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Isolation of acephate-degrading
bacteria and phytoremediation—
microbial remediation from soil for
the project of water diversion from
the Yangtze River to Chaohu Lake

Huili Wang, Jielun Chang, Chang Pan*, Dongsheng Jiang,
Yemei Wang, Qin Yin, Xi Chen, Xi Liao, Manman Li and
Xiaoke Zhang*

Engineering Technology Research Center for Aquatic Organism Conservation and Water Ecosystem
Restoration in University of Anhui Province, College of Life Science, Anging Normal University,
Anging, China

Introduction: Efficient and safe governance of soil contaminated with
organophosphate pesticides is of crucial significance for the protection of the
ecosystem. This study focuses on soils from typical riparian zones along the
project of water diversion from the Yangtze River to Chaohu Lake, aiming to
screen acephate-degrading microorganisms and to systematically evaluate their
degradation efficiency.

Methods: Acephate-degrading bacteria were isolated from soil via enrichment
culture with acephate as the sole carbon source, and their degradation efficiency
was subsequently evaluated. Subsequently, a pot experiment was designed to
investigate the efficiency of the combined remediation of soil acephate through
the synergistic action of the isolated bacteria and plants.

Results: Five acephate-degrading strains were isolated and identified via 16S
rDNA sequencing as Enterobacter cloacae, Enterobacter hormaechei, Bacillus
badius, Sphingobacterium spiritivorum, and Serratia nematodiphila. Although all
strains degraded acephate, their efficiencies differed significantly. Except for the
50 mg L™ acephate condition with added glucose, B. badius consistently exhibited
higher degradation efficiency across all tested conditions. Furthermore, increasing
acephate concentration in the culture medium from 10 to 50 mg L™ reduced
degradation efficiency across strains. However, adding 0.1 g L™ glucose enhanced
degradation rates for all strains, with B. badius achieving the highest degradation
efficiency (76.17% at 10 mg L™ acephate). For combined experiments, we paired B.
badius (with superior in vitro degradation performance) with Persicaria hydropiper,
and S. spiritivorum with Carex dimorpholepis. At both 200 pg kgt and 1,000 pg kg™
soil acephate concentrations, combined remediation efficiencies exceeded those of
microbes or plants alone. The combination of B. badius and P. hydropiper achieved
the highest removal rate of 91.27% at the 1,000 pg kg™ acephate concentration.
Conclusion: These findings significantly enrich the repository of acephate-
degrading bacteria and demonstrate that combined remediation with B. badius
and P. hydropiper is an effective strategy for the bioremediation of acephate-
contaminated soils within the project of water diversion from the Yangtze River
to Chaohu Lake.
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1 Introduction

Acephate has been widely applied in the management of pests across
vegetable, fruit, and other crop species, attributable to its high insecticidal
efficacy and relatively low toxicity (Hou, 2018). Following the
comprehensive prohibition of the highly toxic pesticide methamidophos
in China, acephate became the predominant alternative, exhibiting
consistently increasing annual usage (Hua, 2014). However, the
utilization efficiency of acephate remains low, with only approximately
0.1% of the active ingredient reaching the target organisms, whereas up
t0 99.9% disperses into ecological ecosystems. For instance, Raj and
Krishnan (2023) identified acephate in wastewater, and Omwenga et al.
(2021) documented concerning residue levels in common vegetable
cultivars. Yan et al. (2024) evaluated the potential risks of acephate to
bees and earthworms and found that acephate products had a significant
impact on the body weight of earthworms. Dhanushka and Peiris (2017)
found that long-term exposure to acephate can lead to alterations in
human sperm structure and function, and reduce semen quality, posing
potential risks to both the ecological environment and human health
(Xie etal.,, 2008; Tao, 2022). Therefore, effective remediation of acephate-
contaminated environments is critical for protecting ecological security
and public health.

