strategies have been used to address these losses. For example, traditional breeding
approaches help to provide crops with durable resistance, yet it is constrained by the rapid
breakdown of resistance and the limited availability of resistant genes (R genes) in the host
plant. However, pathogens can overcome that resistance over time. Additionally, chemical
pesticides may be used, but most pathogens gain resistance through repeated and often
widespread application (Meade et al., 2021). At the molecular level, pathogens, including
bacteria, fungi, and viruses, produce effector molecules, which are proteinaceous biological
molecules that act as mediators of interaction with the host plant. Effector molecules are
released into the apoplast or host cell, thereby helping the pathogen subvert the host’s
immune response (Liu et al., 2014). These molecules are critical virulence determinants,
found mainly in the secretion system of bacteria, haustoria of fungi, and salivary secretions
of insects that transmit diseases caused by viruses and phytoplasmas (Gonzalez et al., 2016).

Biotechnology tools have been leveraged to target effectors for plant disease
management. These approaches offer specificity and provide long-term resistance to the
host (Belete and Boyraz, 2019). In this paper, we highlight the potential of effector binding
sites as molecular targets that can be leveraged using techniques such as CRISPR/Cas-based
genome editing, RNA interference, decoy engineering, and effectoromics approaches.
These approaches involve identifying genes that will accelerate resistance breeding and
ultimately contributing to sustainable disease management and food security.

2 Discussion

2.1 Effectors as key components in disease development

Plant pathogenic effectors play a crucial role in the interaction between host
and pathogens. These specialized molecules facilitate pathogen colonization and
nutrient extraction by modulating host cellular processes (Harris et al, 2023).
They modify levels of various phytohormones to promote pathogenicity and
evade plant immunity (Han and Kahmann, 2019). Effectors are classified as
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intracellular or extracellular based on their site of localization.
Intracellular effectors are released into the cytoplasm or nucleus,
where they suppress plant immunity. Extracellular effectors operate
outside the cell, in the apoplast, breaching the physical and
chemical barriers of plant defense (De Wit, 2016). Translocated
cytoplasmic effectors, primarily produced by bacteria, influence
plant responses and disease symptoms (Todd et al., 2022). They
achieve this by interfering with gene transcription and targeting
susceptible factors, which facilitates pathogen growth. One such
group of cytoplasmic effectors is the transcription activator-like
effectors (TAL) from Xanthomonas, which alter plant transcription
factors. TAL effectors are secreted by the type III secretion
system. The RxLR effector, produced by Phytophthora, exhibits
pathogenicity and suppresses host defense (Jiang et al., 2008).
Some effectors hijack the host cell machinery by mimicking
host cell proteins. Phytoplasmas produce effector molecules,
such as SAP (secreted aster yellows witches’ broom proteins),
which target host transcription factors like TCPs (teosinte
branched/cycloidea/proliferating cell factor) and RAD23, thereby
altering host development and immunity (Janik et al., 2017).

Apoplastic effectors, which are produced by fungi, insects,
and nematodes, are characterized by their secretory nature. One
such effector is Ecp20-2 produced by Cladosporium fulvum,
(Stergiopoulos et al., 2010; Westerink et al., 2004; Van Esse et al.,
2007) which inhibits the production of plant enzymes, detoxifies
reactive oxygen species, and suppresses PAMP-triggered immunity
(Chen et al., 2023). Table 1 provides a list of effector molecules that
can be identified and targeted for innovative and improved disease
management strategies.

2.2 Improving plant disease management
through effector-directed interventions

Resistance achieved through conventional breeding methods
can be overcome by pathogens, which generate new, more virulent
strains (Shang et al., 2023). In contrast, strategies for targeting
effectors for plant disease management offer several promising
advantages. First, these strategies can alter pathogenicity and
affect the virulence of the pathogen to some extent (Todd et al,
2022). Second, most of the effectors are conserved among multiple
pathogenic strains, making them an ideal target for broad-spectrum
activity (Sha and Li, 2023). For instance, Avr (avirulence) and RxLR
effectors are conserved across various pathogens offering durable
resistance to varied pathogens in most crops. Third, targeting
site-specific effectors could reduce off-target effects on beneficial
microbes in ecosystems. Finally, strategies for effector targeting are
compatible with other disease management methods, which could
lead to a sustainable, multi-pronged approach in the future.

