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Insights into the microbiome of
mine drainage from the Maria
mine in Roznava, Slovakia: a
metagenomic approach

Lenka Hagarova* and Daniel Kupka

Institute of Geotechnics of the Slovak Academy of Sciences, Kosice, Slovakia

The Maria mine, particularly the Strieborna vein, in Roznava, is one of the most
important mines in Slovakia, containing Ag-bearing tetrahedrite (40-46 wt% Cu,
26 wt% Sb, ~1 wt% Ag), making it an important source of strategic and critical raw
materials. This mine discharges a unique neutral-pH (6.9), metal-rich mine water
drainage (402 mg Lt SO4%", 4.65 mg L Fe) that has remained microbiologically
uncharacterized. This study presents the first comprehensive shotgun metagenomic
survey of this mine effluent, generating ~227 million high-quality reads that
assembled into 157,676 contigs and 378,023 non-redundant genes. Taxonomic
analysis revealed a community dominated by Betaproteobacteria (> 66%), with
abundant lithotrophic genera Sulfuritalea (6.93%), Ferrigenium (5.45%), Gallionella
(3.79%), and Sideroxydans (3.65%), alongside the heterotrophic genus Pseudomonas
(5.2%). Among the most prevalent neutrophilic iron-oxidizing bacterial strains were
Sulfuritalea hydrogenivorans (6.93%), Ferrigenium kumadai (5.45%) and Gallionella
capsiferriformas (3.79%). Acidophilic genera (e.g., Thiobacillus sp. at 0.43%, Ferrovum
myxofaciens, Acidithiobacillus ferrivorans, Leptospirillum ferrooxidans) collectively
accounted for <1% of the community. Functional annotation against KEGG, CAZy,
COG, eggNOG, Swiss-Prot, CARD and BacMet databases demonstrated pronounced
enrichment of iron cycling (e.g., the iron complex outer-membrane receptor
protein TC.FEV.OM), sulfur oxidation (e.g., SoxA, SoxX, SoxB), carbon turnover
(glycosyltransferase and glycoside hydrolase families) and nitrogen cycling (e.g.,
NifH, NifD, NirK, glnA). The antibiotic-resistance profile was dominated (> 95%) by
tetracycline and fluoroquinolone determinants, while metal-resistance systems for Ni,
Ag, As, Cu and Zn (including CzcD, CzcA, CznA, ArsD and AioX/AoxX) were likewise
pervasive. This integrated taxonomic-functional portrait highlights a microbiome
finely adapted to this unique geochemistry, combining lithotrophic metabolisms
with multi-metal resistance. Our findings establish a critical baseline for long-
term monitoring and highlight a high abundance of neutrophilic Fe(ll)-oxidizers,
suggesting they may represent promising candidates for targeted cultivation and
subsequent evaluation in biotechnology applications.

KEYWORDS
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1 Introduction

The Roznava ore field, located on the southeastern margin of the Western Carpathians, is
characterized by siderite-sulfidic veins. The Strieborna vein is notable for its rich deposits of
tetrahedrite, chalcopyrite, pyrite, and arsenopyrite (Mikus et al., 2018). Moreover, massive
vein-hosted tetrahedrite areas are enriched in silver at grades of 150-450 g/t (Sasvari and Mato,
1998). Currently, the Mdria mine in RoZnava, holds significant economic interest primarily
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due to the presence of Ag-bearing natural tetrahedrite (Cu,,Sb,S;;).
This copper-antimony sulfosalt contains a high Cu content
(40-46 wt%) and relatively high content of Ag (up to 1 wt%). However,
tetrahedrite-group members carry different proportions of arsenic,
antimony, mercury, or cadmium. Thus, subsequent exposure of
tetrahedrite to oxidizing conditions may result in the mobilization of
Sb, As, Cu, S, and other elements present in their structure,
contributing to toxicological and environmental risks (Hiller et
al., 2013).

In general, acid mine drainage (AMD) results from the oxidative
dissolution of sulfide minerals exposed to oxygen and water in ore
mine-associated areas (Nordstrom and Alpers, 1999). Although
abiotic processes can oxidize sulfide minerals, the rate of reaction is
greater by many orders of magnitude in the presence of certain
lithotrophic acidophiles, such as iron-oxidizing chemolithotrophs
(Johnson and Hallberg, 2003). The role of acidophilic prokaryotes in
this process is to oxidize ferrous iron to ferric iron, thereby
maintaining a high redox potential defined by the Fe**/Fe*" ratio. For
example, Leptospirillum (L.) ferriphilum has a high affinity for Fe**
substrate, low sensitivity to the Fe** product, tolerates lower pH levels
of the medium and elevated cultivation temperature, making it a key
player in the bio-oxidative leaching of sulfide minerals (Kupka et
al., 2023).

Characterization of mine-water microbial consortia and
identification of the major iron- and/or sulfur- oxidizing bacteria are
essential for the development of effective approaches to prevent and
mitigate the impact of AMD (Tan et al., 2009). The structure and
composition of bacterial communities are shaped by a complex set of
evolutionary, ecological, and environmental factors (Berendonk et al.,
2015). The selective factors that shape AMD-associated microbial
communities are pH, temperature, high concentrations of dissolved
metals and metalloids, total organic carbon (TOC), and dissolved
oxygen (DO) (Tan et al., 2009; Kuang et al., 2013). Additionally, AMD
typically contains a high level of sulfate, heavy metals such as iron,
zinc, copper, cadmium, aluminum, and metalloids like arsenic,
whereby may cause serious adverse effect on human health and
ecological resources (Rakotonimaro et al.,, 2017; Mdicaneanu et
al., 2013).

By applying high-throughput sequencing, our understanding of
microbial diversity has been rapidly expanding, which has given more
comprehensive insights into the role of microorganisms in their specific
niches. Given the enormous and complex nature of microbial diversity,
the importance of metagenomics has increased. Next generation
technologies (NGS) have proven their utility in shotgun metagenomic
since their application in 2006 (Kim et al, 2013). In shotgun
metagenomics, the total DNA is extracted and then exposed to random
fragmentation before the NGS. This allows extensive characterization
of strain-level multi-kingdom taxonomic classification, functional
profile characterization, and detection of antimicrobial resistance. In
contrast, 16S rRNA sequencing primarily utilizes PCR to amplify a
specific gene region (such as V3, V4), which is then templated for NGS,
thus generating only 16S gene sequences. Additionally, 16S rRNA
microbial community profiling commonly uses an operational
taxonomic unit (OUT)-based approach (Sharpton, 2014).

This study presents a comprehensive analysis of the bacterial
communities in mine drainage associated with siderite/tetrahedrite-
dominated ore at the Maria mine, paired with essential geochemical
characterization and with basic functional profiling. As the only known
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mine drainage, which is located on the periphery of the Roznava city, the
mine effluent impacts the Sland River, which merges with the Rimava
River and subsequently flow into a transboundary waterway in Hungary.
Consequently, this work is essential for characterizing local microbial
and geochemical profiles and establishes a reference framework to
support future assessments of potential cross-border ecological risks.

