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Comprehensive fecal
metagenomic and metabolomic
analysis reveals the role of gut
microbiota and metabolites in
detecting brain metastasis of
small cell lung cancer

Xu Han', Qiang-Guo Sun', Dan Zang' and Jun Chen*

Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China

Background: Brain metastasis (BM) is a common and highly lethal complication
in patients with small cell lung cancer (SCLC). People have paid great attention
to exploring the relationship between gut microbiota and the occurrence and
development of cancer. This study investigated the relationship between brain
metastasis, gut microbiota, and their metabolites in SCLC, providing new insights
for the prevention and diagnosis of brain metastasis in SCLC.

Methods: Baseline fecal samples were collected from 45 participants, including
15 patients with BM and 30 patients with no distant metastasis who were newly
diagnosed with SCLC. The gut microbiota and metabolite levels were analyzed
using metagenomics and untargeted metabolomics, and machine learning
models were utilized to identify differences and potential biomarkers.
Results: Gut microbiota composition varied significantly between the two groups.
Genus such as Alistipes and Streptococcus were more abundant in the brain
metastasis group, while Bacteroides and Prevotella predominated in patients
without distant spread. Metabolomic profiling identified several metabolites
inversely associated with brain metastasis, including leukotriene F4, benzoic
acid, velnacrine, piperidine, and an unidentified compound labeled C20916.
KEGG pathway analysis linked multiple key physiological processes, such as
aminobenzoate degradation, carbapenem biosynthesis, toluene degradation,
dioxin degradation, and benzoate degradation, underscoring the complex role
of gut microbial metabolites in cancer progression. Furthermore, machine
learning models identified key biomarkers, including the genus Marvinbryantia
and the metabolites benzoic acid, which showed strong discriminatory ability
for brain metastasis. After robust validation, the model demonstrated good
performance with excellent discriminative power (AUC = 0.80).

Conclusion: Compared to patients without distant metastasis, SCLC patients
with BM exhibit distinctive gut microbial and metabolite profiles. These findings
suggest that specific gut microbes and their metabolic products may serve as
valuable biomarkers for diagnosing and stratifying treatment in brain metastatic
SCLC.
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1 Background

Lung cancer is among the most deadly malignancies in humans,
with the highest incidence and mortality rates worldwide (Thai et al.,
2021). Based on histopathological features, it is classified into SCLC and
non-small cell lung cancer (NSCLC), with SCLC representing
approximately 14-15% of all lung cancer cases (Siegel et al., 2021).
Originating mainly from neuroendocrine cells, SCLC is considered one
of the most difficult cancers to treat, with an overall five-year survival
rate below 10% (Wang et al., 2023; Siegel et al., 2024; Kratzer et al.,, 2024).
At diagnosis, about 70% of SCLC patients already have distant
metastasis, and common sites of metastasis include the lung, liver, brain,
bone, adrenal glands, and lymph nodes (Rudin et al., 2021). Notably,
SCLC shows a strong tendency for spread to the central nervous system
(CNS), with BM present in roughly 10-15% of patients at first diagnosis
(Lukas et al.,, 2017). Brain-metastatic SCLC progresses quickly and is
often mistaken for a primary brain tumor, significantly threatening
patient survival. Although multiple treatments have been developed for
SCLC, few are effective at preventing distant spread—especially brain
metastasis (Siegel et al., 2023). The median survival time for patients
with metastatic SCLC is approximately 1 year, and only around 5 months
for those with brain involvement (Siegel et al., 2021). Given the poor
prognosis linked to BM, there is a critical need to find new biomarkers
and treatments to predict and control brain metastasis in SCLC.

The gut microbiota—often called the body’s “second genome”—
plays a role in normal physiology and tumor development by
influencing immune function, metabolic processes, and neural
signaling pathways (Belkaid and Hand, 2014; Lu et al., 2022). During
tumor initiation, certain microbial taxa such as Fusobacterium
nucleatum can cause DNA damage and chronic inflammation, leading
to malignant transformation (Riaz et al., 2024; Ivleva and Grivennikov,
2022). Dysbiosis of the gut microbiome is also believed to alter systemic
immune responses, which can help cancer cells spread through the
bloodstream and settle in the brain (Lu et al., 2021). In brain metastasis,
gut microbes and their metabolites, including short-chain fatty acids
(SCFAs) can affect blood-brain barrier (BBB) integrity and increase its
permeability, thus allowing tumor cells to infiltrate and changing the
brain’s immune environment (Braniste et al., 2014; Ahmed et al., 2022).
These findings suggest a potential mechanism by which changes in
microbes influence the process of brain metastasis in SCLC.

