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Background: Preeclampsia (PE), a leading cause of maternal and fetal 
morbidity, remains poorly understood mechanistically. While metal elements 
like manganese (Mn) are critical for placental function, their interplay with gut 
microbiota in PE pathogenesis is underexplored. This study evaluates placental 
heavy metal exposure—particularly Mn—and its interaction with gut microbiota 
in modulating PE risk.
Methods: The study included 21 healthy pregnant women (Control group), and 
21 pregnant women diagnosed with PE (PE group). Placental samples were 
collected to measure metal elements concentrations, while fecal samples 
were obtained to assess gut microbiota composition. Associations between 
gut microbiota, PE, and placental Mn levels were analyzed using the Analysis 
of Composition of Microbiomes with Bias Correction 2 method. Additionally, 
KEGG pathway enrichment analysis was conducted to identify metabolic 
pathways linked to PE and Mn levels.
Results: Mn levels were significantly lower in the PE group compared to the 
Control group (p = 0.002). Gut microbiota diversity showed no significant 
differences between groups, but specific genera were linked to PE and Mn 
levels: Campylobacter and Porphyromonas were positively correlated with PE 
and negatively with Mn, while Coprobacillus showed the opposite pattern. KEGG 
pathway enrichment analysis identified eight metabolic pathways negatively 
associated with PE and positively linked to Mn, including the degradation of 
aromatic compounds.
Conclusion: Our findings suggest that Mn may serve as a protective factor against 
PE within a certain concentration range. Interactions between Mn and specific 
bacterial genera (Coprobacillus, Campylobacter, and Porphyromonas) appear 
to influence PE development by altering gut microbiota metabolic activities. 
These findings underscore the potential significance of the gut microbiota-Mn 
interplay in PE pathogenesis.
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Introduction

Preeclampsia (PE) is a multisystem pregnancy disorder involving 
varying degrees of placental malperfusion, which leads to the release 
of soluble factors into the maternal circulation. These factors cause 
maternal vascular endothelial injury, leading to hypertension and 
damage to multiple organs (Chiang et al., 2024; Chappell et al., 2021). 
As a major contributor to maternal and perinatal morbidity and 
mortality, PE imposes a significant global health burden. The global 
incidence of PE is estimated to be  4.5%, which is similar to its 
incidence in China (Abalos et al., 2013; Li et al., 2021). PE is associated 
with adverse fetal outcomes, such as fetal growth restriction (FGR), 
preterm delivery, and stillbirth (Li et al., 2021; Harmon et al., 2015; 
Poon et al., 2019). It also has long-term health consequences for both 
pregnant women and their offspring, including cardiovascular disease, 
diabetes, dyslipidemia, and, in children, attention-deficit/hyperactivity 
disorder (ADHD) (Pittara et  al., 2021). Due to its serious 
consequences, preeclampsia has been extensively studied. Research 
has identified maternal vascular malperfusion as a key factor in its 
pathogenesis (Ernst, 2018; Khong et al., 2016). However, the upstream 
causes remain unclear.

Recent studies have focused on the association between 
preeclampsia and metal elements, especially manganese (Mn). Mn is 
an essential trace element involved in enzyme synthesis, activation, 
and the regulation of glucose and lipid metabolism (Li and Yang, 
2018). Most studies have reported a negative correlation between Mn 
levels and preeclampsia, though the underlying mechanisms remain 
unclear (Chen et al., 2024; Liu et al., 2019; Liu et al., 2020; Borghese 
et al., 2023; Enebe et al., 2023). One possible explanation is that Mn is 
a key component of superoxide dismutase (SOD), an enzyme that 
neutralizes reactive oxygen species (e.g., superoxide anions) linked to 
hypertension, thus reducing preeclampsia risk (Li and Yang, 2018; 
Schlichte et al., 2021). Other metal elements, including Nickel (Ni), 
copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb), have also 
been reported to be associated with PE (He et al., 2024). Notably, most 
current studies primarily focus on detecting metal elements in serum, 
with only a few examining their levels in the placenta. Therefore, one 
of the objectives of this study is to explore the association between 
metal elements, particularly Mn in the placenta, and preeclampsia, as 
well as their underlying mechanisms.

