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Background: Human cytomegalovirus (HCMV) is a significant opportunistic
pathogen affecting immunocompromised individuals, particularly solid organ
and hematopoietic stem cell transplant recipients. The emergence of mutations
within conserved genomic regions of HCMV genes targeted by antiviral therapies,
significantly complicating the interpretation of resistance and treatment
decisions. Although the molecular characterization of such mutations and their
clinical correlation are critical to guide appropriate therapeutic strategies, the
significance of many detected mutations and variants, even those in conserved
regions, remain uncertain in terms of in vitro or in vivo drug resistance. In this
study, we clinically evaluated 15 such novel mutations.

Methods: Clinical specimens from immunocompromised and transplant
patients with confirmed HCMV DNAemia were sequenced for UL97, UL54,
and UL56. The detected variants were aligned with the HCMV Merlin reference
genome and evaluated for novelty and conservation. Patient records were
retrospectively reviewed to assess antiviral regimens, virological responses, and
clinical outcomes.

Results: In total, 13 patients (25%) exhibited novel UL97, UL54, and UL56
mutations. Four patients (30.77%) met the criteria for refractory HCMV DNAemia
with varying clinical responses. Some patients responded to first-line antiviral
agents despite carrying resistance-associated variants. Notably, the G579C
mutation in UL97 and A835T mutation in UL54 were found within conserved
domains crucial for kinase and polymerase functions, indicating their potential
functional significance. One patient carried the established UL54 P522S
mutation, which has been associated with intermediate ganciclovir resistance.
Two cases of severe immunosuppression and persistent viremia led to mortality,
demonstrating the impact of host immunity on treatment response.
Conclusion: Interpreting cytomegalovirus (HCMV) drug resistance mutations
requires a comprehensive approach that integrates molecular data with
clinical context. Early genotypic analysis can guide antiviral therapy; however,
improved classification of mutations based on predicted resistance potential
and phenotypic characteristics may optimize clinical decision-making. These
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insights emphasize the need for personalized management strategies in
immunocompromised patients.
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1 Introduction

Human Cytomegalovirus (HCMYV) is considered the largest
human herpesvirus. The wild-type variant was characterized by
sequencing the 235,645 base-pair genome of the low-passage strain
Merlin (Gatherer et al., 2011). HCMYV infection remains a substantial
cause of morbidity in immunocompromised populations, particularly
among solid organ and bone marrow transplant recipients (Kotton
et al., 2018). Advances in molecular diagnostics have yielded deep
insights into HCMV genetic polymorphisms and facilitated mutation
detection associated with antiviral resistance. Although recombinant
phenotyping is widely used for antiviral resistance analysis (Chou
etal., 2005), various emerging phenomena, including cross-resistance
mutations, development of drug resistant mutations (DRMs) during
antiviral therapy, and clinically refractory HCMV DNAemia with no
known DRMs, while some uncharacterized variants were detected
(Chou, 2020).

In this study, we describe the comprehensive assessment of a
series of clinical cases involving HCMV variants with known
resistance mutations and uncharacterized genetic variants, many of
which exhibited responsiveness to standard first-line antiviral therapy.
Our findings highlight the challenges in interpreting genotypic and
recombinant phenotypic data and reinforce the importance of
integrating molecular findings with clinical outcomes. This study
sought to correlate clinical variability with known genotypic
resistance, improve understanding of viral behavior among different
host factors that significantly affect HCMV infection management,
and assess the potential impact of novel mutations.

2 Materials and methods

2.1 Ethics statement

The research was conducted in compliance with institutional
policies and national guidelines for studies involving human subjects.
Ethical approval was obtained from the Research Advisory Council
(RAC) at King Faisal Specialist Hospital and Research Centre in
Saudi Arabia (RAC #2230035). Because this was a retrospective study
that analyzed anonymized clinical samples, the Research Ethics
Committee waived the requirement for informed consent. All research
procedures adhered to the ethical standards outlined in the
Declaration of Helsinki.

