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Wetland degradation promotes
soil P fraction transformation by
altering P-cycling functional
genes and metabolic pathways

Yumeng Jiang, Yu Zou, Miaojia Sun, Weihong Zhu* and
Wanling Xu*

College of Geography and Ocean Sciences, Yanbian University, Hunchun, China

Global wetlands have undergone varying degrees of degradation due to intense
disturbances from global climatic and environmental changes, and human activities
such as overgrazing and drainage. While wetland degradation is known to alter soil
physicochemical properties and phosphorus (P) cycling, the mechanism governing
its effects on soil P fraction transformation and P metabolism remains poorly
understood. To address this, we investigated how different stages of wetland
degradation—non-degraded (ND), slightly degraded (LD), moderately degraded
(MD), and heavily degraded (HD)—affect soil P fractions in temperate wetlands.
We analyzed soil properties, P-cycling microbial communities, functional genes,
and metabolic products, employing the modified Hedley P fractionation method to
elucidate clear trends in P fraction contents. Our results show that total inorganic
P content decreased significantly with increasing degradation intensity. Specifically,
labile Pi (Resin-Pi and NaHCO3-Pi), mod-labile Pi (NaOH-Pi), and stable Pi (1 M
HCL-Pi and Residual-P) all declined significantly, although Conc. HCI-Pi exhibited
an initial decrease followed by an increase. In contrast, total organic P content
increased, with significant increases in labile Po (NaHCO;-Po) and mod-labile
Po (NaOH-Po), while stable Po (Conc. HCl-Po) decreased markedly. These
shifts indicate that wetland degradation promotes the interconversion among
labile P, mod-labile P, and stable P forms. The degradation process is initiated
by a reduction in soil moisture, which subsequently regulates soil pH and other
physicochemical properties. These changes further drive shifts in microbial
community diversity, influence the abundance of P-cycling functional genes,
and alter P metabolic pathways, ultimately affecting both the speciation and total
pool of soil phosphorus. The accumulation of labile Po is primarily attributed
to the obstruction of mineralization, resulting from the reduction of terminal
functional genes in the Po mineralization pathway. These findings enhance our
understanding of P-cycling mechanisms in degraded wetlands and provide a
theoretical basis for phosphorus management during wetland restoration efforts.
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1 Introduction

As the third most abundant essential nutrient in soil, following carbon and nitrogen,
phosphorus (P) is critical for supporting the growth and development of both plants and
microorganisms. P cycling is essential to the nutrient dynamics of wetland ecosystems
(Cheesman et al., 2014; Hu et al., 2022b; Kour et al., 2021). In natural ecosystems, P cycling
differs fundamentally from carbon and nitrogen cycling because it lacks a significant
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atmospheric gas phase. Instead, P is primarily sequestered in rocks
and soils, and its mobilization depends on geological weathering and
biological processes (Hong et al., 2025). The P that can be directly
absorbed and utilized by plants represents the amount of P available
in an ecosystem. This P determines the P utilization of that ecosystem.
Therefore, P is often considered the “limiting element” in soil
nutrients, and its availability directly affects primary productivity and
ecosystem functioning in wetlands (Lie et al., 2022). In the soil P cycle,
P is converted to soluble forms and taken up by plants or
microorganisms, and then returned to the soil after the organisms die
(Kruse et al., 2015). To better study the composition and bioavailability
of soil P, it is categorized into a series of organic and inorganic
fractions. These P fractions differ in their turnover, transformation,
and mobility in the soil, reflecting variations in their biological
availability. Based on solubility, Hedley et al. classified P into several
forms: labile P (Resin-P, NaHCO;-Pi, NaHCO3-Po), moderately labile
P (NaOH-Pi, NaOH-Po), and stable P (1 M HCI-P, conc. HCI-Pi,
conc. HCI-Po, Residual-P) (Hedley et al., 1982; Weihrauch and Opp,
2018). This classification is currently the most widely used
comprehensive P fractionation method. Changes in soil P fractions
are influenced by many factors, including soil physicochemical
properties, nutrient status, enzyme activity, and microbial
mineralization-immobilization processes (Inamdar et al., 2017; Six
etal,, 2004). Among these, soil pH is a fundamental factor affecting P
speciation and bioavailability (Dick et al., 1983). Some studies have
shown that high concentrations of Al and Fe ions in acidic soils
enhance the complexation capacity of P with these metal ions (Coolen
etal,, 2011). Research has found that drought-induced increases in pH
can significantly reduce the content of calcium phosphates in
temperate forests, accompanied by an increase in inorganic and
organic P bound to secondary minerals (Fe/Al oxides) (Zhang et al.,
2020). Simultaneously, the oxidative conditions following wetland
drainage can increase the abundance of P-solubilizing microorganisms
in the soil, leading to elevated levels of labile P and AP (Jiang et al.,
2024). Additionally, changes in soil organic matter composition can
alter microbial biomass, activity, and community structure, thereby
affecting phosphorus (P) forms and availability (Bai et al., 2023; Wu
etal, 2025). In summary, existing studies have demonstrated that soil
environmental changes can significantly affect P fractions. It has been
confirmed that wetland degradation, as a typical environmental
disturbance, can strongly alter soil physicochemical properties and
thereby profoundly influence the P cycling process (Bergkemper et al.,
2016). However, the specific mechanisms through which wetland
degradation drives the transformation of P fractions still lack
systematic and in-depth investigation.