2 Materials and methods

2.1 Sample collection and chemical
analysis

The water sample was collected at the end of March 2025 from the
outdoor discharge pipe of the Maria mine (Roznava) (Figure 1). The
sampling site is located above ground, fully exposed to natural light
and atmospheric conditions, and represents the drainage outlet from
an underground tunnel. The site is situated near a road bridge but
outside the residential zone of Roznava. Additional photographs of the
site are provided in the Supplementary Figure S1. The water sample
was taken using sterile flasks. The sample volume was 10 L. The pH
value was measured using a pH meter (Denver Instrument UltraBasic
pH Benchtop Meter), temperature and conductivity by conductometer
(WTW Cond 330i Set, TetraCon 325). Ion and metal content was
determined by ICP spectrometer and ion chromatograph Dionex ICS
5000 (Sunnyvale, CA, United States).

2.2 Genomic DNA extraction

The water sample was filtered by a vacuum bottle filter (JET Biofil,
China) with a 50 mm diameter polyethersulfone (0.22 pm pore
diameter) filter membrane. The filter was then placed into a 15 mL
tube with 3 mL TE buffer (10 mmol/L Tris-EDTA, pH 8) and vortexed
for 5 min. Total genomic DNA was extracted from bacterial biomass
containing TE buffer using QIAamp BiOstic Bacteremia DNA Kit
(Qiagen, Germany), optimized for low bacterial content samples. The
quality and concentration of DNA were evaluated by a NanoDrop
ONE (Thermo Scientific, United States).

2.3 Library preparation and sequencing

Extracted DNA was purified using the Agencourt AMPure
XP-Medium kit (Beckman Coulter, United States) and a library of
DNA fragments of ~300 bp in length was constructed. The purified
DNA fragments were detected using the Qubit dsSDNA HS Assay Kit
and sheared to the target size using the Covaris ultrasonicator (Covaris,
United States). The DNA fragment ends were aligned, phosphorylated
and 3’-adenylated followed by ligation of adapters. PCR amplification
of the ligated products and purification using the Agencourt AMPure
XP-Medium kit were carried out. In the next step, the PCR products
were detected using the 2,100 Bioanalyzer (Agilent, United States). The
double-stranded PCR products were denatured and circularized by
split ligation with the gain of single stranded circular PCR products.
After removal of single stranded linear products, the final form of DNA
library was obtained. The concentration and length of the fragments
were checked using the 2,100 Bioanalyzer (Agilent, United States). The
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FIGURE 1

Location of the sampling site and Maria mine in Roznava, Eastern Slovakia.

final DNA library was sequenced using the DNBSEQ PE150 (BGI Tech
Solutions (Hong Kong) Co., Ltd., Hong Kong, China) platform.

2.4 Read quality control and assembly

Raw data were subjected to quality control with exclusion of reads
containing 10% uncertain bases (N bases), reads containing adapter
sequences (15 bases or longer sequence aligned to the adapter
sequence), and reads with low quality bases (Q < 20%). Raw sequencing
data were filtered using SOAPnuke v1.5.0 (Chen et al., 2018) and
decontaminated of human sequences via Bowtie2 (Langmead and
Salzberg, 2012) alignment. The cleaned data, i.e., high-quality short
reads, were de novo assembled into contigs using the MEGAHIT v1.1.3
(Lietal, 2015) (k-mer range 33-53, min contig length = 200 bp).

2.5 Gene prediction and catalogue
construction

Prediction of structural genes was performed using
MetaGeneMark 3.38 (Zhu et al., 2010) to find open reading frames
(ORFs) from each contig. The CD-HIT v4.6.4 (Fu et al, 2012)
clustering algorithm was used to generate a non-redundant gene set,
which sorts the sequences in descending order of length.

2.6 Taxonomic profiling
High-quality reads were classified with Kraken2 v2.1.2

(Wood et al,, 2019) against the NCBI NT database with species level
abundance refined by Bracken v2.6.2 via KrakenTools v1.2. Taxonomic
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annotation was also carried out against UHGG v2 database (Almeida et
al,, 2021).

2.7 Functional annotation of gene
catalogue

Non-redundant genes were annotated by DIAMOND v.2.0.11
(Buchfink et al., 2015) in BLASTP using parameters: parameters:--
evalue le-5 --threads 2 --outfmt 6 —seg no --max-target-seqs 20
--more-sensitive -b 0.5 -salltitles against databases: KEGG (v109)
(Ogata et al., 1999), CAZy (20211013) (Lombard et al.,, 2014), COG
(20201125) (Galperin et al., 2015), eggNOG (v5.0) (Huerta-Cepas et
al., 2019), Swiss-Prot (release-2024_01) (Poux et al., 2017), CARD
(v3.0.9) (Jia et al., 2017), and BacMet (20180311) (Pal et al., 2014).

2.8 Statistical analyses
To assess overall community structure differences in species and
functional composition, a Permutational Multivariate Analysis of

Variance (PERMOVA) was applied to Principal Coordinates Analysis
(PCoA) distance matrices.

3 Results

3.1 Geochemical profile of mine drainage
water

Abiotic data were determined to monitor the chemical
characteristics of Mdria mine drainage. The temperature of the water
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sample was 14 °C, with a pH of 6.9 and a conductivity of 1,019 uS

-1

cm™!, respectively. The water sample contained concentrations of

metals, metalloids, and ions, as presented in Table 1.

3.2 Normalization, preprocessing of
sequence data and assembly

The extracted DNA had a concentration of 20.8 ng pL™' and an
260/280 ration of 1.80. DNBSEQ PE150 generated ~227 M clean
reads (97.7% of all reads) with an average Q20 score of ~98.95%.
High quality sequences lacked ambiguous base cells or base-calling
errors (“N” with maximum 0.12%). The GC percentage of generated
reads was ~54%. Moreover, reads showed a low amount of adapter
contamination (2.18%). The high-quality short reads were de novo
assembled into 157,676 contigs (252.9 Mbp, N50 = 2,445 bp). Read
mapping back to the assembly achieved a 74% success rate.
Assembly statistics for Megahit assembly of the sample are detailed
in Table 2, while contig length distribution in
Figure 2A. MetaGeneMark predicted 482,345 ORFs on contigs >
200 bp. They were clustered at 95% sequence identity using CD-HIT
to yield 378,023 non-redundant genes (of which 350,972 were de

TABLE 1 Chemical composition of the mine water drainage.

10.3389/fmicb.2025.1675058

novo). Gene length distribution was recorded from 200 to more
than 30,000 nt (Figure 2B).

