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Wetland degradation promotes 
soil P fraction transformation by 
altering P-cycling functional 
genes and metabolic pathways
Yumeng Jiang , Yu Zou , Miaojia Sun , Weihong Zhu * and 
Wanling Xu *

College of Geography and Ocean Sciences, Yanbian University, Hunchun, China

Global wetlands have undergone varying degrees of degradation due to intense 
disturbances from global climatic and environmental changes, and human activities 
such as overgrazing and drainage. While wetland degradation is known to alter soil 
physicochemical properties and phosphorus (P) cycling, the mechanism governing 
its effects on soil P fraction transformation and P metabolism remains poorly 
understood. To address this, we  investigated how different stages of wetland 
degradation—non-degraded (ND), slightly degraded (LD), moderately degraded 
(MD), and heavily degraded (HD)—affect soil P fractions in temperate wetlands. 
We analyzed soil properties, P-cycling microbial communities, functional genes, 
and metabolic products, employing the modified Hedley P fractionation method to 
elucidate clear trends in P fraction contents. Our results show that total inorganic 
P content decreased significantly with increasing degradation intensity. Specifically, 
labile Pi (Resin-Pi and NaHCO₃-Pi), mod-labile Pi (NaOH-Pi), and stable Pi (1 M 
HCl-Pi and Residual-P) all declined significantly, although Conc. HCl-Pi exhibited 
an initial decrease followed by an increase. In contrast, total organic P content 
increased, with significant increases in labile Po (NaHCO3-Po) and mod-labile 
Po (NaOH-Po), while stable Po (Conc. HCl-Po) decreased markedly. These 
shifts indicate that wetland degradation promotes the interconversion among 
labile P, mod-labile P, and stable P forms. The degradation process is initiated 
by a reduction in soil moisture, which subsequently regulates soil pH and other 
physicochemical properties. These changes further drive shifts in microbial 
community diversity, influence the abundance of P-cycling functional genes, 
and alter P metabolic pathways, ultimately affecting both the speciation and total 
pool of soil phosphorus. The accumulation of labile Po is primarily attributed 
to the obstruction of mineralization, resulting from the reduction of terminal 
functional genes in the Po mineralization pathway. These findings enhance our 
understanding of P-cycling mechanisms in degraded wetlands and provide a 
theoretical basis for phosphorus management during wetland restoration efforts.
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1 Introduction

As the third most abundant essential nutrient in soil, following carbon and nitrogen, 
phosphorus (P) is critical for supporting the growth and development of both plants and 
microorganisms. P cycling is essential to the nutrient dynamics of wetland ecosystems 
(Cheesman et al., 2014; Hu et al., 2022b; Kour et al., 2021). In natural ecosystems, P cycling 
differs fundamentally from carbon and nitrogen cycling because it lacks a significant 
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atmospheric gas phase. Instead, P is primarily sequestered in rocks 
and soils, and its mobilization depends on geological weathering and 
biological processes (Hong et al., 2025). The P that can be directly 
absorbed and utilized by plants represents the amount of P available 
in an ecosystem. This P determines the P utilization of that ecosystem. 
Therefore, P is often considered the “limiting element” in soil 
nutrients, and its availability directly affects primary productivity and 
ecosystem functioning in wetlands (Lie et al., 2022). In the soil P cycle, 
P is converted to soluble forms and taken up by plants or 
microorganisms, and then returned to the soil after the organisms die 
(Kruse et al., 2015). To better study the composition and bioavailability 
of soil P, it is categorized into a series of organic and inorganic 
fractions. These P fractions differ in their turnover, transformation, 
and mobility in the soil, reflecting variations in their biological 
availability. Based on solubility, Hedley et al. classified P into several 
forms: labile P (Resin-P, NaHCO₃-Pi, NaHCO₃-Po), moderately labile 
P (NaOH-Pi, NaOH-Po), and stable P (1 M HCl-P, conc. HCl-Pi, 
conc. HCl-Po, Residual-P) (Hedley et al., 1982; Weihrauch and Opp, 
2018). This classification is currently the most widely used 
comprehensive P fractionation method. Changes in soil P fractions 
are influenced by many factors, including soil physicochemical 
properties, nutrient status, enzyme activity, and microbial 
mineralization-immobilization processes (Inamdar et al., 2017; Six 
et al., 2004). Among these, soil pH is a fundamental factor affecting P 
speciation and bioavailability (Dick et al., 1983). Some studies have 
shown that high concentrations of Al and Fe ions in acidic soils 
enhance the complexation capacity of P with these metal ions (Coolen 
et al., 2011). Research has found that drought-induced increases in pH 
can significantly reduce the content of calcium phosphates in 
temperate forests, accompanied by an increase in inorganic and 
organic P bound to secondary minerals (Fe/Al oxides) (Zhang et al., 
2020). Simultaneously, the oxidative conditions following wetland 
drainage can increase the abundance of P-solubilizing microorganisms 
in the soil, leading to elevated levels of labile P and AP (Jiang et al., 
2024). Additionally, changes in soil organic matter composition can 
alter microbial biomass, activity, and community structure, thereby 
affecting phosphorus (P) forms and availability (Bai et al., 2023; Wu 
et al., 2025). In summary, existing studies have demonstrated that soil 
environmental changes can significantly affect P fractions. It has been 
confirmed that wetland degradation, as a typical environmental 
disturbance, can strongly alter soil physicochemical properties and 
thereby profoundly influence the P cycling process (Bergkemper et al., 
2016). However, the specific mechanisms through which wetland 
degradation drives the transformation of P fractions still lack 
systematic and in-depth investigation.

Wetland degradation significantly alters soil environments, 
initiating shifts in microbial community structure (Hu et al., 2022b; 
Liang et al., 2020). These microbial communities are essential for soil P 

cycling. Specifically, soil microorganisms, especially P-solubilizing 
microorganisms, are key actors in four core P cycling processes: 
solubilization of inorganic phosphorus (Pi), mineralization of organic 
phosphorus (Po), regulation of P starvation response, and P uptake/
transport (Bergkemper et al., 2016; Dai et al., 2020). They primarily 
function by secreting organic acids and enzymes to hydrolyze, dissolve, 
or mineralize insoluble P compounds (Pang et al., 2024; Rawat et al., 
2020). Wetland degradation commonly causes a decline in groundwater 
level, reduced soil water content, and higher redox potential (Cui et al., 
2020). As soil moves from reducing to oxidizing conditions, microbial 
communities engaged in Pi solubilization and Po mineralization may 
become more active, thereby accelerating P transformation (Su et al., 
2017; Wang et al., 2017). Furthermore, recent studies show that rising 
soil pH in degraded wetlands can strongly impact functional 
microorganisms in the P cycle, further enhancing P cycling efficiency 
and increasing soil AP (Li et al., 2022). Conversely, wetland degradation 
often reduces soil organic carbon (Zheng et al., 2024). As a vital energy 
source, decreased organic carbon content may hinder the growth of 
microbes preferring rich organic carbon environments (Lehmann et al., 
2017; Wang et al., 2016). This decline can reduce microbial diversity, 
especially key groups like phoD gene-containing bacteria, ultimately 
disrupting normal soil P cycling (Cui et al., 2025). In summary, wetland 
degradation may directly affect microbial community structure and 
function by altering soil physicochemical properties and organic 
carbon content, profoundly influencing soil P cycling.

