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Phage therapy has emerged as a promising alternative to conventional antibiotics
for combating intestinal bacterial infections, especially in the era of rising
antimicrobial resistance. Despite its therapeutic potential, the clinical translation
of phage therapy remains hindered by limited large-scale trial data and
incomplete mechanistic understanding. This review systematically evaluates the
efficacy of phage therapy in animal models of intestinal diseases, encompassing
bacterial infection-induced diarrhea (e.g., cholera, typhoid fever), bacterial
enteritis, and sepsis. By synthesizing evidence from bacterial colonization assays,
histopathological analyses, and disease severity assessments, we highlight
features such as phage-mediated pathogen clearance, changes in inflammatory
factors, and intestinal pathology. Furthermore, challenges including phage
selection difficulties, host specificity issues, and safety considerations are
discussed, along with future research directions aimed at bridging the gap
between experimental models and clinical applications.
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1 Introduction

Despite the early discovery of bacteriophages’ antimicrobial properties a century ago,
phage therapy remained largely marginalized during the antibiotic era, overshadowed
by the remarkable efficacy and convenience of conventional antibiotics (D’herelle,
1931). However, the escalating crisis of antibiotic misuse has reignited interest
in phage-based interventions. Two major challenges underscore this urgency:
(1) the accelerated emergence of multidrug-resistant (MDR) pathogens, which
severely limits treatment options, and (2) the collateral damage to commensal
microbiota, where antibiotic-induced dysbiosis compromises colonization resistance
and exacerbates opportunistic infections (Ranjbar et al, 2022). Recent decades
have witnessed transformative progress in phage research, with clinical evidence
now robustly supporting its therapeutic potential (Wang et al., 2020; Zheng et al,
2023). In a 2008-2022 retrospective cohort of 100 consecutive refractory infections,
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personalized bacteriophage therapy achieved clinical improvement
in 77.2 % (88/114) of episodes and eradicated the targeted pathogen
in 61.3 % (65/106) (Pirnay et al., 2024). These findings not only
validate historical observations but also offer a framework for
integrating phage biology into modern antimicrobial stewardship.

The human gut microbiota constitutes an extraordinarily
complex ecosystem, harboring a diverse array of symbiotic
bacteria, viruses, and yet-to-be-identified microorganisms
(Allaband et al., 2019). Metagenomic sequencing has revealed
over 140,000 intestinal phage genomes and more than 1,000
pathogenic bacterial genomes in the human gut (Sunagawa
et al, 2013; Camarillo-Guerrero et al, 2021). Concurrently,
extensive research has established a link between gut microbiota
dysbiosis and human diseases, with phages emerging as key
modulators in these interactions (Khan Mirzaei et al., 2020;
Hannigan et al., 2018; Nakatsu et al, 2018). While the exact
mechanisms underlying phage-mediated disease modulation
remain incompletely elucidated, accumulating evidence from in
vitro studies, animal models, and clinical observations supports
the therapeutic potential of phage therapy (Ott et al, 2017;
Merabishvili et al., 2012).

Herein, we review common intestinal disease models and
their corresponding phage therapy experiments, categorizing and
discussing relevant studies to provide a theoretical basis for the
application of phage therapy in treating human intestinal diseases
(Figure 1).

2 Phage-targeted therapy for
diarrheal diseases

Diarrhea remains a leading cause of gastrointestinal morbidity
worldwide, with bacterial etiologies representing a major public
health concern (GBD 2021 Diarrhoeal Diseases Collaborators,
2025). Clinically, bacterial diarrhea manifests as acute-onset, high-
frequency watery stools, often accompanied by fluid-electrolyte
imbalances and compromised intestinal function (Shankar and
Rosenbaum, 2020). Notable bacterial pathogens responsible
include Shigella species, enteropathogenic Escherichia coli, Listeria
monocytogenes and toxigenic Clostridioides difficile (Colston et al.,
2025; Hensen et al., 2025).

