

OPEN ACCESS

EDITED BY Wenchao Cai, Shihezi University, China

REVIEWED BY
Iftikhar Younis Mallhi,
Minhaj University Lahore, Pakistan
Changqi Liu,
San Diego State University, United States

*CORRESPONDENCE Leonard L. Williams ☑ llw@ncat.edu

RECEIVED 13 August 2025 ACCEPTED 28 October 2025 PUBLISHED 18 November 2025

CITATION

Rana TS, Bansode RR, Rana JP and Williams LL (2025) A systematic review: polyphenol's effect on food allergy via microbiome modulation. Front. Microbiol. 16:1673472. doi: 10.3389/fmicb.2025.1673472

COPYRIGHT

© 2025 Rana, Bansode, Rana and Williams. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

A systematic review: polyphenol's effect on food allergy via microbiome modulation

Tekan Singh Rana¹, Rishipal Rastrapal Bansode¹, Jenny Pakhrin Rana² and Leonard L. Williams¹*

¹Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, United States, ²Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States

Introduction: Food allergy is an increasing health concern worldwide. Microbes, food allergies, and polyphenols are found to be interrelated. However, studies relating polyphenols' effect on food allergy via microbiome modulation are scarce, and there is a lack of common signature microbiome modulation patterns. Thus, this review aims to summarize the effect of polyphenols on food allergy via microbiome modulation.

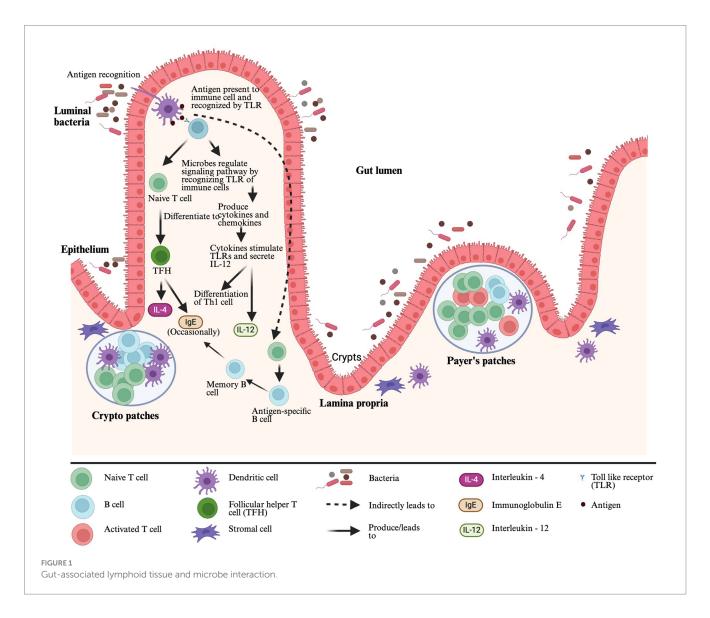
Methods: Research articles were searched from Scopus, PubMed, ScienceDirect, and Web of Science database. The in vivo and in vitro studies were assessed via SYRCLE risk of bias and modified CONSORT checklist, respectively. The population characteristics and experimental details were extracted, and the data were synthesized narratively.

Results: The included studies were free of selective reporting of results. The allergy of egg (ovalbumin), milk (β -lactoglobulin), soybean (β -conglycinin), and shrimp allergy contributed to 54%, 23%, 15%, and 8% of the total included studies, respectively. The used compounds were a different source or types of polyphenols such as cocoa, cyanidin-3-O-glucoside (C3G), avenanthramide's (AVA), rosmarinic acid (RA), neohesperidin, and fermented apple juice for egg allergy, luteolin, and green tea polyphenol (GTP) for soybean allergy, and flavonoids (Luteolin, myricetin and hyperoside), ferulic acid, and luteolin for milk allergy. Allergies of milk, egg, wheat, and shrimp occurred with the reduction of Lactobacillus, Alistipes, Odaribactor, Akkermansia, Bacteroides, and Lachnospiraceae_NK4A136_group and an increase of Prevotella, Alloprevotella, Faecalibaculum, Helicobactor, Blautia, Clostridium, and Staphylococcus. The polyphenols modulated these microbes in order to attenuate the food allergies. Discussion: The types of polyphenols, food allergies, animal model used, and taxonomic resolution of the microbiome studies lead to variation in the results. Thus, by increasing the studies on effect of polyphenols on individual food allergies, and combining with higher taxonomic resolution techniques such as shotgun metagenomics along with metabolomics would increase reliability of the results of the future studies

KEYWORDS

polyphenol, food allergy, microbiome, 16s rRNA sequencing, egg allergy, milk allergy, soyabean allergy, shrimp allergy

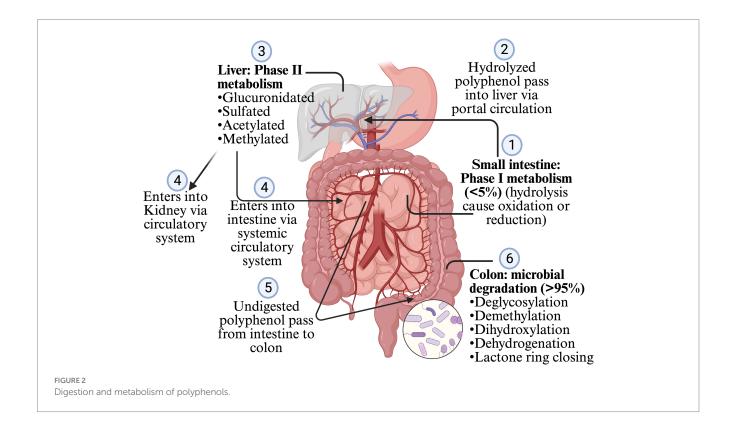
1 Introduction


Food allergy is a serious health concern (Camps-Bossacoma et al., 2017; Yang et al., 2023) and about 5% of adults and 8% of children suffer food allergy worldwide (Li et al., 2022; Loh and Tang, 2018). Studies show the relationship among microbiota, polyphenolic compounds, and food allergies (Camps-Bossacoma et al., 2017; Yang et al., 2023; Li et al., 2022; Liu et al.,

2023; Wang et al., 2022; Zhou et al., 2023) or cytokine-induced inflammations (Liu et al., 2021). The commensal gut microbes help the breakdown of dietary foods, produce short-chain fatty acid (SCFA), protect intestinal epithelial cells (IEC), modulate protective barriers, promote mucosal immunity system by developing tolerogenic CD103⁺ dendritic cells (DC) which influence regulatory T cells (T-reg) and IgA production from B cell, and metabolites production (Chen et al., 2016; Goldberg et al., 2020; Gu et al., 2022; Kourosh et al., 2018).