Currently, remediation strategies for organophosphorus pesticides
primarily involve physical, chemical, and biological degradation
approaches. Conventional physicochemical methods, though widely
employed, frequently result in incomplete degradation, leading to the
transformation of soil pesticide residues into secondary pollutants that
threaten ecological safety (Mohamed et al., 1998; Tu, 1993). In contrast,
biodegradation—particularly microbial degradation—demonstrates
greater potential in efficiency and environmental compatibility. Studies
indicate microbial degradation achieves removal rates exceeding 90%,
with efficiencies over tenfold higher than those of physical or chemical
treatments (Giri et al.,, 2021; Kumar et al., 2018). In natural environments,
microbial metabolic activity predominantly mediates the degradation of
most organophosphorus pesticides (Sun, 2007). Consequently, applying
microorganisms with high degradation capacities has become a focal
strategy for remediating soils contaminated with organophosphorus
pesticides, especially acephate. For example, Ren et al. (2020) reported
that Bacillus paramycoides degraded 500 mg L™" acephate at a rate of 76%
within 48 h. Wang et al. (2013) demonstrated that the bacterial strain
Hyphomicrobium sp. achieved complete degradation of 100 mg kg™
acephate within 9 days at 30 °C and pH 6.8. Similarly, Yu et al. (2010)
isolated Stenotrophomonas sp. and Pseudomonas sp. from pesticide-
contaminated soils; under conditions of 500-1,000 mg L' acephate,
30 °C, pH 8, and 2.5% inoculum, these strains mineralized acephate into
phosphate within 1 week, achieving degradation rates approaching 80%.

The principal mechanism for microbial degradation of
organophosphorus pesticides entails enzymatic reactions, wherein
cleavage of P-O, P-S, and P-N bonds mediates breakdown (Wei et al.,
2022). For instance, Lourthuraj et al. (2022) confirmed that E. aerogenes
and S. pyogenes secrete organophosphorus hydrolase extracellularly,
enhancing chlorpyrifos degradation. However, microbial degradation
exhibits high sensitivity to environmental conditions and is influenced
by factors including indigenous microorganism abundance and
functionality, alongside soil plant community composition (Bu et al.,
2023). Previous studies indicate that laboratory-screened strains
frequently underperform in field applications, attributable to divergent
soil physicochemical properties, competition with native microbes for
ecological niches, and insufficient environmental adaptability (Sun et al.,
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2019). Plant-microbe combined remediation represents a promising
strategy, as plant root exudates provide energy and nutrients that
enhance microbial activity and degradation efficiency (Oram et al.,
2025). For instance, Ma isolated two bacterial strains (Enterobacter sp.
and Achromobacter sp.) and a fungal strain (Scedosporium sp.), applying
them with Lolium multiflorum to remediate carbendazim-contaminated
soil. After 21 days, carbendazim removal efficiencies reached 57.66-
78.90%, significantly exceeding microbial-only remediation (41.77-
62.9%) (Ma, 2022). Similarly, Chang et al. (2025) confirmed that the
combination of Acinetobacter seifertii and Carex dimorpholepis achieved
a 93.27% degradation rate for Ethoprophos within 30 days, and this
degradation efficiency significantly outperformed that of individual
microbial or plant treatments. Lin and You (2009) demonstrated that the
combination of Arthrobacter sp. and the plants Sorghum drummondii,
Medicago sativa, and Lolium perenne significantly enhanced chlorpyrifos
degradation in contaminated soil, surpassing those of individual plants.
Consequently, plant-microbe combined remediation demonstrates
substantial potential for acephate-contaminated soil remediation,
although relevant studies remain limited.

As a strategic water resource allocation project in Anhui Province,
the project of water diversion from the Yangtze River to Chaohu Lake
(YC-project) conveys water through Caizi Lake, Kongcheng River,
Luobu River, and Baishi River before discharging into Chaohu Lake.
Recent studies report acephate accumulation in both water bodies and
sediments along the YC-project route, exhibiting variable enrichment
levels with moderate environmental risk (Song et al., 2022). Literature
documents  numerous  high-efficiency  acephate-degrading
microorganisms, including Acinetobacter sp., Pseudomonas sp.,
Exiguobacterium sp., and Rhodococcus sp. (Phugare et al., 2012; Pinjari
etal., 2012), predominantly isolated from pesticide manufacturing sites
or pesticide-contaminated soils. Nevertheless, riparian zones constitute
ecotones between terrestrial and aquatic systems that differ
fundamentally from agroecosystems, raising unresolved questions
regarding the presence of efficient acephate-degrading strains in these
transitional environments.

