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Association of placental
manganese levels, maternal gut
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!Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University,
Lanzhou, China, 2The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical
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Background: Preeclampsia (PE), a leading cause of maternal and fetal
morbidity, remains poorly understood mechanistically. While metal elements
like manganese (Mn) are critical for placental function, their interplay with gut
microbiota in PE pathogenesis is underexplored. This study evaluates placental
heavy metal exposure—particularly Mn—and its interaction with gut microbiota
in modulating PE risk.

Methods: The study included 21 healthy pregnant women (Control group), and
21 pregnant women diagnosed with PE (PE group). Placental samples were
collected to measure metal elements concentrations, while fecal samples
were obtained to assess gut microbiota composition. Associations between
gut microbiota, PE, and placental Mn levels were analyzed using the Analysis
of Composition of Microbiomes with Bias Correction 2 method. Additionally,
KEGG pathway enrichment analysis was conducted to identify metabolic
pathways linked to PE and Mn levels.

Results: Mn levels were significantly lower in the PE group compared to the
Control group (p = 0.002). Gut microbiota diversity showed no significant
differences between groups, but specific genera were linked to PE and Mn
levels: Campylobacter and Porphyromonas were positively correlated with PE
and negatively with Mn, while Coprobacillus showed the opposite pattern. KEGG
pathway enrichment analysis identified eight metabolic pathways negatively
associated with PE and positively linked to Mn, including the degradation of
aromatic compounds.

Conclusion: Our findings suggest that Mn may serve as a protective factor against
PE within a certain concentration range. Interactions between Mn and specific
bacterial genera (Coprobacillus, Campylobacter, and Porphyromonas) appear
to influence PE development by altering gut microbiota metabolic activities.
These findings underscore the potential significance of the gut microbiota-Mn
interplay in PE pathogenesis.
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Introduction

Preeclampsia (PE) is a multisystem pregnancy disorder involving
varying degrees of placental malperfusion, which leads to the release
of soluble factors into the maternal circulation. These factors cause
maternal vascular endothelial injury, leading to hypertension and
damage to multiple organs (Chiang et al., 2024; Chappell et al., 2021).
As a major contributor to maternal and perinatal morbidity and
mortality, PE imposes a significant global health burden. The global
incidence of PE is estimated to be 4.5%, which is similar to its
incidence in China (Abalos et al., 2013; Li et al., 2021). PE is associated
with adverse fetal outcomes, such as fetal growth restriction (FGR),
preterm delivery, and stillbirth (Li et al., 2021; Harmon et al., 2015;
Poon et al., 2019). It also has long-term health consequences for both
pregnant women and their offspring, including cardiovascular disease,
diabetes, dyslipidemia, and, in children, attention-deficit/hyperactivity
disorder (ADHD) (Pittara et al, 2021). Due to its serious
consequences, preeclampsia has been extensively studied. Research
has identified maternal vascular malperfusion as a key factor in its
pathogenesis (Ernst, 2018; Khong et al., 2016). However, the upstream
causes remain unclear.

Recent studies have focused on the association between
preeclampsia and metal elements, especially manganese (Mn). Mn is
an essential trace element involved in enzyme synthesis, activation,
and the regulation of glucose and lipid metabolism (Li and Yang,
2018). Most studies have reported a negative correlation between Mn
levels and preeclampsia, though the underlying mechanisms remain
unclear (Chen et al., 2024; Liu et al., 2019; Liu et al., 2020; Borghese
etal,, 2023; Enebe et al,, 2023). One possible explanation is that Mn is
a key component of superoxide dismutase (SOD), an enzyme that
neutralizes reactive oxygen species (e.g., superoxide anions) linked to
hypertension, thus reducing preeclampsia risk (Li and Yang, 2018;
Schlichte et al,, 2021). Other metal elements, including Nickel (Ni),
copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb), have also
been reported to be associated with PE (He et al., 2024). Notably, most
current studies primarily focus on detecting metal elements in serum,
with only a few examining their levels in the placenta. Therefore, one
of the objectives of this study is to explore the association between
metal elements, particularly Mn in the placenta, and preeclampsia, as
well as their underlying mechanisms.