Wetlands are ecosystems found between land and water bodies. 
They have unique soil, hydrological, and biological characteristics and 
provide many ecological services locally and globally, which makes 
them crucial for biodiversity conservation, nutrient cycling, climate 
regulation, water conservation, and human health. They are often 
referred to as the “kidneys of the earth” and the “biological gene pool” 
(Wu et al., 2021). Global climate change and human activities, such as 
overgrazing and drainage, have strongly affected wetlands. As a result, 
wetland areas have significantly decreased worldwide, with 
approximately 50% degraded or lost. This loss has led to severe 
ecological and social problems (Jiang et al., 2017; Meng et al., 2017). 
As one of the limiting nutrients for primary productivity in wetlands, 
P promotes plant growth and ensures normal ecological functions of 
wetland systems (Xu et al., 2022). Current wetland P research focuses 
on two main approaches: first, analyzing P storage in aquatic plants 
and adsorption–desorption characteristics of sediment P within 
water-land transition zones to investigate P transformation in coastal 
wetland (Bai et al., 2017; Berthold et al., 2018; Karstens et al., 2015); 
second, analyzing changes in wetland soil P-cycling microorganisms 
and functional genes to assess P availability and transformation 
sources (Hu et al., 2022a; Liu et al., 2023; Wu et al., 2025). Only a few 
studies have examined the combined influence of soil P fraction 
dynamics and microbial functional genes involved in P cycling on 
wetland soil P availability, and these have mostly been in alpine 
wetlands (Zhu et al., 2017). In contrast, there is a knowledge gap 
regarding microbial mechanisms and metabolic pathways that drive 
P fraction transformation during temperate wetland degradation. 
Wetland degradation is a typical process driven by the combined 
effects of natural and anthropogenic factors. Investigating the driving 
mechanisms and response patterns of wetland ecosystems can help us 
better understand their vulnerability, adaptability, and tipping points.

The Jingxin Wetland, a significant transboundary temperate wetland 
ecosystem situated at the northeastern tip of China, exhibits composite 

Abbreviations: P, Phosphorus; TP, Total phosphorus (mg kg−1); Pi, Inorganic 

phosphorus (mg kg−1); Po, Organic phosphorus (mg kg−1); AP, Available phosphorus 

(mg kg−1); SW, Soil water content (%); TC, Total carbon (g kg−1); TN, Total nitrogen 

(g kg−1); MBP, Microbial biomass phosphorus (mg kg−1); ST, Soil temperature (°C); 

pH, Soil pH; NH4
+-N, Ammonium nitrogen (mg kg−1); NO3

--N, Nitrate nitrogen 

(mg kg−1); DOC, Dissolved organic carbon (mg kg−1); ND, Non-degraded wetland; 
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characteristics of both inland and estuarine wetlands.” It serves as a critical 
stopover and breeding site for migratory birds within the Northeast Asia 
flyway (Liu et al., 2021a). In recent years, anthropogenic activities such as 
overgrazing and agricultural pollution have led to substantial biodiversity 
loss and severely compromised ecosystem stability in this region. Wetland 
degradation has further disrupted nutrient cycling processes, exacerbating 
ecological imbalance (Liu et  al., 2021a; Zheng et  al., 2017). The 
degradation reflects common pressures faced by temperate composite 
wetlands worldwide, including hydrological alteration due to human 
disturbance, habitat fragmentation, and non-point source pollution. The 
degradation mechanisms observed here provide a theoretical and 
empirical basis for understanding similar wetland ecosystems. Moreover, 
located at the junction of China, Russia, and the Democratic People’s 
Republic of Korea (DPRK), the Jingxin Wetland represents a model 
system for studying transboundary ecological degradation and 
cooperative conservation. Its strategic position within a migratory bird 
corridor underscores the broad spatial implications and potential 
cascading effects of its degradation. Investigating changes in P fractions 
during wetland degradation in this area will help elucidate how temperate 
wetland decline affects key pathways of P cycling and provide a scientific 
foundation for transboundary wetland restoration. Such insights are 
crucial for advancing regional ecological integrity and facilitating cross-
border environmental governance. Previous studies have reported a 
significant decrease in total soil P content with intensifying degradation 
in this wetland (Zheng et al., 2017). However, changes in individual P 
fractions and the underlying microbial mechanisms driving P 
transformation remain poorly understood. Therefore, our specific 
objectives were to: (1) determine the impact of wetland degradation on 
the quantity of soil phosphorus components; (2) assess the effects of 
phosphorus-related functional genes and phosphorus metabolic pathways 
during wetland degradation processes; (3) clarify key regulators and 
mechanisms underlying the effects of governing soil phosphorus content 
in wetland degradation processes. We propose the following hypotheses: 
(1) Wetland degradation significantly reduces total P content and 
promotes a shift in P speciation from stable, insoluble forms (e.g., HCl-P) 
toward labile, soluble forms (e.g., Resin-P and AP); (2) Degradation 
restructures the soil microbial community, leading to altered abundance 
and composition of P-cycling functional genes, particularly increase in 
those involved in Po mineralization and Pi solubilization; (3) Soil water 
content, pH, and organic matter are the primary environmental factors 
governing P transformations, indirectly modulating the abundance of key 
microbial hosts (e.g., Actinobacteria and Proteobacteria) of P-cycling 
functional genes by shaping microbial community and soil 
redox conditions.

2 Materials and methods

2.1 Study sites

This study was conducted in the Jingxin Wetland (42°27′-42°40′N, 
130°25′-130°39′E) in the lower reaches of the Tumen River, located in 
Yanbian Korean Autonomous Prefecture, Jilin Province, Northeast 
China. It is a tri-border area shared by China, Russia, and the 
DPRK. Influenced by the Sea of Japan, the Jingxin Wetland experiences 
monsoons in spring and fall, has a mild and humid climate, frequently 
cloudy skies with low sunshine, an average annual temperature of 
5.6 °C, and an average annual rainfall of 823.7 mm. It falls within the 

mid-temperate zone near the coast with a monsoon climate zone. 
Previous studies identify the Jingxin Wetland as a complex comprising 
riverine wetlands, lake wetlands, marsh wetlands, and artificial wetlands, 
with numerous rivers and lakes. The area includes approximately 
8,000 ha of watery swamps and is rich in plant and animal resources.