3.3 Taxonomic classification

The taxonomic survey of our dataset revealed 4 kingdoms, 69
phyla, 141 classes, 287 orders, 628 families, 2,205 genera, and
8,738 species. This spectrum illustrates a sharply expanding
taxonomic hierarchy from broad kingdoms to species-level
diversity. Variability in microbial community abundance is one
of the key focuses of study. At the phylum level, bacterial
sequences dominated, representing 18,049,520 reads (99.62%).
While archaeal, eukaryotic and viral sequences accounted for
43,351 (0.25%); 21,867 (0.12%) and 2,794 (0.02%) reads,
respectively. At the same time, the first five classes studied
together represent more than 96% of the community, with
Betaproteobacteria alone comprising approximately two-thirds
of all reads (66.59%). The Gammaproteobacteria class represented
20.14%, Alphaproteobacteria 6.06%, while Actinomycetes and
Bacilli 2.84 and 0.38%, respectively. This hierarchy underlined
the overwhelming dominance of Proteobacterial linages.
However, the metagenome also captured the diversity of archaea
and fungi. The dataset contained the archaea Halobacteria 0.06%
(phylum Euryarchaeota), Nitrososphaeria 0.04% (phylum

Element Concentration (mg L™) Thaumarchaeota) and the fungi Sordariomycetes 0.06%
50, 402.35 (phylum Ascomycota).
Mg 40.9 The 30 dominant genera and species, ranking in descending
order by read abundance, are plotted in Figure 3. Sulfuritalea was
Ca” 8017 found to be the dominant genus in the mine water metagenome,
Cr 35.86 representing 6.93% of the total community (1,255,546 reads). The
Na* 31.7 second most prevalent genus was Ferrigenium, representing 5.45%
- 65 of the community and accounting for 986,339 reads in absolute
o 55 terms. The genus Pseudomonas represents the third most abundant
group at this taxonomic level with 5.2% of all sequences (942,319
Fe 465 reads). The following genera were Gallionella (3.79%),
F- 0.39 Sideroxydans (3.65%), Sideroxyarcus (3.14%), Cupriavidus (1.83%),
NH* 0.239 Burkholderia (1.67%), Thauera (1.54%), Ferriphaselus (1.53%) and
- 00311 Denitratisoma (1.53%). The abundance of the other bacterial
genera was less than 1.5%. While the 30 most abundant genera are
As 0.0104 shown in Figure 3A, the remaining 2,175 genera, each representing
Ni 0.0091 <0.5% of the total community, were grouped as “others”. This
Co 0.0058 category contains only low abundance but taxonomically
Al 0.0056 identified genera.
High-throughput profiling of the mine water metagenome
n 0.0051 identified eleven taxa that together account for ~30% of all
Sb 0.0051 quality-filtered reads. The most abundant species was Sulfuritalea
Cu 0.0034 hydrogenivorans (1,255,546 reads; 6.93%), followed by the iron-
b 0.0007 oxidizer Ferrigenium kumadai (986,339 reads; 5.45%) and
o 0.0005 Gallionella capsiferriformas (687,130 reads; 3.79%) (Figure 3B).
Members of Sideroxyarcus lineage were also prominent:
cd 0.0001 Sideroxyarcus emersonii (569,891 reads; 3.15%), while
TABLE 2 Statistics of assembly result using Megahit software.
Contig Assembly N50 (bp) N9O0 (bp) Max (bp) Min (bp) Average size Mapping rate
number length (bp) (bp) (%)
‘ 157,676 ‘ 252,875,799 ‘ 2,445 ‘ 647 ‘ 404,057 ‘ 300 ‘ 1,603 ‘ 73.36
Frontiers in Microbiology 04 frontiersin.org
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Microbial composition of the environmental sample at genus (A) and species (B) level, species with abundance less than 0.5 are classified as “others”.
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D Thiobacillus sp.
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Sideroxydans lithotrophicus and Sideroxydans sp. CL21
contributed 358,632 (1.98%) and 304,010 reads (1.68%),
respectively. (P)
aeruginosa (404,803 reads; 2.23%) and Ferriphaselus amnicola
(278,422 reads;
Remaining Pseudomonas taxa (537,516 reads; 2.97%) were

The facultative anaerobes Pseudomonas
1.54%) were similarly well represented.

distributed among more than 100 additional species, including
P. fluorescens (0.16%), P. putida (0.12%), P. chlororaphis (0.10%),
and numerous other low-abundance taxa (<0.1% each). Each of
remaining species comprised less than 1% of the total
metagenomic reads. Taxonomic classification and corresponding
absolute abundance values of the metagenome are provided in
Supplementary Table SI.

Frontiers in Microbiology

3.3.1 Functional potential

Functional annotation of the non-redundant gene catalogue

against seven databases provided a comprehensive overview of the

community’s metabolic and resistance capacities. Statistics of

corresponding databases are presented in Table 3, detailed normalized

function annotation in Supplementary Table S2 and a summary of

functional analysis is available in Supplementary Table S3.

3.3.2 KEGG annotation and analysis profile

05

Functional annotation of the mine water metagenome against the
KEGG database assigned a total of 102,113 genes (Figure 4). At KEGG
Level 1, “Metabolism” dominated with 601,149 genes, followed by
“Genetic Information Processing” (73,352) and “Environmental

frontiersin.org
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TABLE 3 Statistics of database annotation.

Database BacMet

10.3389/fmicb.2025.1675058

SwissProt

All 3,429 102 6,232

118,589 102,113 110,505 66,610

Cell growth and death | I 1408
Cell motility{ [T 1252
Cellular community — prokaryotes - [ 3734
Transport and catabolism - [ 357
Membrane transport - [ 4359
Signal transduction | [ 4015

Chromosome-{[Jj 26

Folding, sorting and degradation - | NI 3499

Information processing in viruses-{[Ji] 48

Replication and repair - [N 3349
Transcription - [N 518

Drug resistance: antimicrobial - [ 1400
Infectious disease: bacterial - [N 1083

Infectious disease: parasitic-{ [l 123

Biosynthesis of other secondary metabolites - [N 1787

Glycan biosynthesis and metabolism | [T 5368
Lipid metabolism - [N 1869

Metabolism of other amino acids { [ 1870
Metabolism of terpenoids and polyketides-| [N 1651
Nucleotide metabolism - [N 4217
Xenobiotics biodegradation and metabolism - [ 1585
Aging - 334
Environmental adaptation { [l 314
Immune system- [l 152

Translaton | I 10235

Amino acid metabolism - [ 6993
Carbohydrate metabolism-| [ 5772

Energy metabolism-| I 7158
Global and overview maps-| N 52057

Metabolism of cofactors and vitamins { [ 6735

. Cellular Processes
Environmental Information Processing
B Genetic Information Processing
[ Human Diseases
] Metabolism
[ Organismal Systems

FIGURE 4

Pathways are grouped by Level 1 category (legend at right).

10000
Number of Genes

KEGG secondary classification histogram showing the number of genes assigned to each sub-pathway in the Maria mine drainage metagenome.