In addition to manganese, the gut microbiota is also considered
closely linked to preeclampsia. The gut microbiota plays a vital role in
human metabolism and immune regulation and is strongly associated
with the development of diseases such as preeclampsia (Zambella
et al, 2024; Zong et al., 2023; Deady et al., 2024). A 2021 study
revealed that preeclamptic patients exhibited significantly lower
relative abundances of Varibaculum, Prevotella, Lactobacillus, and
Porphyromonas in their gut microbiota compared to healthy pregnant
women. These bacteria can produce short-chain fatty acids (SCFAs),
such as butyrate and propionate. These metabolites support intestinal
barrier integrity and help modulate the immune system (Huang et al.,
2021). Similarly, another study highlighted Limosilactobacillus
Fermentum as a key bacterium linked to severe preeclampsia (Liu
et al., 2024). It may mitigate severe preeclampsia by enhancing
arginine and proline metabolism and influencing the flagellar
assembly functions of the gut microbiota. However, most studies on
the gut microbiota and preeclampsia emphasize bacterial relative
abundances, with research on absolute abundances remaining limited
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(Huang et al., 2021; Wang et al., 2020; Zhao et al., 2023; Meijer et al,,
2023; Chang et al., 2020). Furthermore, these studies frequently
employ Linear Discriminant Analysis Effect Size (LefSe), a method
sensitive to sparse data and unable to adjust for confounding factors
like age and body mass index (BMI). Thus, more robust analytical
methods are crucial for investigating gut microbiota differences
between preeclamptic and healthy pregnant women.

Although emerging evidence above suggests that both the gut
microbiota and trace elements contribute to the pathogenesis of
preeclampsia, their intricate interplay remains unclear. Current studies
have revealed that metal exposure, such as manganese, can affect gut
microbiota composition, potentially promoting or preventing the
development of certain diseases (Zhu et al., 2024). However, human
studies on this topic remain limited, especially in vulnerable groups
like pregnant women. Therefore, this study compares gut microbiota
and metal element levels between healthy pregnant women and those
with preeclampsia. Particular attention is given to the relationship
among preeclampsia, gut microbiota, and placental manganese levels.
Our findings may provide new insights into the mechanisms
underlying preeclampsia.

Methods
Participants

Participants were recruited from Dongguan Songshan Lake
Central Hospital, Guangdong Province, China, between November
2022 and October 2023. Eligible participants were pregnant women
aged 18 years or older, with a gestational age of more than 32 weeks,
residing in Dongguan for over 1 year, and willing to provide
informed consent.

The exclusion criteria were as follows: (1) A history of preexisting
conditions such as hypertension, diabetes mellitus, coronary heart
disease, cerebral infarction, kidney disease, cancer, glucose-6-
phosphate dehydrogenase deficiency, or other metabolic or immune
disorders; (2) A history of acute gastroenteritis, bacterial urinary tract
infections, inflammatory bowel disease, or other chronic conditions
that may affect gut microbiota; (3) A family history of hypertension
(including gestational hypertension), coronary artery disease, diabetes
mellitus, or kidney disease; (4) Use of mineral supplements,
antibiotics, probiotics, prebiotics, proton pump inhibitors (PPIs), or
other medications that may influence body metal element levels or gut
microbiota after 28 weeks of gestation; (5) Twin or multiple
pregnancies, assisted reproduction, severe memory impairment,
mental or neurological disorders, or a history of seizures or loss
of consciousness.

A total of 42 pregnant women were included in the study: 21 were
healthy, and 21 were diagnosed with preeclampsia based on the
Diagnosis and Treatment of Hypertension and Preeclampsia in
Pregnancy: A Clinical Practice Guideline in China (2020)
(Hypertensive Disorders in Pregnancy Subgroup, Chinese Society of
Obstetrics and Gynecology, Chinese Medical Association, 2020).

Written informed consent was obtained from all participants. To
ensure privacy, personal identifiers were replaced with codes
consisting of the participants initials and admission numbers during
chemical and microbiological analyses. For statistical analyses, only
these codes were used, with all personal information excluded. The
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study protocol was approved by the Ethics Committee of Dongguan
Songshan Lake Central Hospital.

Data collection

Demographic data, including age, height, pre-pregnancy weight,
pre-pregnancy body mass index (BMI), delivery weight, and delivery
BMI, as well as clinical data such as biochemical markers [e.g., Total
Protein (TP) and Aspartate Aminotransferase (AST)] and
hematological markers [e.g., White Blood Cell Count (WBC) and Red
Blood Cell Count (RBC)], were obtained from hospital medical
records. For statistical analysis, delivery BMI was used in place of
pre-pregnancy BMI. Similarly, clinical measurements closest to the
time of delivery were selected to ensure temporal consistency, as
placental samples were collected postpartum.