2.2 Experimental design

According to the characteristics of the plant community structure 
and soil physicochemical properties of the wetland and the basic 
investigation of the sample plots, combined with the laboratory’s 
previous research experience and results, and according to the different 
degrees of degradation the herbaceous swamp wetland, four treatments 
were randomly set up: non-degraded (ND), slightly degraded (LD), 
moderately degraded (MD), and heavily degraded (HD). The sample 
plot area of the sample plot is 5 m × 5 m, and each treatment was set 
up with six replicates, totaling 24 sample plots. The basic profiles of 
different degraded wetlands are shown in Supplementary Table S1. 
Then, soil was randomly sampled from a depth of 0–10 cm at five 
points using the five-point method with a soil auger. After removing 
debris (e.g., stones and roots), the five subsamples were homogenized 
to form one composite sample and sieved through a 2-mm mesh. A 
total of 24 composite samples were prepared. Each soil sample was 
divided into three parts: one was put into a freezing tube and stored in 
liquid nitrogen for metagenome and non-targeted metabolome 
testing; one was put into a refrigerator at −20 °C for total nitrogen, 
total carbon, total P and other indicators of the soil; and one was 
naturally air-dried for soil pH and P components and other indicators 
of the test. At the same time, soil samples were collected using the ring 
knife method to measure soil bulk density and water content.

2.3 Soil P fractions

A modified Hedley P fractionation was conducted for the P 
fraction, following the procedure described by Waldrip et al. (2011). 
Based on their method, 0.5 g of soil was weighed into a 50 mL tube 
and then deionized H2O (30 mL), 0.5 M NaHCO3 (30 mL), 0.1 M 
NaOH (30 mL), 1 M HCl (diluted HCl, 30 mL), and concentrated HCl 
were successively added for sequential extractions. The soil P pools 
were classified into nine P fractions, including labile-P fractions 
(Resin-P, NaHCO3-Pi, and NaHCO3-Po), moderately labile-P 
fractions (NaOH-Pi and NaOH-Po), and stable-P fractions (Diluted 
HCl-P [1 M HCl-Pi], Concentrated HCl-Pi [Conc. HCl-Pi], 
Concentrated-HCl-Po [Conc. HCl-Po], and Residue-Pi). Soil Pi 
content was calculated by summing the contents of Resin-P, 
NaHCO3-Pi, NaOH-Pi, 1 M HCl-Pi, Conc. HCl-Pi, and 
Residual-P. Soil Po content was calculated by summing the contents 
of NaHCO3-Po, NaOH-Po, and Conc. HCl-Po.

2.4 Soil physicochemical measurements

Soil pH was measured in a 1:2.5 soil–water suspension with a pH 
meter (Mettler Toledo, Shanghai, China). Soil water content (SW) was 
determined using the oven-drying method, calculated as SW = (fresh 
soil weight – dry soil weight) / fresh soil weight × 100%. Soil total 
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carbon (TC) and total nitrogen (TN) contents were measured using 
an elemental analyzer (Vario EL cube, Elementar, Germany). Soil 
inorganic nitrogen fractions (NH4

+-N and NO3
−-N) were quantified 

by continuous flow analysis. Available phosphorus (AP) was extracted 
using 7.5 mol L−1 NaHCO3 solution (pH 8.5) and subsequently 
determined. Dissolved organic carbon (DOC) content was analyzed 
using a TOC analyzer (Elementar vario TOC select, Elementar 
Analysensysteme GmbH, Hanau, Germany). Microbial biomass 
phosphorus (MBP) was measured by the chloroform fumigation-
extraction method.

2.5 Soil DNA extraction and sequencing

0.2 g of stool /soil material was used to extract total genomic DNA 
with the E. Z. N. A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, 
United  States) according to the manufacturer’s instructions. The 
concentration and purity of extracted DNA were determined using 
SynergyHTX and NanoDrop2000, respectively. DNA quality was 
checked on 1% agarose gel. The DNA extract was fragmented to an 
average size of approximately 350 bp using a Covaris M220 (Gene 
Company Limited, China) for paired-end library construction. 
Paired-end library was constructed using NEXTFLEX Rapid DNA-Seq 
(Bioo Scientific, Austin, TX, United States). A paired-end sequencing 
was performed on Illumina NovaSeq™ X Plus (Illumina Inc., San 
Diego, CA, United States) at Majorbio Bio-Pharm Technology Co., 
Ltd. (Shanghai, China) using the NovaSeq X Series 25B Reagent Kit 
according to the manufacturer’s instructions.1 The metagenomic 
sequencing data associated with this project have been deposited in 
the NCBI Short Read Archive database.

The data were analyzed on the free online platform of the 
Majorbio Cloud Platform.2 The raw sequences were used to get clean 
reads. First, the reads that contained adapters were entirely removed. 
Second, the reads containing N (uncertain base) greater than 1% were 
removed. Third, low-quality reads (Q ≤ 20) with contents greater than 
50% were removed.

The quality-filtered data were assembled using MEGAHIT.3 
Contig with a length ≥ 300 bp were selected as the final assembling 
result. Open reading frames (ORFs) from each assembled contigs were 
predicted using Prodigal (Li et al., 2015),4 and ORFs with a length of 
≥ 100 bp were retrieved. A non-redundant gene catalog was 
constructed using CD-HIT (Fu et  al., 2012)5 with 90% sequence 
identity and 90% coverage. Gene abundance for a certain sample was 
estimated by SOAPaligner (Li et al., 2008)6 with 95% identity.

The amino acid sequences of the non-redundant gene set were 
aligned to the NR and KEGG databases using Diamond (Buchfink 
et al., 2014)7 (BLASTP alignment parameters set expectation e-value 
to 1e-5). Species annotations and KEGG functions corresponding to 
the genes were obtained. The abundance of the corresponding 

1  http://www.illumina.com

2  http://www.majorbio.com

3  https://github.com/voutcn/megahit, version 1.1.2.

4  https://github.com/hyattpd/Prodigal, version 2.6.3.

5  http://weizhongli-lab.org/cd-hit/, version 4.7.

6  https://github.com/ShujiaHuang/SOAPaligner, version soap2.21release.

7  https://github.com/bbuchfink/diamond, version 2.0.13.

functional categories was calculated using the sum of the abundance 
of the genes corresponding to KO, Pathway, EC, and Module.

In total, 103 soil P cycle genes with their corresponding KO 
numbers were searched in the datasets based on previous publications 
(Li et  al., 2022; Liu et  al., 2023). They were classified into four 
categories according to their functions in the soil P cycles based on 
previous studies (Dai et al., 2020; Hartman et al., 2017; Ma Q. et al., 
2020). The KO numbers, gene names, functions, and classifications of 
the genes associated with soil P cycling are shown in 
Supplementary Table S3.