To address tacephate contamination in soils along the YC-project,
this study sampled rhizosphere soils from riparian zones, isolated
acephate-degrading strains, and conducted pot experiments to evaluate
the efficacy of combined plant-microbe remediation. We hypothesize
that combining acephate-degrading bacteria with plant-assisted
remediation can enhance pesticide removal from soil. Our findings will
enrich the repository of acephate-degrading microbial resources and
establish a scientific foundation for the remediation of contaminated
soils along the project’s route.

2 Materials and methods
2.1 Soil sample collection

In October 2022, 15 sampling sites were systematically established
along the riparian zones of the YC-project (Figure 1). These sites were
selected to represent regional typical vegetation types and were evenly
distributed along the YC-project route. At each location, 3-6 quadrats
(1 m x 1 m) were positioned perpendicular to the riverbank or lakeshore.
Rhizosphere soil samples were collected from densely vegetation areas
using a soil auger (1.0 m x50 mm) at 20 cm depth. Samples were
immediately sealed in polyethylene bags, stored in dry ice containers, and
transported to the laboratory for preservation at —4 °C.
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FIGURE 1
Distribution of sampling sites.

2.2 Isolation of acephate-degrading Bacteria

Acephate-degrading bacteria were isolated from soil using
acephate (99.6% purity) as the sole carbon source following the
method described by Zhao et al. (2014), involving enrichment,
acclimatization, and purification:

(1) Ten grams of soil were vortexed with 50 mL of sterile water in
a centrifuge tube. The supernatant was transferred to 100 mL
nutrient medium (beef extract 3 g, NaCl 5 g, peptone 10 g,
deionized water 1,000 mL; pH 6.8) and incubated at 30 °C
with shaking at 150 rpm for 24 h;

(2) An inoculum was streaked onto nutrient agar plates

supplemented with 30 mg L' acephate and incubated at 30 °C

for 48 h. Colonies were subsequently transferred to plates
containing 60 mg L' and 120 mg L™ acephate;

Acclimated colonies were streaked onto inorganic salt agar plates

containing 240 mg L' and 500 mg L' acephate as the sole carbon

source (Na,HPO, 6.34g, KH,PO, 133g, (NH,),SO, 1g,

MgSO,7H,0 0.2g, FeSO, 0.001g, CaCl, 0.04g, agar 15g,

deionized water 1,000 mL; pH 6.8) for 10 days incubated at 30 °C;

(4) Colonies were subcultured, and bacterial suspensions were

serially diluted (107° to 10~°) with sterile water for single-

colony isolation. Purified strains were cryopreserved in 20%

glycerol at —60 °C (Koch, 2001).
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2.3 Physiological characterization and 16S
rDNA sequencing of bacterial strains

Following isolation, the bacterial strains were streaked onto solid
media and incubated at 30 °C for 24 h. Colony morphology, including
shape, edge, and pigmentation, was recorded. Gram staining was
performed to determine cell wall type. Physiological tests included the
methyl red test (MR), Voges—Proskauer test (VP), gelatin hydrolysis,
starch hydrolysis, nitrate reduction, and catalase assays (McDevitt,
2009). For temperature tolerance, overnight cultures were inoculated
into nutrient medium (pH 6.8) and incubated at 20 °C, 25 °C, 30 °C,
35 °C, and 40 °C with shaking at 150 rpm. Optical density at 600 nm
(ODgyy) was measured after 12 h. For pH response, the pH of the
nutrient medium was adjusted to 5.0, 6.0, 7.0, 8.0, and 9.0. Inoculated
cultures were incubated at 30 °C and 150 rpm, and ODy, values were
recorded every 4 h intervals.