Wetland degradation significantly alters soil environments,
initiating shifts in microbial community structure (Hu et al., 2022b;
Liang et al., 2020). These microbial communities are essential for soil P

Abbreviations: P, Phosphorus; TP, Total phosphorus (mg kg™); Pi, Inorganic
phosphorus (mg kg™); Po, Organic phosphorus (mg kg™); AP, Available phosphorus
(mg kg™); SW, Soil water content (%); TC, Total carbon (g kg™); TN, Total nitrogen
(g kg™); MBP, Microbial biomass phosphorus (mg kg™); ST, Soil temperature (°C);
pH, Soil pH; NH,*-N, Ammonium nitrogen (mg kg™); NOs™-N, Nitrate nitrogen
(mg kg™); DOC, Dissolved organic carbon (mg kg™); ND, Non-degraded wetland;
LD, Slightly degraded wetland; MD, Moderately degraded wetland; HD, Heavily

degraded wetland.
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cycling. Specifically, soil microorganisms, especially P-solubilizing
microorganisms, are key actors in four core P cycling processes:
solubilization of inorganic phosphorus (Pi), mineralization of organic
phosphorus (Po), regulation of P starvation response, and P uptake/
transport (Bergkemper et al., 2016; Dai et al., 2020). They primarily
function by secreting organic acids and enzymes to hydrolyze, dissolve,
or mineralize insoluble P compounds (Pang et al., 2024; Rawat et al.,
2020). Wetland degradation commonly causes a decline in groundwater
level, reduced soil water content, and higher redox potential (Cui et al.,
2020). As soil moves from reducing to oxidizing conditions, microbial
communities engaged in Pi solubilization and Po mineralization may
become more active, thereby accelerating P transformation (Su et al.,
2017; Wang et al., 2017). Furthermore, recent studies show that rising
soil pH in degraded wetlands can strongly impact functional
microorganisms in the P cycle, further enhancing P cycling efficiency
and increasing soil AP (Li et al., 2022). Conversely, wetland degradation
often reduces soil organic carbon (Zheng et al., 2024). As a vital energy
source, decreased organic carbon content may hinder the growth of
microbes preferring rich organic carbon environments (Lehmann et al.,
2017; Wang et al., 2016). This decline can reduce microbial diversity,
especially key groups like phoD gene-containing bacteria, ultimately
disrupting normal soil P cycling (Cui et al., 2025). In summary, wetland
degradation may directly affect microbial community structure and
function by altering soil physicochemical properties and organic
carbon content, profoundly influencing soil P cycling.

Wetlands are ecosystems found between land and water bodies.
They have unique soil, hydrological, and biological characteristics and
provide many ecological services locally and globally, which makes
them crucial for biodiversity conservation, nutrient cycling, climate
regulation, water conservation, and human health. They are often
referred to as the “kidneys of the earth” and the “biological gene pool”
(Wuetal,, 2021). Global climate change and human activities, such as
overgrazing and drainage, have strongly affected wetlands. As a result,
wetland areas have significantly decreased worldwide, with
approximately 50% degraded or lost. This loss has led to severe
ecological and social problems (Jiang et al., 2017; Meng et al., 2017).
As one of the limiting nutrients for primary productivity in wetlands,
P promotes plant growth and ensures normal ecological functions of
wetland systems (Xu et al., 2022). Current wetland P research focuses
on two main approaches: first, analyzing P storage in aquatic plants
and adsorption-desorption characteristics of sediment P within
water-land transition zones to investigate P transformation in coastal
wetland (Bai et al., 2017; Berthold et al., 2018; Karstens et al., 2015);
second, analyzing changes in wetland soil P-cycling microorganisms
and functional genes to assess P availability and transformation
sources (Hu et al., 2022a; Liu et al., 2023; Wu et al., 2025). Only a few
studies have examined the combined influence of soil P fraction
dynamics and microbial functional genes involved in P cycling on
wetland soil P availability, and these have mostly been in alpine
wetlands (Zhu et al., 2017). In contrast, there is a knowledge gap
regarding microbial mechanisms and metabolic pathways that drive
P fraction transformation during temperate wetland degradation.
Wetland degradation is a typical process driven by the combined
effects of natural and anthropogenic factors. Investigating the driving
mechanisms and response patterns of wetland ecosystems can help us
better understand their vulnerability, adaptability, and tipping points.

The Jingxin Wetland, a significant transboundary temperate wetland
ecosystem situated at the northeastern tip of China, exhibits composite
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characteristics of both inland and estuarine wetlands”” It serves as a critical
stopover and breeding site for migratory birds within the Northeast Asia
flyway (Liu et al,, 2021a). In recent years, anthropogenic activities such as
overgrazing and agricultural pollution have led to substantial biodiversity
loss and severely compromised ecosystem stability in this region. Wetland
degradation has further disrupted nutrient cycling processes, exacerbating
ecological imbalance (Liu et al., 2021a; Zheng et al, 2017). The
degradation reflects common pressures faced by temperate composite
wetlands worldwide, including hydrological alteration due to human
disturbance, habitat fragmentation, and non-point source pollution. The
degradation mechanisms observed here provide a theoretical and
empirical basis for understanding similar wetland ecosystems. Moreover,
located at the junction of China, Russia, and the Democratic People’s
Republic of Korea (DPRK), the Jingxin Wetland represents a model
system for studying transboundary ecological degradation and
cooperative conservation. Its strategic position within a migratory bird
corridor underscores the broad spatial implications and potential
cascading effects of its degradation. Investigating changes in P fractions
during wetland degradation in this area will help elucidate how temperate
wetland decline affects key pathways of P cycling and provide a scientific
foundation for transboundary wetland restoration. Such insights are
crucial for advancing regional ecological integrity and facilitating cross-
border environmental governance. Previous studies have reported a
significant decrease in total soil P content with intensifying degradation
in this wetland (Zheng et al., 2017). However, changes in individual P
fractions and the underlying microbial mechanisms driving P
transformation remain poorly understood. Therefore, our specific
objectives were to: (1) determine the impact of wetland degradation on
the quantity of soil phosphorus components; (2) assess the effects of
phosphorus-related functional genes and phosphorus metabolic pathways
during wetland degradation processes; (3) clarify key regulators and
mechanisms underlying the effects of governing soil phosphorus content
in wetland degradation processes. We propose the following hypotheses:
(1) Wetland degradation significantly reduces total P content and
promotes a shift in P speciation from stable, insoluble forms (e.g., HCI-P)
toward labile, soluble forms (e.g., Resin-P and AP); (2) Degradation
restructures the soil microbial community, leading to altered abundance
and composition of P-cycling functional genes, particularly increase in
those involved in Po mineralization and Pi solubilization; (3) Soil water
content, pH, and organic matter are the primary environmental factors
governing P transformations, indirectly modulating the abundance of key
microbial hosts (e.g., Actinobacteria and Proteobacteria) of P-cycling
functional genes by shaping microbial community and soil
redox conditions.