The interaction between gut microbiota, microbial metabolites,
and SCLC brain metastasis has thus gained increasing attention.
Emerging evidence suggests that specific microbial taxa and their
metabolic products may either promote or inhibit tumor cell spread
to the brain by altering the tumor microenvironment. These
associations imply that the gut microbiome and its metabolic functions
may play a crucial role in the progression of BM in SCLC. Identifying
microbial biomarkers and metabolic pathways involved in brain

Abbreviations: BM, Brain metastasis; SCLC, Small cell lung cancer; NSCLC,
Non-small cell lung cancer; CNS, Central nervous system; SCFAs, Short-chain
fatty acids; BBB, Blood—-brain barrier; PCoA, Principal coordinates analysis; LEfSe,
Linear discriminant analysis effect size; LDA, Linear discriminant analysis; OPLS-DA,
Orthogonal partial least squares discriminant analysis; VIP, Variable importance
in projection; ROC, Receiver operating characteristic; AUC, Area under the curve;

BMI, Body mass index.
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colonization offers hope for developing microbiome-based diagnostic
tools and new preventive or therapeutic strategies for SCLC BM.

This study uses an integrated metagenomic and untargeted
metabolomic analysis approach to explore the relationship between
the gut microbiome and brain metastasis of SCLC. By comparing fecal
samples from SCLC patients with brain metastasis to those without
distant metastasis, we aim to identify the microbiota and metabolic
features linked to brain metastasis. The research is expected to offer
new insights into the metastasis mechanism of SCLC from the
perspective of the gut microbiome and establish a theoretical basis for
developing microbiome-targeted therapies.

2 Materials and methods
2.1 Study population and sample collection

Patients with SCLC confirmed by pathology were recruited at the
Second Hospital of Dalian Medical University. Exclusion criteria
included: (i) exposure to antibiotics, probiotics, or high-dose
corticosteroids within 4 weeks prior to enrollment; (ii) active
infectious diseases such as viral hepatitis, HIV, or syphilis; and (iii) a
history of autoimmune or gastrointestinal disorders. A total of 45
patients met the eligibility criteria, of whom 15 presented with BM at
diagnosis and 30 had no evidence of distant metastasis. Baseline fecal
samples were collected before any anti-tumor therapy and immediately
stored at —80 °C until analysis.

The study protocol and the informed consent form were approved
by the Ethics Review Committee and the Scientific Review Committee
of the Second Hospital of Dalian Medical University (Ethics Approval
No. 2022-173). Written informed consent was obtained from
all participants.

2.2 Metagenomic sequencing

Total genomic DNA was extracted from fecal samples using the
PowerSoil DNA Isolation kit (Mo Bio Laboratories). DNA quality and
quantity were assessed with the Qubit 3.0 Fluorometer (Life
Technologies) and 1% agarose gel electrophoresis. Paired-end libraries
were prepared with the VAHTS Universal Plus DNA Library Prep Kit
(Vazyme Biotech) and sequenced on an Illumina NovaSeq 6000
platform in paired-end mode. Raw sequence reads underwent quality
control and adapter trimming with Trimmomatic v0.33, and host-
derived reads were removed by aligning to the human reference
genome using Bowtie2. Clean reads for each sample were de novo
assembled into contigs, coding sequences were predicted, and a
non-redundant gene catalog was created for downstream taxonomic
and functional analysis.

2.3 Metabolomic sequencing

Fecal samples were weighed and suspended in an appropriate
volume of extraction solvent. Samples underwent bead-beating,
sonication, and vacuum centrifugation for solvent removal, followed
by reconstitution of the dried extract prior to instrumental analysis.
The LC/MS system used for metabolomics analysis consists of the
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Waters Acquity I-Class PLUS ultra-high-performance liquid
chromatography coupled with the Waters Xevo G2-XS QT of high-
resolution mass spectrometer. The column employed is the Waters
Acquity UPLC HSS T3 column. Raw data collected with MassLynx
V4.2 is processed by Progenesis QI software for peak extraction,
alignment, and other data processing operations, utilizing the
Progenesis QI software with the online METLIN database and public
databases for identification. After qualitative and quantitative
metabolite profiling, the resulting data were subjected to quality
control, compound annotation, differential abundance analysis, and
functional enrichment.