2.2 Clinical samples

A total of 52 plasma samples, collected between 2022 and 2025 at
King Faisal Specialist Hospital and Research Center, were used to
develop the in-house assay. All reported HCMV levels are expressed
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in international units per milliliter (IU/mL) by RT-PCR technology
using an Abbott Alinity m instrument, which detects and quantifies
genotypes (gB1-gB4) with a range of 30 to 100,000,000 IU/mL. A
result below 30 indicates HCMV viral load detected but not
accurately quantified. All clinical data, including viral load
measurements, were systematically extracted from the hospital’s
electronic medical records. The viral loads of the included plasma
samples ranged from 740 to 2,379,966 IU/mL. All patients were
receiving antiviral treatment at the time of sample collection. The
antiviral agents administered at the institution include ganciclovir,
valganciclovir, and foscarnet, with letermovir administered in
selected cases.

To optimize DNA quality for sequencing, plasma samples were
carefully handled and aliquoted to preserve sample integrity and
support possible retesting. Plasma was used instead of whole blood to
align with standard protocols for viral DNA quantification. The
leftover plasma samples, previously tested for CMV in the hospital
laboratory, were stored at —80 °C. These Samples were excluded if they
were not stored at 2 °C-4 °C for up to 4 days or at —70 °C or lower, if
labeling or documentation was incomplete, if the sample type was
incorrect, or if the volume was insufficient for testing. All samples
were successfully amplified and sequenced.

2.3 Novel mutation detection

Primers designed in-house were used to amplify genes with drug-
resistant mutations, including UL97, UL56, and UL54. The
recommended regions for genotyping antiviral resistance mutations
are codons 335-665 for UL97, 252-999 for UL54, and 230-370 for
UL56 (Kotton et al., 2018). However, in our in-house assay,
we expanded the amplified regions to cover codons 325-670 for UL97,
207-1,120 for UL54, and 185-450 for UL56. This adjustment was
made to mitigate the poor sequence quality frequently observed near
the start of sequencing reads, corresponding to primer binding sites.
By extending the target regions beyond guideline recommendations,
we ensured higher quality sequencing data, thereby enhancing the
accuracy of mutation detection and overall assay performance.
Comprehensive details of the original in-house assay development and
validation, including primer design, amplification parameters, and
validation procedures, are described in a separate manuscript by
Alsanea et al. (2025, currently under review). Following amplification,
the amplicons were sequenced at the Sequencing Core Facility,
Department of Genetics, King Faisal Specialist Hospital and Research
Centre using an ABI3730XL DNA Analyzer (Applied Biosystems,
Foster City, CA, United States). The DNASTAR Lasergene 15.0
package (SeqMan Pro, version 15; DNASTAR, Inc., Madison, W1,
United States) was used to validate the chromatogram files, clean the
sequences, and assemble the contigs using human herpesvirus 5 strain
Merlin genome (NC_006273.2) as a reference sequence.
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All contigs were translated into amino acid sequences using
EditSeq version 15. These sequences were then aligned with the
reference sequences UL97 (YP_081544.1), UL54 (YP_081513.1), and
UL56 (YP_081515.1) using the MUSCLE tool to identify the amino
acid mutations. A comprehensive database of all reported and
published mutations facilitated the categorization of these mutations,
as outlined in the literature (Chou, 2020). Amino acid substitutions
were classified into three groups: confirmed drug resistance mutations,
natural polymorphisms, and novel mutations detected for the first
time in our population. Eventually, to locate the nucleic acid
alterations that caused the amino acid changes, (NC_006273.2) was
used to align the nucleic acid sequences using ClustalOmega on
MegAlign Pro version 15.

2.4 Confirmation protocol for novel
mutations

We evaluated HCMV mutations using the approach outlined
in Figure 1, which summarizes the key steps for detecting and
analyzing mutations. This approach allowed for systematic
identification and comparison of variant profiles across samples.
Literature searches were conducted on the PubMed and Google
Scholar databases up to May 2025, using the following search terms
individually or in combination: “HCMV mutations,” “UL97
mutations,” “UL56 mutations,” “UL54 mutations,” “drug-resistant
HCMV mutations,” “HCMV and transplantation,” “HCMV
management,” and “HCMYV treatment.” Only articles published in
English were considered. Each presumed novel mutation was also
included as a search term. All mutations that were not documented
in the literature were considered for subsequent analysis.
Additionally, two databases were used to search for mutations: the
Comprehensive Herpesviruses Antiviral Drug Resistance Mutation
Database (CHARMD) (Tilloy et al, 2024) and HerpesDRG
(Charles et al., 2024). Each sample underwent two independent
rounds of amplification. If identical mutations were detected in
both reactions, the validity of the finding was confirmed, and the
PCR-induced error was excluded.