2 Materials and methods
2.1 Study sites

This study was conducted in the Jingxin Wetland (42°27’-42°40'N,
130°25’-130°39’E) in the lower reaches of the Tumen River, located in
Yanbian Korean Autonomous Prefecture, Jilin Province, Northeast
China. It is a tri-border area shared by China, Russia, and the
DPRK. Influenced by the Sea of Japan, the Jingxin Wetland experiences
monsoons in spring and fall, has a mild and humid climate, frequently
cloudy skies with low sunshine, an average annual temperature of
5.6 °C, and an average annual rainfall of 823.7 mm. It falls within the
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mid-temperate zone near the coast with a monsoon climate zone.
Previous studies identify the Jingxin Wetland as a complex comprising
riverine wetlands, lake wetlands, marsh wetlands, and artificial wetlands,
with numerous rivers and lakes. The area includes approximately
8,000 ha of watery swamps and is rich in plant and animal resources.

2.2 Experimental design

According to the characteristics of the plant community structure
and soil physicochemical properties of the wetland and the basic
investigation of the sample plots, combined with the laboratory’s
previous research experience and results, and according to the different
degrees of degradation the herbaceous swamp wetland, four treatments
were randomly set up: non-degraded (ND), slightly degraded (LD),
moderately degraded (MD), and heavily degraded (HD). The sample
plot area of the sample plot is 5 m x 5 m, and each treatment was set
up with six replicates, totaling 24 sample plots. The basic profiles of
different degraded wetlands are shown in Supplementary Table S1.
Then, soil was randomly sampled from a depth of 0-10 cm at five
points using the five-point method with a soil auger. After removing
debris (e.g., stones and roots), the five subsamples were homogenized
to form one composite sample and sieved through a 2-mm mesh. A
total of 24 composite samples were prepared. Each soil sample was
divided into three parts: one was put into a freezing tube and stored in
liquid nitrogen for metagenome and non-targeted metabolome
testing; one was put into a refrigerator at —20 °C for total nitrogen,
total carbon, total P and other indicators of the soil; and one was
naturally air-dried for soil pH and P components and other indicators
of the test. At the same time, soil samples were collected using the ring
knife method to measure soil bulk density and water content.

2.3 Soil P fractions

A modified Hedley P fractionation was conducted for the P
fraction, following the procedure described by Waldrip et al. (2011).
Based on their method, 0.5 g of soil was weighed into a 50 mL tube
and then deionized H,O (30 mL), 0.5 M NaHCO; (30 mL), 0.1 M
NaOH (30 mL), 1 M HCI (diluted HCI, 30 mL), and concentrated HCI
were successively added for sequential extractions. The soil P pools
were classified into nine P fractions, including labile-P fractions
(Resin-P, NaHCO;-Pi, and NaHCO;-Po), moderately labile-P
fractions (NaOH-Pi and NaOH-Po), and stable-P fractions (Diluted
HCI-P [1 M HCI-Pi], Concentrated HCI-Pi [Conc. HCI-Pi],
Concentrated-HCI-Po [Conc. HCI-Po], and Residue-Pi). Soil Pi
content was calculated by summing the contents of Resin-P,
NaHCO;-Pi, NaOH-Pi, 1M HCI-Pj, HCI-Pi, and
Residual-P. Soil Po content was calculated by summing the contents
of NaHCO,-Po, NaOH-Po, and Conc. HCI-Po.

Conc.

2.4 Soil physicochemical measurements

Soil pH was measured in a 1:2.5 soil-water suspension with a pH
meter (Mettler Toledo, Shanghai, China). Soil water content (SW) was
determined using the oven-drying method, calculated as SW = (fresh
soil weight — dry soil weight) / fresh soil weight x 100%. Soil total
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carbon (TC) and total nitrogen (TN) contents were measured using
an elemental analyzer (Vario EL cube, Elementar, Germany). Soil
inorganic nitrogen fractions (NH,*-N and NO;™-N) were quantified
by continuous flow analysis. Available phosphorus (AP) was extracted
using 7.5 mol L' NaHCO; solution (pH 8.5) and subsequently
determined. Dissolved organic carbon (DOC) content was analyzed
using a TOC analyzer (Elementar vario TOC select, Elementar
Analysensysteme GmbH, Hanau, Germany). Microbial biomass
phosphorus (MBP) was measured by the chloroform fumigation-
extraction method.

2.5 Soil DNA extraction and sequencing

0.2 g of stool /soil material was used to extract total genomic DNA
with the E. Z. N. A.® soil DNA Kit (Omega Bio-tek, Norcross, GA,
United States) according to the manufacturer’s instructions. The
concentration and purity of extracted DNA were determined using
SynergyHTX and NanoDrop2000, respectively. DNA quality was
checked on 1% agarose gel. The DNA extract was fragmented to an
average size of approximately 350 bp using a Covaris M220 (Gene
Company Limited, China) for paired-end library construction.
Paired-end library was constructed using NEXTFLEX Rapid DNA-Seq
(Bioo Scientific, Austin, TX, United States). A paired-end sequencing
was performed on Illumina NovaSeq™ X Plus (Illumina Inc., San
Diego, CA, United States) at Majorbio Bio-Pharm Technology Co.,
Ltd. (Shanghai, China) using the NovaSeq X Series 25B Reagent Kit
according to the manufacturer’s instructions.! The metagenomic
sequencing data associated with this project have been deposited in
the NCBI Short Read Archive database.

The data were analyzed on the free online platform of the
Majorbio Cloud Platform.? The raw sequences were used to get clean
reads. First, the reads that contained adapters were entirely removed.
Second, the reads containing N (uncertain base) greater than 1% were
removed. Third, low-quality reads (Q < 20) with contents greater than
50% were removed.

The quality-filtered data were assembled using MEGAHIT.
Contig with a length > 300 bp were selected as the final assembling
result. Open reading frames (ORFs) from each assembled contigs were
predicted using Prodigal (Li et al., 2015),* and ORFs with a length of
> 100bp were retrieved. A non-redundant gene catalog was
constructed using CD-HIT (Fu et al., 2012)° with 90% sequence
identity and 90% coverage. Gene abundance for a certain sample was
estimated by SOAPaligner (Li et al., 2008)® with 95% identity.