2.1 Phage therapy for Shigella-associated
diarrhea

Diarrheal disease caused by Shigella spp. manifests as a
severe gastrointestinal infection, characterized by bloody or
mucopurulent stools and high mortality in severe cases. Globally,
Shigella is estimated to cause approximately 188 million infections

Abbreviations: MDR, multidrug-resistant; CFU, colony-forming units; PFU,
plaque-forming units; AMR, antimicrobial resistance; CDI, C. difficile
infections; FFT, fecal filtrate transfer; EPEC, enteropathogenic E. coli; TCP,
toxin-co-regulated pilus; MODS, multiple organ dysfunction syndrome;

VREfm, vancomycin-resistant Enterococcus faecium.
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and 164,000 deaths annually (Kotloff et al., 2018). In resource-
limited settings, it represents the leading etiology of invasive
(bloody) diarrhea among children under 5 years of age, with
an incidence rate of 0.34 episodes per child-year reported in
communities within the Peruvian Amazon (Kosek et al., 2008;
Liu et al., 2016). Notably, the 2016 Shigella outbreak in Michigan,
which resulted in 177 cases with an 18% hospitalization rate over
8 months across two counties, was the region’s most severe in 30
years (Mcclung et al., 2020).

A murine model study investigating S. sonnei infection
comprehensively validated the prophylactic and therapeutic
potential of phage therapy (Mai et al., 2015). In this experiment,
mice were orally challenged with 10® colony-forming units (CFU)
of S. sonnei and administered phages (10° plaque-forming units,
PFU) either pre-or post-infection. Notably, all phage treatment
regimens drastically suppressed S. somnei colonization in the
gastrointestinal tract, including the feces, cecum, and ileum.
Within 72h, phage-treated mice (both pre- and post-infection)
demonstrated complete bacterial clearance, whereas persistent
colonization was maintained in untreated controls. Strikingly,
phage therapy outperformed ampicillin, achieving rapid pathogen
clearance within 24-48 h-a critical advantage in acute infections.
Over the 28-day monitoring period, phage-treated mice maintained
physiological stability, as evidenced by steady body weight,
normal leukocyte counts, and absence of diarrheal symptoms.
Furthermore, histopathological analysis confirmed no adverse
effects in vital organs (heart, brain, liver, kidneys), underscoring the
safety profile of this approach (Table 1).

2.2 Phage therapy for E. coli-associated
diarrhea

Although E. coli typically colonizes the healthy human gut
as a commensal microorganism (Kaper et al., 2004), pathogenic
strains continue to contribute significantly to diarrheal morbidity
and mortality, particularly in resource-limited regions such as Asia,
Africa, and Latin America (Chua et al., 2021). The global burden
of E. coli-associated enteric infections remains substantial, with
recent analyses highlighting its continued contribution to diarrheal
disease in low- and middle-income settings (2025).

Jamalludeen et al. demonstrated that prophylactic phage
administration effectively mitigated E. coli-induced diarrhea in
pigs, even at low fecal phage concentrations (<10° PFU/g)
(Jamalludeen et al, 2009). A three-phage cocktail exhibited
pronounced efficacy, reinforcing phage therapy’s utility in both
preventive and therapeutic settings. Similarly, Vahedi et al.
isolated a sewage-derived phage targeting enteropathogenic
E. coli (EPEC) and confirmed its therapeutic potential in
mice (Vahedi et al, 2018). Interestingly, phage monotherapy—
whether administered preventively or curatively—outperformed
both antibiotic treatment and combination therapies, resulting
in complete pathogen clearance without compromising normal
weight gain.

Clinical studies also have demonstrated the potential of
phage therapy for E. coli-related diarrheal diseases. Bruttin et al.
conducted a pioneering human trial involving 15 healthy male
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FIGURE 1
(A) Intestinal pathological changes and symptoms induced by pathogenic bacterial infection; (B) representative phage treatment regimens in animal
models; (C) improvement of intestinal pathology and symptoms in mice following phage intervention. Created using Biorender, licensed under
Academic License.

TABLE 1 Case reports of phage therapy for diarrheal diseases.