20000 30000 40000

Information Processing” Within the broad category of “Metabolism,”
key pathways underlying Fe, S, C and N cycling were particularly
enriched: “Carbon metabolisms” (57,520 genes), “Energy metabolism”
(43,354), and Global and overview maps” (141,606) point to robust
primary production and central turnover of carbon. Critically, genes
involved in sulfur transformations (“Sulfur metabolism”; 7,496) and
nitrogen cycling (“Nitrogen metabolisms”; 2,688) were well
represented, as were those enabling autotrophic growth via “Carbon
fixation pathways in prokaryotes” (6,885). This functional profile
underscores the genetic potential for iron oxidation, sulfur oxidation/
reduction, carbon assimilation and nitrogen turnover in the mine
drainage community.

KEGG Level 1 functional profiling of the metagenome assigned
a total of 98,749,991 annotations across six categories. Metabolisms
accounted for 80,772,278 annotations (81.8%), Genetic Information
Processing for 6,990,629 (7.1%) and Environmental Information
Processing for 4,414,726 (4.5%). At KEGG Level 2, the ten most
abundant pathway subgroups comprised 83,814,494 annotations.
Global and overview maps dominated with 45,555,676 annotations
(54.4%), followed by carbohydrate metabolism (9,065,989; 10.8%)

Frontiers in Microbiology

and amino acid metabolism (5,941,847; 7.1%). This profile
highlights a metagenome heavily invested in core metabolic
pathways and genetic information processing, with secondary
emphasis on carbohydrate, energy and amino acid metabolism.
These functional distributions reflect the microbial community’s
adaptation to the high geochemical stresses of the mine-
water environment.

KEGG Orthology (KO) profiling revealed that the most abundant
ortholog was K07787 (306,087 counts), encoding the copper/silver
efflux system protein (Cus/SilA), which underscores the capacity for
heavy metal tolerance (Mealman et al.,, 2012). The second most
prevalent molecular function was K02014 (228,545), an iron-complex
outer-membrane receptor involved in siderophore-mediated iron
uptake (Stintzi et al., 2000). K00688 (212,157) ranked as the third,
glycogen phosphorylase (GlgP), indicating active storage-
carbohydrate metabolism (Wilson et al., 2010). Altogether, these KO’s
reinforce the focus of the community on metal-stress mitigation and
energy-storage strategies. The community’ primary investment in core
metabolism and informational functions is presented in the form of
KEGG Level 2 circos map (Supplementary Figure S2), while its
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emphasis on metal efflux and iron uptake is highlighted by the KO
circos map (Supplementary Figure S3).

3.3.3 COG/EggNOG annotation and analysis
profile

Normalized COG (cluster of orthologous genes) profiling
assigned functional categories to all predicted genes, yielding of total
of ~659,000 normalized units across 25 categories. The most highly
represented functions were “Translation, ribosomal structure and
biogenesis” (75,127 normalized units; 11.7%), followed by “Cell wall,
membrane and envelope biogenesis” at 50,130 (7.8%), “Energy
production and conversion” 44,786 (7.0%) and “Signal transduction
mechanisms” 44,190 (6.9%). Notably, the “Function unknown”
category accounted for 24,830 units, highlighting a substantial fraction
of uncharacterized proteins. Functional annotation against the COG
database assigned a total of 137,612 normalized gene hits across 24
functional categories. Gene numbers for every COG functional
category are shown in Figure 5. Functional profiling of the mine-water
metagenome against the COG database assigned over 50 million gene-
hits across 25 broad functional categories. “Signal transduction
mechanisms” were the most highly represented category, with
6,855,748 hits, followed closely by “Cell wall, membrane and envelope
biogenesis” (6,608,621 hits).

EggNOG represents a database of orthology relationships,
functional annotation and gene evolutionary histories, so it provides
accurate function prediction. EggNOG normalized functional
profiling revealed that the most abundant NOG groups were
“Function unknown” (529,030 annotations), “Translation, ribosomal

10.3389/fmicb.2025.1675058

structure and biogenesis” (294,036), “Energy production and
conversion” (221,320). NOG functional profiling revealed that the ten
most abundant functional groups collectively comprised ~2.18¢+8
counts. The dominant category was “Replication, recombination and
repair” (2.71e+7), followed by “Function unknown” (2.7e+7) and
“Energy production and conversion” (2.6e+7). The EggNog annotation
histogram is available as Supplementary Figure S4.

Together, the COG and Eggnog profiles map a microbiome with
a high proportion of essential information mechanisms, while the
Unknown fraction highlights the potential for uncovering novel
functional capabilities.

3.3.4 CAZy annotation and analysis profile
(Cazy) database
information on enzymes involved in breakdown, modification and

Carbohydrate-active  enzyme contains
synthesis of glycosidic bonds (Cantarel et al., 2008). CAZy annotation
(Level 1) identified a total of 23,089 CAZy distributed across six
enzyme classes. Gene numbers of individual enzyme classes are
presented in Figure 6.

The most abundant class was glycosyltransferases (GT) with
13,140 hits, followed by glycoside hydrolases (GH) at 9,307. Within
the CAZy Level 2 classification, the GT2 family of glycosyltransferases
had the highest representation with 4,495. On level 3, one of the most
prevalent proteins was BAN36688.1 (399), annotated as a member of
the GT2 family, which was identified in sulfur oxidizer Sulfuricella
denitrificans skB26 (Watanabe et al., 2014). Also determined within
this family was protein ADE11609.1 (165), identified in the iron- and
sulfur-oxidizing neutrophile Sideroxydans lithotrophicus ES-1. A
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membrane protein BBJ00544 (191) was identified in the
microaerophilic iron-oxidizing bacterium Ferrigenium kumadai
(Watanabe et al., 2021). High prevalences were also determined by
AJA01457.1 (407) elongation factor Tu identified in Streptomyces
noursei, followed by QTH47841.1 (392), identified as 50S ribosomal
protein L22 in Streptococcus zhangguiae and CUU39686.1 (297) as
4,6-dehydratase, detected in
Helicobacter typhlonius.

GDP-mannose which  was

Functional analysis of the non-redundant gene catalogue against
the CAZy database at Level 1 revealed a clear dominance of GT
(2,187,772) with 39.4% of all CAZy annotations, followed by GH
(1,836,358 hits; 33.1%), carbohydrate binding module (CBM; 555,568;
10%), carbohydrate esterases (CE; 91,460, 1.6%), auxiliary activities
(AA; 38,282; 0.7%) and polysaccharide lyases (PL; 6,412; 0.1%).

The prevailing dominance of GT and GH enzyme classes indicates
high polysaccharide biosynthesis and hydrolysis, reflecting the high
dynamic carbon turnover in the Méria mine water microbiome.