In addition to manganese, the gut microbiota is also considered 
closely linked to preeclampsia. The gut microbiota plays a vital role in 
human metabolism and immune regulation and is strongly associated 
with the development of diseases such as preeclampsia (Zambella 
et  al., 2024; Zong et  al., 2023; Deady et  al., 2024). A 2021 study 
revealed that preeclamptic patients exhibited significantly lower 
relative abundances of Varibaculum, Prevotella, Lactobacillus, and 
Porphyromonas in their gut microbiota compared to healthy pregnant 
women. These bacteria can produce short-chain fatty acids (SCFAs), 
such as butyrate and propionate. These metabolites support intestinal 
barrier integrity and help modulate the immune system (Huang et al., 
2021). Similarly, another study highlighted Limosilactobacillus 
Fermentum as a key bacterium linked to severe preeclampsia (Liu 
et  al., 2024). It may mitigate severe preeclampsia by enhancing 
arginine and proline metabolism and influencing the flagellar 
assembly functions of the gut microbiota. However, most studies on 
the gut microbiota and preeclampsia emphasize bacterial relative 
abundances, with research on absolute abundances remaining limited 

(Huang et al., 2021; Wang et al., 2020; Zhao et al., 2023; Meijer et al., 
2023; Chang et  al., 2020). Furthermore, these studies frequently 
employ Linear Discriminant Analysis Effect Size (LefSe), a method 
sensitive to sparse data and unable to adjust for confounding factors 
like age and body mass index (BMI). Thus, more robust analytical 
methods are crucial for investigating gut microbiota differences 
between preeclamptic and healthy pregnant women.

Although emerging evidence above suggests that both the gut 
microbiota and trace elements contribute to the pathogenesis of 
preeclampsia, their intricate interplay remains unclear. Current studies 
have revealed that metal exposure, such as manganese, can affect gut 
microbiota composition, potentially promoting or preventing the 
development of certain diseases (Zhu et al., 2024). However, human 
studies on this topic remain limited, especially in vulnerable groups 
like pregnant women. Therefore, this study compares gut microbiota 
and metal element levels between healthy pregnant women and those 
with preeclampsia. Particular attention is given to the relationship 
among preeclampsia, gut microbiota, and placental manganese levels. 
Our findings may provide new insights into the mechanisms 
underlying preeclampsia.

Methods

Participants

Participants were recruited from Dongguan Songshan Lake 
Central Hospital, Guangdong Province, China, between November 
2022 and October 2023. Eligible participants were pregnant women 
aged 18 years or older, with a gestational age of more than 32 weeks, 
residing in Dongguan for over 1 year, and willing to provide 
informed consent.

The exclusion criteria were as follows: (1) A history of preexisting 
conditions such as hypertension, diabetes mellitus, coronary heart 
disease, cerebral infarction, kidney disease, cancer, glucose-6-
phosphate dehydrogenase deficiency, or other metabolic or immune 
disorders; (2) A history of acute gastroenteritis, bacterial urinary tract 
infections, inflammatory bowel disease, or other chronic conditions 
that may affect gut microbiota; (3) A family history of hypertension 
(including gestational hypertension), coronary artery disease, diabetes 
mellitus, or kidney disease; (4) Use of mineral supplements, 
antibiotics, probiotics, prebiotics, proton pump inhibitors (PPIs), or 
other medications that may influence body metal element levels or gut 
microbiota after 28 weeks of gestation; (5) Twin or multiple 
pregnancies, assisted reproduction, severe memory impairment, 
mental or neurological disorders, or a history of seizures or loss 
of consciousness.

A total of 42 pregnant women were included in the study: 21 were 
healthy, and 21 were diagnosed with preeclampsia based on the 
Diagnosis and Treatment of Hypertension and Preeclampsia in 
Pregnancy: A Clinical Practice Guideline in China (2020) 
(Hypertensive Disorders in Pregnancy Subgroup, Chinese Society of 
Obstetrics and Gynecology, Chinese Medical Association, 2020).