The amino acid sequences of the non-redundant gene set were
aligned to the NR and KEGG databases using Diamond (Buchfink
etal, 2014)” (BLASTP alignment parameters set expectation e-value
to le-5). Species annotations and KEGG functions corresponding to
the genes were obtained. The abundance of the corresponding

http://www.illumina.com

http://www.majorbio.com

https://github.com/voutcn/megahit, version 1.1.2.
https://github.com/hyattpd/Prodigal, version 2.6.3.
http://weizhongli-lab.org/cd-hit/, version 4.7.
https://github.com/ShujiaHuang/SOAPaligner, version soap2.21release.
https://github.com/bbuchfink/diamond, version 2.0.13.
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functional categories was calculated using the sum of the abundance
of the genes corresponding to KO, Pathway, EC, and Module.

In total, 103 soil P cycle genes with their corresponding KO
numbers were searched in the datasets based on previous publications
(Li et al,, 20225 Liu et al, 2023). They were classified into four
categories according to their functions in the soil P cycles based on
previous studies (Dai et al., 2020; Hartman et al., 2017; Ma Q. et al,,
2020). The KO numbers, gene names, functions, and classifications of
the genes associated with soil P cycling are shown in
Supplementary Table S3.

2.6 Statistical analyses

Statistical analyses were conducted using SPSS 26.0. One-way
analysis of variance (ANOVA) was performed to evaluate significant
differences in P fractions, functional gene abundance, and
environmental factors across wetland degradation levels. When the
assumption of homogeneity of variance was met (Levene’s test,
p > 0.05), Tukey’s honestly significant difference (HSD) post hoc test
was applied for multiple comparisons. In cases where the homogeneity
of variance assumption was violated (p < 0.05), Tamhane’s T2 test was
used. For data that deviated from a normal distribution (Shapiro-Wilk
test, p < 0.05), the Kruskal-Wallis non-parametric test was employed.

Spearman’s rank correlation analysis was carried out in R software
(version 4.1.0) to assess associations among P-cycling functional
genes, with significant correlations defined as |r| > 0.7 and p < 0.05
being selected for further analysis. Redundancy analysis (RDA) was
implemented with the “vegan” package to identify environmental
factors influencing P fractions. The “randomForest” package was used
to evaluate the relative importance of phosphorus cycling functional
genes on P fractions, and partial least squares path modeling
(PLS-PM) was developed using the “plspm” package to analyze
pathways among key driving factors. All figures were generated using
Origin 2021 and Microsoft PowerPoint 2019.

3 Results

3.1 Changes in P fractions and their
availabilities in response to wetland
degradation

Wetland degradation processes significantly changed soil P
fractions and their distribution (Figure 1). As degradation intensity
increased, total phosphorus (TP) decreased by 32.4%. TP fell from
732.58 + 183.43 mgkg™' in non-degraded wetlands to 495.57 +
21.67 mg kg™ in heavily degraded wetlands. Inorganic phosphorus
(Pi) also dropped sharply across the four wetland types (ND, LD, MD,
HD). Their Pi concentrations were 483.13 + 86.30, 232.64 + 36.05,
178.11 £ 11.48, and 191.01 + 17.04 mg kg™, respectively, showing a
60.5% reduction (p < 0.05) with increasing degradation. In contrast,
organic phosphorus (Po) first increased, then decreased. The
concentrations of Po were 249.45+101.91, 369.76 + 74.57,
339.27 +24.22, and 304.56 + 11.60 mg kg™' in ND, LD, MD, and HD
wetlands, respectively. However, these Po changes were not statistically
significant (p > 0.05). Looking at P lability, stable P concentrations
dropped significantly (p < 0.05) as degradation progressed. Stable P
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(a) Total phosphorus and the concentration of (b) Pi, Po, and (c) stable P, mod-labile P, and labile P fractions for different degraded wetlands. Different
lowercase letters in the same row mean significant difference at p < 0.05 among the four treatments. Pi, inorganic phosphorus; Po, organic
phosphorus; ND, non-degraded wetland; LD, slightly degraded wetland; MD, moderately degraded wetland; HD, heavily degraded wetland.

was  350.44 £56.37, 200.87 +30.99, 155.25+7.64, and
155.14 £ 1426 mg kg™ in ND, LD, MD, and HD wetlands,
respectively. This is a 55.7% decrease from non-degraded to heavily
degraded conditions. Yet, neither labile P nor moderately labile P
demonstrated significant changes during degradation (p > 0.05).

With more severe wetland degradation, most P fractions
decreased significantly (p < 0.05). For instance, labile Pi (Resin-Pi and
NaHCO;-Pi) decreased from 0.73+0.29 mgkg™ and 17.60 +
6.73 mg kg™ in ND to 0.38 + 0.09 mg kg™' and 5.83 + 0.9 mg kg™' in
HD. There are reductions of 48.3 and 66.9% (Figures 2a,b). Moderately
labile Pi (NaOH-Pi) decreased from 167.08 + 39.45 mg kg™ in ND to
51.98 + 7.99 mg kg™' in HD, a 68.9% decrease (Figure 2d). Stable P
fractions (1 M HCI-Pi, Conc. HCI-Po, and Residual-P) also declined.
Their values were 140.34 + 27.78 mg kg™', 52.71 + 14.77 mg kg™, and
123.24 + 20.21 mg kg™ in ND. These changed t0 22.10 + 10.98 mg kg™,
22.32 + 441 mg kg™, and 70.87 + 3.14 mg kg~" in HD. The reductions
were 84.3, 57.7, and 42.5% (Figures 2fh,i). Degradation caused
changes in Conc. HCI-Pi as well. It decreased by 23.1% in slightly
degraded (LD) wetlands but increased by 51.8% in HD wetlands
(p <0.05, Figure 2g). In contrast, Po fractions (NaHCO;-Po and
NaOH-Po) did not change significantly across degradation stages
(p > 0.05).