Placental tissues were collected immediately following delivery.
To ensure sample integrity, peripheral margins, necrotic areas, and
calcified regions were excluded. After thorough rinsing with sterile
saline, two tissue samples—each approximately 2 cm in diameter—
were excised from the central and peripheral regions of each placenta.
The final metal concentration for each placenta was calculated as the
average of these two samples. All specimens were immediately flash-
frozen in liquid nitrogen and stored at —80 °C until analysis. For metal
extraction, tissues were subjected to microwave-assisted acid digestion
using nitric acid (HNO;) and hydrogen peroxide (H,O,) to fully
decompose organic material and release metal ions into solution.
Metal concentrations, including manganese (Mn), nickel (Ni), copper
(Cu), arsenic (As), cadmium (Cd), and lead (Pb), were subsequently
quantified using liquid chromatography-inductively coupled plasma
mass spectrometry (LC-ICP-MS). Results were reported in
micrograms per gram (ug/g) of tissue.

Approximately 5 grams of fresh stool were collected from each
participant within 1 week prior to their estimated due date and placed
into sterile collection tubes. The samples were transported to the
laboratory within 2 h and immediately stored at —80 °C for subsequent
analysis. Absolute quantitative 16S rRNA gene sequencing was
performed using the Accul6S method, which incorporates synthetic
DNA sequences as internal standards for precise quantification
(Genesky Biotechnologies Inc, n.d.). Details of the instruments and
reagents used for gene sequencing are listed in
Supplementary Tables S1, S2. All microbial analyses in this study were
conducted based on absolute copy numbers.

Statistical analysis

Demographic data, clinical data, and placental metal data are
expressed as mean (standard deviation). Group differences were assessed
using the student t-test for data meeting normality and homogeneity of
variance. For data that violated these assumptions, the Mann-Whitney
U test was applied. Normality was evaluated using the Shapiro-Wilk
test, and homogeneity of variance was assessed with the Levene test.

Group differences in a-diversity were analyzed using linear
regression if the data met the normality assumption, or a Generalized
Linear Model (GLM) if the data did not meet the normality assumption.
p-values were adjusted for multiple comparisons using the Bonferroni
correction (False Discovery Rate, FDR) to assess the significance of
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species diversity. Differences in p-diversity were evaluated using
Principal Coordinates Analysis (PCoA). Both a-diversity and
f-diversity analyses were adjusted for age and delivery BMI.

Gut microbiota analyses were performed at the genus level.
Associations between bacterial genera and preeclampsia or placental
metal elements were evaluated using Analysis of Composition of
Microbiomes with Bias Correction 2 (ANCOM-BC2) (Lin and
Peddada, 2024), with p-values adjusted by the Benjamini-Hochberg
method. Differential KEGG (Kyoto Encyclopedia of Genes and
Genomes) Orthology genes were identified through the KEGG
database (Kanehisa and Goto, 2000), and pathway enrichment analysis
was conducted to highlight significant changes in metabolic pathways.
Particular attention was given to bacterial genera, KEGG Orthology
(KO) genes, and metabolic pathways significantly associated with both
preeclampsia and placental manganese levels.

Statistical analyses were performed in R (version 4.4.2).
Visualizations were generated using R (version 4.4.2) and Photoshop
(version 26.2). All tests were two-tailed, with a p-value < 0.05
considered statistically significant.

Results
Demographic and clinical data

A total of 42 pregnant women were included in the study, with 21
healthy pregnant women serving as the control group and 21 women
diagnosed with preeclampsia (PE) comprising the PE group. Their
demographic and clinical data are presented in Table 1. The mean age
was comparable between the control group (28.90 + 5.64 years) and the
PE group (29.95 + 5.26 years, p =0.524). Similarly, no significant
differences were observed in height, weight or BMI (p > 0.05). Regarding
liver function indicators, the PE group exhibited significantly elevated
aspartate aminotransferase (AST) levels compared to the control group
(28.87 £19.87 U/L vs. 20.70 + 2.97 U/L, p = 0.018). However, alanine
aminotransferase (ALT) and the AST/ALT ratio did not differ
significantly between the groups. In terms of hematological parameters,
there was a significant increase in lymphocyte ratio (LYMPH) in the PE
group compared to the control group (0.27 £0.26 vs. 0.19 £ 0.11,
p =0.024), whereas other indices, including white blood cell count
(WBC), red blood cell count (RBC), hematocrit (HCT), and neutrophil
ratio (NEUT), showed no statistically significant differences (p > 0.05).