Treatment agent Model Outcomes References

FFT Human All patients have returned to normal bowel habits within 6 months D’herelle, 1931
phiCDHM1-6, phiCDHS1 Hamster Diarrhea symptoms delayed for 33 h Kaper et al., 2004

EPEC phage Mouse Mice treated with phages alone showed normal weight gain after 10 days Bruttin and Briissow, 2005
ListShield Mouse The treatment group maintained normal weight Mai et al., 2010

GJ1, GJ2, GJ3, GJ4, GJ5, GJ6, GJ7 Pig Percentage of E. coli excretion had decreased by 80% Vahedi et al., 2018

ShigActiveTM Mouse After 72h, all experimental mice showed no S. sonnei and diarrhea symptoms Mcclung et al., 2020

T4 Human Fecal phage was detected in approximately 50% of the subjects after 1 day Gana et al., 2024

volunteers who received an oral dose of E. coli phage T4 (10°
PFU/mL) (Bruttin and Briissow, 2005). While fecal phage was
detectable in 50% of participants at 24h post-administration,
complete clearance occurred within 9 days with no reported
adverse effects, confirming the safety profile. Notably, in the
German outbreak of E. coli O104:H4 infections, environmental
phage isolates showed effective lytic activity against the outbreak
strain, contributing to successful epidemic control (Merabishvili
etal., 2012).

2.3 Phage-based treatment of L.
monocytogenes-induced diarrhea

L. monocytogenes, a facultative anaerobic pathogen, is a
prominent foodborne bacterium prominent in various food
products, including meat, vegetables, fruits, and dairy (Gana et al.,
2024). The rise of antibiotic-resistant L. monocytogenes strains
has significantly complicated clinical management, with treatment
failures potentially leading to life-threatening outcomes (Skrobas
etal., 2024).

In a murine listeriosis model, mice were orally challenged
with 10° CFU/mL of L. monocytogenes, followed by a 3-
day course of six-phage cocktail therapy (10° PFU/day)
initiated 72h post-infection (Mai et al, 2010). Phage therapy
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achieved a significant reduction in L. monocytogenes load
compared to controls, with about an 80 CFU/g decrease in
fecal bacterial counts. Treated mice maintained stable body
weight, while control mice experienced approximately 10%
weight loss due to diarrhea. Notably, phage-treated animals
showed none of the adverse effects observed in antibiotic-
treated controls, including increased watery stool and cecal
distension. The detection of approximately 10> CFU/g phage
particles in cecal contents confirmed therapeutic phage
amplification, demonstrating the efficacy of phage therapy in
this diarrheal model.

2.4 Phage-based treatment of cholera

Cholera is an acute intestinal infectious disease caused by Vibrio
cholerae, with its pathogenicity relying on the synergistic action of
the toxin-co-regulated pilus (TCP) and cholera toxin (CT) (Yoon
and Waters, 2019). This disease holds landmark significance in
the early development of phage therapy. In the early 20th century,
microbiologist Félix d'Herelle isolated specific phages by studying
fecal samples from recovered cholera patients, providing crucial
evidence for phage-mediated pathogen clearance (Sabino et al.,
2020). Subsequent clinical trials demonstrated that oral phage
therapy could dramatically reduce the mortality rate in early-stage
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TABLE 2 Case reports on the application of phage therapy against Cholera.

10.3389/fmicb.2025.1672198

t Model Outcomes References
B1, B2, B3, B4 and B5 Rabbit A 100-fold decrease in intestinal proliferation of V. cholerae after 24h Jaiswal et al., 2013
B1, B2, B3, B4 and B5 Mouse Reducing the bacterial load of V. cholerae from ~107 CFU/g Jaiswal et al., 2014
ICP1, ICP2, ICP3 Mouse Small-intestinal bacterial loads were reduced by > 3 logyo Yen et al., 2017
ICP1, ICP2, ICP3, ICP4 Mouse Exhibiting no weight loss or dehydration and maintaining normal bowel movements | Yen etal., 2017
ICP1, ICP2, ICP3, ICP4 Rabbit Decreasing the amount of V. cholerae in the intestine by 107 CFU/g

cholera patients from 63 to 8%, showcasing its therapeutic potential
(Table 2) (Summers, 1993).