Novel mutations were validated by individually testing the nucleic
and amino acid sequences using different Basic Local Alignment
Search Tool (BLAST) tools.! BLASTp was utilized to align the amino
acid sequences with all publicly available sequences across four
databases: UniProtKB/Swiss-Prot (RefSSwissProt), reference proteins
(RefSeq protein), Patented protein sequences (patina), and
non-redundant protein sequences (nr) (Table 1). BLASTn was used to
align the nucleic acid sequences with all published sequences in three
databases: Core Nucleotide Database (core_nt), Nucleotide Collection
(nr/nt), and Patent Sequences (pat) (Table 2).

Similarity scores were determined to identify the most closely
matching sequence for alignment with the sample sequence,
confirming that the dissimilar mutation was indeed the novel
mutation. MegAlign Pro version 15 was used to perform the
alignment, the MUSCLE tool to align the amino acid sequences, and
the ClustalOmega tool to align the nucleic acid sequences.

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3 Results

This study included only patients with novel mutations. The viral
loads of the samples ranged from 2,439 IU/mL to 127,478 IU/mL. The
analyzed cases exhibited known natural polymorphisms, previously
reported uncharacterized mutations, or drug resistance mutations.
Notably, 15 mutations, 11 in UL54, 1 in UL97, and 3 in UL56, were
identified as novel, having not been previously reported as
polymorphisms, uncharacterized variants, or drug resistance-
associated mutations.

Comparative sequence analysis against multiple reference
databases showed that the sample sequences were not identical to
previously reported sequences. The highest similarity score for UL97
was 99.70% at the amino acid level and 99.80% at the nucleic acid
level. The maximum similarity for UL54 was 99.88% for amino acid
sequences and 99.96% for nucleic acid sequences. For UL56, the
highest similarity reached 99.62% at the amino acid level and 99.87%
at the nucleic acid level. Tables 1, 2 provide details of the novel
mutations, similarity scores, and references databases.

Furthermore, none of the confirmed mutations in UL54 (T252M,
G267S, D346N, N618D, M637V, P656L, G672D, G680D, A835T,
E858K, and E882G) were identified in both CHARMD and
HerpesDRG databases. All the novel mutations are shown in Figure 2,
while the confirmed mutations in UL97 (G579C) and UL56 (D239N,
L373H, and E424K) are shown in Figure 3. Some mutations were
linked to highly variable regions, whereas others occurred in known
conserved regions, as illustrated in Figure 4. The clinical outcomes and
DNAemia clearance patterns are detailed in Table 3.

3.1 Refractory CMV DNAemia (n = 4)

Refractory CMV DNAemia was defined as either an increase of
more than 1 log;o in CMV DNA levels from the peak viral load, or
persistence of viral load with <1 log;, increase or decrease after at least
2 weeks of appropriate antiviral therapy. Four patients met this
criterion and are described below:

Case 3: A baby boy, product of a vaginal delivery after an
uneventful pregnancy, was transferred at 5 weeks of age for evaluation
for hematopoietic stem cell transplantation (HSCT) due to a family
history of severe combined immunodeficiency (SCID), Omenn
phenotype. Since the first week of life, he experienced recurrent
infections, including gastroenteritis, pneumonia, and skin rash. Upon
transfer, he developed sepsis and septic shock. Blood culture grew
methicillin-resistant Staphylococcus aureus (MRSA), and he was
treated accordingly with vancomycin. Cerebrospinal fluid studies were
negative for bacterial and viral pathogens. On 31 December 2023 (at
6 weeks of age), HCMV DNAemia was detected at 23,104 IU/
mL. Ganciclovir induction was initiated on January 1, 2024; however,
DNAemia rose to 127,478 IU/mL on January 7. Resistance testing at
this point identified no known resistance mutations but revealed novel
variants. DNAemia further increased to 158,391 IU/mL by January
14, prompting a switch to foscarnet on January 11. Despite therapy,
DNAemia peaked at 1,456,557 IU/mL on 21 January. Ophthalmology
evaluation showed no retinitis. Pulmonary imaging raised concern for
pneumonitis, but bronchoalveolar lavage was not feasible, and
therefore HCMV-related disease could not be confirmed. Dual
antiviral therapy and adjunctive HCMV-specific immunoglobulin
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DRM: Drug Resistant Mutation; PCR: Polymerase Chain Reaction; ECs, Half Maximal Effective Concentration. Created with BioRender.com.