2.4 Data processing and statistical analysis

Clinical data were analyzed using GraphPad Prism 9.5 and SPSS
25.0. Continuous variables are presented as mean + standard deviation
(SD), while categorical variables are expressed as counts and
percentages. For comparisons of normally distributed continuous
variables, the Student’s t-test was used; non-normally distributed
variables were compared with the Mann-Whitney U test or the
Kruskal-Wallis test, as appropriate. Categorical variables and
proportions were compared using the chi-square test or Fisher’s exact
test. All statistical tests were two-sided, and a p-value <0.05 was
considered statistically significant. FDR correction was performed on
the p-values of species and metabolite level comparisons to ensure
their accuracy.

2.5 Bioinformatics data analysis

Alpha diversity was assessed using the ACE and Simpson index.
Beta diversity was evaluated by calculating Bray-Curtis distance
matrices, which were analyzed using principal coordinates analysis
(PCoA). The betadisper test was used to validate the reliability of the
PERMANOVA results. Differences in species abundance between
groups were tested with the Wilcoxon rank-sum test. Differential taxa
were further identified through linear discriminant analysis effect size
(LEfSe), using a linear discriminant analysis (LDA) score threshold of
3. The top 80 most abundant species were selected for pairwise
correlation analysis based on their relative abundances and variances
across samples, and a co-occurrence network was constructed.

All detected metabolites were annotated using the KEGG
database, the Human Metabolome Database, and the LIPID MAPS
structure database. Orthogonal partial least squares discriminant
analysis (OPLS-DA) was performed to characterize group-specific
metabolic profiles. Differential metabolites were selected based on
their variable importance in projection (VIP) scores from the
OPLS-DA model combined with univariate criteria (p-value or fold
change). The OPLS-DA model was configured with a fold-change
threshold of 1 and a VIP value of 1. For each candidate metabolite,
receiver operating characteristic (ROC) curve analysis was conducted,
and the area under the curve (AUC) was calculated. Differential
metabolites were further mapped to KEGG pathways for
functional analysis.

After normalizing microbial relative abundances, Pearson
correlation analysis was performed between differential metabolites
and differential taxa. A random forest classifier was built by combining
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multiple decision trees trained on random subsets of samples and
features. Feature selection was performed using k-fold cross-validation
(StratifiedKFold, k = 5 by default). After training in each fold, feature
importance was obtained from the corresponding Random Forest
model. The top 20 microbial species and metabolites were selected by
aggregating importance scores across all folds. The Random Forest
Classifier was configured with the following parameters: max_
features = “sqrt,” n_estimators = 1,000, and max_depth = 5. The ROC
curves were plotted based on the training set.

3 Results

3.1 Clinical characteristics of study
participants

A total of 45 eligible SCLC patients were enrolled, including 30
patients without distant metastasis (N group) and 15 patients with BM
(BM group). No significant differences were found between the N and
BM groups in demographic variables such as age, sex, smoking and
alcohol history, family history of cancer, or body mass index (BMI).
These results suggest that baseline characteristics were well matched
between the two groups (Table 1).

3.2 Metagenomic analysis of the gut
microbiome in SCLC patients with/without
brain metastasis

Baseline fecal samples from 15 SCLC patients with BM and 30
patients without distant metastasis underwent metagenomic analysis
at an average depth of 6 G. In total, 143 phyla, 152 classes, 310 orders,
667 families, 2,278 genera, and 10,739 species were identified.
Although the alpha diversity results were not statistically significant,
this suggests that alterations in the richness and diversity of the gut
microbiota may not significantly impact brain metastasis in SCLC
patients (Supplementary Figure 1). In addition to richness and
diversity, compositional structure is also an important metric for
characterizing the gut microbiota. Therefore, we conducted multiple
analyses to explore the compositional differences of the gut microbiota
between the two groups. PCoA of Bray—Curtis distances showed clear
separation between BM and N samples, indicating significant
differences in community structure between the groups (Figure 1A).
Alistipes are significantly enriched in the gut of patients with brain
metastasis. Relatively speaking, Bacteroides and Prevotella genera were
significantly enriched in the intestines of patients without distant
metastasis (Figure 1B). At the species levels, many taxa showed
differences in abundance between groups (Figure 1C). Notably,
species such as Bacteroides fragilis, Bacteroides finegoldii, and Prevotella
disiens were significantly reduced in the BM group compared to the N
group (Figure 1D). LEfSe analysis at the species level further identified
discriminative taxa with an LDA score >3: Caudoviricetes,
Caudovirales, and Uroviricota were more prevalent in the N group,
while Streptococcus, Actinomycetia, Eubacterium_sp_OMO08_24,
Streptococcaceae, Lactobacillales, and Bacilli were more abundant in
the BM group (Figures 1E,F).