Genomic DNA was extracted for 16S rDNA sequencing. PCR
amplification was performed using primers B341F (5-CCTA
CGGGNGGCWGCAG-3’) and B785R (5-GACTACHVGGG
TATCTAAT-3’). The thermal cycling protocol comprised: initial
denaturation at 95 °C for 3 min; 25 cycles of denaturation (95 °C,
30 s), annealing (54 °C, 30 s), and extension (72 °C, 30 s); followed
by final extension at 72 °C for 5 min. PCR products were verified
through 2% agarose gel electrophoresis and submitted to Sangon
Biotech Co., Ltd. (Jiangsu, China) for bidirectional sequencing.
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Sequences were analyzed via the BLAST algorithm against the
NCBI database for homology analysis, and phylogenetic trees were
reconstructed using MEGA11 software.

2.4 Measurement of acephate degradation
efficiency

Inorganic salt media containing acephate concentrations of 10, 20,
and 50 mg L™ were prepared in 150 mL Erlenmeyer flasks. Each flask
was inoculated with bacterial suspension at a 4% inoculum. A sterile
filter membrane was secured on flask necks to enable aeration and
prevent contamination. Sterile water served as blank controls. Each
treatment included three replicates. Flasks were incubated at 30 °C and
150 rpm for 7 days. After incubation, 5 mL aliquots were centrifuged at
4,000 rpm for 3 min. One milliliter of supernatant was filtered through
a 0.22 pm membrane, extracted with 10 mL acetonitrile, shaken for
2 min, and sonicated for 20 min. After adding 1 g anhydrous NaCl, the
mixture stood for 30 min for phase separation (St-Amand and Girard,
2004). The organic phase was collected for acephate quantification. An
additional experiment supplemented with 0.1 g L' glucose evaluated
external carbon source effects on degradation efficiency.

2.5 Determination of acephate
concentration

Acephate  concentration was quantified using gas
chromatography-mass spectrometry (GC-MS, GCMS-TQ8040,
Shimadzu) equipped with a polar SH-Rxi-17Sil MS column
(30 m x 0.25 mm x 0.25 pm). Analytical parameters were as follows:
injector temperature 250 °C, interface temperature 280 °C, ion
source temperature 240 °C, carrier gas helium (99.999%) at
1.97 mL min~" flow rate, injection volume 1 pL, and selective ion
monitoring (SIM) mode. The temperature program was: 65 °C
(1 min hold), ramp to 130 °C at 20 °C min~’, then to 280 °C at
10 °C min™" (10 min hold), and finally to 300 °C at 10 °C min™’
(10 min hold) (Alder et al., 2006).

The standard curve was established by plotting acephate
concentration (x-axis) against corresponding peak area (y-axis),
yielding a linear regression equation of y = 670,146x — 11,6701. The
curve exhibited excellent linearity across the concentration range of 0.1,
0.5,2,5,and 10 mg L™, as confirmed by a correlation coeflicient (R*) of
0.9995. Method sensitivity was characterized by detection of 0.01 mg L™
(liquid matrices) and 0.6 pgkg™ (soil samples). Validation in an
inorganic salt medium spiked with acephate demonstrated acceptable
recoveries (93.49-98.73%) and relative standard deviations of 2.47-
5.18%, meeting established criteria for pesticide residue analysis.

2.6 Combined plant—microbe degradation
of acephate

The experimental soil was prepared by blending peat and riparian
zone soil (1:1 v/v ratio). The mixture was sterilized by autoclaving
and filled into plastic pots (9.8 cm height x 9.8 cm diameter; 300 g/
pot), with soil moisture adjusted to 35% water-holding capacity. Two
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microbial-plant combinations were tested: Bacillus badius (DA-3)
was paired with its host Persicaria hydropiper (30-40 cm height), and
S. spiritivorum (DA-4) with its host C. dimorpholepis (10-15 cm
height). Bacterial strains were activated and propagated in nutrient
broth. Acephate concentrations in soil were set at 200 pg kg™' and
1,000 pg kg™'. Four treatment groups were established: microbial
mono-treatment, plant mono-treatment, plant-microbe
combination, and blank control (CK) - all with quintuplicate
replicates. Incubation proceeded for 30 d in a climate-controlled
growth chamber (30°C). Bacterial inoculum (10 mL) was
supplemented weekly, and deionized water was added triweekly to
maintain soil moisture.