were provided empirically. No HLA-matched donor was available;
therefore, bridging therapy continued. DNAemia subsequently
decreased, reaching 14,258 IU/mL on 28 January and 342 IU/mL on
10 March. The patient proceeded to a mismatched transplant on 21
March while maintained on dual antivirals. DNAemia reached its
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nadir at 66 IU/mL on 7 April 2024. All subsequent blood cultures
were negative. Shortly thereafter, he developed febrile neutropenia,
severe pneumonitis, acute respiratory distress syndrome (ARDS)
complicated by pulmonary hemorrhage, and died on 13 April 2024
(see Table 4).
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TABLE 1 All detected mutations in the study population and the corresponding search results for the amino acid sequences.
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Patient ID Sample Mutation The percentage of highest similarity in each database
number .
swissprot refseq Acc pataa Acc
protein
UL97 11 197 G579C 99.70% P16788.1 99.70% YP_081544.1 99.70% CAC42715.1 99.70% AKI09486.1
7 74 T252M 99.56% Q6SW77.1 99.56% YP_081513.1 99.45% AAS31232.1 99.78% QPI35313.1
5 29 G267S 99.31% P08546.2 99.31% YP_081513.1 99.31% AAS31232.1 99.77% AAD30069.1
3 27 D346N 99.54% P08546.2 99.54% YP_081513.1 99.54% AAS31232.1 99.77% AAD30086.1
2 7 N618D 99.41% P08546.2 99.41% YP_081513.1 99.41% AAS31232.1 99.88% AM]J52924.1
13 56 M637V 99.55% P08546.2 99.55% YP_081513.1 99.55% AAS31232.1 99.85% AFR55047.1
UL54 9 76 P656L 99.08% P08546.2 99.08% YP_081513.1 99.08% AA093934.1 99.54% AKI11465.1
9 76 G672D 99.08% P08546.2 99.08% YP_081513.1 99.08% AA093934.1 99.54% AKI11465.1
10 24 G680D 99.28% Q6SW77.1 99.28% YP_081513.1 99.28% AA093934.1 99.76% AKI21156.1
12 206 A835T 99.08% P08546.2 99.08% YP_081513.1 99.08% AAS31232.1 99.65% CAG7582472.1
1 3 E858K 99.29% P08546.2 99.29% YP_081513.1 99.29% AAS31232.1 99.76% AHJ84974.1
7 74 E882G 99.56% Q6SW77.1 99.56% YP_081513.1 99.45% AAS31232.1 99.78% QPI35313.1
6 53 D239N 99.59% P16724.1 99.18% YP_081515.1 99.59% AGV78716.1 99.59% ANQ47130.1
UL56 8 68 1373H 99.62% P16724.1 99.24% YP_081515.1 99.62% AGV78716.1 99.62% AKI26056.1
4and5 28 E424K 99.58% P16724.1 99.16% YP_081515.1 99.58% UOK99462.1 99.58% APA46230.1

RefSSwissProt, UniProtKB/Swiss-Prot; RefSeq protein, Reference proteins; patina, Patented protein sequences; nr, non-redundant protein sequences.
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TABLE 2 All detected mutations in the study population and the corresponding search results for the nucleotide sequences.