To further investigate the significance of gut microbiota dysbiosis
in SCLC brain metastasis, we constructed a genus-level correlation
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TABLE 1 Baseline clinical characteristics of study participants.

Non-metastasis Brain metastasis

Characteristic

(n =30) (n = 15)
Age (mean * SD) 63.10 £ 10.94 66.07 £ 6.397 0.339
Gender Male 21 (70.0%) 11 (73.3%) 0.999
Female 9 (30.0%) 4(26.7%)
Smoking Absence 12 (40.0%) 3 (20%) 0.315
Presence 18 (60.0%) 12 (80%)
Drinking Absence 18 (60.0%) 11 (73.3%) 0.514
Presence 12 (40.0%) 4(26.7%)
Tumor staging I-1II 7 (23.3%) 0 (0.0%) 0.077
v 23 (76.7%) 15 (100.0%)
Hypertension Absence 21 (70.0%) 11 (73.3%) 0.999
Presence 9 (30.0%) 4(26.7%)
Diabetes Absence 27 (90.0%) 13 (86.7%) 0.999
Presence 3(10.0%) 2 (13.3%)
Coronary heart disease Absence 29 (96.7%) 14 (93.3%) 0.999
Presence 1(3.3%) 1(6.7%)
Family history of cancer Absence 23 (76.7%) 8(53.3%) 0.172
Presence 7 (23.3%) 7 (46.7%)
BMI 24.96 £4.770 23.29 £3.349 0.230

BMI, body mass index.

network. Significant and complex interrelationships were observed
among different taxa, suggesting potential interactions among
microbial species. Significant positive correlations were observed
among Escherichia, Shigella, and Salmonella, indicating that dysbiosis
involving these genera may play a role in disease development.
Conversely, canonical probiotics Lactobacillus and Ligilactobacillus,
both involved in SCFAs synthesis, showed a strong negative
correlation, highlighting complex metabolic interactions within the
gut ecosystem. These interspecies relationships are essential for
maintaining microbial ecological balance and host metabolic stability
(Figure 1G).

3.3 Untargeted metabolomic profiling
uncovers metabolic signatures of the gut
microbiome in SCLC patients with/without
brain metastasis

To further clarify the role of the gut microbiome and its
metabolites in SCLC brain metastasis, we performed untargeted
metabolomic profiling on 35 baseline fecal samples. Using an
LC-QTOF platform, we annotated a total of 1,013 metabolites.
OPLS-DA showed a clear separation between brain metastasis (BM)
and non-metastatic (N) groups, indicating significant differences in
microbial metabolic outputs (Figures 2A,B).

In the BM group, two metabolites were significantly upregulated,
including cholic acid glucuronic acid. On the contrary, 20 metabolites
including 10-Deoxymethynolide, Macrocin, Leukotriene F4, and
benzoic acid were enriched in group N, indicating their potential
protective effect on brain transmission (Figures 2C,D). Hierarchical
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clustering of differential metabolites across all samples identified 12
key compounds; most were specifically enriched in the N group,
implying a putative antimetastatic association (Figure 2E).

KEGG pathway enrichment analysis of these differential
metabolites revealed their involvement in various biochemical
processes, including aminobenzoate degradation, carbapenem
biosynthesis, toluene degradation, dioxin degradation, benzoate
degradation, and the biosynthesis of different alkaloids (Figure 2F).
Notably, benzoic acid showed strong associations with pathways such
as aminobenzoate degradation, toluene degradation, dioxin
degradation, and benzoate degradation (Figure 2G).