3.2 Changes in soil physicochemical
properties in response to wetland
degradation

Wetland degradation significantly altered soil physicochemical
properties (Figure 3). As degradation intensity increased from ND to
HD wetlands, key soil properties changed markedly. Soil water content
(SW), dissolved organic carbon (DOC), total carbon (TC), total
nitrogen (TN), and ammonium nitrogen (NH,"-N) decreased by 89.9,
42.9, 80.2, 68.1, and 71.1%, respectively (p < 0.05). Soil pH increased
significantly from 5.05+0.89 mgkg™ in ND wetlands to
5.57 + 0.02 mg kg™' in HD wetlands. This rise represented an 11.9%
increase and a shift from acidic to weakly acidic.

Notably, available phosphorus (AP) increased from
2.05+0.48 mg kg™ to 2.91 + 0.24 mg kg™', a rise of 41.9%. Despite
this significant increase (p < 0.05), the absolute change in AP was
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small. This is because its baseline concentration was inherently low
compared to the total soil P pool.

3.3 Changes in microbial diversity and
genes involved in P cycling in response to
wetland degradation

We detected a total of 103 functional genes associated with the
mineralization, solubilization, transport, and regulation of P in the
metagenomes. This genetic repertoire helps elucidate the microbial
genetic mechanism regulating soil P cycling (Supplementary Table 54).
The diversity and richness of soil microbial communities, as reflected
by Shannon and Chaol indices, were significantly higher in
non-degraded wetlands than in degraded ones (Supplementary
Figure S1). Furthermore, wetland degradation profoundly altered the
community composition (a-diversity) of microbes harboring
P-cycling genes. Principal component analysis (PCA) revealed a clear
separation between non-degraded and degraded wetlands based on
the profiles of P-cycling functional genes (Figure 4a).

Following wetland degradation, the relative abundance of genes
involved in P uptake/transport and P starvation response regulation
decreased markedly within the P-cycling functional gene pool
(Figure 4b). In contrast, the proportions of genes related to Po
mineralization and Pi solubilization increased significantly (p < 0.05).

3.4 Changes in the relative abundances of
P-cycling functional genes in response to
wetland degradation

To better understand changes in microbial P cycling across
different stages of wetland degradation, the top 45 most abundant
genes involved in Pi solubilization, Po mineralization, P uptake/
transport system, and P-starvation response regulation were
quantitatively analyzed.

Significant variations in the relative abundance of key P-cycling
genes abserved among wetland degradation stages (Figure 5). Among
the functional genes associated with Po mineralization, the relative
abundances of G6PD and plc—the two most abundant genes in this
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category—increased significantly by 33 and 335.5%, respectively, in
degraded wetlands compared to non-degraded wetlands (p < 0.05).
The relative abundance of phoD, another representative gene of the Po
mineralization also rose significantly following degradation (p < 0.05).
In contrast, other Po mineralization genes, including ppx, rne,
EC3.1.3.18, and rnc, showed a marked decrease. Despite these
divergent responses, the overall relative abundance of Po
mineralization functional genes exhibited an upward trend (Figure 4).

With the Pi solubilization functional genes, aldh2 and pifA
displayed the highest relative abundances. Compared to non-degraded
wetlands, the relative abundance of aldh2 increased significantly by
151.7% (p < 0.05) in degraded wetlands, whereas that of plfA decreased
significantly by 75.8% (p < 0.05). Meanwhile, other key Pi-solubilizing
genes—ppa, gcd, and pgq—increased significantly by 87.4, 634.3, and
349.8%, respectively (p < 0.05). Although the plfA abundance declined,
the substantial increases in major Pi-solubilizing genes such as ppa,
ged, and pgq led to a significant overall increase in the relative
abundance of Pi solubilization genes. Collectively, these results
demonstrate that wetland degradation significantly enhanced the
relative abundance of most functional genes related to Pi solubilization
(aldh2, ppa, gcd, pqq) and Po mineralization (G6PD, plc, phoD)
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(p < 0.05). Conversely, the relative abundance of P-starvation response
regulatory genes, including phoU and phoR decreased after
degradation. Similarly, P uptake/transport genes such as pst and pit
showed a declining trend. Overall, the relative abundances of both
P-starvation response regulatory genes (phoU, phoR) and P uptake/
transport genes (pstABCS, pit) were significantly reduced following
wetland degradation (p < 0.05).

3.5 Variations in key enzymes of P-cycling
metabolic pathways

Analysis of enzymes involved in the P-cycling metabolic pathways
revealed distinct changes following wetland degradation (Figure 6).
Compared to ND wetlands, degraded sites showed a significant increase
in the relative abundance of enzymes associated with the initial steps of
the Po mineralization pathway. In contrast, the relative abundance of
enzymes responsible for synthesizing PRPP in the later stages of this
pathway was markedly reduced. These results suggest that although
wetland degradation stimulates early-phase organic P mineralization,
the final conversion to inorganic P is likely impeded by suppressed
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PRPP-synthesizing enzyme activity. Consequently, a considerable
fraction of Po may not be fully mineralized into inorganic forms.

Simultaneously, the relative abundance of key enzymes involved
in the inorganic P solubilization pathway (EC 1.1.5.2, EC 3.6.1.11, and
EC 3.6.1.1) was significantly higher in degraded wetlands than in
non-degraded sites (Figure 6; Supplementary Figure S2), further
supporting the enhancement of inorganic P solubilization following
wetland degradation. Moreover, enzymes related to P-transport and
P-starvation regulation pathways showed a significantly reduced
abundance in degraded wetlands, which is consistent with the trends
observed in their corresponding functional genes (Figure 6;
Supplementary Figure S2).

3.6 Pathway and factors controlling soil P
fractions

The relationship between the P factions and environmental factors
was evaluated using RDA analysis (Figure 7a). Collectively, the six
environmental factors explained 78% (p = 0.001) of the total variance
in P fractions. PC1, NH,"-N, and DOC were identified as the primary
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influencing factors, while AP, MBP, and ST exerted secondary effects.
PC1, which represents high pH and low soil water content (pH
loading = 0.7, SW loading = —0.7), showed significant negative
correlations with most P fractions (Figure 7; Supplementary
Figures S3, $4).

The random forest analysis indicated that the genes aldh2 and
phnE were the major predictors of soil stable P (Figure 8). For different
P fractions, phnE, aldh2, nfo, rnc, and mdh were identified as the main
predictors for labile Pi (Conc. HCI-Pi, NaOH-Pi, 1 M HCI-Pi, and
NaOH-Po, respectively).