Gene Patient Sample Mutation Highest similarity percentage in each database
ID number
Core-nt Acc nr/nt Acc pat
UL97 11 197 G1735T 99.80% HQ158774.1 99.80% KR534213.1 99.60% MY904332.1
7 74 C755T 99.53% KR534200.1 99.53% KR534200.1 99.34% MY904329.1
5 29 G799A 99.81% KC519320.1 99.81% KY490078.1 99.61% MV974705.1
3 27 G1036A 99.31% AF133609.1 99.31% AF133609.1 99.04% MY904331.1
2 7 Al1852G 99.96% KR534204.1 99.96% KR534204.1 99.80% MV974705.1
13 56 A1909G 99.80% ]X512206.1 99.80% ]X512206.1 99.21 MV974705.1
UL54 9 76 C1967T 99.24% KR534200.1 99.24% KR534200.1 98.63% MY904331.1
9 76 G2015A 99.24% KR534200.1 99.24% KR534200.1 98.63% MY904331.1
10 24 G2039A 98.96% KP745714.1 98.96% MNO075802.1 98.88% MY904333.1
12 206 G2503A 99.38% KR534202.1 99.38% PQ867562.1 98.96% MX631210.1
1 3 G2572A 99.92% KR534206.1 99.92% KR534206.1 99.8% MV974705.1
7 74 A2645G 99.53% KR534200.1 99.53% KR534200.1 99.34% MY904329.1
6 53 G715A 99.73% KP745722.1 99.73% MT044480.1 99.73% PL313345.1
UL56 8 68 T1118A 99.87% KP745648.1 99.87% MT044480.1 99.87% PL313345.1
4and 5 28 GI1270A 99.86% KP745719.1 99.86% MT044480.1 99.86% PL313345.1
Core_nt, Core Nucleotide Database; nr/nt, Nucleotide Collection; pat, Patent Sequences.
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FIGURE 2

Multiple sequence alignment of UL54 nucleotide and amino acid sequences, highlighting detected mutations. The black boxes labeled (A) to (K) depict
the alignment of UL54 sequences. Mutations shown in red represent amino acid changes, while those in blue indicate nucleotide-level mutations.
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FIGURE 3

whereas those in blue correspond to nucleotide mutations.

UL97, and UL56 nucleotide and amino acid aligned sequences, showing detected mutations. The blue box shows the aligned UL97 sequence, whereas
the green boxes labeled (A-C) represent the aligned UL56 sequences. Within all groups, mutations written in red indicate amino acid alterations,

Outcome: Death due to severe pneumonitis with ARDS and
pulmonary hemorrhage (HCMYV disease could not be confirmed).

Case 4: A 16-month-old boy with SCID underwent
haploidentical stem cell transplantation on 18 January 2024 using
Treosulfan, Fludarabine, Anti-thymocyte globulin (ATG), and
Thiotepa conditioning. GVHD prophylaxis included post-transplant
cyclophosphamide (PTCY), mycophenolate mofetil (MMF), and
cyclosporine A. He was readmitted on 25 February 2024 with an
Extended-Spectrum Beta-Lactamase (ESBL) Klebsiella pneumoniae
central line-associated bloodstream infection and concurrent
parainfluenza pneumonia. During this episode, HCMV DNAemia
was first detected at 187 IU/mL, and ganciclovir was initiated. By 3
March, DNAemia was 981 IU/mL, and by 10 March, it had risen
more than 1 log to 21,611 IU/mL. At that time, foscarnet was
initiated. Under this regimen, DNAemia trended down, reaching
low levels by 28 April. Therapy was transitioned to oral
valganciclovir after consecutive results of 34 IU/mL and <30 IU/mL
over 2 weeks (3 June). DNAemia became undetectable on 16 June
and remained negative during subsequent monitoring. His last

Frontiers in Microbiology

available result on 5 January 2025 confirmed no detectable
HCMV DNAemia.

Qutcome: Survived, with clearance of HCMV DNAemia, last
follow-up July 2025 with no CMV DNAemia.