2.6 Statistical analyses

Statistical analyses were conducted using SPSS 26.0. One-way 
analysis of variance (ANOVA) was performed to evaluate significant 
differences in P fractions, functional gene abundance, and 
environmental factors across wetland degradation levels. When the 
assumption of homogeneity of variance was met (Levene’s test, 
p > 0.05), Tukey’s honestly significant difference (HSD) post hoc test 
was applied for multiple comparisons. In cases where the homogeneity 
of variance assumption was violated (p ≤ 0.05), Tamhane’s T2 test was 
used. For data that deviated from a normal distribution (Shapiro–Wilk 
test, p ≤ 0.05), the Kruskal-Wallis non-parametric test was employed.

Spearman’s rank correlation analysis was carried out in R software 
(version 4.1.0) to assess associations among P-cycling functional 
genes, with significant correlations defined as |r| > 0.7 and p < 0.05 
being selected for further analysis. Redundancy analysis (RDA) was 
implemented with the “vegan” package to identify environmental 
factors influencing P fractions. The “randomForest” package was used 
to evaluate the relative importance of phosphorus cycling functional 
genes on P fractions, and partial least squares path modeling 
(PLS-PM) was developed using the “plspm” package to analyze 
pathways among key driving factors. All figures were generated using 
Origin 2021 and Microsoft PowerPoint 2019.

3 Results

3.1 Changes in P fractions and their 
availabilities in response to wetland 
degradation

Wetland degradation processes significantly changed soil P 
fractions and their distribution (Figure 1). As degradation intensity 
increased, total phosphorus (TP) decreased by 32.4%. TP fell from 
732.58 ± 183.43 mg kg−1 in non-degraded wetlands to 495.57 ±  
21.67 mg kg−1 in heavily degraded wetlands. Inorganic phosphorus 
(Pi) also dropped sharply across the four wetland types (ND, LD, MD, 
HD). Their Pi concentrations were 483.13 ± 86.30, 232.64 ± 36.05, 
178.11 ± 11.48, and 191.01 ± 17.04 mg kg−1, respectively, showing a 
60.5% reduction (p < 0.05) with increasing degradation. In contrast, 
organic phosphorus (Po) first increased, then decreased. The 
concentrations of Po were 249.45 ± 101.91, 369.76 ± 74.57, 
339.27 ± 24.22, and 304.56 ± 11.60 mg kg−1 in ND, LD, MD, and HD 
wetlands, respectively. However, these Po changes were not statistically 
significant (p > 0.05). Looking at P lability, stable P concentrations 
dropped significantly (p < 0.05) as degradation progressed. Stable P 
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was 350.44 ± 56.37, 200.87 ± 30.99, 155.25 ± 7.64, and 
155.14 ± 14.26 mg kg−1 in ND, LD, MD, and HD wetlands, 
respectively. This is a 55.7% decrease from non-degraded to heavily 
degraded conditions. Yet, neither labile P nor moderately labile P 
demonstrated significant changes during degradation (p > 0.05).

With more severe wetland degradation, most P fractions 
decreased significantly (p < 0.05). For instance, labile Pi (Resin-Pi and 
NaHCO3-Pi) decreased from 0.73 ± 0.29 mg kg−1 and 17.60 ±  
6.73 mg kg−1 in ND to 0.38 ± 0.09 mg kg−1 and 5.83 ± 0.9 mg kg−1 in 
HD. There are reductions of 48.3 and 66.9% (Figures 2a,b). Moderately 
labile Pi (NaOH-Pi) decreased from 167.08 ± 39.45 mg kg−1 in ND to 
51.98 ± 7.99 mg kg−1 in HD, a 68.9% decrease (Figure 2d). Stable P 
fractions (1 M HCl-Pi, Conc. HCl-Po, and Residual-P) also declined. 
Their values were 140.34 ± 27.78 mg kg−1, 52.71 ± 14.77 mg kg−1, and 
123.24 ± 20.21 mg kg−1 in ND. These changed to 22.10 ± 10.98 mg kg−1, 
22.32 ± 4.41 mg kg−1, and 70.87 ± 3.14 mg kg−1 in HD. The reductions 
were 84.3, 57.7, and 42.5% (Figures  2f,h,i). Degradation caused 
changes in Conc. HCl-Pi as well. It decreased by 23.1% in slightly 
degraded (LD) wetlands but increased by 51.8% in HD wetlands 
(p  < 0.05, Figure  2g). In contrast, Po fractions (NaHCO3-Po and 
NaOH-Po) did not change significantly across degradation stages 
(p > 0.05).

3.2 Changes in soil physicochemical 
properties in response to wetland 
degradation

Wetland degradation significantly altered soil physicochemical 
properties (Figure 3). As degradation intensity increased from ND to 
HD wetlands, key soil properties changed markedly. Soil water content 
(SW), dissolved organic carbon (DOC), total carbon (TC), total 
nitrogen (TN), and ammonium nitrogen (NH₄+-N) decreased by 89.9, 
42.9, 80.2, 68.1, and 71.1%, respectively (p < 0.05). Soil pH increased 
significantly from 5.05 ± 0.89 mg kg−1 in ND wetlands to 
5.57 ± 0.02 mg kg−1 in HD wetlands. This rise represented an 11.9% 
increase and a shift from acidic to weakly acidic.

Notably, available phosphorus (AP) increased from 
2.05 ± 0.48 mg kg−1 to 2.91 ± 0.24 mg kg−1, a rise of 41.9%. Despite 
this significant increase (p < 0.05), the absolute change in AP was 

small. This is because its baseline concentration was inherently low 
compared to the total soil P pool.

3.3 Changes in microbial diversity and 
genes involved in P cycling in response to 
wetland degradation

We detected a total of 103 functional genes associated with the 
mineralization, solubilization, transport, and regulation of P in the 
metagenomes. This genetic repertoire helps elucidate the microbial 
genetic mechanism regulating soil P cycling (Supplementary Table S4). 
The diversity and richness of soil microbial communities, as reflected 
by Shannon and Chao1 indices, were significantly higher in 
non-degraded wetlands than in degraded ones (Supplementary  
Figure S1). Furthermore, wetland degradation profoundly altered the 
community composition (α-diversity) of microbes harboring 
P-cycling genes. Principal component analysis (PCA) revealed a clear 
separation between non-degraded and degraded wetlands based on 
the profiles of P-cycling functional genes (Figure 4a).

Following wetland degradation, the relative abundance of genes 
involved in P uptake/transport and P starvation response regulation 
decreased markedly within the P-cycling functional gene pool 
(Figure  4b). In contrast, the proportions of genes related to Po 
mineralization and Pi solubilization increased significantly (p < 0.05).

3.4 Changes in the relative abundances of 
P-cycling functional genes in response to 
wetland degradation

To better understand changes in microbial P cycling across 
different stages of wetland degradation, the top 45 most abundant 
genes involved in Pi solubilization, Po mineralization, P uptake/
transport system, and P-starvation response regulation were 
quantitatively analyzed.