In a recent study by Bhandare et al. researchers utilized a
rabbit model of V. cholerae infection to evaluate the efficacy
of oral phage therapy administered both prophylactically (pre-
infection) and therapeutically (6 h post-infection) at a dose of 10°
PFU. Upon bacterial challenge, all experimental animals developed
characteristic cholera-like symptoms, including significant cecal
fluid accumulation and progressive diarrhea manifested through
soft to watery stool consistency. Remarkably, phage-treated rabbits
demonstrated complete restoration of normal fecal consistency
following therapeutic intervention. Additionally, these treated
animals maintained stable body temperatures and showed no
observable behavioral abnormalities throughout the study period.
Most notably, quantitative analysis revealed a substantial 100-
fold reduction in intestinal V. cholerae colonization within 24h
of phage administration, accompanied by robust phage replication
reaching titers of 107 PFU/g in intestinal tissues (Bhandare et al.,
2019).

Another complementary study, Jaiswal et al. demonstrated the
therapeutic potential of a five-phage cocktail against V. cholerae
infection in a rabbit model. When administered at 1x10% PFU
6h post-infection, the phage treatment produced remarkable
protective effects. Treated animals maintained normal hydration
status and stable body temperatures, in contrast to control rabbits
that developed severe clinical manifestations. Quantitative analysis
revealed a dramatic 85% reduction in cecal fluid accumulation
(from 0.39 to 0.06mL) and near-complete suppression of V.
cholerae proliferation. Of note, prophylactic administration of the
phage cocktail (10° PFU) 6 h prior to bacterial challenge provided
complete protection against cholera symptom development in
juvenile rabbits (Jaiswal et al., 2013).

Furthermore, a five-phage cocktail demonstrated potent
antibacterial efficacy in a V. cholerae mouse infection model.
Phage therapy significantly suppressed bacterial proliferation,
reducing intestinal V. cholerae loads from 7.1 x 10° CFU/g to
9.1 x 10° CFU/g on days 1 and 4 post-treatment. Concurrently,
serum TNF-a levels decreased by 150 pg/mL after 4 days of
therapy. Histopathological analysis revealed preserved intestinal
architecture with minimal villous damage and no significant
neutrophil infiltration in phage-treated mice, unlike the control
group, which exhibited marked inflammatory and structural
changes (Jaiswal et al., 2014). Prophylactic phage administration
in both mouse and rabbit models substantially reduced intestinal
V. cholerae colonization within 24h post-infection (Yen et al,
2017). Control animals developed severe cholera-like symptoms,
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including cecal dilation, dehydration, and 10-12% weight loss,
whereas phage-treated subjects maintained stable body weight,
normal hydration, and regular bowel function, demonstrating the
protective efficacy of phage therapy.

3 Targeted phage therapy against
typhoid fever

Typhoid fever, caused by the invasive pathogen Salmonella
enterica serovar Typhi, continues to pose a substantial global health
challenge in endemic areas. Following intestinal colonization, S.
typhi exhibits unique pathogenic capabilities to translocate across
the intestinal epithelium, resulting in bloodstream invasion
and systemic inflammatory responses. This predominantly
waterborne/foodborne transmission cycle (Meiring et al., 2023)
was first therapeutically targeted by Smith J. a century ago using
intravenous phage administration (Smith, 1924), establishing
an important proof-of-concept. Subsequent clinical advances
by Knouf et al., demonstrated remarkable efficacy, reducing
mortality rates from 14 to 5% in critically ill, comatose typhoid
patients, highlighting phage therapy’s potential against invasive
salmonellosis (Table 3).