We then assessed the diagnostic potential of five key metabolites—
benzoic acid, leukotriene F4, piperidine, C2096, and velnacrine—by
comparing their levels between groups and conducting ROC analysis.
All five metabolites were significantly higher in the N group (benzoic
acid, p = 0.032; leukotriene F4, p = 0.050; piperidine, p = 0.011; C2096,
p =0.018; velnacrine, p = 0.022) (Supplementary Figure 2A). The
ROC showed AUC values of these
(Supplementary Figure 2B). Although there were significant

curves metabolites
differences in the levels of these metabolites between the two groups
of patients, ROC analysis results showed that except for benzoic acid,
the other metabolites did not perform well in identifying SCLC brain
metastasis. At present, our research is only at the level of omics
analysis, and more validation may be needed in the future to
demonstrate the potential of these metabolites in identifying SCLC
brain metastasis. Our research findings, combined with previous
studies, suggest that benzoic acid may be a candidate biomarker for
predicting brain metastasis in SCLC.

Together, these data suggest that changes in gut microbial
metabolism are closely connected to the development of BM in SCLC,
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FIGURE 1

Gut microbiome composition and diversity in SCLC patients with and without brain metastasis. (A) Beta diversity analysis based on Bray—Curtis
distances. (B) Histogram of relative abundances for the top 10 genera. (C) Heatmap of differentially abundant species. (D) Bar chart showing the
abundance of differential species. (E) Circular cladogram illustrating taxonomic branching patterns. (F) Bar chart of LDA scores for discriminative taxa
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Frontiers in Microbiology 05 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1673983
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Hanetal. 10.3389/fmicb.2025.1673983

Scores (OPLS-DA)
A B o |
4 BM [ - "‘"-li g .-
N
< |
S
g -
2 A
A ©
@
e
[
_ g °
g T
g . 4 5
b4 AX A X o
2 g o 7
e A ° I
A S
At A
S S
) T
* R2Y
34 = Q2y
T T T T ! T T T T T
~10 "~ 0 8 10 00 02 04 06 08 1.0
R2X R2Y Qv RMSEE  pre  ort
0261 0937 0.029 1 (3%) 0.124 1 2 Correlation Coeficient
.
s s e S
S———
-]
7-Deoxyloganeti C20916 regulated
3-Oxchexadecanoic aci ’ . N:20
(25,55)-trans-Carboxymethyiproling s \,el,.acf-v;. © M2
7-0-Demetyl Rapamyci = Bgnpoic acndf’ . * unchanged:991
x

| |
2
log10(P value)

10 Capecitabine D viP
Velnacrine . o0
Dexamethason 1 ° 14
Gibberelin A2
-
oo S
T = ocuronice
[ - !
o
3 [ 5 o
K ! 10g2FC ' : log2(Fold Change)
E group group
Cholic acid BM
PE(20:1(112)ILTE4) N
D 2
oo
:. . 9,10-Dihydroxy-12,13-epoxyoctadecanoate 0
E: 10-D i
| | C20916
(2S,55)-trans-Carboxymethylproline -2
cis=9,1 ic acid
[ ] [ | 3-0; ic acid -4
Macrocin
HE | 7-D i
Velnacrine
Leukotriene F4
[ ] Benzoic acid
N-{(7.8-Dil in-6-yl)methyl]-4-(beta-Dri 5-phosphate
Adipostatin A
Piperidine
H PI(22:4(10Z,13Z,16Z,19Z)/PGF 1alpha)
| [ Ciclesonide
H Gibberellin A20
11 1 7-0-Demethyl Rapamycin
CPRORRP RN RO R REZZZZZZ2ZZ22222222222FZZZZZZZZZ
SS5555555SSSS55 N0 R 00NR0E N300 3000 NBRERNERE
o=NwhO
Statistics of Pathway Enrichment
Aminobenzoate degradation { . on
Dioin degy
Carbapenem biosynthesis | B pualue
Toluene degradation { B 03
- . fold change
Dioxin degradation { B 02 s
165
Benzoate degradation . 0.1 160
185
Biosynthesis of various alkaloids 150
Count Aminobenzoate degradafion
Drug metabolism - other enzymes category
+ 1.00 Benzoate degradation ~— Aminobenzoate degradation
Linoleic acid metabolism | ® 125 — Bonanaederataion
. 1.50 ~— Carbapenem biosynthesis
Monobactam biosynthesis | . ~— Doindegadaton
nobactam biosynthesis : 1.75 st
Folate biosynthesis { 2.00 size
Diterpenoid biosynthesis - . Diff . !
a
is of 12-, 14- and bered i A up
Arachidonic acid metabolism{
10 30 20 Cm“thmmvwmy\W\u

20
Rich_factor

FIGURE 2
Untargeted metabolomic profiling of fecal samples from SCLC patients with and without brain metastasis. (A,B) OPLS-DA score plots showing clear
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FIGURE 2 (Continued)

the differential metabolites

highlighting significantly up- and down-regulated metabolites between BM and N groups. (E) Hierarchical clustering heatmap of differential
metabolites across all samples. (F) KEGG pathway enrichment plot of differential metabolites. (G) Network diagram of KEGG pathway enrichment for

and that certain metabolites and pathways might be useful as
biomarkers for early detection and treatment.