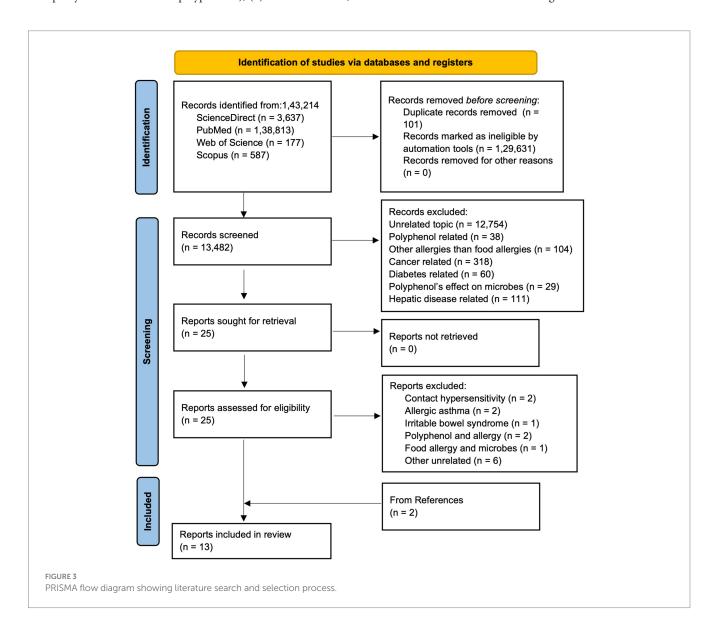
Gut-associated lymphoid tissue (GALT) is a mucosal immune system in the gut and the largest lymphoid tissue in the human body. It helps to promote oral tolerance to specific food allergens by distinguishing allergic and non-allergic food antigens (Ganesh and Versalovic, 2015). The GALT comprises of lymphoid structures and scattered lymphocytes with specialized functions (e.g., Natural killer cells, B cells, and T cells) in epithelium and lamina propria (LP). The lymphoid structures include Payer's patches (PPs), crypto patches (CPs), DC, stromal cells around the crypts of the small intestine, intraepithelial lymphocytes (IELs), intestinal epithelial cells (IECs) and mesenteric lymph nodes (MLNs) (Sajdel-Sulkowska and Sajdel-Sulkowska, 2019) (Figure 1). The DC is one of the most important antigen-presenting cells (APC), and after getting antigens from the gut

lumen, DCs present them to toll-like receptors (TLRs). The TLRs are pattern recognition receptors expressed in the immune cells and recognized by gut microbiota. After recognition of TLRs, microbes can regulate signaling pathways to communicate with a host producing pro- or anti-inflammatory cytokines and chemokines (Liu et al., 2022). When cytokines stimulate TLRs, they secrete Interleukin 12 (IL-12), and IL-12 helps in Type 1 helper CD4⁺ T cell differentiation in the presence of antigens (Ganesh and Versalovic, 2015). After interacting with antigen-containing DCs, naïve CD4+ T cells differentiate into T follicular helper (TFH) cells. These TFH cells produce IL-4 in response to allergens, and they can also occasionally generate Immunoglobulin E (IgE), replacing the role of Th2 cells in generating IgE (Hong et al., 2019). The DCs present antigens with T cells and can share that information with B cells separately. In that case, naïve B cells will turn into antigen-specific B cells, further differentiating into memory B cells or ultimately turning into plasma cells that produce IgE specific to an antigen (Shi et al., 2015) (Figure 1).


Polyphenol's inhibitory or stimulatory effects on microbes depend upon the polyphenol's structure and bacterial species/strains (Makarewicz et al., 2021). Polyphenols have antimicrobial properties with various mechanisms. Polyphenols interact with bacterial proteins

on the cell wall, cell membrane, and with those proteins involved in the fundamental metabolism, inhibit DNA synthesis or cause DNA cleavage, disturb membrane permeability, antibiotic resistance, and enzyme formation. Moreover, polyphenols also inhibit ATP synthase and ATPase function, biofilm formation, and quorum sensing activities (Makarewicz et al., 2021; Rodríguez-Daza et al., 2021; Ashwin et al., 2021; Plamada and Vodnar, 2021).

Less than 5% of polyphenols consumed are absorbed in the stomach and intestine, and >95% are undigested and reach the colon and interact with gut microbiota (Makarewicz et al., 2021; Rodríguez-Daza et al., 2021; Ashwin et al., 2021; Loo et al., 2020; Rowland et al., 2018). Most of the polyphenols are found as glycosides or in the polymers, so they need to be converted into aglycone and simple compounds so that enterocytes can absorb them. However, some glycosides, such as anthocyanins, can be absorbed without processing (Ashwin et al., 2021; Plamada and Vodnar, 2021; Loo et al., 2020; Rowland et al., 2018). The polymerization, and types of polyphenols such as flavonoids and non-flavonoids, affect the microbial conversion of the polyphenols. Flavonoids are composed of two benzene rings (A and B rings) linked to a heterocyclic pyrone C-ring. Simple phenolics derived from the A and B rings are released after the gut microbiota breaks down the C-ring in different positions. The hydroxylation pattern and the position of the B-ring determines the types of resulting phenotypes (Plamada and Vodnar, 2021; Ozdal et al., 2016). After absorption from the intestine, the polyphenol is mildly oxidized or reduced by hydrolysis (phage I metabolism, which increases the polarity of polyphenols) when it passes through enterocytes (Figure 2). The resulting simpler forms of polyphenols are transferred to the liver via the portal circulation, where they are glucuronidated, sulfated, acetylated or methylated (phage II metabolism that adds the chemical radicals into polyphenol) (Ashwin et al., 2021; Plamada and Vodnar, 2021; Rowland et al., 2018; Mithul Aravind et al., 2021). The resulting metabolites after phage II metabolism enter different organs via the systemic circulatory system. The undigested polyphenols in the intestine pass into the colon and are further metabolized into simpler forms by GM. The processes involved during this transformation are deglycosylation, demethylation, dihydroxylation, dehydrogenation, and closing of the lactone ring in the lower colon (Ashwin et al., 2021; Plamada and Vodnar, 2021; Rowland et al., 2018). After the resulting metabolites or polyphenols are absorbed from the colon, they go to phase II metabolism in the intestinal tissue and liver. Enterohepatic circulation helps to excrete the conjugated compounds back to the gut, which are again deconjugated by microbes and reabsorbed (Plamada and Vodnar, 2021; Loo et al., 2020) (Figure 2). The Daidzein, ellagitannins, lignans, proanthocyanidins converts primarily (80-90%) into O-desmethylangolensin or S-equol (30-50%), urolithins, enterolactones (and ultimately into enterodiol in human), and isomers of valerolactones (ultimately into phenolic acid), respectively. Similarly, isoflavone converts into propanoic acid or equol, anthocyanin into phenolic acid or phloroglucinol acid, quercetin into hippuric acid or benzoic acid, neochlorogenic acid into caffeic acid and quinoic acid, trans-resveratrol into piceid and resveratrolozide, and curcumin into ferulic acid and dihyroferulic acid (Makarewicz et al., 2021; Rodríguez-Daza et al., 2021; Plamada and Vodnar, 2021; Rowland et al., 2018; Ozdal et al., 2016; Mithul Aravind et al., 2021). The resulting polyphenol metabolites are more bioactive (bioaccessible and absorbed) than the parent polyphenol (Rowland


Although studies had proven the association between food allergy and microbiome (Bunyavanich and Berin, 2019; Iweala and Nagler, 2023; Nance et al., 2020; Zhao et al., 2020), polyphenol and microbiome (Catalkaya et al., 2020; De Rossi et al., 2025; Kumar Singh

et al., 2019; Piekarska-Radzik and Klewicka, 2020), and polyphenol and allergies (Zeng et al., 2022; Wu et al., 2018; Zhang et al., 2024; Wu et al., 2023), studies investigating the effect of polyphenol on food allergies via microbiome modulation are scarce and are in the initial stage (Li et al., 2022). Thus, this systematic review aims to determine common microbiome modulation pattern of polyphenols to mitigate food allergy.