After 30 days, soil samples were collected, freeze-dried, and sieved
through a 0.25 mm mesh. Five grams of soil were extracted with
40 mL acetonitrile in 100 mL centrifuge tubes, shaken vigorously, and
mixed with 5 g anhydrous NaCl. After centrifugation at 8,000 rpm for
5 min, 10 mL supernatant was transferred to a 100 mL pear-shaped
flask and concentrated to ~1 mL a 40 °C. The residue was reconstituted
in 3mL acetonitrile-toluene (1:1), loaded onto a solid-phase
extraction (SPE) cartridge, and rinsed twice with 2 mL acetonitrile-
toluene. The cartridge was eluted with 25 mL acetonitrile-toluene, and
eluents were combined, concentrated to dryness at 40 °C, redissolved
in 1 mL ethyl acetate, filtered through an organic microporous
membrane, and analyzed via GC-MS. The experimental workflow is
depicted in Figure 2.

2.7 Data analysis

All data were compiled and preprocessed in Microsoft Excel 2016.
Two-way analysis of variance (ANOVA) was performed using SPSS
24.0. When significant differences were identified (p < 0.05), Tukey’s
HSD test was employed for post hoc comparisons. Figures were
generated using Python 3.8.

3 Results

3.1 Morphology and physiological
characteristics of acephate-degrading
strains

Through enrichment, acclimatization, and purification, five
target strains were isolated from soil (Figure 3) and designated
DA-1, DA-2, DA-3, DA-4, and DA-5, respectively. Gram staining
confirmed that DA-3 was Gram-positive, whereas the other four
strains were Gram-negative, with all five strains exhibiting entire
colony margins (Table 1).
characterization are presented in Table 1. MR tests showed DA-4 and
DA-5 negative, and the other three positive; VP tests showed DA-4
and DA-5 positive and the other three negative; all strains were

Physiological and biochemical

gelatin hydrolysis-positive; starch hydrolysis was positive for DA-3
and negative for others; all were nitrate reduction-positive; and all
were oxidase-positive.

Temperature significantly influenced the growth of all five strains.
Within 20-40 °C, growth initially increased before stabilizing or
declining; optimum temperatures for DA-1 through DA-5 were 30, 35,
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Degradation of acephate by plants

Physiological and biochemical and degrading bacteria

experiments and gene sequencing

Determination of degradation rate Determination of acephate concentration in soil

FIGURE 2
Schematic diagram of the experimental design.

FIGURE 3
Morphology of the strains on agar medium (DA-1 to DA-5).

TABLE 1 Physiological and biochemical identification and morphological description.

Strain Physiological and biochemical tests
Gelatin Starch Nitrate Catalase Gram Morphology

hydrolysis hydrolysis reduction stain
DA-1 + - + - + + - Pale gray, smooth edge
DA-2 + - + - + + - Creamy white, smooth edge
DA-3 + - + + + + + White, smooth edge
DA-4 - + + - + + - Yellow, smooth edge
DA-5 - + + - + + - Creamy yellow, smooth edge

35,30, and 35 °C, respectively (Figure 4). pH variations substantially 3.2 Molecular identification of the

affected DA-4 and DA-5 growth, with significantly higher OD,, ~degrading strains

values at pH 7 versus other pH levels. All strains entered the stationary

phase after 16-20 h, with optimal pH values for DA-1 to DA-5 being The 16S rDNA sequences of the five strains were analyzed via the
7,7, 6,7,and 7, respectively (Figure 5). BLAST algorithm against the NCBI GenBank database. Combined
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with their physiological and biochemical characteristics, strains DA-1
and DA-2 were identified as Enterobacter cloacae and E. hormaechei,
respectively. While DA-2 showed the closest phylogenetic proximity
to Pseudotuberculosis, it was not classified as such. Strain DA-3 was
identified as B. badius and strain DA-4 as S. spiritivorum (with DA-3
and DA-4 being phylogenetically affiliated). Strain DA-5 was identified
as Serratia nematodiphila (Figure 6). DA-3 belongs to the phylum
Firmicutes, DA-4 to Bacteroidota, and the other three strains to
Proteobacteria (class y-Proteobacteria, order Enterobacterales, family
Enterobacteriaceae). All five strains share close phylogenetic
relatedness, with the highest 16S rDNA sequence similarity to
Klebsiella quasipneumoniae.