3.3.5 Swiss-Prot annotation and analysis profile

In a protein sequence database (Swiss-Prot) annotation, the one
of the de novo genes yielded its top hit to UniProt accession Q9I310,
annotated as bifunctional diguanylate cyclase/cyclic di-GMP
phosphodiesterase MucR protein (PA1727, mucR gene) from
P, aeruginosa (strain ATCC 15692). This match was highly significant,
with a bit score of 45.9 and e-value of 2.5e-105. Notably, Q91310 was
also the best hit for multiple other sequences in our dataset, suggesting
fragmentation of the same gene during assembly or the presence of
closely related sequence variants. The second most abundant match
was to the cation efflux system protein CusA (P38054, cusA gene)
characterized in Escherichia coli (strain K12), which is a part of a
cation efflux system that mediates resistance to copper and silver and
thus plays an important role in copper tolerance under anaerobic
growth and extreme copper stress during aerobic growth. The next
most prevalent protein identified in Alcaligenes sp. (strain CT14) was
the cation efflux system protein CzcA (P94177, czcA gene), with a low
cation transport activity for cobalt, and it is essential for the expression
of cobalt, zinc, and cadmium resistance.

3.4 Resistome

The resistome is composed of genes of different phylogenetic
origin, such as antibiotic resistance genes (ARGs) and metal resistance
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genes (MGRs) (Gillieatt and Coleman, 2024). The normalized CARD
profiling of the mine water metagenome exposed a rich and diverse
antibiotic resistome. Tetracycline-resistance genes were most
abundant, reaching 241.4 normalized hits (28 resistance genes). These
included major facilitator superfamily (MFS) tetracycline efflux
pumps Tet(B) and Tet(E), as well as ribosomal protection proteins
Otr(A) and Tet(32). The ATP-binding cassette (ABC) antibiotic efflux
pump Tet(A) also featured prominently. Another widespread gene was
adeF encoding resistance-nodulation-cell division (RND) antibiotic
efflux pump and provides resistance not only to tetracycline but also
to fluoroquinolone. The next most abundant classes were
fluoroquinolone (226.2 hits), and f-lactam resistances were also
abundant: cephalosporin (95.7 hits) and penam (93.4 hits). The
distribution of all antibiotic-resistance classes is presented in Figure 7.
Altogether, annotation against the CARD database identified ~
193,300 resistance gene hits, of which tetracycline (94,017 hits) and
fluoroquinolone (93,923 hits) alone accounted for over 95% of all
detected resistance annotations.

Functional annotation of the metagenome against BacMet
database revealed a total of 1,530,231 resistance-associated gene hits.
The resistance genes were dominated by nickel (372,308 hits) and
silver (368,395 hits). This was followed by arsenic (226,740), copper
(152,900), trislocan (134,774), selenium (110,557), magnesium
(101,209), pyronin Y (97,113), zinc (95,113) and molybdenum
(88,635). BacMet-based profiling of the metagenome revealed a set of
efflux systems derived from Ralstonia metallidurans (strain ATCC
43123) that underlie cobalt, nickel, zinc and cadmium tolerance. The
Cation Diffusion Facilitator CnrT (BAC0074) is involved in Co*", Ni**
resistance, while CzcD (BAC0122) decreases the cytoplasmatic
concentration of Zn** and Cd** cations. Together with CzcB, a
periplasmatic membrane fusion protein that bridges inner and outer
cell membranes, and the basic inner membrane transport protein
CzcA (BACO0119), these components form a multilayered efflux
network that enables efficient detoxication of Co**, Ni**, Zn?** and Cd**
under extreme metal stress (Nies, 2003). The cadmium-zinc-nickel
resistance protein CznA (BACO0127) derived from Helicobacter
mustelae (strain ATCC 43772) was also detected. BacMet annotation
identified arsenic-related proteins such as a periplasmic oxyanion-
binding protein AioX/AoxX (BAC0024) from Agrobacterium
tumefaciens, that is involved in regulating arsenite oxidation. The aioX
gene encodes this periplasmatic AsIII-binding protein and is
specifically upregulated in response to arsenite exposure (Liu et al.,
2012). Similarly, several ORFs matched BAC0033, the arsenic
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metallochaperone ArsD for an arsenic detoxification pump found in
Escherichia coli. The role of this protein is to transfer trivalent
metalloids to ArsA, the catalytic subunit of an As(III)/Sb(III) efflux
pump, which eventually leads to an increase in the rate of arsenite
extrusion. As a result, cells are consequently resistant to environmental
concentrations of arsenic (Lin et al., 2006). The circos visualization
shows the distribution of the metal- and biocide-resistance genes and
is presented in Figure 8.

4 Discussion
4.1 Geochemical profile

Numerous mine drainages in Slovakia have neutral to slightly
alkaline character (Lis¢ak et al,, 2019). Among the most critical areas
is Smolnik, where the drainage water (AMD from shaft Pech) is
characterized by a low pH (3-4) and a high concentration of iron
(400-500 mg L"), which acidifies the Smolnik creek (Balintova et al.,
2012). According to the measured physico-chemical parameters and
classification framework of mine drainages, the mine effluent from the
Maria mine belongs to Class III - neutral and not oxidized (Thisani et
al., 2020). In general, the neutral pH of mine effluent can result from
low pyrite content limiting acid generation or from carbonate host
rock or tailings buffering any produced acidity (Waybrant et al., 2002).

Frontiers in Microbiology 09

As the Strieborna vein system is represented mainly by siderite
(FeCO;; 65-70%) and the remaining part forms a quartz-polysulfidic
association, we assume that this is one of the reasons for the formation
of the pH neutral mine effluent (Jakubiak, 2008). Monitoring of the
geochemical parameters is essential to quickly identify elevated
concentration of heavy metals or to prevent environmental
catastrophes, such as the recent one in Nizn4 Sland, where the Slana
River was strongly contaminated by extremely high amounts of
metals, metalloids and sulfate anions (concentration of dissolved
substances ~53 g L™). The approximate quantity of pollutants flowing
to the Sland River reached ~90t per day (Zeman et al, 2022
Kupka et al., 2022).

4.2 Taxonomic profile

Metagenomics, which is capable of identifying total genetic
material in organisms, provides environmental microbiologists with
greater flexibility to immediately examine the enormous genetic
variability of microbial communities that inhabit a particular
environment. The classification methods of metagenomics sequencing
data can be divided into two categories: one is based on 16S rRNA
gene sequences, and the other, which was used in this study, is based
on whole-genome sequencing fragments. Moreover, the comparative
analysis of 16S rRNA and shotgun sequencing data for the taxonomic
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characterization of the chicken gut microbiota by Durazzi et al. (2021)
showed that shotgun sequencing recovered more information about
low-abundance genera when a sufficient number of reads were
available for taxonomic profiling (>500,000 reads). Shotgun
metagenomics provides more reliable and comprehensive taxonomic
resolution than 16S rRNA V3-V4 sequencing, which often recovers
only part of the microbial community. In the present study, the spring
sample was analyzed by deep shotgun metagenomic sequencing
(~227 M clean reads), which allows both taxonomic and functional
characterization. Unlike the 16S amplicon approach, shotgun
metagenomics captures a broader spectrum of the community,
including non-bacterial taxa, and is less subject to primer bias.
Currently, more than 99% of microorganisms cannot be cultivated
these
microorganisms may have great application potential and their

under laboratory conditions, whereas uncultured

metabolites may produce valuable compounds (Handelsman et al.,
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1998). Moreover, the distribution of different bacterial taxa in relation
to the biotic and abiotic characteristics of the environment can provide
important information on their basic physiology and function in the
ecosystem (Mykri et al.,, 2017). Multiple studies have also reported
that bacterial communities are sensitive to fluctuations in local
environmental parameters (Mykri et al., 2017; Nie et al,, 2016; Liu
et al., 2018). Moreover, interactions between members of microbial
consortia likely play a critical role in optimizing AMD microbial
community activity. For example, a significant symbiosis occurs
between heterotrophic and certain autotrophic species: autotrophs
may depend on coexisting heterotrophs to remove organic compounds
that are toxic to them. Heterotrophic acidophiles are able to utilize
organic materials produced by acidophilic autotrophs, thereby
maintaining community stability (Das and Mishra, 1996).