2 Methodology

The Preferred Reporting Items for Systematic Reviews and Metaanalysis (PRISMA) guideline was followed to conduct the systematic review (Page et al., 2021). Articles published until 2025, were searched from various databases: ScienceDirect, PubMed, Web of Science, and Scopus. The articles were searched in different databases using following combination of keywords: (a)In Scopus and Web of Science, ("hypersensi*" OR "food allerg*" OR "allerg*" OR "anaphyla*") AND ("microbio*" OR "microorga*") AND ("proanthocya*" OR "anthocya*" OR "procyan*"OR "flav*" OR "polypheno*"); (b) In ScienceDirect, ("hypersensitivity" OR "food allergy" OR "anaphylaxis") AND ("microbiome" OR "microorganism") AND ("procyanidins"OR "flavonoids" OR "polyphenols"); and (c) In PubMed, ((((("Food Hypersensitivity" [Mesh]) OR "Hypersensitivity" [Mesh]) AND "Gastrointestinal Microbiome" [Mesh]) OR "Microbiota" [Mesh]) AND "Polyphenols" [Mesh]) OR "Flavonoids" [Mesh]) "Proanthocyanidins" [Mesh]. As shown in PRISMA flow diagram (Figure 3), from a total of 1,43,214 articles obtained using aforementioned keywords from different databases, 101 were removed in deduplication, 1,29,631 were removed using automation process by search tools as they were one of the following categories: other than original research articles, and published in other than English. Out of 13,482 remaining screened articles, 13,457 were excluded during title and abstract screening. Out of the 25 remaining articles, two were related to contact hypersensitivity, two articles were related allergic asthma, one was related to irritable bowel syndrome, two were related to polyphenol and allergy, one was related to food allergy and microbes only, and six were other unrelated articles. Thus, 11 articles were obtained from screening and two articles were obtained from reference and citation of the 11 articles leading to 13 total articles for this

systematic review. Two authors (TR and JR) agreed upon search criteria, searched and screened articles, and discussed and resolved disagreements with the third author (RB). Three authors (TR, RB, and JR) independently extracted data on objectives, tissue or sample type, treatment, treatment administration route, treatment dose, and duration, sequencing type, and microbiome change, and population characteristics (animal type, age, weight, sex, total number). The evidence in articles was determined with the PICO framework as follows: population: animal (mice, rats, pigs) and human, intervention: polyphenol, comparison: food allergen, output: change in microbiome.

Three authors (TR, RB, and JR) performed the risk of bias. The risk of bias evaluation of *in vivo* studies was performed according to SYRCLE's risk of bias tool (Hooijmans et al., 2014). Comprehension and unbiases on abstract, background and rationale, objectives, hypothesis, intervention, outcome, statistical method, outcome, limitation, and funding were evaluated. For *in vitro* studies, the risk of bias was calculated based on a modified CONSORT checklist (Faggion, 2012; Lam et al., 2024). The process of complete randomization, blinding, unbiased and complete reporting of the articles was evaluated. Due to differences in treatment, objective and overall design, and outcomes among selected articles, we narratively synthesized the articles. The authors agreed upon the synthesis process.

3 Results

3.1 Risk of bias

The *in vitro* studies did report background, objectives, outcomes, and limitations. However, they did not mention the hypothesis, and one of the studies did not clearly mention the statistical method used to analyse the data (Supplementary Table 1). All the *in vivo* studies did not explain the study's randomization process and blinding steps. Two of the studies did not mention reasons for incomplete outcomes. All of them were free from selective outcome reporting (Supplementary Table 2).

3.2 Population/study characteristics

Two studies were done on 3-week-old Lewis and Brown Norway rats, seven on 5–8 weeks-old BALB/c mice, one on C57BL/6 J mice, one on 18-day-old piglets, and two on incubation of human fecal matter in the artificial chamber (Table 1). All animal studies used either female or male animals. The allergy on ovalbumin, betalactoglobulin (milk) and soybean, and shrimp contributed 54, 23, 15, and 8% of the included studies, respectively (Table 1).

3.3 Microbiome and food allergies

3.3.1 Egg allergies

In general, ovalbumin (OVA) seem to reduce *Lactobacillus* (Yang et al., 2023; Li et al., 2022; Ma et al., 2025b; Liu et al., 2025), *Alistipes* (Li et al., 2022; Ma et al., 2025b), *Prevotella* (Yang et al., 2023), *Akkermansia* (Camps-Bossacoma et al., 2017), and members of lachnospiraceae such as *Unclassified_f_lachnospiraceae*, and *Lachnospiraceae_NK4A136_group* (Ma et al., 2025b; Liu et al., 2025).

The OVA promoted the *Bacteroides* (Camps-Bossacoma et al., 2017; Ma et al., 2025b), *Helicobactor* (Li et al., 2022), *Faecalibaculum* (Liu et al., 2025), and *Alloprevotella* (Ma et al., 2025b). At higher level of classification, OVA promotes muribaculaceae (Yang et al., 2023; Liu et al., 2025), campylobacteria (Li et al., 2022), and proteobacteria (Ma et al., 2025a), meanwhile the OVA reduced firmicutes (Li et al., 2022; Ma et al., 2025a, 2025b; Liu et al., 2025). Use of various polyphenol helped to alleviate allergy via reducing the microbes promoted by OVA and promoting those microbes reduced by OVA. However, due to variation on the polyphenol and animal model used, diverse effect of polyphenol were found on microbes. For example, cocoa diet promoted *Lactobacillus*, *Provotella*, *Anastipes*, and it reduced *Clostridium* and *Blautia*. On the other hand, cyanidin-3-O-Glucoside promoted *Rosburia*, *Blautia*, and *Lachnospiraceae_NK4A136_group* (Table 2).

3.3.2 Soyabean and shrimp allergies

Although soyabean's effect on microbes were not clearly mentioned, polyphenols such as luteolin reduced *Prevotella* and increased *Olsenella* (Liang et al., 2024) and. Unlike in ova allergy, β -conglycinin or green tea polyphenol (GTP) did not affect the *Akkermansia*, *Lachnospiraceae_NK4A136_group*, and Muribaculaceae. However, GTP promoted the *Bacteroides* and *Parabacteroides* (Zhou et al., 2023) (Table 2). The shrimp allergen reduced chitinophagaceae, rhizobiaceae, and increased burkholdariaceae, caulobactereaceae and sphingomonadaceae while the polyphenol extract had opposite effect compared to the allergen on these microbes (Feng et al., 2024) (Table 3).

3.3.3 Milk allergies

Milk allergy reduce firmicutes and increases bactereodota (Wang et al., 2022; Wang et al., 2024). The allergy also increases Staphylococcus, Campilobacterota and reduces Lactobacillus, Alistipes, Odaribactor, and Bacteroides (Wang et al., 2024). Use of various polyphenols such as flavonoids, luteolin, ferulic acids increases bifidobactereaceae, lactobacillaceae, Faecalibacterium, and Agathobactor. The polyphenol use reduced the staphylococceae, corynebactereaceae, and Ramboustia (Table 4).

4 Discussion and future perspectives

In general, food allergy is related to reduction of Lactobacillus, Alistipes, Odaribactor, Akkermansia, Bacteroides, and Lachnospiraceae_NK4A136_group and an increase of Prevotella, Alloprevotella, Faecalibaculum, Helicobactor, Blautia, Clostridium, and Staphylococcus (Tables 2–4). Previous studies also found that food allergy is related to reduced Bacteroides, Alistipes, Lachnospriaceae_NK4A136_group, Akkermansia, and Lactobacillus and abundance of Prevotella, Helicobacter and Clostridium (Chen et al., 2016; Gu et al., 2022; Tanaka et al., 2024; Liu et al., 2019; Huang et al., 2025; Hara et al., 2024; Chang et al., 2018; E et al., 2024; Xu et al., 2025; Qiao et al., 2024).

Very few common microbial species were identified across different food allergy studies. Moreover, the effect of polyphenols on food allergies varied according to the type of polyphenol used and type of food allergies. For example, cocoa (Camps-Bossacoma et al., 2017), flavonoids (Liu et al., 2021), and Luteolin (Wang et al., 2022) increased *Prevotella* compared to allergen alone in milk and egg

TABLE 1 Study/population characteristics.