Written informed consent was obtained from all participants. To 
ensure privacy, personal identifiers were replaced with codes 
consisting of the participant’s initials and admission numbers during 
chemical and microbiological analyses. For statistical analyses, only 
these codes were used, with all personal information excluded. The 
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study protocol was approved by the Ethics Committee of Dongguan 
Songshan Lake Central Hospital.

Data collection

Demographic data, including age, height, pre-pregnancy weight, 
pre-pregnancy body mass index (BMI), delivery weight, and delivery 
BMI, as well as clinical data such as biochemical markers [e.g., Total 
Protein (TP) and Aspartate Aminotransferase (AST)] and 
hematological markers [e.g., White Blood Cell Count (WBC) and Red 
Blood Cell Count (RBC)], were obtained from hospital medical 
records. For statistical analysis, delivery BMI was used in place of 
pre-pregnancy BMI. Similarly, clinical measurements closest to the 
time of delivery were selected to ensure temporal consistency, as 
placental samples were collected postpartum.

Placental tissues were collected immediately following delivery. 
To ensure sample integrity, peripheral margins, necrotic areas, and 
calcified regions were excluded. After thorough rinsing with sterile 
saline, two tissue samples—each approximately 2 cm in diameter—
were excised from the central and peripheral regions of each placenta. 
The final metal concentration for each placenta was calculated as the 
average of these two samples. All specimens were immediately flash-
frozen in liquid nitrogen and stored at −80 °C until analysis. For metal 
extraction, tissues were subjected to microwave-assisted acid digestion 
using nitric acid (HNO₃) and hydrogen peroxide (H₂O₂) to fully 
decompose organic material and release metal ions into solution. 
Metal concentrations, including manganese (Mn), nickel (Ni), copper 
(Cu), arsenic (As), cadmium (Cd), and lead (Pb), were subsequently 
quantified using liquid chromatography–inductively coupled plasma 
mass spectrometry (LC-ICP-MS). Results were reported in 
micrograms per gram (μg/g) of tissue.

Approximately 5 grams of fresh stool were collected from each 
participant within 1 week prior to their estimated due date and placed 
into sterile collection tubes. The samples were transported to the 
laboratory within 2 h and immediately stored at −80 °C for subsequent 
analysis. Absolute quantitative 16S rRNA gene sequencing was 
performed using the Accu16S method, which incorporates synthetic 
DNA sequences as internal standards for precise quantification 
(Genesky Biotechnologies Inc, n.d.). Details of the instruments and 
reagents used for gene sequencing are listed in 
Supplementary Tables S1, S2. All microbial analyses in this study were 
conducted based on absolute copy numbers.

Statistical analysis

Demographic data, clinical data, and placental metal data are 
expressed as mean (standard deviation). Group differences were assessed 
using the student t-test for data meeting normality and homogeneity of 
variance. For data that violated these assumptions, the Mann–Whitney 
U test was applied. Normality was evaluated using the Shapiro–Wilk 
test, and homogeneity of variance was assessed with the Levene test.

Group differences in α-diversity were analyzed using linear 
regression if the data met the normality assumption, or a Generalized 
Linear Model (GLM) if the data did not meet the normality assumption. 
p-values were adjusted for multiple comparisons using the Bonferroni 
correction (False Discovery Rate, FDR) to assess the significance of 

species diversity. Differences in β-diversity were evaluated using 
Principal Coordinates Analysis (PCoA). Both α-diversity and 
β-diversity analyses were adjusted for age and delivery BMI.