3.3 Degradation efficiency of
acephate-degrading strains

The acephate degradation capabilities of the five strains are shown
in Figure 7. All strains exhibited measurable acephate degradation
ability, though efficiencies varied significantly. The degradation rates
decreased with increasing acephate concentration. At 10 mg L™,
DA-2, DA-3, and DA-4 exceeded 50% degradation, with DA-3
achieving the highest rate at 73.69%, which was significantly higher
than the other four strains. At 20 mg L™', DA-3 again exhibited the
highest degradation rate (64.36%), significantly higher than the other
strains. At 50 mg L™', DA-3 maintained the highest degradation rate
(33.24%), being significantly greater than DA-1 and DA-5 (p < 0.05)
but not significantly different from DA-2 and DA-4.

Following supplementation of the inorganic salt medium with
0.1 gL' glucose, strain degradation efficiencies improved overall
(Figure 8), particularly at high acephate concentrations—except for
DA-3 at 50 mgL™', which showed no enhancement. The most
significant improvement occurred in DA-2 at 10 mg L™', with the
degradation rate increasing to 69.47% (a 17.13% increase). At
10 mg L acephate, DA-3 maintained the highest degradation rate at
76.17%, significantly higher than DA-1, DA-4, and DA-5, but not
significantly different from DA-2 (69.47%). At 20 mg L', DA-3
achieved the highest degradation rate of 67.22%, significantly
surpassing the other strains. At 50 mgL™", DA-4 showed peak
degradation (34.97%), significantly higher than DA-3 and DA-5
(p < 0.05), but not significantly different from DA-1 and DA-2.

Frontiers in Microbiology

10.3389/fmicb.2025.1675842

3.4 Combined degradation of acephate by
plants and degrading strains

Plant-microbe combined treatments demonstrated significantly
higher acephate degradation efficiency than mono-treatments across
concentrations after 30 days (Figure 8). At 200 pg kg™ acephate, the
P, hydropiper-DA-3 combination achieved a degradation efficiency of
89.15%, which was significantly higher than that of DA-3 alone
(44.20%) but not significantly different from that of P hydropiper alone
(84.45%, Figure 9a). At 1000 pg kg™', the combination showed peak
degradation efficiency (91.27%), significantly higher than both DA-3
(61.11%) and P. hydropiper (69.85%).

For the C. dimorpholepis-DA-4 combination, the degradation
efficiency at 200 pg kg™ reached 87.97%, significantly higher than that
of C. dimorpholepis alone (36.10%) but not significantly different from
that of DA-4 alone (86.40%) (Figure 9b). At 1,000 pg kg™, the
combined degradation efficiency was 68.74%, significantly higher than
that of both C. dimorpholepis alone (20.78%) and DA-4 alone
(59.38%). The P. hydropiper-DA-3 combination showed no significant
difference in degradation between 200 pgkg™ (89.15%) and
1,000 pgkg™  (91.27%)  (Figure  9a).  Conversely, the
C. dimorpholepis-DA-4 combination exhibited significantly higher
degradation at 200 pg kg™' (87.97%) than at 1,000 pg kg™" (68.74%)
(p < 0.05; Figure 9B).