Ref	Animal/ Cell	Animal type	Age	Weight (g)	Sex	Total number	Number used for microbiome analysis	Allergy Type
Wang et al. (2022)	Human/invitro	NA	NA	NA	NA	3	3	BLG
Liu et al. (2021)	Human/invitro	NA	18–22 years		Male + Female	3	3	BLG
Yang et al. (2023)	Mice	BALB/c	5 weeks	18-20	Female	40	40	OVA
Liu et al. (2023)	Mice	BALB/c	6 weeks	NA	Male	80	40	OVA
Li et al. (2022)	Mice	BALB/c	6–8 weeks	NA	Male	30	30	OVA
Camps- Bossacoma et al. (2017)	Rat	Lewis	3 weeks	NA	Female	18	9	OVA
Zhou et al. (2023)	Rat	Brown Norway	3 weeks	39.15+ to 4.38	Female	18	18	Soyabean
Liang et al. (2024)	Piglets	Crossbreed (Duroc X Landrace X Large white)	18 days	NA	NA	18	18	Soyabean
Feng et al. (2024)	Mice	BALB/c	6 weeks	NA	Female	48	NA	Shrimp
Liu et al. (2025)	Mice	BALB/c	5–6 weeks	NA	Female	30	30	OVA
Ma et al. (2025b)	Mice	BALB/c	6 weeks	18-22	Female	NA	NA	OVA
Ma et al. (2025a)	Mice	C57BL/6 J mice	8 weeks	NA	Male + Female	NA	18	OVA
Wang et al. (2024)	Mice	BALB/c	5–6 weeks	NA	Female	60	60	BLG

NA, Not available, BLG, $\beta\text{-lactoglobulin},$ OVA, ovalbumin.

allergies. However, the Prevotella was reduced by the Luteolin compared to that of soybean allergen (Liang et al., 2024). This implies that the microbiome's role also varies based on food allergy type (Goldberg et al., 2020; De Filippis et al., 2021). Similar, variation was also found in previous studies where Prevotella copri was increased in milk allergy while it was decreased in peanut allergy (Goldberg et al., 2020). Futhermore, Blautia was increased by cyanidin-3-Oglucoside (C3G) (Li et al., 2022) and Avenanthramide's (AVA) (Liu et al., 2023) but it was reduced by cocoa diet (Camps-Bossacoma et al., 2017) compared to that of allergens alone. Furthermore, the C3G (Li et al., 2022) increased Lactobacillus alistipes and while cocoa diet (Camps-Bossacoma et al., 2017) increased the Lactobacillus reuteri compared to allergen alone. At phylum level, cocoa diet (Camps-Bossacoma et al., 2017), green tea polyphenol (GTP) (Zhou et al., 2023), or rosmarinic acid (Yang et al., 2023; Zhou et al., 2023) decreased firmicutes, but C3G (Li et al., 2022; Zhou et al., 2023) increased the firmicutes in comparison to the allergens. Other studies investigating the effect of different polyphenols in microbes have also reported the different in effect of various polyphenols on the same genus/species of microbes (Loo et al., 2020; Mithul Aravind et al., 2021). Thus, more studies are needed on the effect of polyphenols on a specific types of food allergies via microbiome modulation in order to identify signature microbiome modulation pattern of the specific types of allergy before determining the pattern for food allergies in general.

Besides the types of polyphenols or food allergens, the taxonomic resolution of the microbiome in a study may also affect the results. For example, effects of both the C3G and cocoa diet were measured at species level, i.e., they both increased the Lactobacillus alistipes and Lactobacillus reuteri, respectively. However, the cocoa diet increased Lactobacillus reuteri but decreased Ruminococcus flavefaciens compared to allergen. Both of these bacterial species are firmicutes, but represent different classes, orders, or families (Camps-Bossacoma et al., 2017; Zhou et al., 2023). Similarly, the C3G (Li et al., 2022) or AVA (Liu et al., 2023) increased Blautia, but cocoa diet (Camps-Bossacoma et al., 2017), reduced Blautia producta compared to the allergen treatment. Furthermore, cocoa diet increased the Clostridium metallovans, but it caused a disappearance of the Clostridium perfringens compared to standard food. Similarly, in other studies, Clostridium senso stricto1 found in healthy children while Clostridium innnocuum were higher in wheat allergic children (Kanchongkittiphon et al., 2024) Not only species but also strains of a species vary in their

TABLE 2 Main findings of the egg allergy studies.

Ref	Objectives	Tissue/ cells/ sample	Collection time	Treatment; control	Administration route	Treatment dose	Treatment duration	Sequencing type	↑↓ Microbiome
Camps-Bossacoma et al. (2017)	Influence of oral sensitization on gut microbiota	Fecal drops	before sensitization and once/week. For metagenomics, on day 28	OVA 50 mg + cholera toxin 30 μ g in 1 mL D. I. H_2O	Oral	10% cocoa diet + OVA + cholera toxin; Standard diet + OVA 50 mg + cholera toxin 30 μg in 1 mL D. I. H ₂ O; Standard diet + 1 mL vehicle	Three times/week for 3 weeks	16S metagenomics	OVA ↓ Clostridium metallolevans, Allobaculum sp., ↓↓ Staphylococcus equorum, Akkermansia muciniphila. OVA ↑↑ Bacillus, Christensenella, and Anaeroplasma compared to standard food (SF). OVA ↓↓ Bacteroides uniformis and Prevotella sp., but were present in OVA/C and SF. OVA/C ↓ Allobaculum sp., Holdemania sp. and ↑ Clostridium metallovans compared to SF. OVA ↓ Ruminococcus flavefaciens and ↑ Bacteroides uniformis compared to OVA, ↑ Lactobacillus reuteri, Prevotella, and Anaerostipes sp. compared to SF and OVA. Ralstonia sp., Desulfovibrio sp., and Prevotella copri were ↑↑ due to OVA/C compared to SF and OVA. The Clostridium perfringens, Blautia producta, Epulopiscium sp., Coprobacillus sp., and Desulfovibrio sp. ↓↓ compared to SF and OVA. At phylum level, cocoa diet ↓ Firmicutes and Proteobacteria and ↑ Tenericutes and Cyanobacteria.
Li et al. (2022)	Anti-food allergic activity of cyanidin- 3-O-glucoside (C3G) delivered by enteric sodium alginate in in vivo	a. Serum b. Blood and intestinal tissues c. Feces	a. 1 h after last challenge b. 2 days after last challenge	OVA + C3G, OVA + C3G + LVA; OVA + Alum sensitization + PBS challenge (-ve), OVA + selective histamine H1 receptor antagonist, i.e., Lora (+ve)	a. Sensitization: Intraperitoneal (IP) injection. b. Challenge: Gavage feeding	a. Sensitization: Twice with OVA 100 μ g + alum 2 mg in 200 μ L PBS b. Challenge: OVA 50 mg OVA in 200 μ L PBS. LVA + C3G (3:1 mass ratio). C3G 25 mg/kg bwt, Lora 20 mg/kg bwt	a. Sensitization: Day 0 and day 14 b. Challenge: Day 28 to Day 40 at 3 days interval	16S rRNA gene amplicon sequencing	At phylum level, the OVA ↓ Bacteroidota and Firmicutes and ↑ Campilobacterota. The Lora and C3G ↑ relative abundance of Bacteroidota and Firmicutes and ↓ Campilobacterota. At genus level, OVA ↑ Helicobacter and Turicibacter and ↓ Lactobacillus and Alistipes. LVA + C3G had opposite effect than that of OVA treatment on these bacteria. LVA + C3G also ↑ Odaribacter.