2.3 Methods of targeting effector proteins

Effectors can be targeted using various biotechnological
approaches, such as genome editing tools, RNA interference,
effector decoy strategies, and effector breeding and diagnostics.
Various -omics approaches can be used to understand the
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molecular level of these effectors and improve precision
management, as shown in Figure 1.

2.3.1 Genome editing with CRISPR/Cas

Genome editing offers two complementary approaches:
disruption of effector binding elements (EBEs) in the promoter
regions of host susceptible genes and knocking out negative
regulators. By modifying EBEs through mutation, for instance, we
can prevent effector binding and subsequent activation of the target
site, thereby inhibiting pathogenicity, virulence, recognition, and
colonization by the pathogen. For example, the SWEET (sugar will
eventually be exported transporter) genes are known susceptibility
genes (S genes) to which TAL effectors bind at specific EBEs in the
promoters of these genes, leading to their overexpression. Sugar
efflux into the apoplast provides the pathogen with nutrients,
thereby enhancing infection and disease progression. CRISPR/Cas
can be used to edit SWEET genes (OsSWEET11, 13, and 14) to
disrupt EBEs in their promoters confers resistance against bacterial
leaf blight in rice (Zhou et al., 2015). In cassava, the SWEET10a
gene targets host genes that increase the resistance toward
Xanthomonas axonopodis pv. manihotis (Wang et al., 2024). This
prevents TAL effector-mediated activation and confers resistance
to bacterial blight in elite rice cultivars (IR64, Ciherang-Subl,
and Kitaake). Disrupting TAL-EBEs blocks the pathogen-induced
gene activation and enhances blight resistance without affecting
plant development (Li et al., 2025). Second, the Mildew Locus O
(MLO) gene family encodes membrane-associated proteins that
negatively regulate plant defense responses. These genes are well-
characterized susceptibility genes in both monocots and dicots,
as loss-of-function mutations in MLO result in broad-spectrum
resistance to powdery mildew pathogens. Using CRISPR/Cas9,
targeted knockouts or frameshift mutations in MLO genes have
been achieved in species such as wheat, tomato, and grapevine. This
reduces or eliminates functional MLO protein activity and thereby
confers resistance without significant developmental penalties
(Nekrasov, 2019). In both banana and tomato plants, knocking
out the DMR6 gene led to increased resistance to Xanthomonas
(Tripathi et al., 2021; Thomazella et al., 2021). Similarly, the
transgenic expression of the Bs2 gene from pepper detects the
effectors produced by Xanthomonas, thereby providing resistance.

Although targeted genome editing can provide durable
resistance, identifying S genes is challenging because they are
often recessive and have multiple copies, unlike resistance genes.
Identification methods are thus time-consuming and labor-
intensive, often relying on wild cultivars to achieve optimal results.
Furthermore, targeting S genes is known to have pleiotropic
effects, including negative effects on plant growth and yield. This
is undesirable for disease management in agriculture. Validating
these effectors as S genes highlights the need to balance pathogen
specificity with agronomic performance.

2.3.2 RNA interference and gene silencing
RNAi-mediated silencing enables the direct targeting of
pathogen effector molecules either through host-induced gene
silencing (HIGS) or spray-induced gene silencing (SIGS). HIGS
is durable and can silence multiple effectors simultaneously, but
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TABLE 1 Effectors produced by different plant pathogens during pathogenesis.