Placental metal element levels

The levels of various metal elements were compared between
healthy pregnant women and women with preeclampsia (Figure 1;
Supplementary Table S3). Mn levels were significantly lower in the PE
group than in the Control group (0.60 + 0.31 pg/g vs. 0.86 + 0.30 pg/g,
p =0.002). No significant differences were found for Ni (p = 0.063),
Cu (p = 0.506), As (p = 0.640), Cd (p = 0.367), or Pb (p = 0.372).

Gut microbiota diversity analysis

The gut microbiota diversity between the two groups was
compared in terms of both «- and B-diversity. For o-diversity
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TABLE 1 Comparison of demographic and clinical data between the
control group and the PE group.

Characteristics Control PE (n=21) pvalue
(n=21)
Age (years) 28.90 (5.64) 29.95 (5.26) 0.524
Height (cm) 158.38 (4.49) 159.71 (6.08) 0.209
Early pregnancy weight 56.04 (12.21) 60.41 (13.11) 0.249
(kg)
Early pregnancy BMI 66.92 (14.36) 70.41 (13.77) 0.146
(kgem™)
Delivery weight (kg) 22.24 (4.28) 23.64 (4.76) 0.323
Delivery BMI (kgem™) 26.52 (5.05) 27.63 (4.88) 0.283
TP (g/L) 57.86 (24.54) 62.51 (6.37) 0.151
GLO (g/L) 26.19 (11.15) 28.78 (3.63) 0.606
Alb (g/L) 31.70 (13.50) 33.66 (3.49) 0.059
AST (U/L) 20.70 (2.97) 28.87 (19.87) 0.018
ALT (U/L) 16.16 (3.78) 27.74 (45.45) 0.800
AST/ALT 1.38 (0.24) 1.35(0.38) 0.757
WBC (10°/L) 9.55 (2.09) 17.38 (19.07) 0.941
RBC (10'%/L) 4.11 (0.42) 5.52(3.00) 0.358
HCT 0.36 (0.04) 1.49 (5.23) 0.378
NEUT 0.75 (0.05) 0.91 (0.91) 0222
LYMPH 0.19 (0.11) 0.27 (0.26) 0.024

PE, Preeclampsia; BMI, Body Mass Index; TP, Total Protein; GLO, Globulin; Alb, Albumin;
AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; AST/ALT, Ratio of
Aspartate to Alanine Aminotransferase; WBC, White Blood Cell Count; RBC, Red Blood
Cell Count; HCT, Hematocrit; NEUT, Neutrophil Ratio; LYMPH, Lymphocyte Ratio.

(Figures 2A-F), the following indices were analyzed: Observed Species
(the count of distinct species observed), Chao 1 Estimator and
Abundance-based Coverage Estimator (both estimators of species
richness that account for unobserved species), Shannon Diversity
Index and Simpson’s Diversity Index (which measure both diversity
and evenness within a community), and Coverage (estimating the
proportion of the total species that are represented in the sample).
None of these indices showed statistically significant differences
between the two groups (all p >0.05), suggesting no significant
differences in o-diversity. For f-diversity (Figure 2G), PCoA
demonstrated no clear separation between the groups (p = 0.194),
with the first principal coordinate accounting for 8.4% of the variance
and the second 7.6%. These results suggest that p-diversity may also
lack significant differences between healthy pregnant women and
those with preeclampsia.

Differential bacteria at the genus level

In this study, we investigated the relationships between the gut
microbiota, preeclampsia, and placental Mn levels at the genus
level, employing the ANCOM-BC2 analytical method, which was
adjusted for age and delivery BMI. The results are shown in
Figure 3 and Supplementary Table S4. Our findings highlighted
distinct microbial compositions associated with PE and placental
Mn levels. Four bacterial genera were identified as having

Frontiers in Microbiology

10.3389/fmicb.2025.1674549

significant correlations with PE and Mn levels. Campylobacter,
Porphyromonas, and UCG-009 showed positive associations with
PE but negative associations with Mn levels. Conversely,
Coprobacillus was negatively correlated with PE and positively
correlated with Mn levels. The specific log2 fold changes (log2FC)
and FDR underscore the robustness and significance of these
associations. These results indicate specific dysbiosis patterns in
the gut microbiota related to PE and Mn.