(Continued)

frontiersin.org

Ref	Objectives	Tissue/ cells/ sample	Collection time	Treatment; control	Administration route	Treatment dose	Treatment duration	Sequencing type	↑↓ Microbiome
Ma et al. (2025b)	Modulatory effect of fermented apple juice (FAJ) on food allergy	a. Feces b. Serum c. Jejunum	After 34 days	OVA + FAJ; OVA (+ve), no OVA/ FAJ (-ve)	Sensitization and challenge: oral	a. Sensitization: OVA 1 mg + cholera toxin 10 µg. FAJ 0.15 mL/10 g mice b. Challenge: OVA 50 mg	a. Sensitization: From Day 0 to Day 21 in weekly interval. b. Challenge: Day 28, 31, and 34.	16S rDNA gene sequencing	Compated to control, OVA ↑ Bacteroidetes and Proteobacteria and ↓ Firmicutes, meanwhile FAJ had opposite effect compared to OVA on these microbes. At genus level, OVA ↓ Lactobacillus, Alistipes unclassified f_ Lachnospiraceae, and Lachnospiraceae_NK4A136_group and ↑ Alloprevotella meanwhile FAJ had opposite effect of OVA on these genus.
Ma et al. (2025a)	Relationship between maternal dietary habit and food allergy in offspring	a. Serum b. Feces c. Jejunum	After 34 days	a. Maternal: HFD, FAJ + HFD; SD b. Offspring: HFD, HFD-A, FAJ + HFD-A; SD	Sensitization and challenge: Oral	a. Sensitization of offspring mice: OVA 1 mg + cholera toxin 10 µg b. Challenge of offspring mice: OVA 50 mg c. For maternal mice: 60% fat in HFD treatment. FAJ 0.15 mL/10 g mice	a. Sensitization: From Day 0 to Day 21 in weekly interval. b. Challenge: Day 28, 31, and 34.	16S rDNA gene sequencing	OVA↓ Desulfobacterota, Firmicutes/ Bacteroidota ratio and ↑ Proteobacteria and FAJ ↑ Proteobacteria and Firmicutes/ Bacteroidota Maternal application of FAJ↓ Odaribactor, Parasuterella and Muribaculum of sensitized offspring.

OVA, Ovalbumin; OVA/c, Ovalbumin + 10% cocoa diet; SF, Standard food; LAVA, Low Avenanthramide; HAVA, High Avenanthramide; APO, Apoptozole; PBS, Phosphate buffer saline; Lut, Luteolin; Myr, Myricetin; Hyp, Hyperoside; U-LG, Ultrasound treaded BLG; LG-LUT, Mixed BLG+ Luteolin; U-LG-LUT, Ultrasound treated LG-LUT; N-LG, Non-treated BLG; LVA, Low viscosity sodium alginate; bwt, Body weight; DMSO, Dimethyl sulfoxide; RA-low, Low concentration of rosmarinic acid; RA-mid, Mild concentration of rosmarinic acid; RA-high, High concentration of rosmarinic acid; CT, cetirizine hydrochloride; NA, Not available; \(\preceq \), Decrease; \(\preceq \), Absent; \(\preceq \), Increase; \(\preceq \), Present.

frontiersin.org

TABLE 3 Main findings of soyabean and shrimp allergy studies.

Ref	Objectives	Tissue/cells/ Sample	Collection time	Treatment; control	Administration route	Treatment dose	Treatment duration	Sequencing type	↑↓ Microbiome
Liang et al. (2024)	Effect of luteolin on intestinal health of piglets fed with soyabean meal based diet.	a. Blood b. Duodenum c. Jejunum d. Ileum. e. Digesta from colon	a. After day 31.	Luteolin diet (+ve control diet + 0.5% luteolin); casein, skimmed milk powder + fish meal (–ve control diet); soyabean meal (+ve control diet)	With feed	As per National Research Council's recoomendation on nutritional requirement of swine	31 days	bacterial 16S rRNA gene amplicon sequencing	At phylum level, luteolin † Actinobacteria, at genus level, luteolin \(\psi \) Prevotella and \(\psi \) Olsenella.
Zhou et al. (2023)	Anti-allergic effect and mechanism of GTP on BCN induced anaphylaxis	a. Blood b. Spleen c. Jejunum d. Digesta from cecum	Blood on day 15, 30, 45, and 60. All other samples on day 60	GTP; BCN (+ve), PBS (-ve)	PBS and BCN + PBS solution gavage. GTPs via water drinks	a. Control group: PBS 0.2 mL b. BCN group: 0.2 mL BCN + 5 mg/mL PBS solution c. GTP group: 0.2 mL BCN + 5 mg/mL PBS solution + GTP 1% of rat's drinks	PBS and BCN + PBS daily. GTP daily from day 0 to day 60.	16S rRNA gene sequencing	At phylum level, GTP ↑ Bacteroidetes and ↓ Firmicutes. At genus level, GTP ↑ Bacteroides and Parabacteroides compared to control and sensittization group. No difference among three groups for Akkermansia, Lachnospiraceae_NK4A136_ group, Lachnoclostridium, Muribaculaceae, Phascolarctobacterium, and Christensenellaceae_R-7_group. No difference between GTP and sensitization gorup for Ruminococcaceae_UCG-005. At species level, compared to BCN, GTPs ↑ Bacteroides uniformis, Bacteroides dorei, Parabacteroides goldsteinii, and Parabacteroides distasonis.
Feng et al. (2024)	Anti-allergic properties of SBF	a. Blood b. Jejunum c. Feces	Serum and organ on days 15, 29, and 43.	SBF; TM (+ve), PBS (-ve)	SBF and PBS by intragastric gavage	a. Sensitization: TM and SBF group: 200 µg TM absorbed in 1 mg/mL IFA. SBF group: 200 µl of PBS conatining SBF (100 mg/kg bwt). PBS group: 200 µL of PBS b. Challenge: 1200 µg TM	a. Sensitization: Days 1, 7, 14, 21 TM b. Challenge: Day 43 c. SBF from day 14 to 42 daily	16S rDNA gene sequencing	At family level, compared to control group TM ↓ Chitinophagaceae, Rhizobiaceae and ↑ Burkholderiaceae, Caulobateraceae, and Sphingomonadaceae. The SBF modulated the declined Rhizobiaceae and Chitinophagaceae. The SBF ↑ Chitnophilidae and ↓ Burkholderiaceae, Shpingomonadaceae, Pneumatobacteriaceae.

frontiersin.org

Ref	Objectives	Tissue/cells/ sample	Collection time	Treatment; control	Administration route	Treatment dose	Treatment duration	Sequencing type	↑↓ Microbiome
Liu et al. (2021)	Structure of covalnet	Feces from non-allergic	After 48 h of fermentation	Conjugates (BLG_Lut,	Incubation of conjugates	All conjugates and BLG	48 h of fermentation	16S rRNA gene	Conjugates ↑ Bacteroidota and ↓
	conjugates of bovine	individuals		BLG_Myr, BLG_Hyp);	with feces	10 mg		sequencing	Fusobacteroita compared to BLG.
	BLG and flanvonoids and			BLG					At family level, the conjugates ↑
	their effect on								Prevotellaceae, Lachnospiraceae,
	allergenicity and human								and Ruminococcaceae and ↓
	intestinal microbiota								Peptostreptococcaceae and
									Selenomomadaceae compared to
									BLG.
									At genus level, the conjugates ↑
									Prevotella, Faecalibacterium,
									Agathobacter and ↓ Romboutsia
									and Megasphera compared to that
									of BLG.
Wang et al. (2022)	Effect of ultrasound on	Stool from healthy	After 48 h of fermentation	U-LG-LUT, S-LG-LUT,	NA	In KU812 cell culture,	48 h of anaerobic sterile	16S rRNA gene	At phylum level, compared to
	non-covalent interaction	individuals		LG-LUT, U-LG; N-LG		a. Sensitization: with	fermentation	sequencing	N-LG, other treatment ↑
	of BLG and luteolin and					human serum IgE of milk			Firmicutes and Proteobacteria
	relation between					for 24 h			while ↓Bacteroidota.
	allergenicity and					b. Stimulation: with			At family level, compared to
	intestinal microbiota					treatments 50 µL/well			control group, N-LG and U-LG↑
						(1 mg/mL) for 4 h			Prevotellaceae and ↓
									Selenomonadaceae and
									Bifidobacteriaceae. The U-LG-
									LUT and S-LG-LUT increased the
									Bifidobacteriaceae compared to
									N-LG and U-LG.
									At genus level, compared to
									control, all the LG included
									treatment ↓ Megamonas and
									Bifidobacterium and ↑ Prevotella.
									Compared to N-LG, the S-LG-
									LUT and U-LG-LUT
									†Bifidobacterium.