In the Méria mine water metagenome, class Betaproteobacteria
dominated the bacterial community (over 66% of all reads). The most
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abundant genus was the sulfur-oxidizing genus Sulfuritalea followed
by the iron-oxidizing group Ferrigenium and the ubiquitous pathogen
Pseudomonas (Herrmann et al., 2017; Khalifa et al., 2018; Lalucat et
al., 2022). These lithotrophic taxa were strongly favored in spring,
when both Fe (4.65 mg L™") and sulfate (402 mg L") were elevated,
conductivity was high (1,019 pS cm™), and circumneutral pH (6.9)
provided optimal conditions for microaerophilic iron- and sulfur-
oxidizers. By contrast, a previous study has shown that autumn mine
drainage was less extreme, with moderate conductivity of 586 pS cm™,
alower concentration of iron (1.83 mg L™') and sulfate (211.52 mg L ™),
while the measured values of temperature and pH remained the same
(Hagarova and Kupka, 2025). In this case, microbial diversity was
assessed solely by 16S rRNA V3-V4 amplicon sequencing. Therefore,
the seasonal differences discussed here should be regarded as
indicative trends rather than statistically tested associations with
geochemical parameters. Heterotrophic genera such as Pseudomonas
(30%), Gallionellaceae (unclassified; 8.8%), Polaromonas (8%)
dominated under these conditions (Hagarova and Kupka, 2025). Such
seasonal geochemical changes appear to shape microbial consortia,
with spring’s high Fe?*/S*~ availability supporting Fe(II)- and sulfur
oxidizers. On the other hand, autumn’s moderate metal-enriched
environment seems to advance versatile heterotrophic taxa capable of
tolerating relatively low metal stress. Similar seasonal patterns have
been reported in other mine drainage systems (McGinness and
Johnson, 1993).

The most prevalent bacterial species detected was Sulfuritalea
hydrogenivorans. This facultative anerobic chemolithoautotroph is able
to oxidize thiosulfate, elemental sulfur and hydrogen as sole energy
for autotrophic growth. The strain sk43H(T) isolated from a freshwater
lake can grow at a temperature of 8-32 °C and an optimum pH of
6.7-6.9 (Kojima and Fukui, 2011). Comparative genomics has also
shown that this bacterial species, together with Sideroxydans
lithotrophicus ES-1, share the oxidation of inorganic sulfur compound
pathway, which consists of qr., SoxEF, SoxXYZAB, Dsr proteins,
AprBA, Sat, and SoeABC (33). Unlike most neutrophilic Fe(II)-
oxidizers, Sideroxydans lithotrophicus ES-1 grows autotrophically
either by Fe(II) oxidation or by thiosulfate oxidation as its energy
source (Zhou et al., 2022). Moreover, Sideroxydans sp. CL21 possess
organotrophic and also iron-oxidizing capabilities (Hoover et al.,
2025). The physicochemical conditions at the sampling site were also
suitable for the growth of the neutrophilic, microaerobic iron- and
thiosulfate oxidizing chemolithoautotroph, Sideroxyarcus emersonii
(Kato et al., 2022).

Iron-oxidizing microorganisms have a special ability to catalyze
the dissimilatory oxidation of Fe** to Fe** playing a key role in the
geochemical cycle and in biohydrometallurgical processes for metal
extraction (Roberto and Schippers, 2022). Currently, this bacterial
group is divided into four various physiological groups (acidophilic,
aerobic; neutrophilic, aerobic; neutrophilic, nitrate-dependent
anaerobic; anaerobic, photosynthetic group), with most of the
neutrophilic, aerobic iron-oxidizers belonging to the class
Betaproteobacteria (Hedrich et al., 2011). In our study, the most
abundant iron-oxidizing microaerophilic neutrophilic species was
represented by Ferrigenium kumadai (Khalifa et al., 2018). Strain
An22T grows microaerobically and autotrophically, over a
temperature range of 12-37°C and pH 5.2-6.8, not forming
extracellular stalks, a characteristic that may contribute to its
abundance in the iron-rich mine impacted flows (Khalifa et al., 2018).
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However, for biohydrometallurgical processes, iron-oxidizing
acidophiles capable of enduring extreme conditions such as low pH
and high concentrations of metals and metalloids are of most interest
(Hedrich etal., 2011). In this study, iron-oxidizing acidophiles formed
only a minor fraction of the microbial community, with Thiobacillus
sp. at 0.43%, Ferrovum myxofaciens at 0.16% and Acidithiobacillus
ferrivorans at 0.11%. Leptospirillum ferrooxidans and Acidiphilium
multivorum were present at even lower abundances. In contrast, the
aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius
accounted for 6.07% (Chen et al., 2005).

Gallionella spp. have been found to be dominant in various mine
environments, and they play an important role in AMD generation
(Bruneel et al., 2006; Hallberg et al., 2006; He et al., 2007). For
example, Gallionella capsiferriformans is a microaerobic neutrophilic
iron-oxidizer. It typically inhabits a transition zone from microoxic
groundwater to oxic surface water with a high heavy metal
concentration (especially ferrous iron), moderate temperature (13 to
15 °C) and a circumneutral pH (Fabisch et al., 2016; Lin et al., 2012).
These parameters were also typical for the selected sampling site
between the Mdria mine drainage and the Sland River.