The partial least squares path model (PLS-PM) was used to assess
the direct and indirect effects of wetland degradation, SW, pH, and
P-cycling processes on various P fractions, including labile Pj, labile
Po, mod-labile Pi, mod-labile Po, stable Pi, and stable Po
(Figures 9a—f). Wetland degradation primarily influenced microbial
diversity involved in P-cycling by altering SW and pH, which in turn
affected P-cycling functional genes and P fractions. Specifically, SW
exhibited strong direct positive effects on labile Pi (r = 0.77), labile Po
(r=0.78), mod-labile Pi (r=0.94), and stable Pi (r=0.94).
Furthermore, SW exerted indirect effects on Pi fractions through
microbial diversity, P-cycling genes (including Po mineralization and
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Pi solubilization genes), and intermediate metabolites. Both SW and
pH collectively influenced Po fractions (labile Po, mod-labile Po, and
stable Po) by modifying P-cycling microbial diversity and subsequently
altering Po mineralization genes.

4 Discussion

4.1 Effects of wetland degradation on soil P
fraction

Total soil phosphorus content gradually decreases with wetland
degradation, a result that directly confirms our core hypothesis 1,
which posits that wetland degradation significantly alters both the
total storage and speciation of soil P. The reduction in Pi is identified
as the decisive factor driving the overall decline in total phosphorus,
despite an increase in Po along the degradation gradient (Figures 1a,b).

Soil P primarily originates from parent material weathering. Over
long-term pedogenesis, although the proportion and content of P
forms may increase, TP often decreases due to leaching (Arpiwi et al.,
2012; Yang and Post, 2011). Wetland degradation is typically
accompanied by drought and organic matter loss, which can promote
Pi through surface runoff and changes in soil texture (Li et al., 2022;
Wang et al., 2024). The reduction in moisture and rise in pH associated
with degradation stimulate P-cycling microorganisms to enhance
expression of Pi solubilization genes in response to environmental
stress (Stirling et al., 2020), thereby accelerating dissolution processes
and further reducing Pi content. Additionally, wetland degradation
often leads to a shift in vegetation from hygrophytic species (e.g.,
Cyperaceae) to xerophytic grasses, which generally produce higher
biomass and more litter (Hu et al., 2021). This litter constitutes a major
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source of Po. Due to its high carbon-to-phosphorus (C/P) ratio, it is
more resistant to microbial mineralization into inorganic forms (Bai
etal., 2023), thereby promoting Po accumulation and further reducing
Pi. Thus, the decline in Pi—driven by degradation-induced changes
in microbial activity and soil physicochemical properties—is the
principal cause of the decrease in total phosphorus.

From the perspective of solubility, the proportions of labile P and
mod-labile P did not change significantly along the degradation
gradient, whereas stable P exhibited a continuous decline (Figure 1c).
Based on solubility, soil P can be classified into labile P, moderately
labile P, and stable P, each further divisible into inorganic and organic
components (Hedley et al., 1982; Tiessen et al., 1984). These fractions
can interconvert through solubilization, mineralization, and fixation
processes, in which P-solubilizing microorganisms play a critical role
(Pang et al., 2024). Labile P is the most dynamic fraction, highly
sensitive to environmental changes and subject to rapid depletion or
immobilization (Dierberg et al., 2021; Jiang et al., 2024; Qin et al,,
2023). Although the total labile P pool remains relatively stable after
wetland degradation, its compositional shifts markedly: labile Pi
(Resin-P and NaHCO;-Pi) decreases significantly, while labile Po
(NaHCO;s-Po) increases (Figures 2d,f). Previous studies indicate that
labile Pi stability is strongly influenced by SW and pH, with wetland
degradation-induced drought and elevated pH potentially reducing its
concentration (Zhang et al., 2020). On the one hand, reduced vegetation
cover and weakened hydrological regulation after degradation intensify
runoff erosion, promoting labile Pi loss (Pollock and Norman, 2025).
On the other hand, the decomposition of dead microorganisms and
plants returns organic phosphorus to the soil, increasing labile Po
content (Jiang et al., 2024; Li et al., 2024; Yang et al., 2014).

Moderately labile P serves as a key transitional pool in soil P
transformation, bridging stable P solubilization and labile P fixation
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(Liu et al, 2021b; Tiessen et al., 1984). Following degradation,
moderately labile P initially increases then decreases, with moderately
labile Pi (NaOH-Pi) declining significantly and moderately labile Po
(NaOH-Po) showing an increasing trend (Figures 2d,e). First, wetland
degradation alters the composition of soil P-cycling microbial
communities, enriching P-solubilizing microorganisms (Li et al., 2022),
which enhances Pi solubilization and Po mineralization, thereby
reducing moderately labile Pi. Secondly, changes in soil physicochemical
properties affect ion exchange processes, reducing adsorption sites for
moderately labile Pi and further diminishing its content (Jiang et al.,
2024). The increase in moderately labile Po may stem from enhanced
mineralization of stable Po, as Po undergoes progressive degradation
from stable to labile forms (Qin et al., 2023). Our data show a significant
decrease in stable Po in degraded wetlands (Figure 2), supporting the
transformation of stable Po into moderately labile and labile Po,
indicating a shift from stable to more labile phosphorus pools.

Stable P, being the most resistant to loss, typically requires
solubilization or mineralization into moderately labile P before further
transformation (Hedley et al., 1982; Tiessen et al., 1984). Wetland
degradation reduces vegetation cover, increasing soil susceptibility to
weathering and erosion (Tang et al., 2021). In mildly weathered soils,
the observed decline in stable P may result from its conversion to
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moderately labile P, acting as a buffer for AP (Guo et al., 2000).
Moreover, degradation-induced shifts in microbial community
structure significantly influence P solubilization and mineralization
processes. Global studies indicate that grassland ecosystems harbor
higher abundances of Pi solubilization and Po mineralization genes
than wetlands (Wang et al., 2024). Thus, the conversion of wetlands to
grasslands may enhance these microbial functions, ultimately
reducing stable P content (Li et al., 2022).

In conclusion, wetland degradation significantly alters soil P
fractions by affecting both physical processes (erosion and weathering)
and biological processes (microbial-mediated transformations),
collectively reshaping P cycling in degraded wetland ecosystems.