TABLE 4 (Continued)

Ref	Objectives	Tissue/cells/ sample	Collection time	Treatment; control	Administration route	Treatment dose	Treatment duration	Sequencing type	↑↓ Microbiome
Wang et al. (2024)	Anti-allergic effect of the	a. Serum	After day 40	A-BLG, BLG-FA, BLG-	Sensitization and	a. Sensitization: 5 mg	a. Sensitizaiton: from day	16S rRNA gene	At phylum level, compared to
	ferulic acid and glucose	b. Feces		Glu, BLG-FA-Glu; BLG	Challenge: Oral	b. Challenge: 20 mg	0 to day 35 in weekly	sequencing	BLG, all other treatments ↓
	combination on BLG			(+ve)			interval		Firmicutes and Actinobacteria
							b. Challenge: Day 40		and ↑ Bacteriodota and
									Campilobacterota.
									At family level, campared to other
									treatments, BLG ↓
									Lactobacillaceae, Rikenellaceae,
									Lachnospiraceae, Marinifilaceae,
									and Bacteriodaceae and ↑
									Corynebacteriaceae and
									Staphylococcaceae. BLG-FA ↑
									Lactobacillaceae and ↓
									Staphylococcaceae and
									Corynobacteriaceae. The BLG-
									Glu and BLG-FA-Glu ↑
									Lachnospiraceae and ↓
									Corynebacteriaceae.
									At Genus level, BLG ↓
									Lactobacillus, Alistipes,
									Odaribactor, and Bacteroides and
									↑ Staphylococcus and
									Corynebacterium.

BCN, β -conglycinin; BLG, β -lactoglobulin; Lut, Luteolin; Myr, Myricetin; Hyp, Hyperoside; U-LG, Ultrasound treaded BLG; LG-LUT, Mixed BLG+ Luteolin; U-LG-LUT, Ultrasound treated LG-LUT; N-LG, Non-treated BLG; A-BLG, Alkaline β -lactoglobulin; BLG-FA, β -lactoglobulin + ferulic acid; BLG-Glu, β -lactoglobulin + glucose; BLG-FA-Glu, β -lactoglobulin + ferulic acid + glucose; γ , Increase.

presence and function (Mennini et al., 2021). These results indicate that it is important to study the higher level of taxonomic resolution of the microbiome in order to accurately determine the effect of polyphenols in food allergy via microbiome modulation.

5 Limitation

This study included the articles published in English. Thus, it may cause omission of important articles in other languages. The included studies also had diverse polyphenol forms and animal models (rats, mice, and piglets). These cause variation in the results, making it hard to find common microbiome signature and their modulation pattern by polyphenol. All included studies used 16S rRNA gene sequencing to investigate the microbiome changes due to the polyphenols. The 16S rRNA sequencing is not rigorous enough to study at species or strain level of microbes. Moreover, some of the studies only reported the results at phylum and genus level, which increased the variability of the microbiome results. Most of the other food allergies and gut microbiome studies also reported microbiome diversity and functional prediction using 16S rRNA sequencing techniques (Chen et al., 2016; Goldberg et al., 2020; Gu et al., 2022; Kourosh et al., 2018; Bunyavanich and Berin, 2019; Tanaka et al., 2024; Mennini et al., 2021; Fazlollahi et al., 2019; Tulyeu et al., 2019). Very few studies have used combined approaches such as the 16S rRNA gene sequencing and metabolomics (Xu et al., 2022) or shutgun metagenomics (De Filippis et al., 2021) to determine microbial signature and their potential functional in various food allergies. Furthermore, out of other important food allergies, only four types were covered by the included studies (egg, milk, shrimp, and soybean). Other important food allergies such as allergies related to peanut, wheat, and tree nuts are yet to be studied in terms of polyphenol's effect on these allergies via microbiome modification. Thus, finding in this study is limited to modulation of polyphenols on egg, milk, soyabean and shrimp allergy. For modulatory effect of polyphenol on the other important food allergies including peanut, wheat, and nuts, further studies are necessary in the future.

6 Conclusion

Higher level of variation in polyphenol used and animal model used along with lower taxonomic resolution of microbiome in the included studies in this review led to lack of common microbiome modulation pattern of polyphenols in the reduction of food allergy. High-resolution taxonomic level investigation (Jovel et al., 2016) or microbiomes-and-metabolomics approach (Xu et al., 2022) have been proven effective in getting the signature gut microbiome in food allergy studies. Given that 16S rRNA sequencing technique would not provide the species or strain level resolution which is critical for identification of signature microbiome and their functional potential in food allergy. Moreover, shotgun sequencing approach provide higher taxonomic resolution and opportunity to direct assessment of functional potential of the microbiomes (Jovel et al., 2016). Thus, use of shotgun metagenomics combined with metabolomics could provide reliable food allergy microbiome signature and their potential function as well as reliable measure of polyphenol's effect on food allergy via microbiome modulation.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author/s.

Author contributions

TR: Conceptualization, Investigation, Writing – original draft, Writing – review & editing. RB: Investigation, Supervision, Writing – review & editing. JR: Investigation, Visualization, Writing – review & editing. LW: Funding acquisition, Project administration, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by 1890 Capacity Building Grant Program from the United States Department of Agriculture and National Institute of Food and Agriculture (Project award No. 2023-38821-39979).

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.1673472/full#supplementary-material

References

Ashwin, K., Pattanaik, A. K., and Howarth, G. S. (2021). Polyphenolic bioactives as an emerging group of nutraceuticals for promotion of gut health: a review. *Food Biosci.* 44:101376. doi: 10.1016/j.fbio.2021.101376

Bunyavanich, S., and Berin, M. C. (2019). Food allergy and the microbiome: current understandings and future directions. *J. Allergy Clin. Immunol.* 144, 1468–1477. doi: 10.1016/j.jaci.2019.10.019

Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P., et al. (2016). Early-life gut microbiome composition and milk allergy resolution. *J. Allergy Clin. Immunol.* 138, 1122–1130. doi: 10.1016/j.jaci.2016.03.041

Camps-Bossacoma, M., Pérez-Cano, F. J., Franch, À., and Castell, M. (2017). Gut microbiota in a rat oral sensitization model: effect of a cocoa-enriched diet. *Oxidative Med. Cell. Longev.* 2017:7417505. doi: 10.1155/2017/7417505

Catalkaya, G., Venema, K., Lucini, L., Rocchetti, G., Delmas, D., Daglia, M., et al. (2020). Interaction of dietary polyphenols and gut microbiota: microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. *Food Front.* 1, 109–133. doi: 10.1002/fft2.25