Gut microbiota analyses were performed at the genus level. 
Associations between bacterial genera and preeclampsia or placental 
metal elements were evaluated using Analysis of Composition of 
Microbiomes with Bias Correction 2 (ANCOM-BC2) (Lin and 
Peddada, 2024), with p-values adjusted by the Benjamini-Hochberg 
method. Differential KEGG (Kyoto Encyclopedia of Genes and 
Genomes) Orthology genes were identified through the KEGG 
database (Kanehisa and Goto, 2000), and pathway enrichment analysis 
was conducted to highlight significant changes in metabolic pathways. 
Particular attention was given to bacterial genera, KEGG Orthology 
(KO) genes, and metabolic pathways significantly associated with both 
preeclampsia and placental manganese levels.

Statistical analyses were performed in R (version 4.4.2). 
Visualizations were generated using R (version 4.4.2) and Photoshop 
(version 26.2). All tests were two-tailed, with a p-value < 0.05 
considered statistically significant.

Results

Demographic and clinical data

A total of 42 pregnant women were included in the study, with 21 
healthy pregnant women serving as the control group and 21 women 
diagnosed with preeclampsia (PE) comprising the PE group. Their 
demographic and clinical data are presented in Table 1. The mean age 
was comparable between the control group (28.90 ± 5.64 years) and the 
PE group (29.95 ± 5.26 years, p = 0.524). Similarly, no significant 
differences were observed in height, weight or BMI (p > 0.05). Regarding 
liver function indicators, the PE group exhibited significantly elevated 
aspartate aminotransferase (AST) levels compared to the control group 
(28.87 ± 19.87 U/L vs. 20.70 ± 2.97 U/L, p = 0.018). However, alanine 
aminotransferase (ALT) and the AST/ALT ratio did not differ 
significantly between the groups. In terms of hematological parameters, 
there was a significant increase in lymphocyte ratio (LYMPH) in the PE 
group compared to the control group (0.27 ± 0.26 vs. 0.19 ± 0.11, 
p = 0.024), whereas other indices, including white blood cell count 
(WBC), red blood cell count (RBC), hematocrit (HCT), and neutrophil 
ratio (NEUT), showed no statistically significant differences (p > 0.05).

Placental metal element levels

The levels of various metal elements were compared between 
healthy pregnant women and women with preeclampsia (Figure 1; 
Supplementary Table S3). Mn levels were significantly lower in the PE 
group than in the Control group (0.60 ± 0.31 μg/g vs. 0.86 ± 0.30 μg/g, 
p = 0.002). No significant differences were found for Ni (p = 0.063), 
Cu (p = 0.506), As (p = 0.640), Cd (p = 0.367), or Pb (p = 0.372).

Gut microbiota diversity analysis

The gut microbiota diversity between the two groups was 
compared in terms of both α- and β-diversity. For α-diversity 

https://doi.org/10.3389/fmicb.2025.1674549
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ding et al.� 10.3389/fmicb.2025.1674549

Frontiers in Microbiology 04 frontiersin.org

(Figures 2A–F), the following indices were analyzed: Observed Species 
(the count of distinct species observed), Chao 1 Estimator and 
Abundance-based Coverage Estimator (both estimators of species 
richness that account for unobserved species), Shannon Diversity 
Index and Simpson’s Diversity Index (which measure both diversity 
and evenness within a community), and Coverage (estimating the 
proportion of the total species that are represented in the sample). 
None of these indices showed statistically significant differences 
between the two groups (all p > 0.05), suggesting no significant 
differences in α-diversity. For β-diversity (Figure  2G), PCoA 
demonstrated no clear separation between the groups (p = 0.194), 
with the first principal coordinate accounting for 8.4% of the variance 
and the second 7.6%. These results suggest that β-diversity may also 
lack significant differences between healthy pregnant women and 
those with preeclampsia.

Differential bacteria at the genus level

In this study, we investigated the relationships between the gut 
microbiota, preeclampsia, and placental Mn levels at the genus 
level, employing the ANCOM-BC2 analytical method, which was 
adjusted for age and delivery BMI. The results are shown in 
Figure 3 and Supplementary Table S4. Our findings highlighted 
distinct microbial compositions associated with PE and placental 
Mn levels. Four bacterial genera were identified as having 

significant correlations with PE and Mn levels. Campylobacter, 
Porphyromonas, and UCG-009 showed positive associations with 
PE but negative associations with Mn levels. Conversely, 
Coprobacillus was negatively correlated with PE and positively 
correlated with Mn levels. The specific log2 fold changes (log2FC) 
and FDR underscore the robustness and significance of these 
associations. These results indicate specific dysbiosis patterns in 
the gut microbiota related to PE and Mn.