‘ Effectors Plant pathogens Reference ‘
Bacteria
TAL Xanthomonas oryzae pv. oryzae, Xanthomonas Zhang et al., 2015
axonopodis pv. citri, Xanthomonas axonopodis pv.
glycines
Xanthomonas translucens pv. undulosa Peng et al,, 2019
Xanthomonas axonopodis pv. manihotis Wang et al., 2024
PthA Xanthomonas axonopodis pv. citri Swarup et al., 1991
Avrb6, PthN Xanthomonas axonopodis pv. malvacearum Yang et al., 1996; Chakrabarty et al., 1997

AvrBsl, AvrBs2, avrBs3

Xanthomonas axonopodis pv. vesicatoria

Kearney et al., 1988, Marois et al., 2002, O’Garro et al., 1997

AvrXa5, AvrXa7, PthXo3 Xanthomonas oryzae pv. oryzae

Lietal, 2018a,b

AvrPtoB Pseudomonas syringae

Shan et al., 2000

PsyB728a, HopAl

Pseudomonas syringae pv. syringae

Kang et al., 2021

AvrRpm1

Pseudomonas syringae pv. maculicola

Ritter and Dangl, 1995

AvrPphE virPphA, AvrPphC

Pseudomonas syringae pv. phaseolicola

Tsiamis et al., 2000, Yucel et al., 1994

AvrA, AvrE, AvrPto, AvrRpt2

Pseudomonas syringae pv. tomato

Shan et al., 2000

Rip36, RipAB, Rip1, RipAY, RipAX2, RipB, Ralstonia solanacearum

RipJ, RipAZ1, RipAL

Nakano and Mukaihara, 2019; Pandey et al., 2021; Moon et al.,
2021; Nakano and Mukaihara, 2018

dspEF Erwinia amylovora

Bogdanove et al., 1998

SAP11
SWPI1, SWP12, SWP21, SWP11

Aster Yellows phytoplasma

Luetal, 2015; Wang et al., 2018

SAP54 Candidatus Phytoplasma australasia, Bellis Ahmed et al., 2022; MacLean et al., 2011
virescence phytoplasma

Fungi

AvrM Melamspora lini Veetal, 2013

AvrPia, AvrPik, PWT3 Magnaporthe oryzae

Cesari et al., 2013, Kanzaki et al., 2012, Inoue et al., 2017

Avramr3, Pi02860, Pi04314/RD2,
Pi04314/RD24, PiAvr2

Phytophthora infestans

Lin et al., 2022a,b; He et al., 2018; Yang et al., 2016; Boevink et al.,
2016; Gilroy et al,, 2011; Turnbull et al., 2019

PsAvh52 Phytophthora sojae Lietal, 2018a,b

AlAvrl Ascochyta lentis Henares et al., 2022

AvrRppC Puccinia polysora Deng et al., 2022

SsITL Sclerotinia sclerotiorum Zhu et al., 2013; Tang et al., 2020

Pst18363, PstGSRE4, PstGSRE1, Pst_12806 Puccinia striiformis f. sp. tritici

Xu et al., 2019; Qi et al., 2019; Liu et al., 2022

SCRE6 Ustilaginoidea virens

Zheng et al., 2022

Umripl Ustilago maydis

Chan, 2022

ToxA, PtrToxB Pyrenophoratritici repens

Friesen and Faris, 2004; Figueroa et al., 2015

SnTox1

Parastagnospora nodorum

Liu et al., 2012

S gene, Susceptibility gene; TAL, Transcription Activator Like; Pth, Pathogenicity; Avr, Avirulence; Rip, Ralstonia Injected Proteins; dsp, Disease Specific Protein; SAP, Secreted Aster Yellows

Witches’ Broom Protein.

it relies on stable transgenics, which pose regulatory challenges.
On the contrary, SIGS provides a non-transgenic and eco-friendly
alternative, but it depends on the stability and delivery efficiency
of dsRNA. Compared to CRISPR, RNAI offers greater flexibility in
targeting multiple effectors, but it lacks the long-term durability of
genetic modifications, making RNAI a suitable option as an interim
strategy. There are reports that RNAi is successful in silencing the
effector genes of plant-parasitic nematodes, such as Meloidogyne
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incognita, leading to reduced infectivity (Shivakumara et al., 2016).
In M. incognita, RNAI targets and suppresses genes such as msp-18,
msp-20, msp-24, msp-33, and msp-16. These genes interact with
host transcription factors by altering the expression of cell wall-
degrading enzymes (Shivakumara et al., 2016). Putative effectors
in the nematode, Pratylenchus thornei were identified, and upon
introducing RNAI, they exhibited severe effects on phenotype,
behavior, gene expression, and the reproductive system (Khot,
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Strategies for targeting host factors to manipulate pathogen effectors for durable plant disease resistance. (1) Genome editing with CRISPR/Cas
targets plant genes by impairing effector targets, which disrupts pathogen compatibility. (2) RNA interference (RNAI) enables host-induced gene
silencing of effector genes. (3) Engineering effector decoys mimics effector targets and intercepts pathogen effectors. (4) Effectoromics-based
identification of gene pathways and networks manipulated by effectors, providing precise intervention points, thereby providing resistance. Together,
these approaches offer a layered defense strategy that interrupts the pathogen’s effectors and provides durable resistance to host plants.