Chang, M., Zhao, Y., Qin, G., and Zhang, X. (2018). Fructo-oligosaccharide alleviates soybean-induced anaphylaxis in piglets by modulating gut microbes. *Front. Microbiol.* 9:9. doi: 10.3389/fmicb.2018.02769

Chen, C., Chen, K., Kong, M., Chang, H., and Huang, J. (2016). Alterations in the gut microbiotas of children with food sensitization in early life. *Pediatr. Allergy Immunol.* 27, 254–262. doi: 10.1111/pai.12522

De Filippis, F., Paparo, L., Nocerino, R., Della Gatta, G., Carucci, L., Russo, R., et al. (2021). Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance. *Nat. Commun.* 12:5958. doi: 10.1038/s41467-021-26266-z

De Rossi, L., Rocchetti, G., Lucini, L., and Rebecchi, A. (2025). Antimicrobial potential of polyphenols: mechanisms of action and microbial responses—a narrative review. Antioxidants 14:14. doi: 10.3390/antiox14020200

E, D. p., Plekhova, V., Vangeenderhuysen, P., Baeck, N., Bullens, D., Claeys, T., et al. (2024). Integrated gut metabolome and microbiome fingerprinting reveals that dysbiosis precedes allergic inflammation in IgE-mediated pediatric cow's milk allergy. Allergy 79, 949–963. doi: 10.1111/all.16005

Faggion, C. M. (2012). Guidelines for reporting pre-clinical in vitro studies on dental materials. *J. Evid.Based Dent. Pract.* 12, 182–189. doi: 10.1016/j.jebdp.2012.10.001

Fazlollahi, M., Chun, Y., Grishin, A., Wood, R. A., Burks, A. W., Dawson, P., et al. (2019). Early-life gut microbiome and egg allergy. *Allergy* 73, 1515–1524. doi: 10.1111/all.13389

Feng, X., Yan, Z., Ren, X., Jia, Y., Sun, J., Guo, J., et al. (2024). Sea buckthorn flavonoid extracted with high hydrostatic pressure alleviated shrimp allergy in mice through the microbiota and metabolism. *J. Agric. Food Chem.* 72, 25094–25102. doi: 10.1021/acs.jafc.4c06928

Ganesh, B. P., and Versalovic, J. (2015). Luminal conversion and immunoregulation by probiotics. *Front. Pharmacol.* 6:6. doi: 10.3389/fphar.2015.00269

Goldberg, M. R., Mor, H., Magid Neriya, D., Magzal, F., Muller, E., Appel, M. Y., et al. (2020). Microbial signature in IgE-mediated food allergies. *Genome Med.* 12:92. doi: 10.1186/s13073-020-00789-4

Gu, S., Xie, Q., Chen, C., Liu, C., and Xue, W. (2022). Gut microbial signatures associated with peanut allergy in a BALB/c mouse model. *Foods* 11:11. doi: 10.3390/foods11101395

Hara, M., Suzuki, H., Hayashi, D., Morii, W., Nakamura, T., Kiyoki, K., et al. (2024). Gut microbiota of one-and-a-half-year-old food-allergic and healthy children. *Allergol. Int.* 73, 550–555. doi: 10.1016/j.alit.2024.03.004

Hong, S., Lee, J. Y., Lee, M., Han, D., Ko, H., Sprent, J., et al. (2019). Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. *Sci. Adv.* 5:eaaw1507. doi: 10.1126/sciadv.aaw1507

Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W. (2014). SYRCLE'S risk of bias tool for animal studies. *BMC Med. Res. Methodol.* 14:43. doi: 10.1186/1471-2288-14-43

Huang, J., Qiao, H., Li, Q., Zhang, Y., Zhang, C., Su, H., et al. (2025). Osteopontin protects from ovalbumin-induced asthma by preserving the microbiome and the intestinal barrier function. *mSystems* 10:e00389-25. doi: 10.1128/msystems.00389-25

 $Iweala, O.\ I., and\ Nagler, C.\ R.\ (2023).\ The\ microbiome\ and\ food\ allergy.\ Annu.\ Rev.\ Immunol.\ 37, 377-403.\ doi:\ 10.1146/annurev-immunol-042718-041621$

(63) Jovel J., Patterson J., Wang W., Hotte N., O'keefe S., Mitchel T., et al. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. *Front. Microbiol.* 7:7. doi: 10.3389/fmicb.2016.00459

Kanchongkittiphon, W., Nopnipa, S., Mathuranyanon, R., Nonthabenjawan, N., Sritournok, S., Manuyakorn, W., et al. (2024). Characterization of gut microbiome profile in children with confirmed wheat allergy. *Asian Pac. J. Allergy Immunol.* doi: 10.12932/ap-080623-1626

Kourosh, A., Luna, R. A., Balderas, M., Nance, C., Anagnostou, A., Devaraj, S., et al. (2018). Fecal microbiome signatures are different in food-allergic children compared to

siblings and healthy children. *Pediatric Allergy Immunol.* 29, 545–554. doi: 10.1111/paj.12904

Kumar Singh, A., Cabral, C., Kumar, R., Ganguly, R., Kumar Rana, H., Gupta, A., et al. (2019). Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. *Nutrients* 11:11. doi: 10.3390/nu11092216

Lam, T., Tran, N. N., Pham, L. D., Lai, N. V., Dang, B. N., Truong, N. N., et al. (2024). Flavonoids as dual-target inhibitors against α -glucosidase and α -amylase: a systematic review of in vitro studies. Nat. Prod. Bioprospect. 14:4. doi: 10.1007/s13659-023-00424-w

Li, J., Zou, C., and Liu, Y. (2022). Amelioration of ovalbumin-induced food allergy in mice by targeted rectal and colonic delivery of cyanidin-3-O-glucoside. *Foods* 11:11. doi: 10.3390/foods11111542

Liang, X., Zheng, S., Zhou, Y., Li, J., and Zhang, Z. (2024). Luteolin, a natural flavonoid, exhibits a protective effect on intestinal injury induced by soybean meal in early-weaned piglets. *J. Anim. Sci.* 102:102. doi: 10.1093/jas/skae214

Liu, X., Wang, C., Tang, S., Wang, G., Huang, Y., Yang, F., et al. (2025). Comparative study on the alleviating effect of neohesperidin dihydrochalcones and its synthetic precursor neohesperidin on ovalbumin-induced food allergy. *Food Res. Int.* 212:116436. doi: 10.1016/j.foodres.2025.116436

Liu, J., Wang, Y., Tu, Z., Chen, W., and Yuan, T. (2021). Bovine β -Lactoglobulin covalent modification by flavonoids: effect on the Allergenicity and human intestinal microbiota. *J. Agric. Food Chem.* 69, 6820–6828. doi: 10.1021/acs.jafc.1c02482

Liu, Y., Wang, J., and Wu, C. (2022). Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. *Front. Nutr.* 8:8. doi: 10.3389/fnut.2021.634897

Liu, S., Yang, B., Yang, P., and Liu, Z. (2019). Herbal formula-3 ameliorates OVA-induced food allergy in mice may via modulating the gut microbiota. *Am. J. Transl. Res.* 11:5812.