Case 5. A 42-year-old man with common variable
immunodeficiency (CVID) and T-cell dysfunction had multiple
comorbidities, including bronchiectasis, Mycobacterium abscessus
lung colonization, chronic sinusitis, bilateral hearing loss, and
recurrent gastrointestinal infections (Campylobacter, E. coli). He had
recurrent HCMV DNAemia since 2017, managed with valganciclovir
900 mg twice daily, with intermittent low-level rises but no
documented end-organ disease. In March 2024, DNAemia was
2,439 TU/mL (prior level 523 TU/mL 4 months earlier). Resistance
testing was requested at that time. In April 2024, he was diagnosed
with hepatic angiosarcoma and opted for palliative care with a Do
Not Attempt Resuscitation (DNAR) code status. He was admitted on
3 May 2024 with pneumonia; DNAemia at admission was
196,278 IU/mL. His clinical condition deteriorated, and he died on
8 May 2024.
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E424K

Gene organization and mutation mapping of UL97, UL54, and UL56 illustrating positions of amino acid variants detected in this study. We identified
one UL97, 11 UL54, and three UL56 novel mutations for the first time in our population. Mutations located within conserved regions are written in red.
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Outcome: Death due to progressive pneumonia in the setting of
underlying immunodeficiency and high-level HCMV DNAemia.

Case 10: A 47-year-old man with non-ischemic cardiomyopathy
underwent orthotopic cardiac transplantation on 14 July 2023. His
immunosuppression included steroids, MME, and sirolimus. His post-
transplant course was complicated by pneumonia and bacteremia with
Serratia marcescens, for which he completed 2 weeks of meropenem with
repeated negative blood cultures. On 10 September 2023, while on
valganciclovir prophylaxis, HCMV DNAemia was detected at 6,621 IU/
mL. He was admitted and started on ganciclovir induction therapy.
Despite treatment, DNAemia rose. He developed worsening cardiac
function (reduced left and right ventricular function), prompting an
endomyocardial biopsy, which demonstrated acute cellular rejection but
no HCMYV cytopathic changes. He was provided steroids, ATG, and
plasmapheresis. Therapy was switched to foscarnet, and he received three
doses of HCMV immunoglobulin. After 2 weeks of foscarnet, and with no
resistance mutations identified, ganciclovir was reintroduced. DNAemia
gradually decreased and became undetectable on 20 November 2023.

Qutcome: Survived, with resolution of HCMV DNAemia, last
follow-up July 2025 with no CMV DNAemia.

4 Discussion

HCMYV genotypic resistance is evolving rapidly as more data
emerge, particularly those from immunocompromised and transplant
patient populations. This analysis of 13 cases provides further insight
into the clinical implications of novel and previously uncharacterized
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mutations in the HCMV DNA polymerase (UL54), kinase (UL97),
and terminase (UL56) genes.

Consistent with previous studies, most patients were solid organ
or hematopoietic stem cell transplant recipients or were otherwise
immunocompromised. This population has a well-established
increased risk of HCMV reactivation and antiviral resistance
development (Gilbert and Boivin, 2005; Lurain and Chou, 2010).
Although genotypic analysis provides rapid and sensitive detection by
enabling direct testing on clinical specimens and circumventing the
need for viral culture, it is fundamentally unable to distinguish true
resistance mutations from natural sequence polymorphisms without
phenotypic confirmation (Gilbert and Boivin, 2005; Komatsu
etal., 2014).

Many identified mutations did not correspond to clinical antiviral
resistance or refractory DNAemia. Furthermore, most patients
responded well to first-line antivirals, such as ganciclovir (GCV) or
valganciclovir (VALG), achieving HCMV DNAemia clearance
without therapy modification. Thus, many of these mutations may
be benign natural polymorphisms rather than true resistance-
associated variants.

This observation aligns with prior findings. Lurain and Chou
(2010) noted that polymorphic variations in UL54 are relatively
common and do not always correlate with clinical resistance,
mainly when mutations occur outside of established functional
domains critical for antiviral binding or enzymatic activity.
Similarly, naturally occurring polymorphisms must be differentiated
from clinically significant resistance mutations to avoid unnecessary
therapy changes, as (Sahoo et al., 2013) emphasized.
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TABLE 3 Cases with novel HCMV mutations.