2018). Similar effects were observed using RNAi in the fungal
pathogens, such as Fusarium, Verticilium, and Rhizoctonia (Foroud
et al, 2014), as well as in insect vectors, including whiteflies
and aphids (Feng et al., 2023). Host plants adopt a mechanism
of host-induced gene silencing when they use RNAi molecules.
This mechanism targets and silences specific effectors, thereby
reducing the pathogen’s virulence and inhibiting colonization.
This reduces pest and disease incidence and provides better
management strategies.

2.3.3 Decoying of effectors

Decoy engineering converts susceptible nature into resistance
by providing plants with engineered proteins that mimic natural
effector targets, sequestering effectors before they interact with
host proteins. When the pathogens bind to the decoys, they
are prevented from reaching their actual targets within the
host, thereby suppressing pathogen infection. This approach
is highly specific once the effector-target interaction is well-
established. These decoys prevent the effectors from reaching
their EBEs,
in R genes, which provide host plants with broad-spectrum

a mechanism that has been well-documented
resistance. In the future, synthesizing such decoys could provide

an opportunity to design novel resistance strategies based on
specific EBEs.

Frontiers in Microbiology

2.3.4 Effectoromics

Effectoromics is a potentially powerful approach for quickly
and efliciently identifying novel R genes. Pathogen effectors act as
tools that identify resistance genes across germplasm collections
through immune response screening (Domazakis et al., 2017).
They also differentiate functional redundancy and specificity.
These R genes form the basis for breeding methods that increase
resistance and incorporate effector-triggered immunity into crop
improvement programs. Similarly, R genes such as Rpi-amr4, Rpi-
amrl6, and Rpi-amrl7 were identified in potatoes in response
to the late blight pathogen, Phytophthora infestans effector RxLR
genes Avramr4, Avramrl6, and Avramrl7 (Lin et al, 2022a,b).
These genes act as resistance genes in the host plant and are used
for effective disease management. However, this approach is data-
intensive and functional validation of candidate susceptible genes
remains time-consuming; it does not confer resistance, but serves
as an indispensable backbone that informs and strengthens effector
targeting strategies.

3 Conclusion

The major current and future challenges in agriculture on
a global level are emerging plant diseases, pathogen resistance,
and climate change. Hence an urgent need for innovative,
cost-effective and sustainable solutions is critical. Targeting
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effectors is durable and eco-friendly, disabling the limitations
of chemical-based management, such as emerging pathogen
resistance and harm to the beneficial microbiome within the
ecosystem. Targeting effectors disarms the pathogen at the
molecular level, modifying the strategy toward an ecologically
based approach to crop protection. Leveraging new technologies
such as genome editing, RNA interference (RNAi), decoying of
effectors, and effectoromics can advance plant disease management
results, which face uncertainties in durability, delivery efficiency
and environmental stability. An effector-based approach could
be the future technology, transforming plant pathology into
a science driven by prediction and precision rather than
reaction. However, biosafety and ecological considerations such
as unintended impacts on beneficial microbes or non-target
organisms must be critically evaluated. This shift would help
to secure global food security by enabling the development of
disease resistant varieties. Further, to translate these approaches
into practical crop improvement, it requires integration of
effectoromics into breeding pipeline, their validation under
field conditions, incorporating with integrated plant disease
management provides a path forward, ensuring that effector
targeting strategies can make a meaningful contribution to global
food security.
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