3.4 Integrated multi-omics analysis reveals
links between gut microbiota and
metabolites in SCLC brain metastasis

To explore the connections between the gut microbiota and its
metabolites, we conducted an integrated analysis of metagenomic
and metabolomic datasets. Dimensionality reduction and
comparative multi-omics analyses uncovered significant differences
in microbial community composition, metabolite profiles between
the BM and N groups (Figure 3A), indicating that specific
biological mechanisms might contribute to SCLC brain metastasis.
Correlation analysis showed strong associations between microbial
taxa and metabolites (Figure 3B). For instance, Penicillium was
positively correlated with macrocin, 3-oxohexadecanoic acid, and
benzoic acid.

We further used machine learning, specifically a random forest
classifier to combine metagenomic and metabolomic features and
rank their importance for predicting brain metastasis. Feature
importance analysis identified key microbial and metabolic
biomarkers, including the bacterial genus Marvinbryantia and
metabolites such as benzoic acid, which played crucial roles in
distinguishing BM from N samples (Figure 3C). We further compared
the ROC curves of metagenomics, metabolomics and merged analysis.
The results showed that the merged analysis could more accurately
distinguish the brain metastasis group from the non-metastasis group,
suggesting that the multi-omics merged analysis model has a better
predictive effect on brain metastasis (Figure 3D). These findings offer
deeper insight into the molecular traits linked to brain dissemination
and highlight the significance of integrated multi-omics approaches
for biomarker discovery in SCLC brain metastasis.

4 Discussion

Brain metastasis is a serious and life-threatening complication
of SCLC. About 15% of SCLC patients have BM at diagnosis, and
their median survival is significantly shorter than those without
brain involvement (Li et al., 2021). Nearly 60% of SCLC patients
develop BM within 3 years of their initial diagnosis, and overall
survival after brain metastasis is less than 5 months (Aupérin
et al,, 1999; Chen et al., 2018). It is well known that the gut
microbiota plays a key role in regulating host metabolism and
supporting immune balance; dysbiosis can cause inflammation
and alter the tumor immune microenvironment, helping
metastatic spread (Li et al., 2025). A growing body of evidence
suggests that the gut microbiota can regulate the structure and
function of the blood-brain barrier through various mechanisms,
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thereby potentially influencing the colonization and metastasis
of tumor cells in the brain. Gut dysbiosis can lead to the entry of
endotoxins (such as lipopolysaccharide) into the circulation,
triggering a systemic inflammatory response and activating
peripheral pro-inflammatory cytokines. These inflammatory
mediators can downregulate endothelial tight junction proteins
and increase BBB permeability (Sharon et al., 2016). Furthermore,
the level of oxidative stress regulated by the gut microbiota is also
crucial for BBB homeostasis, as the accumulation of reactive
oxygen species and insufficient antioxidant defenses are closely
associated with endothelial barrier damage (Fung et al., 2017).
Microbial metabolites, such as SCFAs, can upregulate the
expression of tight junction proteins (e.g., occludin and claudin-
5), thereby maintaining BBB integrity. In contrast, gut microbiota
imbalance leads to reduced SCFAs levels, increased BBB
permeability, and enhanced trans-barrier capability for
exogenous molecules and circulating tumor cells (Braniste et al.,
2014). Tryptophan metabolites regulate endothelial cell function
and glial cell activation through the aryl hydrocarbon receptor
signaling pathway. Abnormal tryptophan metabolism can cause
endothelial inflammation and barrier disruption, creating
favorable conditions for tumor cells to enter the central nervous
system (Rothhammer and Quintana, 2019). In the context of
tumor metastasis, these mechanisms may collectively act to make
the BBB more susceptible to penetration by circulating tumor
cells in specific microenvironments, thereby promoting the
occurrence of brain metastasis. Additionally, the makeup of the
gut microbiome and its metabolites is increasingly recognized as
both a diagnostic and treatment tool in cancer (Coker et al., 2022;
Lee et al., 2022). Although growing evidence links gut microbes
to the development and progression of tumors, research
specifically focused on microbiome changes in SCLC patients
with BM remains limited, and potential microbial biomarkers for
brain metastasis have not yet been fully investigated.