Genus Pseudomonas is widely distributed, plays relevant ecological
roles and is able to adapt to fluctuating environmental conditions
(Silby et al., 2011). The most abundant species of this genus in our
mine water metagenome was the species P aeruginosa (class
Gammaproteobacteria, with 20% of all reads). It was found that
P aeruginosa displayed no significant growth inhibition in treated
mine water containing 1,890 mg L™ SO,*, while Escherichia coli was
significantly sensitive under the same conditions (Stoica et al., 2022).
This finding highlights the exceptional tolerance of P. aeruginosa to
extreme sulfate stress, underscoring its potential dominance in the
high-sulfate mine water environment. This high tolerance probably
explains the marked relative abundance in the Maria mine drainage.
Moreover, genus Pseudomonas contains more than 25 species
associated with opportunistic human infection, including
P aeruginosa, which can be found in most moist environments
(Baron, 1996). Such infections are mainly challenging because of the
organisms broad intrinsic antimicrobial resistance, largely mediated
by multidrug efflux pumps and permeability barriers (Lister et al.,
2009). Specifically, members of the Resistance Nodulation Division
(RND) family seem to be the most significant contributors to its
antimicrobial resistance. Efflux systems such as MexAB-OprM,
MexCD-Opr] and MexXY-OprM accommodate and provide
resistance to ff-Lactams, which are commonly used in the treatment
of P aeruginosa infections (Paul et al., 2010; Poole, 2004). Importantly,
several of these efflux systems (e.g., CzcCBA) also confer resistance to
heavy metals, providing cross-protection in metal-rich environments
(Perron et al., 2004). Such a high resistance potential raises concerns
that metal-rich mine waters may serve as a reservoir where antibiotic
and metal resistance determinants co-occur and persist (Seiler and
Berendonk, 2012; Fawwaz Alfarras et al., 2022). Consequently, the
detection of P aeruginosa in the Madria mine drainage is both
ecological and clinically relevant. It underscores the adaptive success
of this bacterium to metal-rich environments and its possible role in
disseminating resistance determinants across environmental and
human-associated microbiomes. The second most common species of
the genus Pseudomonas was P. fluorescens, an environmental
bacterium primarily associated with soil and rhizosphere health
(Taylor et al., 2025). While not typically pathogenic to humans, it is
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occasionally detected at low abundance in the native microbiota and
possesses functional traits that enable survival in mammalian hosts
(Scales et al,, 2014). On the other hand, P putida represents a
bacterium living in water and soil, characterized by physiological
robustness, metabolic versatility, and high tolerance to stress.
Furthermore, some strains, such as P. putida KT2440 and mt-2, have
proven valuable in bioremediation efforts due to their ability to
degrade aromatic compounds such as toluene and xylenes (Volke et
al., 2020).

Genus Legionella represents aerobic chemoorganotrophic, gram-
negative bacilli. Legionella spp. can be found in surface water, ponds,
streams, soils, and man-made aqueous environments such as
conditioning cooling towers, and the optimum pH for their growth is
6.8-7 (Steinert et al., 2002). The most abundant species of this genus
were Legionella sp. MW5194 and Legionella pneumophila, however
their abundance was less than 0.23e-3% despite the optimal pH of the
mine water for their growth.

4.3 Functional profile

The mine water metagenome can be utilized not only to evaluate
the structure and diversity of the mine water community but also to
identify meaningful microbial genera and species that drive
geochemical transformation of iron, sulfur, carbon and nitrogen. In
the recent study, Grettenberger and Hamilton reported 29 novel
metagenome-assembled genomes from an acid mine drainage site.
The genomes span 11 bacterial phyla and one archaeal phylum and
revealed key metabolic functions including Cyc2-like cytochromes for
Fe(II) oxidation, Sox and Dsr pathways for sulfur cycling and
RubisCO-mediated carbon fixation (Grettenberger and Hamilton,
2021). Understanding these metabolic pathways is critical for
advancing and optimizing applied biotechnological processes in AMD
remediation and raw material recovery. For example, bioleaching test
of tetrahedrite concentrate from the same Maria mine, whose water
metagenome we have profiled, yielded over 4 g L' Cu (> 80%) after
120 days using iron-oxidizing acidophiles from the cultures collection
(DSMZ) (Kupka et al., 2025).

In general, metals are toxic by a wide range of mechanisms. For
example, bacterial cells are effectively killed upon contact with copper
surfaces by the copper ions released (Espirito Santo et al., 2011). On
the other hand, silver ions harm cells by the inappropriate binding to
biomolecules and shut down essential functions such as the respiratory
electron transport chain or DNA replication (Holt and Bard, 2005).
Metal resistance can be achieved by various strategies such as
enzymatic detoxication, intra- and extracellular chelation, or transport
systems, whereas transport systems are widespread in bacterial cells
and serve to limit metal concentrations by removing of metals from
cells (von Rozycki and Nies, 2009). Cupriavidus metallidurans CH34
is a model organism for heavy metal detoxification and a variety of
biotechnological applications. In this work, 21 different bacterial
species of the genus Cupriavidus were identified with low prevalence
(below 0.01%). For instance, the species Cupriavidus necator has been
identified, along with the hoxH gene encoding the high-affinity nickel
transporter HoxN (NiCo transporter family) responsible for
nickel uptake.

The presented resistome profile closely mirrors the geochemical
composition of the mine drainage and its surrounding host rock,
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particularly the tetrahedrite rich Strieborna vein. The Striebornd vein
is characterized by relatively high Ag content (up to 1 wt%) (76),
significant Cu (40-46 wt%) and Sb (26 wt%) content (Hagarova et al.,
2025). Alongside a substantial level of Mg**, As, Ni and Zn in the mine
water, it illustrates how the availability of these metals and metalloids
drives co-selection of resistance genes. Moreover, co-selective pressure
from heavy metals has been shown to promote the persistence and
dissemination of not only metal but also antibiotic resistance
determinants across environmental bacterial communities (Gillieatt
and Coleman, 2024; Larsson and Flach, 2022). Due to agricultural and
aquacultural practices, antibiotics are transferred to soil and water
environments (Heuer et al., 2011). When antibiotics enter the soil
environment, they can leach into the aquatic environment (Boxall et
al., 2002). Together with heavy metals, they can drive co-selection and
selection towards antibiotic resistant bacteria (Seiler and Berendonk,
2012). Antibiotics such as tetracyclines and fluoroquinolones persist
in the environment for longer periods of time, spreading more and
accumulating at higher concentrations than, for example compared to
penicillin (Giedraitiené et al., 2011). Previous studies have shown that
Zn directly triggers the selection of tetracycline resistance genes, such
as tetA, tetC and tetG genes (Palm et al., 2008; Yamaguchi et al., 1990),
which function as efflux pump. Additionally, tetW and tetB/P genes
encoding ribosomal protection proteins that are detected in metal
contaminated areas (Knapp et al., 2017; Chen et al., 2019). The
presented enrichment of tetracycline- and fluoroquinolone-resistance
markers in the mine water resistome thus reflects both their
environmental persistence and co-selective pressure exerted by
heavy metals.

Functional profiling of the Mdria mine water revealed the
pronounced representation of genes involved in sulfur, iron, carbon
and nitrogen metabolisms. Such gene enrichment mirrors microbial
adaptation to the site’s metal-rich chemistry. These geochemical
profiles are characteristic for mine drainage environments and create
strong selective pressure for chemolithotrophic Fe(II)- and S-oxidizers.
Mapping of the non-redundant gene catalogue against the KEGG
Orthology (KO) database, which links genomes to biological systems
by functional orthologs, recovered signatures for geochemical cycling
pathways of iron, sulfur, carbon and nitrogen.