10.3389/fmicb.2025.1677054

Patient ID Case Mutation(s) Host factor HCMV Refractory Treatment Outcome

detected serostatus HCMV response
DNAemia

1 1 UL56: V425A Liver Transplant R+ D+ No Responded to IV DNAemia
UL54: S655L, N685S, GCV then VALG resolved
E858K, L8978,
N898D, and G1031C

2 2 UL54: N618D, Bone Marrow R+ D+ No Responded to GCV, | DNAemia
S655L, L897S, and Transplantation then FOS resolved
N898D (Matched Related

Donor)

3 3 UL97: A427T Bone Marrow R+ D+ Yes Partial response to The patient died
UL56: V425A Transplant combined GCV,
UL54: D346N, (Haploidentical) FOS, and HCMV-
§675G, L8978, and IgG
N898D

4 4 UL97: A427T Bone Marrow R+ D+ Yes Responded to FOS | DNAemia
UL56: E424K, Transplant resolved
V425A, and M442T (Haploidentical)
UL54: G874R, L897S,
and N898D

5 5 UL56: E424K, Immunodeficiency - Yes VALG treatment, The patient died
V425A, and M442T (CVID) sudden
UL54: G267, uncontrolled
P5228A, S655L, DNAemia
N685S, L897S, and
N898D

6 6 UL56: D239N, Renal Transplant R-D+ No Responded to GCV | DNAemia
V425A and then VALG resolved

7 7 UL56: V425A Liver Transplant R-D+ No Adjusted GCV DNAemia
UL54: T252M, dosing and VALG resolved
E882G, N898D, and
A1108T

8 8 UL56: L373H, Liver Transplantation R+ D+ No Responded to GCV | DNAemia
V425A (Deceased Donor) and then VALG resolved

9 9 UL56: V425A Liver Transplantation R-D+ No Responded to the DNAemia
UL54: P656L, (Living Donor) GCV resolved
G672D, L897S, and
N898D

10 10 UL56: V355A and Heart Transplant R-D+ Yes Initially refractory | DNAemia
V425A to GCV responded | resolved
UL54: S655L, to FOS and
G680D, N685S, HCMV-IG, then to
L8978, and N898D GCV and

maintained.

11 11 UL97: G579C Bilateral Lung R+ D+ No Responded to the DNAemia
UL56: V425A Transplantation VALG resolved
UL54: N898D

12 12 UL97: A427T Bone Marrow R+ D+ No Responded to the DNAemia
UL56: missed region Transplantation VALG resolved
UL54: S655L, N685S, | (Matched Related
E793G, A835T, Donor)
L8978, and N898D

(Continued)
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TABLE 3 (Continued)

10.3389/fmicb.2025.1677054

HCMV

Treatment Outcome

response

Refractory

serostatus HCMV

Patient ID Case  Mutation(s) Host factor
detected

13 13 UL56: V425A Renal Transplant
UL54: S655L, (Living related)
M637V, and N685S

DNAemia

R+ D+ No Responded to GCV | DNAemia

and then VALG resolved

#Refractory HCMV infection: Increase by > 11og10 HCMV DNA levels in blood or plasma after at least 2 weeks of appropriate anti-HCMV medication. HCMV: human cytomegalovirus;
GCV: ganciclovir; VALG: valganciclovir; FOS: foscarnet; R: recipient of transplanted organ/bone marrow, D: donor, (CVID) common variable immunodeficiency. Reported mutations are
natural polymorphisms except marked mutations; bold indicates a known drug resistance mutation; red indicates a novel mutation. AIC, for GCV was reported as 3.1 (intermediate level)

(Cihlar, T et al. Ref. 5).

TABLE 4 Patient characteristics, viral load, antiviral therapy, and immunosuppression.

ID Sample Age/ Co- Sample Anti-viral Therapy Immuno-
number Gender @ infections collection suppressants
date | GCV/ FOS CDV MAR LET Hcmv “'PP
VALG [€]

1 3 19y/F N/A 11,532 03/11/2022 Yes No No No No No Steroids, FK, MMF

Bacterial
2 7 14 m/M 4,119 02/02/2023 Yes Yes No No No No CSA

Sepsis

Bacteremia/
3 27 5w/M 127,478 07/01/2024 Yes Yes No No No Yes N/A

Pneumonia
4 28 16 m/M Bacterial sepsis |~ 21,611 10/03/2024 Yes Yes No No No No PTCY, MME, CSA
5 29 42y/M Pneumonia 2,439 24/03/2024 Yes No No No No No N/A