Significant variations in the relative abundance of key P-cycling 
genes abserved among wetland degradation stages (Figure 5). Among 
the functional genes associated with Po mineralization, the relative 
abundances of G6PD and plc—the two most abundant genes in this 

FIGURE 1

(a) Total phosphorus and the concentration of (b) Pi, Po, and (c) stable P, mod-labile P, and labile P fractions for different degraded wetlands. Different 
lowercase letters in the same row mean significant difference at p < 0.05 among the four treatments. Pi, inorganic phosphorus; Po, organic 
phosphorus; ND, non-degraded wetland; LD, slightly degraded wetland; MD, moderately degraded wetland; HD, heavily degraded wetland.
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category—increased significantly by 33 and 335.5%, respectively, in 
degraded wetlands compared to non-degraded wetlands (p < 0.05). 
The relative abundance of phoD, another representative gene of the Po 
mineralization also rose significantly following degradation (p < 0.05). 
In contrast, other Po mineralization genes, including ppx, rne, 
EC3.1.3.18, and rnc, showed a marked decrease. Despite these 
divergent responses, the overall relative abundance of Po 
mineralization functional genes exhibited an upward trend (Figure 4).

With the Pi solubilization functional genes, aldh2 and plfA 
displayed the highest relative abundances. Compared to non-degraded 
wetlands, the relative abundance of aldh2 increased significantly by 
151.7% (p < 0.05) in degraded wetlands, whereas that of plfA decreased 
significantly by 75.8% (p < 0.05). Meanwhile, other key Pi-solubilizing 
genes—ppa, gcd, and pqq—increased significantly by 87.4, 634.3, and 
349.8%, respectively (p < 0.05). Although the plfA abundance declined, 
the substantial increases in major Pi-solubilizing genes such as ppa, 
gcd, and pqq led to a significant overall increase in the relative 
abundance of Pi solubilization genes. Collectively, these results 
demonstrate that wetland degradation significantly enhanced the 
relative abundance of most functional genes related to Pi solubilization 
(aldh2, ppa, gcd, pqq) and Po mineralization (G6PD, plc, phoD) 

(p < 0.05). Conversely, the relative abundance of P-starvation response 
regulatory genes, including phoU and phoR decreased after 
degradation. Similarly, P uptake/transport genes such as pst and pit 
showed a declining trend. Overall, the relative abundances of both 
P-starvation response regulatory genes (phoU, phoR) and P uptake/
transport genes (pstABCS, pit) were significantly reduced following 
wetland degradation (p < 0.05).

3.5 Variations in key enzymes of P-cycling 
metabolic pathways

Analysis of enzymes involved in the P-cycling metabolic pathways 
revealed distinct changes following wetland degradation (Figure 6). 
Compared to ND wetlands, degraded sites showed a significant increase 
in the relative abundance of enzymes associated with the initial steps of 
the Po mineralization pathway. In contrast, the relative abundance of 
enzymes responsible for synthesizing PRPP in the later stages of this 
pathway was markedly reduced. These results suggest that although 
wetland degradation stimulates early-phase organic P mineralization, 
the final conversion to inorganic P is likely impeded by suppressed 

FIGURE 2

The contents of different soil P forms in the four treatments. (a) Resin-Pi, (b) NaHCO₃-Pi, (c) NaHCO₃-Po, (d) NaOH-Pi, (e) NaOH-Po, (f) 1M HCl-Pi, (g) 
Conc.HCl-Pi, (h) Residual-P, and (i) Conc.HCl-Po. Data are reported as mean ± 1 SE (n = 6). Different lowercase letters in the same row mean 
significant difference at p < 0.05 among the four treatments. ND, non-degraded wetland; LD, slightly degraded wetland; MD, moderately degraded 
wetland; HD, heavily degraded wetland.
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PRPP-synthesizing enzyme activity. Consequently, a considerable 
fraction of Po may not be fully mineralized into inorganic forms.

Simultaneously, the relative abundance of key enzymes involved 
in the inorganic P solubilization pathway (EC 1.1.5.2, EC 3.6.1.11, and 
EC 3.6.1.1) was significantly higher in degraded wetlands than in 
non-degraded sites (Figure  6; Supplementary Figure S2), further 
supporting the enhancement of inorganic P solubilization following 
wetland degradation. Moreover, enzymes related to P-transport and 
P-starvation regulation pathways showed a significantly reduced 
abundance in degraded wetlands, which is consistent with the trends 
observed in their corresponding functional genes (Figure  6; 
Supplementary Figure S2).

3.6 Pathway and factors controlling soil P 
fractions

The relationship between the P factions and environmental factors 
was evaluated using RDA analysis (Figure 7a). Collectively, the six 
environmental factors explained 78% (p = 0.001) of the total variance 
in P fractions. PC1, NH4

+-N, and DOC were identified as the primary 

influencing factors, while AP, MBP, and ST exerted secondary effects. 
PC1, which represents high pH and low soil water content (pH 
loading = 0.7, SW loading = −0.7), showed significant negative 
correlations with most P fractions (Figure  7; Supplementary  
Figures S3, S4).

The random forest analysis indicated that the genes aldh2 and 
phnE were the major predictors of soil stable P (Figure 8). For different 
P fractions, phnE, aldh2, nfo, rnc, and mdh were identified as the main 
predictors for labile Pi (Conc. HCl-Pi, NaOH-Pi, 1 M HCl-Pi, and 
NaOH-Po, respectively).

The partial least squares path model (PLS-PM) was used to assess 
the direct and indirect effects of wetland degradation, SW, pH, and 
P-cycling processes on various P fractions, including labile Pi, labile 
Po, mod-labile Pi, mod-labile Po, stable Pi, and stable Po 
(Figures 9a–f). Wetland degradation primarily influenced microbial 
diversity involved in P-cycling by altering SW and pH, which in turn 
affected P-cycling functional genes and P fractions. Specifically, SW 
exhibited strong direct positive effects on labile Pi (r = 0.77), labile Po 
(r = 0.78), mod-labile Pi (r = 0.94), and stable Pi (r = 0.94). 
Furthermore, SW exerted indirect effects on Pi fractions through 
microbial diversity, P-cycling genes (including Po mineralization and 

FIGURE 3

The effects of wetland degradation on (a) soil water content (SW), (b) soil pH (pH), (c) soil dissolved organic carbon (DOC), (d) microbial biomass 
phosphorus (MBP), (e) available phosphorus (AP), (f) total carbon (TC), (g) total nitrogen (TN), (h) ammonium nitrogen content (NH4

+-N), (i) nitrate 
nitrogen content (NO3

−-N). ND, non-degraded wetland; LD, slightly degraded wetland; MD, moderately degraded wetland; HD, heavily degraded 
wetland. Data are reported as mean ± 1 SE (n = 6). Different lowercase letters in the same row mean significant difference at p < 0.05 among the four 
treatments.
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Pi solubilization genes), and intermediate metabolites. Both SW and 
pH collectively influenced Po fractions (labile Po, mod-labile Po, and 
stable Po) by modifying P-cycling microbial diversity and subsequently 
altering Po mineralization genes.