4 Discussion

4.1 Acephate-degrading microorganisms in
riparian zones and their degradation
capacity

In this study, five acephate-degrading strains were isolated from
riparian zone soils along the YC-project. Among them, DA-4
(S. spiritivorum) is an oligotrophic bacterium, while the other four
strains are eutrophic microorganisms (Koch, 2001). Previous studies
have suggested that the nutritional type of microorganisms may
influence their biodegradation capacity (Sun et al., 2015). Reported
high-efficiency acephate-degrading bacteria are mostly isolated from
contaminated sites or industrial effluents. For instance, Ramya et al.
(2016) found that Enterobacter aerogenes could degrade acephate,
which belongs to the same genus as E. cloacae and E. hormaechei
identified in our study. Mohan and Naveena (2015) discovered that
Lysinibacillus could degrade acephate concentrations up to 500 mg L.
Lin et al. (2016) reported enhanced acephate degradation by Bacillus
subtilis under Pb** stress, which is consistent with the genus of
B. badius (DA-3) in our study. Dong et al. (2024) found that Serratia
marcescens could degrade acetochlor, which belongs to the same genus
as S. nematodiphila (DA-5) isolated in our study. Other studies also
reported acephate degradation by Pseudomonas aeruginosa (Ramu
and Seetharaman, 2014) and Burkholderia sp. (Wu et al., 2023), which
were not observed in this study. This indicates that diverse microbial
species can degrade acephate, and the types of microorganisms
capable of its degradation vary across ecosystems.

We further assessed the degradation performance of the five
isolated strains and found that DA-3 exhibited significantly higher
degradation efficiency than the other four strains (Figure 7). This may
be attributed to interspecies differences in microbial degradation
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capacity (Bose et al., 2021). For example, Singh et al. (2020) compared
the degradation of acephate by P. aeruginosa, Pseudomonas putida, and
Pseudomonas azotoformans under identical conditions, finding
P, aeruginosa had the highest efficiency, suggesting substantial inter-
species variability, consistent with our observations for E. cloacae and
E. hormaechei. Lin et al. (2022) reported that a microbial community
degraded acephate most efficiently under conditions of 34.1 °C and pH
8.9, achieving 89.5% at an acephate concentration of 200 mg L™". The
lower degradation rate observed in our study may result from
differences in microbial species. Numerous studies show that under
pure culture conditions, microbial degradation efficiency of
organophosphorus pesticides can exceed 90%. For example,
Micromonospora sp., Pseudomonas sp., and Enterobacter sp. achieve over
95% degradation or complete mineralization of acephate or
methamidophos (Wang et al., 2010; Li et al., 2014; Singh et al.,, 2017). In
this study, B. badius (DA-3) showed a maximum degradation rate of
76.17%, which is potentially due to the influence of culture time or
pesticide type (Guerrero Ramirez et al., 2023). However, our findings

Frontiers in Microbiology

align with Phugare et al. (2012), who found that Exiguobacterium sp.
degraded acephate with a rate of 75.85%, possibly reflecting shared
Bacillaceae phylogeny. These findings further support our speculation
that variations in acephate degradation efficiency are due to strain-
specific characteristics.

We also observed reduced microbial degradation efficiency with
increasing acephate concentration, mitigated by glucose supplementation,
especially at high acephate concentrations. This may be due to the
stimulatory effect of additional carbon sources on microbial growth (Li
et al,, 2021), which enhanced degradation activity. This suggests that
nutrient stress limits acephate biodegradation.

4.2 Combined plant—microbe remediation
of acephate

Under natural conditions, plants secrete extracellular enzymes such
as esterases and phosphatases through their roots to promote pesticide
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degradation. Esterases hydrolyze ester bonds, while phosphatases cleave
phosphate ester bonds in organophosphorus pesticides, reducing
pesticide concentrations (Sun et al, 2010). However, plant root
degradation of organophosphorus compounds is often slow and subject
to low tolerance (Li and Fantke, 2023). Microorganisms, although efficient
degraders, are often limited by environmental factors and nutrient
availability. In nutrient-deficient soils, microbial activity may be severely
inhibited (Zhou et al., 2020). Plants can offset this limitation by releasing
carbon and nitrogen sources through fine root turnover and root
exudates, thus promoting microbial growth (Yu et al., 2022). Therefore,
plant-microbe combined remediation has emerged as an effective
strategy for enhancing pesticide degradation. For example, Vaishnavi and
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Osborne (2024) reported that co-remediation using Proteus myxofaciens
and Chrysopogon zizanioides achieved over 90% degradation of
monocrotophos after 45 days. Jabeen et al. (2016) found that combining
Lolium perenne with endophytic rhizobia promoted bacterial rhizosphere
colonization, aiding chlorpyrifos removal. Our results demonstrated that
combining strains with the plant under different concentrations enhanced
acephate degradation, consistent with these studies (Xie et al., 2018).
Consequently, our findings confirm that plant-microbe interactions
accelerate acephate degradation in contaminated soils.