KEGG pathway enrichment analysis

The potential functional capacities of the gut microbiota in
relation to preeclampsia and placental manganese levels were
explored by mapping microbial genes to the KEGG databases,
with the findings detailed in Figure 4 and Supplementary Table S5.
We identified 81 distinct KEGG Orthology (KO) genes: 29
exhibited a positive correlation with preeclampsia but a negative
correlation with Mn; conversely, 52 showed a negative correlation
with preeclampsia and a positive correlation with Mn. Subsequent
KEGG pathway enrichment analysis of these KO genes revealed
eight metabolic pathways negatively associated with preeclampsia
yet positively associated with Mn. These pathways include:
Pinene, camphor, and geraniol degradation; Dioxin degradation;
Xylene degradation; Caprolactam degradation; Degradation of
aromatic compounds; Glycine, serine, and threonine metabolism;
Benzoate degradation; Methane metabolism. These results
underscore metabolic alterations within the gut microbiota in
response to fluctuations in both preeclampsia and manganese
levels. These findings lay a foundation for further investigation
into the role of microbial genes in influencing host metabolic
processes, thereby elucidating the complex pathophysiology of
preeclampsia associated with manganese.

Discussion

This study investigates the relationship between placental
trace element levels, specifically manganese, gut microbiota, and
preeclampsia. We identified a negative correlation between
placental Mn levels and preeclampsia. Additionally, our findings
suggest that interactions between Mn and four bacterial genera—
Coprobacillus, Campylobacter, Porphyromonas, and UCG-009—
may influence the development of preeclampsia. This effect may
be linked to altered gut microbiota metabolic activities, including
the degradation of exogenous organic pollutants and the
metabolism of methane, purines, and amino acids.

In this study, six metal elements were measured: Mn, Ni, Cu,
As, Cd, and Pb. Among them, Mn is distinct. Previous studies
have generally reported positive or null associations between the
other metals and preeclampsia (Chen et al., 2024; Borghese et al.,
2023; Hernandez-Castro et al., 2024; Sandoval-Carrillo et al.,
2016), whereas Mn has been widely recognized as a protective
factor. A recent meta-analysis (Wu et al., 2024), encompassing 18
observational studies, evaluated the relationship between maternal
Mn levels and PE. The analysis revealed that lower serum Mn
levels were associated with a higher risk of PE, regardless of the
geographic region or the timing of serum Mn collection. Our
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FIGURE 1
Comparison of manganese (Mn), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), and copper (Cu) levels between the control group and the PE group.

study similarly supports this association. However, we chose to
analyze placental Mn levels rather than serum levels. Although the
protective role of Mn in PE is supported by a growing body of
evidence, the underlying mechanisms remain unclear. One widely
accepted hypothesis suggests that Mn contributes to the activity
of manganese superoxide dismutase (Mn-SOD), a critical
antioxidant enzyme. Mn-SOD mitigates oxidative stress by
scavenging reactive oxygen species (ROS), thereby alleviating
inflammation and reducing placental damage (Schlichte et al.,
2021; Jahan et al., 2023; Grzeszczak et al., 2023; Tossetta et al.,
2023; Liu et al., 2022; Matsubara et al., 2015). Additionally, ROS
may impair blood pressure regulation by promoting endothelial
dysfunction (Silva et al., 2012), while Mn-SOD can alleviate
preeclampsia by counteracting this effect (Glover et al., 2014;
Tomimatsu et al., 2019; Gong et al., 2020).

Besides Mn-SOD, our findings suggest that manganese may
indirectly mitigate the progression of preeclampsia by altering the
composition of the gut microbiota. Increasing evidence highlights
that exposure to metal elements, such as Mn, can influence gut
microbiota composition (Li et al., 2021; Peng et al., 2024).
However, most studies have been conducted in animal models.

Frontiers in Microbiology

Research on the relationship between Mn and the gut microbiota
in humans—especially in pregnant women—remains limited. Our
study identified associations between Mn and 63 bacterial genera,
four of which—Coprobacillus, Campylobacter, Porphyromonas,
and UCG-009—were also associated with preeclampsia. In
particular, “UCG-009” refers to an unclassified genus group with
minimal research available. Therefore, in this paragraph, let us
three
Porphyromonas are common human pathogens. In our study, both

focus on the other genera. Campylobacter and
genera were positively associated with preeclampsia and negatively
correlated with placental manganese (Mn) levels. Campylobacter
is a well-established cause of gastroenteritis and has been linked
to Guillain-Barré syndrome (Butzler, 2004; Nachamkin et al.,
1998). Similarly, Porphyromonas is associated with periodontal
diseases such as periodontitis and is considered a risk factor for
adverse pregnancy outcomes, including preeclampsia (Slots, 1999;
Chopra et al,, 2020). A shared characteristic of the two pathogens
is their capacity to provoke inflammatory responses, resulting in
elevated levels of pro-inflammatory cytokines in the body (Zhang
et al., 2022; Young et al., 2007; Mukherjee et al., 2024; Kang et al.,