4.2 Effects of wetland degradation on soil
physicochemical properties

Wetland degradation leads to pronounced changes in soil
moisture and pH, which drive an increase in soil AP content, albeit
accompanied by reductions in microbial P, carbon, and nitrogen pools
(Figure 3). During this process, soil water content is often the first
parameter to be affected. Most studies indicate that wetland
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degradation results in a significant decline in soil moisture, which in
turn alters the forms and distribution of soil P (Wu et al., 2021).

In addition to reducing soil moisture, wetland degradation also
elevates soil pH. The decrease in water content typically improves soil
aeration and promotes the decomposition of organic acids, ultimately
leading to increased pH levels (Wang et al., 2015). This study further
demonstrates that dissolved organic carbon, total nitrogen, and
ammonium nitrogen contents decrease significantly with increasing
degradation severity. On one hand, degradation reduces vegetation
cover and increases surface exposure, accelerating the loss of topsoil
nutrients through wind and water erosion (Arroyo et al., 2015). On
the other hand, it diminishes plant productivity, aboveground
biomass, and litterfall, thereby reducing organic matter inputs and
weakening the soil’s nutrient supply (Yang et al., 2021).

In summary, key soil physicochemical properties respond
distinctly to wetland degradation. The process induces substantial
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reductions in soil moisture and organic matter, coupled with elevated
pH, collectively impairing the health and stability of wetland ecosystems.

4.3 Effects of wetland degradation on soil
P-cycling microbial diversity and functional
genes

Wetland degradation reduces the diversity of microorganisms
involved in P cycling, providing direct support for the core postulate of
hypothesis 2, which states that degradation significantly restructures the
soil microbial community. Soil water content strongly influences
microbial activity and composition, thereby playing a critical role in
regulating soil P cycling (Xu et al.,, 2023). Studies indicate that degraded
wetlands exhibit significantly lower SW than non-degraded wetlands,
accompanied by a notable reduction in the alpha diversity (Shannon
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(Supplementary Figure S1). Under drought conditions, soil microbial

and indices) P-cycling  microorganisms
communities shift toward aerobic taxa and become increasingly adapted
to water stress as moisture declines (Chaves et al., 2003; Manzoni et al.,
2014). In addition to SW; the rise in pH commonly associated with
wetland degradation also alters microbial community structure.
Elevated pH can eliminate acidophilic P-cycling microorganisms (e.g.,
Acidophilus) while favoring the proliferation of other P-cycling taxa
(Huang et al.,, 2017; Liang et al., 2020). Since these microorganisms are
key hosts of P-cycling functional genes, such compositional shifts
directly affect P transformation processes in the soil.

Compared with non-degraded wetlands, degraded sites showed a
significant increase the relative abundance of most functional genes
related to phosphorus mineralization (Po mineralization) and
phosphorus solubilization (Pi solubilization), while genes associated
with P-starvation response regulation and P uptake/transport were
significantly decreased (Figure 5). These results align with previous
reports indicating that wetland degradation first alters SW and pH,
which in turn affect microbial diversity, and ultimately reshape the
functional genes potential for P cycling (Li et al., 2022; Wang et al.,
2024). The decline in SW and increased oxygen diffusion following
degradation promote the activity of aerobic microorganisms (e.g.,
Proteobacteria and Firmicutes), which are major carriers of Po
mineralization and Pi solubilization genes (e.g., phoD, gcd, ppx, and ppa
genes) (Pang et al., 2024), thereby explaining the increased abundance
of these genes. Concurrently, reduced SW induces oxidative stress
under arid conditions, likely causing microorganisms to divert energy
toward stress adaptation (e.g., synthesizing antioxidant enzymes) rather
than P uptake and transport (Bista et al., 2018; Li et al., 2023), resulting
in the downregulation of genes such as pstABS and pit. Furthermore,
the P-starvation response is known to be regulated by soil P availability;
higher P levels suppress the expression of two-component regulatory
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genes such as phoR and phoB (Rawat et al., 2020). The increase in AP
observed in this study further supports this mechanism.

Notably, although the overall relative abundance of Po
mineralization genes increased, analysis of individual gene abundances
and metabolic pathways revealed a decline in terminal mineralization
genes and enzymes (e.g., phoA, appA). While this seems inconsistent
with hypothesis 2 and the general trend in organic phosphorus
mineralization gene abundance, these terminal genes and enzymes are
crucial for determining whether organic P is fully mineralized into
inorganic forms (Pang et al., 2024). Soil bacteria generally prefer
environments with higher organic carbon content (Lehmann et al.,
2017; Wang et al., 2016), and P-solubilizing bacteria are particularly
sensitive to environmental factors such as soil organic carbon (Ragot
et al,, 2015). Low total organic carbon (TOC) —especially dissolved
organic carbon (DOC)—reduces the diversity and activity of
P-solubilizing bacteria (Luo et al., 2017). Po mineralization and alkaline
phosphatase secretion are energy-intensive processes that require
substantial carbon investment (Nannipieri et al., 2011). Following
wetland degradation, the reduction in soil organic carbon forces
microorganisms to allocate limited carbon resources toward basic
growth and maintenance rather than Po mineralization (Alhassan et al.,
2018; Ma W. et al., 2020; Wu et al.,, 2020). Thus, carbon limitation likely
underlies the decreased abundance of terminal Po mineralization genes.

4.4 Mechanism of P fractions response to
wetland degradation

Opverall, wetland degradation influences the diversity of P-cycling
microorganisms by modulating SW and pH, which subsequently
alters the abundance of specific P-cycling functional genes and
ultimately affects the dynamics of labile P, mod-labile P, and stable P
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10). This chain-reaction mechanism of

“environmental factors — microbial community — functional genes

pools (Figures 9,

— phosphorus transformation” provides comprehensive validation for
hypothesis 3 proposed in this study.