Therefore, we conducted a study on 45 subjects, including 30
SCLC patients without distant metastasis and 15 SCLC patients with
BM, to examine the role of gut microbiota and metabolites in the
progression of SCLC BM. These findings may provide new insights
into the involvement of gut microbiota in the diagnosis and treatment
of SCLC brain metastasis.

We observed clear differences in gut community structure
between BM and N groups, consistent with prior reports indicating
that microbial diversity correlates with lung cancer progression and
metastatic potential (Liu et al., 2019). Such changes in microbial
ecology may create a pro-metastatic niche by influencing host immune
responses and metabolic pathways.

At the genus level, Alistipes was significantly more abundant in
BM patients, while Bacteroides and Prevotella dominated in the N
group. Alistipes has been linked to colorectal tumor formation and was
recently shown to promote lung cancer growth and reduce
immunotherapy effectiveness (Yang et al., 2022; Rahal et al., 2024).
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Interestingly, we found Bacteroides fragilis and Bacteroides finegoldii
enriched in non-metastatic patients, although enterotoxigenic
Bacteroides fragilis colonization has been associated with epithelial cell
growth and breast cancer metastasis in other contexts (Parida et al.,
2021). These different studies suggest that this subspecies may play a
more complex and diverse role in cancer metastasis, with different
effects under different conditions and environments. Further research
is needed to explore the mechanism of action of this subspecies.
We also observed enrichment of pathobionts like Streptococcus in BM
patients, supporting the idea that dysbiosis can create an
immunosuppressive microenvironment and drive epithelial-
mesenchymal transition, thus promoting metastatic invasion (Lu
et al., 2025; Oehmcke-Hecht et al., 2020).

Beyond compositional shifts, gut microbes influence systemic
functions through metabolite production. Key microbial
metabolites, such as SCFAs, bile acids, and tryptophan
derivatives, have been shown to affect endothelial permeability,
immune cell movement, and cancer-related signaling pathways,
all of which impact cancer cell metastatic colonization (Chen
et al.,, 2020; Li et al., 2024; Gou et al., 2024). Our untargeted
metabolomics identified significant differences of multiple
metabolites, including leukotriene F4, benzoic acid, velnacrine,
piperidine, and C20916, which were negatively associated with
BM. KEGG enrichment analysis pointed to pathways such as
aminobenzoate degradation, carbapenem biosynthesis, toluene
degradation, dioxin breakdown, and benzoate degradation—
highlighting potential microbiome-host interaction pathways in
SCLC brain metastasis. The enrichment of aromatic hydrocarbon
metabolic pathways such as benzoate degradation, dioxin
degradation, and toluene degradation suggests alterations in the
gut microbiota’s processing of exogenous or endogenous aromatic
compounds. Benzoate often originates from the degradation of
dietary polyphenols or from the food additive sodium benzoate.
Absorbed benzoate is almost entirely excreted in the form of
hippurate (Yadav et al., 2021), while the gut microbiota possesses
genes related to benzoate degradation, enabling it to further
metabolize benzoate into intermediate products such as catechol.
Products of the catechol pathway possess antioxidant and
immunomodulatory effects, and changes in their metabolic levels
may reflect an increase in inflammatory and oxidative stress
states. Dioxins are a class of persistent organic pollutants that can
act as potent ligands for the aryl hydrocarbon receptor, regulating
barrier immunity and inflammatory responses in the gut and
brain. Long-term exposure to dioxin-like compounds can lead to
chronic intestinal inflammation, oxidative damage, and
disruption of the blood-brain barrier, potentially creating
favorable conditions for brain metastasis of tumor cells (Coretti
et al., 2024). Toluene, also an aromatic hydrocarbon, has strong
neurotoxicity and can easily cross the blood-brain barrier,
inducing oxidative stress and inflammation in the nervous
system. The enrichment of these environmental or endogenous
aromatic hydrocarbon degradation pathways reflects an enhanced
degradation activity of the gut microbiota towards toluene and
its metabolites (such as benzoate). It has been reported in the
literature that environmental pollutants can alter the gut-brain
axis by disrupting the gut microbiota, leading to changes in
central nervous system function (Singh et al., 2022). Therefore,
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the enrichment of benzoate, dioxin, toluene degradation
pathways in this study suggests that the gut microbiota’s
degradation of substances that adversely affect blood-brain
barrier permeability, along with its active regulation of barrier
immunity and inflammatory responses in the gut and brain, may
help prevent the occurrence and development of lung cancer
brain metastasis. Notably, benzoic acid, a major intermediate
involved in multiple metabolic pathways, has been reported to
inhibit histone deacetylases and reduce tumor cell growth,
implying a protective effect against brain metastasis (Anantharaju
et al, 2017). At present, the FDA has approved more than 2,000
anti-cancer drugs containing piperidine, and the development of
small-molecule drugs containing piperidine as anti-cancer drugs
is also actively underway, emphasizing the good application of
piperidine in resisting tumor occurrence and development (Goel
et al., 2018).