KEGG pathway enrichment analysis

The potential functional capacities of the gut microbiota in 
relation to preeclampsia and placental manganese levels were 
explored by mapping microbial genes to the KEGG databases, 
with the findings detailed in Figure 4 and Supplementary Table S5. 
We  identified 81 distinct KEGG Orthology (KO) genes: 29 
exhibited a positive correlation with preeclampsia but a negative 
correlation with Mn; conversely, 52 showed a negative correlation 
with preeclampsia and a positive correlation with Mn. Subsequent 
KEGG pathway enrichment analysis of these KO genes revealed 
eight metabolic pathways negatively associated with preeclampsia 
yet positively associated with Mn. These pathways include: 
Pinene, camphor, and geraniol degradation; Dioxin degradation; 
Xylene degradation; Caprolactam degradation; Degradation of 
aromatic compounds; Glycine, serine, and threonine metabolism; 
Benzoate degradation; Methane metabolism. These results 
underscore metabolic alterations within the gut microbiota in 
response to fluctuations in both preeclampsia and manganese 
levels. These findings lay a foundation for further investigation 
into the role of microbial genes in influencing host metabolic 
processes, thereby elucidating the complex pathophysiology of 
preeclampsia associated with manganese.

Discussion

This study investigates the relationship between placental 
trace element levels, specifically manganese, gut microbiota, and 
preeclampsia. We  identified a negative correlation between 
placental Mn levels and preeclampsia. Additionally, our findings 
suggest that interactions between Mn and four bacterial genera—
Coprobacillus, Campylobacter, Porphyromonas, and UCG-009—
may influence the development of preeclampsia. This effect may 
be linked to altered gut microbiota metabolic activities, including 
the degradation of exogenous organic pollutants and the 
metabolism of methane, purines, and amino acids.

In this study, six metal elements were measured: Mn, Ni, Cu, 
As, Cd, and Pb. Among them, Mn is distinct. Previous studies 
have generally reported positive or null associations between the 
other metals and preeclampsia (Chen et al., 2024; Borghese et al., 
2023; Hernandez-Castro et  al., 2024; Sandoval-Carrillo et  al., 
2016), whereas Mn has been widely recognized as a protective 
factor. A recent meta-analysis (Wu et al., 2024), encompassing 18 
observational studies, evaluated the relationship between maternal 
Mn levels and PE. The analysis revealed that lower serum Mn 
levels were associated with a higher risk of PE, regardless of the 
geographic region or the timing of serum Mn collection. Our 

TABLE 1  Comparison of demographic and clinical data between the 
control group and the PE group.

Characteristics Control 
(n = 21)

PE (n = 21) p value

Age (years) 28.90 (5.64) 29.95 (5.26) 0.524

Height (cm) 158.38 (4.49) 159.71 (6.08) 0.209

Early pregnancy weight 

(kg)

56.04 (12.21) 60.41 (13.11) 0.249

Early pregnancy BMI 

(kg∙m−2)