Soil P assimilation capacity is largely governed by the abundance
of P-cycling genes (e.g., pqqBCDE, gcd, appA, phoD, and phoA), which
are in turn regulated by soil environmental conditions (Dai et al.,
2020; Hsieh and Wanner, 2010; Rasul et al., 2019; Rawat et al., 2020).
Recent studies indicate that SW, pH, microbial C: P, AP, and DOC
significantly influence soil P transformation (Dai et al., 2020; Spohn
and Kuzyakov, 2013; Wang et al., 2015). The partial least squares
structural equation modeling (PLS-SEM) clearly delineates this causal
pathway: wetland degradation exerts a decisive influence on P cycling
processes by reducing soil water content and increasing pH. This
aligns with observations from marsh-to-meadow degradation, where
declining groundwater levels cause upward movement of salts and
alkaloids, elevating topsoil pH and subsequently altering soil P cycling
(Lietal., 2022).

First, wetland degradation reduces the diversity of P-cycling
microorganisms via changes in SW and pH, leading to a decline in key
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Po mineralization genes (appA, EC3.1.4.55). This results in the
accumulation of labile Po (e.g., inositol cyclic phosphate) and limited
availability of organic sources of labile Pi (Figures 9a,b). Inositol
phosphates (e.g., phytate) constitute a major fraction of soil Po (Lu
et al., 2020). The cyclic form of inositol phosphate serves both as a
substrate for Po mineralization and an intermediate in its degradation
(Connolly et al., 1986). Although Po mineralization typically reduces
inositol phosphate and its metabolites (Zhou et al, 2019), the
decreased abundance of key enzymes (e.g., phytase, EC 3.1.4.55, and
EC 2.7.6.1) following degradation impedes direct conversion to Pi.
Instead, these compounds accumulate as readily mineralizable Po
forms (NaHCOj3-Po and NaOH-Po) (Zhou et al., 2019). Consequently,
although inositol cyclic phosphate contributes slightly to labile Pi
(path coefficient = 0.224), its effect is constrained by the reduced
expression of mineralization-associated genes (Figure 9a).

Second, wetland degradation-induced shifts in SW and pH reduce
microbial diversity, which nevertheless promotes an increase in the
relative abundance of Pi solubilization genes (e.g., pqqCE, ged, and
aldh2) and certain Po mineralization genes (such as phoD and xthA).
This gene enrichment ultimately leads to reductions in moderately
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FIGURE 9
Partial least squares path modeling (PLS-PM) of the effects of wetland degradation, SW, pH, P-cycling microbial alpha diversity, and relative abundance
of functional genes (involved in organic P mineralization and inorganic P solubilization) on: (a) labile Pi, (b) labile Po, (c) mod-labile Pi, (d) mod-labile
Po, (e) stable Pi and (f) stable Po. The numbers above the arrows represent the size of each direct effect, and the line width is proportional to the
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is the goodness-of-fit of the model.

absolute value of the direct effect. Red and blue arrows indicated positive and negative effects, respectively. Significant indicator by *p < 0.05,
**p < 0.01, and ***p < 0.001. SW, soil water content. R? indicates the degree to which the model explains the variance of the dependent variable. GOF
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FIGURE 10

Conceptual diagram of the effects of wetland degradation on soil phosphorus fractions and phosphorus availability. EC, electrical conductivity; ST, soil
temperature; DOC, dissolved organic carbon; TC, total carbon; TN, total nitrogen.
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labile Pj, stable Pi, and stable Po (Figures 9¢,e,f). Grassland ecosystems,
which often succeed degraded wetlands, host higher abundances of Pi
solubilization and Po mineralization genes than wetlands, providing
a more favorable environment for P-solubilizing microorganisms
(Wang et al., 2024). The loss of microbial diversity and reduced
interspecific competition during degradation allow these taxa to
dominate, increasing the abundance of genes involved in Pi
solubilization and Po mineralization (Liu et al., 2023; Wang et al.,
2024). Consistent with previous studies (Li et al., 2022; Liu et al., 2023;
Zeng et al,, 2022; Zhang et al., 2025), this increase facilitates the
conversion of moderately labile Pj, stable Pi, and stable Po into AP,
enhancing soil P availability and confirming the transformation of
forms as postulated in hypothesis 1.

Partial least squares structural equation modeling further
indicates that reduced SW directly affects the concentrations of labile
Pi, labile Po, moderately labile Pi, and stable Pi. This is consistent with
earlier findings that moisture decline reduces Pi in the most

Frontiers in Microbiology

bioavailable pools and suppresses phosphatase activity, thereby
limiting Po mineralization and further decreasing labile Pi (Zhang
et al,, 2020). In summary, the mechanisms through which wetland
degradation affects various P fractions are broadly consistent:
degradation primarily regulates P-cycling microbial diversity through
SW and pH, thereby modifying the abundance of P-cycling functional
genes and ultimately reshaping soil phosphorus composition
(Figure 10).

5 Conclusion

The findings of this study offer valuable insights into the complex
effects of wetland degradation on soil P fractions in temperate
wetland ecosystems. Our results demonstrate that total soil
phosphorus content decreases with increasing degradation intensity,
primarily driven by a reduction in Pi. From the perspective of P
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solubility, wetland degradation facilitates the interconversion among
labile P, mod-labile P, and stable P. Specifically, wetland degradation
modulates the diversity of functionally relevant microorganisms via
changes in soil moisture and pH, promoting the transformation of
stable P into mod-labile P and subsequently into labile P. It is
noteworthy that this study found a reduction in terminal functional
genes and enzymes involved in the Po mineralization pathway
following wetland degradation, which impedes the complete
mineralization process and leads to the accumulation of stable Po
degraded into labile Po. As a result, Po content increases with
degradation intensity. Water loss and elevated pH during wetland
degradation significantly reduce Pi content. On the one hand, these
altered environmental conditions limit the mineralization of Po,
while on the other hand, runoff during rainfall events further
contributes to Pi loss. The degradation process is initially
characterized by a decline in soil moisture, which regulates pH and
other physicochemical properties. These changes further drive shifts
in microbial community diversity, influence the abundance of
P-cycling functional genes, and modulate P metabolic processes,
ultimately altering the forms and total pool of soil phosphorus.
Collectively, P loss during wetland degradation not only disrupts the
ecological balance of the wetland ecosystem itself but also
contributes to pollution in adjacent river systems and surrounding
environments. Therefore, nutrient losses associated with wetland
degradation warrant serious attention and mitigation efforts.
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