Our integrated multi-omics analysis offers a comprehensive
view of the complex interaction between gut microbial taxa and
their metabolic outputs in SCLC brain metastasis. Machine
learning identified Marvinbryantia and metabolites such as
benzoic acid as top predictors of brain metastasis, emphasizing
the potential of microbiome-based biomarkers for early detection
and monitoring. Marvinbryantia, as a key butyrate producer in the
Firmicutes phylum, may synthesize butyric acid through the
acetyl CoA pathway, thereby regulating intestinal barrier function
and systemic immune response (He et al., 2025). In the context of
lung cancer brain metastasis, a decrease in its abundance may lead
to a decrease in butyric acid levels, weakening the anti-
inflammatory and immune regulatory effects mediated by butyric
acid. On the one hand, butyric acid promotes regulatory T cell
differentiation by inhibiting histone deacetylase (HDAC) and
suppressing excessive inflammation. On the other hand, it may
enhance dendritic cell activation and infiltration of CD8* T cells
into the tumor microenvironment, similar to the synergistic
mechanism of Akkermansia in immunotherapy (Sivan et al., 2015;
Routy et al., 2018). Although there is limited direct experimental
data on Marvinbryantia in the current evidence chain, its
functions in short chain fatty acid metabolism, toxic substance
clearance, and immune microenvironment regulation support the
rationality of its involvement in lung cancer brain metastasis
through the “gut immune brain axis.” This provides a theoretical
basis for the development of probiotic interventions or microbial
marker panels targeting this bacterium.

This study also has limitations. As a single-center investigation
with a modest sample size, our findings need validation in larger,
multi-institutional cohorts to confirm their generalizability. Given the
relatively low clinical incidence of SCLC, the sample size included in
this study is small, which limits statistical power and increases the risk
of overfitting in machine learning models. Additional cohorts are
required to further verify performance stability. However, current
research on SCLC brain metastasis and gut microbiota remains scarce,
making it regrettable that external data cannot be used to validate the
experimental findings. We propose prioritizing the generation of
hypotheses from this exploratory cohort, with the hope that future
studies will validate the feasibility and accuracy of machine learning
models predicting SCLC brain metastasis based on gut microbiota and
metabolites. Additionally, although our correlative analyses suggest
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links between dysbiosis, specific metabolites, and brain metastasis.
Mechanistic studies, including external validation cohorts and
functional experiments are necessary to establish causality and clarify
underlying pathways.

In summary, our data reveal distinct gut microbial and metabolic
signatures in SCLC patients with BM and support the idea of using
microbiome-derived biomarkers and interventions to predict and
reduce brain metastasis in this aggressive disease.

5 Conclusion

This study emphasizes the crucial role of the gut microbiota and
its metabolic products in the development of BM in SCLC patients.
We found distinct microbial and metabolite signatures in patients
with cerebral dissemination compared to those without distant
metastasis, providing evidence that dysbiosis may aid SCLC spread
to the brain. Our results also suggest that specific gut microbes and
their metabolites show promise as auxiliary biomarkers for
monitoring brain metastasis in SCLC, pending prospective
validation. These microbial biomarker panels offer a promising
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approach for early, minimally invasive diagnosis in affected patients
(Figure 4). Lastly, our findings highlight the need for larger,
comprehensive studies to better understand the complex relationship
between the gut microbiome, its metabolic outputs, and SCLC
brain metastasis.
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