4 Discussion

4.1 Effects of wetland degradation on soil P 
fraction

Total soil phosphorus content gradually decreases with wetland 
degradation, a result that directly confirms our core hypothesis 1, 
which posits that wetland degradation significantly alters both the 
total storage and speciation of soil P. The reduction in Pi is identified 
as the decisive factor driving the overall decline in total phosphorus, 
despite an increase in Po along the degradation gradient (Figures 1a,b).

Soil P primarily originates from parent material weathering. Over 
long-term pedogenesis, although the proportion and content of P 
forms may increase, TP often decreases due to leaching (Arpiwi et al., 
2012; Yang and Post, 2011). Wetland degradation is typically 
accompanied by drought and organic matter loss, which can promote 
Pi through surface runoff and changes in soil texture (Li et al., 2022; 
Wang et al., 2024). The reduction in moisture and rise in pH associated 
with degradation stimulate P-cycling microorganisms to enhance 
expression of Pi solubilization genes in response to environmental 
stress (Stirling et al., 2020), thereby accelerating dissolution processes 
and further reducing Pi content. Additionally, wetland degradation 
often leads to a shift in vegetation from hygrophytic species (e.g., 
Cyperaceae) to xerophytic grasses, which generally produce higher 
biomass and more litter (Hu et al., 2021). This litter constitutes a major 

source of Po. Due to its high carbon-to-phosphorus (C/P) ratio, it is 
more resistant to microbial mineralization into inorganic forms (Bai 
et al., 2023), thereby promoting Po accumulation and further reducing 
Pi. Thus, the decline in Pi—driven by degradation-induced changes 
in microbial activity and soil physicochemical properties—is the 
principal cause of the decrease in total phosphorus.

From the perspective of solubility, the proportions of labile P and 
mod-labile P did not change significantly along the degradation 
gradient, whereas stable P exhibited a continuous decline (Figure 1c). 
Based on solubility, soil P can be classified into labile P, moderately 
labile P, and stable P, each further divisible into inorganic and organic 
components (Hedley et al., 1982; Tiessen et al., 1984). These fractions 
can interconvert through solubilization, mineralization, and fixation 
processes, in which P-solubilizing microorganisms play a critical role 
(Pang et  al., 2024). Labile P is the most dynamic fraction, highly 
sensitive to environmental changes and subject to rapid depletion or 
immobilization (Dierberg et al., 2021; Jiang et al., 2024; Qin et al., 
2023). Although the total labile P pool remains relatively stable after 
wetland degradation, its compositional shifts markedly: labile Pi 
(Resin-P and NaHCO3-Pi) decreases significantly, while labile Po 
(NaHCO3-Po) increases (Figures 2d,f). Previous studies indicate that 
labile Pi stability is strongly influenced by SW and pH, with wetland 
degradation-induced drought and elevated pH potentially reducing its 
concentration (Zhang et al., 2020). On the one hand, reduced vegetation 
cover and weakened hydrological regulation after degradation intensify 
runoff erosion, promoting labile Pi loss (Pollock and Norman, 2025). 
On the other hand, the decomposition of dead microorganisms and 
plants returns organic phosphorus to the soil, increasing labile Po 
content (Jiang et al., 2024; Li et al., 2024; Yang et al., 2014).

Moderately labile P serves as a key transitional pool in soil P 
transformation, bridging stable P solubilization and labile P fixation 

FIGURE 4

(a) PCA analysis of phosphorus cycling genes across wetlands with varying degradation levels. The dashed ellipses represent 95% confidence intervals. 
(b) Differential relative abundance of genes associated with the four phosphorus cycling processes. ND, non-degraded wetland; LD, slightly degraded 
wetland; MD, moderately degraded wetland; HD, heavily degraded wetland.
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(Liu et  al., 2021b; Tiessen et  al., 1984). Following degradation, 
moderately labile P initially increases then decreases, with moderately 
labile Pi (NaOH-Pi) declining significantly and moderately labile Po 
(NaOH-Po) showing an increasing trend (Figures 2d,e). First, wetland 
degradation alters the composition of soil P-cycling microbial 
communities, enriching P-solubilizing microorganisms (Li et al., 2022), 
which enhances Pi solubilization and Po mineralization, thereby 
reducing moderately labile Pi. Secondly, changes in soil physicochemical 
properties affect ion exchange processes, reducing adsorption sites for 
moderately labile Pi and further diminishing its content (Jiang et al., 
2024). The increase in moderately labile Po may stem from enhanced 
mineralization of stable Po, as Po undergoes progressive degradation 
from stable to labile forms (Qin et al., 2023). Our data show a significant 
decrease in stable Po in degraded wetlands (Figure 2), supporting the 
transformation of stable Po into moderately labile and labile Po, 
indicating a shift from stable to more labile phosphorus pools.

Stable P, being the most resistant to loss, typically requires 
solubilization or mineralization into moderately labile P before further 
transformation (Hedley et al., 1982; Tiessen et al., 1984). Wetland 
degradation reduces vegetation cover, increasing soil susceptibility to 
weathering and erosion (Tang et al., 2021). In mildly weathered soils, 
the observed decline in stable P may result from its conversion to 

moderately labile P, acting as a buffer for AP (Guo et  al., 2000). 
Moreover, degradation-induced shifts in microbial community 
structure significantly influence P solubilization and mineralization 
processes. Global studies indicate that grassland ecosystems harbor 
higher abundances of Pi solubilization and Po mineralization genes 
than wetlands (Wang et al., 2024). Thus, the conversion of wetlands to 
grasslands may enhance these microbial functions, ultimately 
reducing stable P content (Li et al., 2022).

In conclusion, wetland degradation significantly alters soil P 
fractions by affecting both physical processes (erosion and weathering) 
and biological processes (microbial-mediated transformations), 
collectively reshaping P cycling in degraded wetland ecosystems.

4.2 Effects of wetland degradation on soil 
physicochemical properties

Wetland degradation leads to pronounced changes in soil 
moisture and pH, which drive an increase in soil AP content, albeit 
accompanied by reductions in microbial P, carbon, and nitrogen pools 
(Figure 3). During this process, soil water content is often the first 
parameter to be  affected. Most studies indicate that wetland 

FIGURE 5

The impacts of wetland degradation on the abundances of (a) organic P mineralization, (b) inorganic P solubilization, (c) P starvation response 
regulation, and (d) P uptake and transport system. Data are reported as mean ± 1 SE (n = 6). Different lowercase letters in the same row mean 
significant difference at p < 0.05 among the four treatments. ND, non-degraded wetland; LD, slightly degraded wetland; MD, moderately degraded 
wetland; HD, heavily degraded wetland.
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degradation results in a significant decline in soil moisture, which in 
turn alters the forms and distribution of soil P (Wu et al., 2021).