66.92 (14.36) 70.41 (13.77) 0.146

Delivery weight (kg) 22.24 (4.28) 23.64 (4.76) 0.323

Delivery BMI (kg∙m−2) 26.52 (5.05) 27.63 (4.88) 0.283

TP (g/L) 57.86 (24.54) 62.51 (6.37) 0.151

GLO (g/L) 26.19 (11.15) 28.78 (3.63) 0.606

Alb (g/L) 31.70 (13.50) 33.66 (3.49) 0.059

AST (U/L) 20.70 (2.97) 28.87 (19.87) 0.018

ALT (U/L) 16.16 (3.78) 27.74 (45.45) 0.800

AST/ALT 1.38 (0.24) 1.35 (0.38) 0.757

WBC (109/L) 9.55 (2.09) 17.38 (19.07) 0.941

RBC (1012/L) 4.11 (0.42) 5.52 (3.00) 0.358

HCT 0.36 (0.04) 1.49 (5.23) 0.378

NEUT 0.75 (0.05) 0.91 (0.91) 0.222

LYMPH 0.19 (0.11) 0.27 (0.26) 0.024

PE, Preeclampsia; BMI, Body Mass Index; TP, Total Protein; GLO, Globulin; Alb, Albumin; 
AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; AST/ALT, Ratio of 
Aspartate to Alanine Aminotransferase; WBC, White Blood Cell Count; RBC, Red Blood 
Cell Count; HCT, Hematocrit; NEUT, Neutrophil Ratio; LYMPH, Lymphocyte Ratio.
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study similarly supports this association. However, we chose to 
analyze placental Mn levels rather than serum levels. Although the 
protective role of Mn in PE is supported by a growing body of 
evidence, the underlying mechanisms remain unclear. One widely 
accepted hypothesis suggests that Mn contributes to the activity 
of manganese superoxide dismutase (Mn-SOD), a critical 
antioxidant enzyme. Mn-SOD mitigates oxidative stress by 
scavenging reactive oxygen species (ROS), thereby alleviating 
inflammation and reducing placental damage (Schlichte et  al., 
2021; Jahan et al., 2023; Grzeszczak et al., 2023; Tossetta et al., 
2023; Liu et al., 2022; Matsubara et al., 2015). Additionally, ROS 
may impair blood pressure regulation by promoting endothelial 
dysfunction (Silva et  al., 2012), while Mn-SOD can alleviate 
preeclampsia by counteracting this effect (Glover et  al., 2014; 
Tomimatsu et al., 2019; Gong et al., 2020).

Besides Mn-SOD, our findings suggest that manganese may 
indirectly mitigate the progression of preeclampsia by altering the 
composition of the gut microbiota. Increasing evidence highlights 
that exposure to metal elements, such as Mn, can influence gut 
microbiota composition (Li et  al., 2021; Peng et  al., 2024). 
However, most studies have been conducted in animal models. 

Research on the relationship between Mn and the gut microbiota 
in humans—especially in pregnant women—remains limited. Our 
study identified associations between Mn and 63 bacterial genera, 
four of which—Coprobacillus, Campylobacter, Porphyromonas, 
and UCG-009—were also associated with preeclampsia. In 
particular, “UCG-009” refers to an unclassified genus group with 
minimal research available. Therefore, in this paragraph, let us 
focus on the other three genera. Campylobacter and 
Porphyromonas are common human pathogens. In our study, both 
genera were positively associated with preeclampsia and negatively 
correlated with placental manganese (Mn) levels. Campylobacter 
is a well-established cause of gastroenteritis and has been linked 
to Guillain-Barré syndrome (Butzler, 2004; Nachamkin et  al., 
1998). Similarly, Porphyromonas is associated with periodontal 
diseases such as periodontitis and is considered a risk factor for 
adverse pregnancy outcomes, including preeclampsia (Slots, 1999; 
Chopra et al., 2020). A shared characteristic of the two pathogens 
is their capacity to provoke inflammatory responses, resulting in 
elevated levels of pro-inflammatory cytokines in the body (Zhang 
et al., 2022; Young et al., 2007; Mukherjee et al., 2024; Kang et al., 
2022). This pro-inflammatory activity may underlie their 

FIGURE 1

Comparison of manganese (Mn), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), and copper (Cu) levels between the control group and the PE group.
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association with preeclampsia, highlighting the potential role of 
inflammatory mechanisms in the disease’s pathogenesis. In 
contrast, Coprobacillus demonstrated a positive correlation with 
placental Mn levels and a negative association with preeclampsia. 
Previous studies suggest that this genus produces SCFAs, which 

are known to benefit human health and can reduce inflammation 
(Yang et al., 2024; Yu et al., 2021; Hu et al., 2023; Liu et al., 2022).