Bacterial
6 53 14y/F Sepsi 2,566 28/07/2024 Yes No No No No No Steroids, AZA, FK

epsis

C diff colitis,
7 74 2y/M SSTI 11,955 06/01/2025 Yes No No No No No Steroids, FK
8 68 28y/M N/A 19,461 25/11/2024 Yes No No No No No Steroids, FK, MMF
9 76 14 m/F N/A 5,069 26/01/2025 Yes No No No No No Steroids, FK, MMF
10 24 47y/M N/A 36,867 28/09/2023 Yes Yes No No No Yes Steroids, MME, SIR
11 197 17y/M N/A 48,427 26/09/2023 Yes No No No No No Steroids, FK, MMF
12 206 18y/M N/A 6,931 21/04/2024 Yes No No No No No FK
13 56 21y/F N/A 7,425 05/08/2024 Yes No No No No No Steroids, FK, MMF

FK: Tacrolimus (FK506); MMF: Mycophenolate Mofetil; CSA: Cyclosporine A; PTCY: Post-Transplant Cyclophosphamide; AZA: Azathioprine; SIR: Sirolimus (Rapamycin); GCV: Ganciclovir;
FOS: Foscarnet; VALG: Valganciclovir; CDV: Cidofovir; HCMV IG: Human Cytomegalovirus Immunoglobulin; MAR: Maribavir; LET: Letermovir; C. difficile: Clostridioides difficile; SSTI:

Skin and Soft Tissue Infection; N/A: Not Applicable.

those with
immunosuppression, experienced more complicated disease courses,

However, few patients, particularly severe
demonstrating that host immune status remains a dominant determinant
of HCMYV clinical outcomes, often even more so than viral genotype
alone. This supports the findings from many cohorts, especially in stem
cell transplant settings, which demonstrated that immune reconstitution
is critical for controlling HCMV infection, independent of antiviral
therapy (Gallez-Hawkins et al., 2005; Gratama et al., 2008).

One patient (Case 5) had the UL54 P522S mutation in our series, a
variant previously described as conferring intermediate resistance to
GCV (Chou, 2020). This confirms that while novel mutations are
prominent, previously recognized resistance mutations are still clinically
significant when they occur. The concurrence of the known UL54 P522S
mutation with novel mutations complicates the study of resistance, as the
effects of the novel mutations may be masked or altered by the established
resistance mechanism, causing difficulty in isolating their individual
impacts on antiviral treatment. Recombinant phenotyping of this novel

mutation (G267S) may help distinguish its antiviral resistance effect.

Frontiers in Microbiology

Our study faces some challenges. The number of samples analyzed
is limited because there are few cases with suspected drug resistance.
Additionally, we could not perform the phenotyping test due to technical
complexity. Therefore, we emphasize the importance of conducting
phenotypic assays, which directly measure antiviral susceptibility
in vitro, to properly assess the functional impact of these new mutations.
Phenotyping is particularly essential when addressing mutations located
within conserved regions of the UL54 DNA polymerase, UL97 kinase,
or UL56 terminase complex, as they could affect drug binding or
enzyme activity, even if not previously documented.

5 Conclusion

HCMYV drug resistance mutations must be analyzed cautiously
because the host response can be the main determining factor for
DNAemia clearance. Early and specific DRM reporting is crucial,
especially in immunocompromised hosts, for which genotyping is the
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best modality. However, we recommend interpreting these findings
according to the clinical response and known recombinant phenotypic
testing methods (EC50/IC50). The additional benefit of classifying
DRM:s as low, intermediate, or high can facilitate clinical decisions on
class switching and dose adjustments of ongoing antiviral therapy,
particularly in the initial treatment response. Interestingly, the
persistence of DNAemia may indicate antiviral resistance, even in the
absence of detectable resistance mutations, as observed in case 10. While
our study provides important insights into HCMV novel mutations and
their potential clinical significance, a larger cohort with more clinical
samples is necessary to confirm these findings. Additionally, phenotypic
resistance testing is crucial for validating the functional impact of these
mutations and for further understanding their role in antiviral resistance.
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