In addition to reducing soil moisture, wetland degradation also 
elevates soil pH. The decrease in water content typically improves soil 
aeration and promotes the decomposition of organic acids, ultimately 
leading to increased pH levels (Wang et al., 2015). This study further 
demonstrates that dissolved organic carbon, total nitrogen, and 
ammonium nitrogen contents decrease significantly with increasing 
degradation severity. On one hand, degradation reduces vegetation 
cover and increases surface exposure, accelerating the loss of topsoil 
nutrients through wind and water erosion (Arroyo et al., 2015). On 
the other hand, it diminishes plant productivity, aboveground 
biomass, and litterfall, thereby reducing organic matter inputs and 
weakening the soil’s nutrient supply (Yang et al., 2021).

In summary, key soil physicochemical properties respond 
distinctly to wetland degradation. The process induces substantial 

reductions in soil moisture and organic matter, coupled with elevated 
pH, collectively impairing the health and stability of wetland ecosystems.

4.3 Effects of wetland degradation on soil 
P-cycling microbial diversity and functional 
genes

Wetland degradation reduces the diversity of microorganisms 
involved in P cycling, providing direct support for the core postulate of 
hypothesis 2, which states that degradation significantly restructures the 
soil microbial community. Soil water content strongly influences 
microbial activity and composition, thereby playing a critical role in 
regulating soil P cycling (Xu et al., 2023). Studies indicate that degraded 
wetlands exhibit significantly lower SW than non-degraded wetlands, 
accompanied by a notable reduction in the alpha diversity (Shannon 

FIGURE 6

Major phosphorus metabolic pathways in soil. The boxes with different colors represent different P transformation pathways. The red and blue arrows 
indicate significant increases and decreases, respectively, in phosphorus cycling genes after degradation compared to non-degraded conditions. Data 
are reported as mean ± 1 SE (n = 6). Different lowercase letters in the same row mean significant difference at p < 0.05. PRPP, α-D-ribose-1-
diphosphate-5P.
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and Chao1 indices) of P-cycling microorganisms 
(Supplementary Figure S1). Under drought conditions, soil microbial 
communities shift toward aerobic taxa and become increasingly adapted 
to water stress as moisture declines (Chaves et al., 2003; Manzoni et al., 
2014). In addition to SW, the rise in pH commonly associated with 
wetland degradation also alters microbial community structure. 
Elevated pH can eliminate acidophilic P-cycling microorganisms (e.g., 
Acidophilus) while favoring the proliferation of other P-cycling taxa 
(Huang et al., 2017; Liang et al., 2020). Since these microorganisms are 
key hosts of P-cycling functional genes, such compositional shifts 
directly affect P transformation processes in the soil.

Compared with non-degraded wetlands, degraded sites showed a 
significant increase the relative abundance of most functional genes 
related to phosphorus mineralization (Po mineralization) and 
phosphorus solubilization (Pi solubilization), while genes associated 
with P-starvation response regulation and P uptake/transport were 
significantly decreased (Figure 5). These results align with previous 
reports indicating that wetland degradation first alters SW and pH, 
which in turn affect microbial diversity, and ultimately reshape the 
functional genes potential for P cycling (Li et al., 2022; Wang et al., 
2024). The decline in SW and increased oxygen diffusion following 
degradation promote the activity of aerobic microorganisms (e.g., 
Proteobacteria and Firmicutes), which are major carriers of Po 
mineralization and Pi solubilization genes (e.g., phoD, gcd, ppx, and ppa 
genes) (Pang et al., 2024), thereby explaining the increased abundance 
of these genes. Concurrently, reduced SW induces oxidative stress 
under arid conditions, likely causing microorganisms to divert energy 
toward stress adaptation (e.g., synthesizing antioxidant enzymes) rather 
than P uptake and transport (Bista et al., 2018; Li et al., 2023), resulting 
in the downregulation of genes such as pstABS and pit. Furthermore, 
the P-starvation response is known to be regulated by soil P availability; 
higher P levels suppress the expression of two-component regulatory 

genes such as phoR and phoB (Rawat et al., 2020). The increase in AP 
observed in this study further supports this mechanism.

Notably, although the overall relative abundance of Po 
mineralization genes increased, analysis of individual gene abundances 
and metabolic pathways revealed a decline in terminal mineralization 
genes and enzymes (e.g., phoA, appA). While this seems inconsistent 
with hypothesis 2 and the general trend in organic phosphorus 
mineralization gene abundance, these terminal genes and enzymes are 
crucial for determining whether organic P is fully mineralized into 
inorganic forms (Pang et  al., 2024). Soil bacteria generally prefer 
environments with higher organic carbon content (Lehmann et al., 
2017; Wang et al., 2016), and P-solubilizing bacteria are particularly 
sensitive to environmental factors such as soil organic carbon (Ragot 
et al., 2015). Low total organic carbon (TOC) —especially dissolved 
organic carbon (DOC)—reduces the diversity and activity of 
P-solubilizing bacteria (Luo et al., 2017). Po mineralization and alkaline 
phosphatase secretion are energy-intensive processes that require 
substantial carbon investment (Nannipieri et  al., 2011). Following 
wetland degradation, the reduction in soil organic carbon forces 
microorganisms to allocate limited carbon resources toward basic 
growth and maintenance rather than Po mineralization (Alhassan et al., 
2018; Ma W. et al., 2020; Wu et al., 2020). Thus, carbon limitation likely 
underlies the decreased abundance of terminal Po mineralization genes.

4.4 Mechanism of P fractions response to 
wetland degradation

Overall, wetland degradation influences the diversity of P-cycling 
microorganisms by modulating SW and pH, which subsequently 
alters the abundance of specific P-cycling functional genes and 
ultimately affects the dynamics of labile P, mod-labile P, and stable P 

FIGURE 7

Redundancy analysis (RDA, a) and Spearman correlation analysis (b) depicting the relationships between the P fractions and selected environmental 
parameters in the four types of wetlands. *p < 0.05; **p < 0.01; ***p < 0.001; SW, soil water content; DOC, soil dissolved organic carbon; TC, total 
carbon; TN, total nitrogen; ST, soil temperature; MBP, microbial biomass phosphorus; PC1, present high-pH and low-SW. ND, non-degraded wetland; 
LD, slightly degraded wetland; MD, moderately degraded wetland; HD, heavily degraded wetland.
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pools (Figures  9, 10). This chain-reaction mechanism of 
“environmental factors → microbial community → functional genes 
→ phosphorus transformation” provides comprehensive validation for 
hypothesis 3 proposed in this study.