Notably, under 200 pg kg™" acephate, the P. hydropiper and DA-3
combination achieved 89.15% degradation. When acephate
concentration increased to 1,000 pg kg™, the degradation rate rose to

08
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91.27% (though statistically insignificant, p > 0.05). This unexpected
result may stem from DA-3 increasing its degradation from 44.20 to
61.11% under higher concentrations. We speculate that elevated
pesticide levels induced DA-3 to secrete broad-spectrum enzymes
(phosphatases and sulfur oxidases), enabling co-metabolism of
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acephate and root-derived carbon sources, thereby mitigating toxicity
stress (Ke et al., 2023). For instance, Yu et al. (2010) reported that their
acephate-degrading strain Y1 exhibited increased degradation at
100-500 mg L~". Furthermore, the P. hydropiper-DA-3 combination at
1,000 pg kg™ (91.27%) outperformed the C. dimorpholepis-DA-4
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combination. This may be attributed to the extensive rhizosphere of
P, hydropiper in moist soils, forming dense root networks that enhance
microbial colonization. Previous studies indicate that flavonoids in
P hydropiper root exudates induce oph gene expression in
Enterobacter, facilitating cleavage of P-O alkyl bonds in
organophosphates (Li et al., 2020). We thus speculated that these
exudates potentially promoted B. badius enrichment and oph gene
expression, contributing to the high degradation. In contrast, phenolic
compounds such as ferulic acid secreted by C. dimorpholepis may
inhibit enzyme activity in Sphingobacterium sp. (Guisewell and
Schroth, 2017). Moreover, P. hydropiper is a dicotyledonous plant,
while C. dimorpholepis is monocotyledonous, and differences in plant
morphology and physiology may also influence degradation capacity
(Sreenivasulu and Wobus, 2013; Wang et al., 2023).

Numerous studies demonstrate that hydrolysis, dehalogenation, and
oxidation are enzymatic reactions driving organophosphorus pesticide
degradation (Bosu et al.,, 2024; Bosu et al., 2024). Consequently, this
degradation proceeds through distributed pathways, yielding diverse
intermediate metabolites and terminal products. For example, Kumari
et al. (2025) identified acetamide and trimethyl phosphate as
intermediate metabolites of monocrotophos. Hou et al. (2021) reported
that dialkyl phosphates are the predominant terminal metabolites in
bacterial degradation of nonhalogenated organophosphate esters. Sur
and Sathiavelu (2024) identified methyl diethanolamine and aspartyl
glycine ethyl ester as intermediate metabolites in dimethoate degradation,
with O, O, S-trimethyl phosphorothioate as the terminal metabolite.
Consequently, terminal metabolites of organophosphorus pesticides are
typically non-toxic phosphate derivatives (Das et al., 2024). Therefore,
although degradation products of acephate were undetected in this study,
we infer its mineralization to non-toxic phosphate, thereby achieving the
purpose of pollution remediation. In summary, this work lies not only in
the first-time isolation of an acephate-degrading microbe from the
riparian zones but also in demonstrating its synergistic potential with
plants—achieving over 90% degradation and thus opening avenues for
in situ bioremediation.
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5 Conclusion

In this study, five acephate-degrading microbial strains were
isolated from riparian zone soils along the project of water diversion
from the Yangtze River to Chaohu Lake. These strains were
identified as E. cloacae, E. hormaechei, B. badius, S. spiritivorum, and
S. nematodiphila. Culture experiments demonstrated that B. badius
exhibited the highest degradation efficiency for acephate. Increasing
acephate concentrations generally reduced microbial degradation
efficiency, whereas the addition of glucose alleviated this inhibitory
effect (except for B. badius at 50 mg L™ acephate). Combined
degradation experiments showed that at 1,000 pg kg™ acephate, the
co-remediation by B. badius and P. hydropiper achieved optimal
degradation, with a removal rate of 91.27%. These findings provide
basis for the

a scientific bioremediation of acephate-

contaminated soils.
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