2022). This pro-inflammatory activity may underlie their
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FIGURE 2
Comparison of gut microbiota a-diversity (A—F) and -diversity (G) between the Control group and the PE group.

association with preeclampsia, highlighting the potential role of
inflammatory mechanisms in the disease’s pathogenesis. In
contrast, Coprobacillus demonstrated a positive correlation with
placental Mn levels and a negative association with preeclampsia.
Previous studies suggest that this genus produces SCFAs, which
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are known to benefit human health and can reduce inflammation
(Yang et al., 2024; Yu et al., 2021; Hu et al., 2023; Liu et al., 2022).

The three genera—Coprobacillus, Campylobacter, and
Porphyromonas—highlighted in our study have been rarely
reported in prior research. In another study conducted in
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Liaocheng, China, Akkermansia muciniphila, a bacterium known
for producing SCFAs, was found to be reduced in PE patients.
Animal experiments further showed that supplementation with
Akkermansia muciniphila, propionic acid, or butyric acid
alleviated several features of preeclampsia in rats (Jin et al., 2022).
Similarly, a study in Guangzhou, China, found that not only was
Akkermansia reduced in PE patients, but another beneficial
bacterium, Faecalibacterium—also known for butyrate
production—was diminished as well (Chen et al., 2020). An
Australian study also reported a reduction in the butyrate-
producing genus Coprococcus among PE patients (Altemani et al.,
2021). However, our study did not detect significant differences
in the abundance of Akkermansia, Faecalibacterium, or
Coprococcus. These discrepancies could stem from variations in
the timing of fecal sample collection or differences in microbial
composition analysis methods. Despite these inconsistencies, both
our findings and prior research consistently underscore a
reduction in SCFA-producing, inflammation-regulating beneficial
bacteria in PE patients. This supports the hypothesis that SCFAs
may exert a protective effect against PE (Mackay and Marques,
2022; Cui et al., 2023).

KEGG metabolic pathway prediction based on Accul6S data
suggested eight potentially downregulated pathways in patients
with PE. Six of these predicted pathways—dioxin degradation,
xylene degradation, caprolactam degradation, benzoate
degradation, pinene/camphor/geraniol degradation, and aromatic
compound degradation—are related to microbial xenobiotic
metabolism and may be involved in the degradation of exogenous

organic pollutants. Such pollutants have been reported to activate

Frontiers in Microbiology

the aryl hydrocarbon receptor (AHR), thereby contributing to
inflammation and oxidative stress (Vogel et al., 2020). The other
two predicted pathways—glycine, serine, and threonine
metabolism, and methane metabolism—also have potential links
to inflammation and oxidative stress (Ye et al., 2020; Aguayo-
Cerén et al., 2023; Egbujor et al., 2024). Nevertheless, it should
be emphasized that these findings are based on predictive
functional profiling of microbial communities rather than direct
metabolomic measurements. Direct evidence linking these
pathways or metabolites to preeclampsia remains limited. Further
validation, particularly through metabolomic analyses and
mechanistic studies in animal models, is warranted to clarify these
potential associations.

The primary strength of this study is its comprehensive
approach, which adopts a tripartite perspective to investigate the
interplay among placental manganese levels, gut microbiota
composition, and preeclampsia. Rather than focusing on a single
factor, such as gut microbiota or manganese, our study integrates
these factors to provide novel insights into the potential
mechanisms by which manganese may mitigate the risk of
preeclampsia through modulating gut microbiota composition.
Furthermore, we employed ANCOM-BC2, a robust analytical
method published in Nature Methods in 2024 (Lin and Peddada,
2024), to precisely evaluate differences in gut microbiota
composition. Despite these strengths, our study has several
limitations. First, the sample size was relatively small, with only
21 pregnant women in the PE group and 21 in the control group,
which may limit statistical power. Second, placenta and fecal
samples were collected at delivery or within 1 week before
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delivery, when preeclampsia was already established. Therefore,
the observed microbial and metabolic alterations may represent
consequences of the disease rather than predisposing risk factors,
limiting causal interpretation. To address these issues, future
studies should adopt larger, multi-center cohorts with longitudinal
sampling starting early in pregnancy to validate our findings and
clarify temporal and causal relationships.
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