The predominant form of iron in the environment under aerobic
conditions is the ferric ion. Bacteria and fungi synthetize siderophores,
as iron-complexing molecules, that allow cells to selectively chelate
Fe(III) and take up iron from its environment (Crichton, 2012). There
is a close association between determined the iron complex outer-
membrane receptor protein TC.FEV.OM (K02014) and siderophores.
It was also confirmed that selected Pseudomonas bacteria capable of
secreting siderophores can significantly improve the absorption
efficiency of Cd in sorghum (Zhou et al., 2021). Considering the sulfur
cycle, the basic components of the Sox sulfur-oxidation enzyme
system, such as SoxA (K17222; 26.4), SoxX (K17223; 30.3), SoxB
(K17224; 14.4), were all clearly detected (Meyer et al., 2007).
Meanwhile, the dissimilatory sulfite reductase subunits DrsA (K11180;
213.3) along with DrsB (K11181; 228.3) were also ranked among the
most abundant, which indicates strong sulfate-reduction potential. By
contrast, sulfide:quinone oxidoreductase Sqr (K17218) showed one of
the highest normalized abundance (419.2). This enzyme catalyzes the
oxidation of sulfide to sulfur via electron transfer to the membrane
quinone pool in microorganisms and mitochondria (Duzs et al.,
2021). Moreover, the annotation results recovered the RubisCO large
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subunit protein RbcL (K01601) at a normalized abundance of 254.8,
highlighting the capacity for CO, fixation into organic compounds.
Plants rely on one highly conserved so-called green-type enzyme
consisting of eight large subunits and eight small subunits (L;Sg). In
contrast, proteobacteria often have a variety of different rubiscos,
including both red and green form I enzymes and form II rubisco
(Andersson and Backlund, 2008; Satagopan et al., 2014; Badger and
Bek, 2008). Moreover, chemoautotrophic proteobacteria oxidizing
sulfur and other inorganic substances are able to use rubisco to carry
out “dark” CO, fixation across environments — from AMD sites to the
dark oceans (Swan et al., 2011). The studied metagenome contains a
full set of nitrogen-cycling potential. Copper-containing nitrite
reductase NirK (K00368; 24.1) has been identified and is known to be
used by both bacterial and fungal denitrification to reduce NO,™ to
NO, which is then utilized to produce N,O and/or N, with organic
carbon as an electron donor (Shoun et al., 2012; Zumft, 1997; Long et
al., 2014). Moreover, the presence of nitrogenase components such as
nitrogenase molybdenum-iron protein alpha chain NifD (K02586;
29.3), nitrogenase iron protein NifH (K02588; 28.4) and nitrogenase
molybdenum-iron protein beta chain NifK (K02591; 29.7) indicated
potential for atmospheric N, fixation (Rubio and Ludden, 2005). Also,
incorporation of NH," into cellular biomass is catalyzed by glutamine
synthetase glnA (K01915; 228.4) and glutamate synthase gltB
(K00265; 203.1) (Merrick and Edwards, 1995). This pathway is also
known as glutamine synthetase (GS)/ glutamate synthase (GOGAT)
cycle, where GS is highly conserved, which aligns with the possibility
that it assimilates ammonia in most bacterial taxa (Kumada et al.,
1993; Reitzer, 2003). In this study, several genera have been identified
that play a dominant role in the nitrogen cycling and underscore a
strong genetic potential for both nitrogen removal (via denitrification)
and nitrogen input (via N, fixation). The most prevalent genera, such
as Denitratisoma, Thauera, Azoarcus, Azospira, Comamonas and
others, collectively accounted for more than 9% of the community.
Among these genera, Thauera represents a significant genus not only
capable of dentification, but can also perform phosphorus removal
and sulfide oxidation in S-EBPR (sulfur conversion-associated
enhanced biological phosphorus removal) systems, thus making it
applicable for remediation of environmental contaminants in
wastewater treatment (Zhang et al., 2017).

Comparative use of KEGG and eggNOG annotations strengthens
functional interpretation (Zeller and Huson, 2022). KEGG analysis
highlighted significant enrichment of genes involved in metabolic
pathways (e.g., sulfur oxidation via Sox, carbon oxidation by RubisCO)
with precise linking to biogeochemical cycles. By contrast, eggNOG
clustered genes into broad ortologous groups (e.g., energy production and
conversion, amino acid and carbohydrate transport and metabolism,
signal transduction mechanisms). This overlap confirms the dominance
of energy and nutrient cycling pathways. At the same time, it illustrates
the complementary resolution of these databases. KEGG database
provides pathway-oriented detail, whereas eggNOG classifies genes into
broader orthologous groups with lower biochemical specificity. Using
both databases thus increases the robustness of functional interpretation
by combining complementary perspectives.

It is important to emphasize that the present study was designed
as a baseline characterization of the current status of the Maria mine
drainage. The taxonomic and functional profiles presented here
therefore reflect the microbial community structure and geochemical
conditions at a single sampling point. The objective of this study
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provides the first comprehensive description of this unique
neutral-pH, metal-rich drainage.

5 Conclusion

Given that this mine water drainage is the sole known mine
water effluent from the Maria mine, the metagenomic profile
revealed a unique baseline of microbial community that is both
taxonomically and functionally tailored to high-metal and neutral
pH conditions. Betaproteobacteria dominate (> 66%), led by
chemolithotrophic genera such as Sulfuritalea (6.9%), with the
detected  Sulfuritalea
hydrogenivorans, followed by genera Ferrigenium, Gallionella,

most prevalent bacterial species
Sideroxydans, alongside the heterotroph Pseudomonas. Shotgun
metagenomics revealed pronounced enrichment of genes for iron
cycling (e.g., TC.FEV.OM), sulfur cycling (e.g., soxA, soxB, soxX,
dsrA, dsrB), carbon turnover (GT and GH CAZy families) and
nitrogen cycling (nirK, nifH, glnA). The resistome was
overwhelmingly composed of tetracycline and fluoroquinolone
genes (> 95% of CARD hits) and extensive Ni, Ag, As, Cu and also
Zn transport systems (e.g., CnrT, CzcD, CzcA, CznA, ArsD and
AioX/AoxX proteins). Together, these findings position this
community as a rich source of lithotrophic strains. In particular,
neutrophilic Fe(II)-oxidizers emerged as promising targets for
future isolation, kinetic characterization and pH tolerance testing
to evaluate their potential in biotechnological innovations such as
bioremediation and recovery of critical raw materials.

This first integrated dataset establishes an essential reference point
for future monitoring. Since this is a single-timepoint survey of the
sole Mdria mine effluent, future work has to include temporally and
spatially replicated sampling in order to capture community dynamics
and validate functional resilience. The observed taxonomic and
functional patterns therefore do not represent long-term trends, but
rather reflect the current state of the microbial community under the
prevailing geochemical conditions. These efforts align with EU
priorities such as the European Green Deal (European Commission,
2019), Critical Raw Material Resilience: charting a Path towards more
excellent Security and Sustainability (European Commission, 2020)
and Regulation of The European Parliament and of The Council
establishing a framework for ensuring a secure and sustainable supply
of critical raw materials and amending Regulations (European
Commission, 2023).
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