The three genera—Coprobacillus, Campylobacter, and 
Porphyromonas—highlighted in our study have been rarely 
reported in prior research. In another study conducted in 

FIGURE 2

Comparison of gut microbiota α-diversity (A–F) and β-diversity (G) between the Control group and the PE group.
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Liaocheng, China, Akkermansia muciniphila, a bacterium known 
for producing SCFAs, was found to be reduced in PE patients. 
Animal experiments further showed that supplementation with 
Akkermansia muciniphila, propionic acid, or butyric acid 
alleviated several features of preeclampsia in rats (Jin et al., 2022). 
Similarly, a study in Guangzhou, China, found that not only was 
Akkermansia reduced in PE patients, but another beneficial 
bacterium, Faecalibacterium—also known for butyrate 
production—was diminished as well (Chen et  al., 2020). An 
Australian study also reported a reduction in the butyrate-
producing genus Coprococcus among PE patients (Altemani et al., 
2021). However, our study did not detect significant differences 
in the abundance of Akkermansia, Faecalibacterium, or 
Coprococcus. These discrepancies could stem from variations in 
the timing of fecal sample collection or differences in microbial 
composition analysis methods. Despite these inconsistencies, both 
our findings and prior research consistently underscore a 
reduction in SCFA-producing, inflammation-regulating beneficial 
bacteria in PE patients. This supports the hypothesis that SCFAs 
may exert a protective effect against PE (Mackay and Marques, 
2022; Cui et al., 2023).

KEGG metabolic pathway prediction based on Accu16S data 
suggested eight potentially downregulated pathways in patients 
with PE. Six of these predicted pathways—dioxin degradation, 
xylene degradation, caprolactam degradation, benzoate 
degradation, pinene/camphor/geraniol degradation, and aromatic 
compound degradation—are related to microbial xenobiotic 
metabolism and may be involved in the degradation of exogenous 
organic pollutants. Such pollutants have been reported to activate 

the aryl hydrocarbon receptor (AHR), thereby contributing to 
inflammation and oxidative stress (Vogel et al., 2020). The other 
two predicted pathways—glycine, serine, and threonine 
metabolism, and methane metabolism—also have potential links 
to inflammation and oxidative stress (Ye et  al., 2020; Aguayo-
Cerón et al., 2023; Egbujor et al., 2024). Nevertheless, it should 
be  emphasized that these findings are based on predictive 
functional profiling of microbial communities rather than direct 
metabolomic measurements. Direct evidence linking these 
pathways or metabolites to preeclampsia remains limited. Further 
validation, particularly through metabolomic analyses and 
mechanistic studies in animal models, is warranted to clarify these 
potential associations.

The primary strength of this study is its comprehensive 
approach, which adopts a tripartite perspective to investigate the 
interplay among placental manganese levels, gut microbiota 
composition, and preeclampsia. Rather than focusing on a single 
factor, such as gut microbiota or manganese, our study integrates 
these factors to provide novel insights into the potential 
mechanisms by which manganese may mitigate the risk of 
preeclampsia through modulating gut microbiota composition. 
Furthermore, we  employed ANCOM-BC2, a robust analytical 
method published in Nature Methods in 2024 (Lin and Peddada, 
2024), to precisely evaluate differences in gut microbiota 
composition. Despite these strengths, our study has several 
limitations. First, the sample size was relatively small, with only 
21 pregnant women in the PE group and 21 in the control group, 
which may limit statistical power. Second, placenta and fecal 
samples were collected at delivery or within 1 week before 

FIGURE 3

Volcano plots of bacterial genera significantly associated with (A) preeclampsia and (B) placental manganese levels.
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delivery, when preeclampsia was already established. Therefore, 
the observed microbial and metabolic alterations may represent 
consequences of the disease rather than predisposing risk factors, 
limiting causal interpretation. To address these issues, future 
studies should adopt larger, multi-center cohorts with longitudinal 
sampling starting early in pregnancy to validate our findings and 
clarify temporal and causal relationships.
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FIGURE 4
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