Soil P assimilation capacity is largely governed by the abundance 
of P-cycling genes (e.g., pqqBCDE, gcd, appA, phoD, and phoA), which 
are in turn regulated by soil environmental conditions (Dai et al., 
2020; Hsieh and Wanner, 2010; Rasul et al., 2019; Rawat et al., 2020). 
Recent studies indicate that SW, pH, microbial C: P, AP, and DOC 
significantly influence soil P transformation (Dai et al., 2020; Spohn 
and Kuzyakov, 2013; Wang et  al., 2015). The partial least squares 
structural equation modeling (PLS-SEM) clearly delineates this causal 
pathway: wetland degradation exerts a decisive influence on P cycling 
processes by reducing soil water content and increasing pH. This 
aligns with observations from marsh-to-meadow degradation, where 
declining groundwater levels cause upward movement of salts and 
alkaloids, elevating topsoil pH and subsequently altering soil P cycling 
(Li et al., 2022).

First, wetland degradation reduces the diversity of P-cycling 
microorganisms via changes in SW and pH, leading to a decline in key 

Po mineralization genes (appA, EC3.1.4.55). This results in the 
accumulation of labile Po (e.g., inositol cyclic phosphate) and limited 
availability of organic sources of labile Pi (Figures  9a,b). Inositol 
phosphates (e.g., phytate) constitute a major fraction of soil Po (Lu 
et al., 2020). The cyclic form of inositol phosphate serves both as a 
substrate for Po mineralization and an intermediate in its degradation 
(Connolly et al., 1986). Although Po mineralization typically reduces 
inositol phosphate and its metabolites (Zhou et  al., 2019), the 
decreased abundance of key enzymes (e.g., phytase, EC 3.1.4.55, and 
EC 2.7.6.1) following degradation impedes direct conversion to Pi. 
Instead, these compounds accumulate as readily mineralizable Po 
forms (NaHCO₃-Po and NaOH-Po) (Zhou et al., 2019). Consequently, 
although inositol cyclic phosphate contributes slightly to labile Pi 
(path coefficient = 0.224), its effect is constrained by the reduced 
expression of mineralization-associated genes (Figure 9a).

Second, wetland degradation-induced shifts in SW and pH reduce 
microbial diversity, which nevertheless promotes an increase in the 
relative abundance of Pi solubilization genes (e.g., pqqCE, gcd, and 
aldh2) and certain Po mineralization genes (such as phoD and xthA). 
This gene enrichment ultimately leads to reductions in moderately 

FIGURE 8

Results of mean square error (MSE, %) from a random forest aiming to identify the main driver of (a) Resin-Pi, (b) NaHCO3-Pi, (c) NaOH-Pi, (d) NaOH-
Po, (e) 1 M HCl-Pi, (f) Conc. HCl-Pi, (g) Conc. HCl-Po, (h) Residual-P and (i) Stable P. *p < 0.05; **p < 0.01; ***p < 0.001, nsp > 0.05.
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FIGURE 9

Partial least squares path modeling (PLS-PM) of the effects of wetland degradation, SW, pH, P-cycling microbial alpha diversity, and relative abundance 
of functional genes (involved in organic P mineralization and inorganic P solubilization) on: (a) labile Pi, (b) labile Po, (c) mod-labile Pi, (d) mod-labile 
Po, (e) stable Pi and (f) stable Po. The numbers above the arrows represent the size of each direct effect, and the line width is proportional to the 

(Continued)
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labile Pi, stable Pi, and stable Po (Figures 9c,e,f). Grassland ecosystems, 
which often succeed degraded wetlands, host higher abundances of Pi 
solubilization and Po mineralization genes than wetlands, providing 
a more favorable environment for P-solubilizing microorganisms 
(Wang et  al., 2024). The loss of microbial diversity and reduced 
interspecific competition during degradation allow these taxa to 
dominate, increasing the abundance of genes involved in Pi 
solubilization and Po mineralization (Liu et al., 2023; Wang et al., 
2024). Consistent with previous studies (Li et al., 2022; Liu et al., 2023; 
Zeng et  al., 2022; Zhang et  al., 2025), this increase facilitates the 
conversion of moderately labile Pi, stable Pi, and stable Po into AP, 
enhancing soil P availability and confirming the transformation of 
forms as postulated in hypothesis 1.

Partial least squares structural equation modeling further 
indicates that reduced SW directly affects the concentrations of labile 
Pi, labile Po, moderately labile Pi, and stable Pi. This is consistent with 
earlier findings that moisture decline reduces Pi in the most 

bioavailable pools and suppresses phosphatase activity, thereby 
limiting Po mineralization and further decreasing labile Pi (Zhang 
et al., 2020). In summary, the mechanisms through which wetland 
degradation affects various P fractions are broadly consistent: 
degradation primarily regulates P-cycling microbial diversity through 
SW and pH, thereby modifying the abundance of P-cycling functional 
genes and ultimately reshaping soil phosphorus composition 
(Figure 10).

5 Conclusion

The findings of this study offer valuable insights into the complex 
effects of wetland degradation on soil P fractions in temperate 
wetland ecosystems. Our results demonstrate that total soil 
phosphorus content decreases with increasing degradation intensity, 
primarily driven by a reduction in Pi. From the perspective of P 

absolute value of the direct effect. Red and blue arrows indicated positive and negative effects, respectively. Significant indicator by *p < 0.05, 
**p < 0.01, and ***p < 0.001. SW, soil water content. R2 indicates the degree to which the model explains the variance of the dependent variable. GOF 
is the goodness-of-fit of the model.

FIGURE 9 (Continued)

FIGURE 10

Conceptual diagram of the effects of wetland degradation on soil phosphorus fractions and phosphorus availability. EC, electrical conductivity; ST, soil 
temperature; DOC, dissolved organic carbon; TC, total carbon; TN, total nitrogen.
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solubility, wetland degradation facilitates the interconversion among 
labile P, mod-labile P, and stable P. Specifically, wetland degradation 
modulates the diversity of functionally relevant microorganisms via 
changes in soil moisture and pH, promoting the transformation of 
stable P into mod-labile P and subsequently into labile P. It is 
noteworthy that this study found a reduction in terminal functional 
genes and enzymes involved in the Po mineralization pathway 
following wetland degradation, which impedes the complete 
mineralization process and leads to the accumulation of stable Po 
degraded into labile Po. As a result, Po content increases with 
degradation intensity. Water loss and elevated pH during wetland 
degradation significantly reduce Pi content. On the one hand, these 
altered environmental conditions limit the mineralization of Po, 
while on the other hand, runoff during rainfall events further 
contributes to Pi loss. The degradation process is initially 
characterized by a decline in soil moisture, which regulates pH and 
other physicochemical properties. These changes further drive shifts 
in microbial community diversity, influence the abundance of 
P-cycling functional genes, and modulate P metabolic processes, 
ultimately altering the forms and total pool of soil phosphorus. 
Collectively, P loss during wetland degradation not only disrupts the 
ecological balance of the wetland ecosystem itself but also 
contributes to pollution in adjacent river systems and surrounding 
environments. Therefore, nutrient losses associated with wetland 
degradation warrant serious attention and mitigation efforts.
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