Liu, P., Zhang, M., Liu, T., Mo, R., Wang, H., Zhang, G., et al. (2023). Avenanthramide improves colonic damage induced by food allergies in mice through altering gut microbiota and regulating Hsp70-NF- κ B signaling. *Nutrients* 15:15. doi: 10.3390/nu15040992

Loh, W., and Tang, M. L. K. (2018). The epidemiology of food allergy in the global context. $\it IJERPH$ 15:15. doi: 10.3390/ijerph15092043

Loo, Y. T., Howell, K., Chan, M., Zhang, P., and Ng, K. (2020). Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. *Compr. Rev. Food Sci. Food Saf.* 19, 1268–1298. doi: 10.1111/1541-4337.12563

Ma, J., Yu, J., Jia, Y., Luo, Z., Yang, X., Li, H., et al. (2025a). Fermented apple juice reduces the susceptibility of offspring mice to food allergy exacerbated by maternal high-fat diet. *Nutrients* 17:17. doi: 10.3390/nu17111927

Ma, J., Zhang, L., Ren, X., Luo, Z., Zhao, M., Tong, P., et al. (2025b). High hydrostatic pressure pretreated fermented apple juice attenuated anaphylaxis by improving gut microbiota and metabolic regulation. *Food Biosci.* 64:105844. doi: 10.1016/j.fbio.2025.105844

Makarewicz, M., Drożdż, I., Tarko, T., and Duda-Chodak, A. (2021). The interactions between polyphenols and microorganisms, especially gut microbiota. *Antioxidants* 10:10. doi: 10.3390/antiox10020188

Mennini, M., Reddel, S., Del Chierico, F., Gardini, S., Quagliariello, A., Vernocchi, P., et al. (2021). Gut microbiota profile in children with IgE-mediated cow's Milk allergy and cow's Milk sensitization and probiotic intestinal persistence evaluation. *IJMS* 22:22. doi: 10.3390/ijms22041649

Mithul Aravind, S., Wichienchot, S., Tsao, R., Ramakrishnan, S., and Chakkaravarthi, S. (2021). Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. *Food Res. Int.* 142:110189. doi: 10.1016/j.foodres.2021.110189

Nance, C. L., Deniskin, R., Diaz, V. C., Paul, M., Anvari, S., and Anagnostou, A. (2020). The role of the microbiome in food allergy: a review. *Children* 7:7. doi: 10.3390/children7060050

Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., and Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. *Nutrients* 8:8. doi: 10.3390/nu8020078

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. *BMJ* 372:n160. doi: 10.1136/bmj.n160

Piekarska-Radzik, L., and Klewicka, E. (2020). Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: a review. *Eur. Food Res. Technol.* 247, 9–24. doi: 10.1007/s00217-020-03603-y

Plamada, D., and Vodnar, D. C. (2021). Polyphenols—gut microbiota interrelationship: a transition to a new generation of prebiotics. *Nutrients* 14:137. doi:10.3390/nu14010137

Qiao, C., Bian, S., Huang, H., Xiao, H., Ma, L., and Han, R. (2024). Impact of ovalbumin allergy on oral and gut microbiome dynamics in 6-week-old BALB/c mice. *Front. Microbiol.* 15:15. doi: 10.3389/fmicb.2024.1439452

Rodríguez-Daza, M. C., Pulido-Mateos, E. C., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., and Roy, D. (2021). Polyphenol-mediated gut microbiota modulation: toward prebiotics and further. *Front. Nutr.* 8:689456. doi: 10.3389/fnut.2021.689456

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2018). Gut microbiota functions: metabolism of nutrients and other food components. *Eur. J. Nutr.* 57, 1–24. doi: 10.1007/s00394-017-1445-8

Sajdel-Sulkowska, E. M., and Sajdel-Sulkowska, E. M. (2019). Altered microbiota-GALT communication in IBD and ASD: changes in IELs and AhR/ARNT gene polymorphism. *J. Biotechnol. Biomed.* 2:2. doi: 10.26502/jbb.2642-91280018

Shi, Y., Xu, L., Peng, K., Wu, W., Wu, R., Liu, Z., et al. (2015). Specific immunotherapy in combination with *Clostridium butyricum* inhibits allergic inflammation in the mouse intestine. *Sci. Rep.* 5:5. doi: 10.1038/srep17651

Tanaka, M., Korenori, Y., Washio, M., Kobayashi, T., Momoda, R., Kiyohara, C., et al. (2024). Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. *FEMS Microbiol. Ecol.* 93:93. doi: 10.1093/femsec/fix099

Tulyeu, J., Kumagai, H., Jimbo, E., Watanabe, S., Yokoyama, K., Cui, L., et al. (2019). Probiotics prevents sensitization to Oral antigen and subsequent increases in intestinal tight junction permeability in juvenile–young adult rats. *Microorganisms* 7:7. doi: 10.3390/microorganisms7100463

Wang, T., Chen, W., Shao, Y., Liu, J., and Tu, Z. (2022). Ultrasound improved the non-covalent interaction of β -Lactoglobulin with luteolin: regulating human intestinal microbiota and conformational epitopes reduced allergy risks. Foods 11:11. doi: 10.3390/foods11070988

Wang, Y., Zhang, K., Chen, W., Mao, J., Wang, X., Shao, Y., et al. (2024). Gut microbiomeserum metabolism revealed the allergenicity of ferulic acid combined with glucose-modified β -Lactoglobulin. *J. Agric. Food Chem.* 72, 11746–11758. doi: 10.1021/acs.jafc.4c01545

Wu, T., Li, Z., Wu, Y., Yang, X., Li, L., Chen, S., et al. (2023). Exploring plant polyphenols as anti-allergic functional products to manage the growing incidence of food allergy. *Front. Nutr.* 10:10. doi: 10.3389/fnut.2023.1102225

Wu, X., Lu, Y., Xu, H., Lin, D., He, Z., Wu, H., et al. (2018). Reducing the allergenic capacity of β -lactoglobulin by covalent conjugation with dietary polyphenols. *Food Chem.* 256, 427–434. doi: 10.1016/j.foodchem.2018.02.158

Xu, J., Sheikh, T. M. M., Shafiq, M., Khan, M. N., Wang, M., Guo, X., et al. (2025). Exploring the gut microbiota landscape in cow milk protein allergy: clinical insights and diagnostic implications in pediatric patients. *J. Dairy Sci.* 108, 73–89. doi: 10.3168/jds.2024-25455

Xu, J., Ye, Y., Ji, J., Sun, J., Wang, J., and Sun, X. (2022). Untargeted Metabolomic profiling reveals changes in gut microbiota and mechanisms of its regulation of allergy in OVA-sensitive BALB/c mice. *J. Agric. Food Chem.* 70, 3344–3356. doi: 10.1021/acs.jafc.1c07482

Yang, Q., Jia, B., Shang, J., Wang, X., Xu, L., Liu, X., et al. (2023). Effects of rosmarinic acid on immune response and intestinal microbiota in ovalbumin-induced intestinal allergy mice. *J. Sci. Food Agric.* 104, 3002–3012. doi: 10.1002/jsfa.13192

Zeng, B., Jiang, T., Xiong, W., Che, H., and Sun, S. (2022). Protective properties of polyphenols in food allergy: a review. *Allergy* 78, 1654–1656. doi: 10.1111/all.15459

Zhang, C., Zhang, Q., Li, H., Cheng, Z., Fan, S., Xie, H., et al. (2024). Dietary polyphenols reduced the allergenicity of β -lactoglobulin via non-covalent interactions: a study on the structure-allergenicity relationship. *Food Sci. Human Wellness* 13, 2617–2628. doi: 10.26599/fshw.2022.9250210

Zhao, W., Ho, H., and Bunyavanich, S. (2020). The gut microbiome in food allergy. Ann. Allergy Asthma Immunol. 122, 276–282. doi: 10.1016/j.anai.2018.12.012

Zhou, Y., Zheng, S., Yang, S., Li, J., Yang, K., Han, J., et al. (2023). Green tea polyphenols alleviate β -conglycinin-induced anaphylaxis by modulating gut microbiota in rats. *Food Biosci.* 56:103339. doi: 10.1016/j.fbio.2023.103339