Mondal et al., recently identified STWB21, an environmentally
stable lytic phage isolated from lake water, which demonstrated
treatment-timing-dependent efficacy in a S. typhi-infected murine
model. Prophylactic administration demonstrated superior efficacy
with a 66% cure rate compared to therapeutic intervention’s
33% success rate, likely attributable to STWB21s capacity
to prevent initial S. typhi intestinal colonization (Mondal
et al, 2022). Research indicated that prophylactic STWB21
administration was more effective than therapeutic application,
likely attributable to its ability to suppress S. typhi intestinal
colonization. Histopathological analysis demonstrated significantly
lower S. typhi burdens in the liver and spleen of STWB21-
treated mice compared to controls. Electron microscopy further
revealed severe hepatic abscess formation and venous inflammation
in control animals, whereas STWB21-treated mice maintained
normal tissue architecture with only a moderate increase in
mitochondrial and lysosomal activity (Mondal et al., 2023).

Three independent studies using S. typhi-infected porcine
models demonstrated rapid and significant reductions in bacterial
loads following phage therapy (Callaway et al., 2011; Lee and Harris,
2001; Saez et al,, 2011). Saez et al., reported complete bacterial
clearance within 6h of oral administration of microencapsulated
phages, with pathogenic bacteria detectable only in control animals
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TABLE 3 Case studies on phage-based treatment of typhoid fever.

Treatment agent Model Outcomes

26 phage cocktails Pig

Decreasing the colonization of S. typhi by 10> CFU/g

10.3389/fmicb.2025.1672198

References

Lee and Harris, 2001

Microencapsulated phages | Pig

Decreasing the colonization of S. typhi in the intestine by 108 CFU/g

Wall et al., 2010

A 14-phage cocktail Pig

Decreasing the colonization of S. typhi by 10° CFU/g

Saez et al.,, 2011

STWB21 Mouse

The cure rates for the preventive and therapeutic groups were 66% and 33%

Callaway et al., 2011

Microencapsulated phages | Pig

Reducing S. typhi colonization by 95% and 90%

Callaway et al., 2011

upon analysis of cecal and colonic contents (Saez et al., 2011). Wall
et al. observed 95 and 90% reductions in S. typhi colonization in
the cecum and ileum, respectively, using similar microencapsulated
phage formulations (Wall et al, 2010). In a parallel study by
Callaway et al., pigs treated with a phage cocktail (3 x 10° PFU)
at 24- and 48-h post-infection exhibited fecal S. typhi levels tenfold
lower than controls by 48 h (Callaway et al., 2011).

4 Phage-based therapeutics for
intestinal inflammation

Clinically significant enteropathogens; including E. coli,
C. difficile, and Y. enterocolitica, employ distinct virulence
mechanisms to establish persistent intestinal inflammation
(Shuwen and Kefeng, 2022). In this context, phage therapy
emerges as a transformative therapeutic strategy, offering targeted
elimination of pathogenic bacteria while maintaining commensal
microbiota homeostasis, thereby overcoming the limitations
of conventional antibiotics that often aggravate microbial
dysbiosis and providing a precision approach to interrupt this
self-perpetuating pathogenic cycle (Arthur et al., 2012).

Y. enterocolitica, a zoonotic enteropathogen, induces intestinal
inflammation upon host colonization (Leon-Velarde et al., 2019).
Xue et al, developed an intestinal-targeting lytic phage and
evaluated its efficacy in a murine model (Xue et al, 2020).
Following oral challenge with 2 x 108 CFU Y. enterocolitica,
administration of a single phage dose (10° PFU/mL) at 6h post-
infection achieved complete bacterial clearance in 33% of mice,
a 4-log reduction in colonic/cecal bacterial loads (from 107 to
10® CFU/g), and sustained suppression for 144 h. Phage-treated
mice also showed significantly lower pro-inflammatory cytokine
levels, demonstrating therapeutic potential against Yersinia-
induced enteritis.

C. difficile has been widely recognized as a major pathogen
driving intestinal inflammation (Dong et al., 2023), exerting
its pathogenic effects through gut microbiota disruption and
modulation of host immune responses. In a recent study, Shan
et al. demonstrated the therapeutic potential of phage therapy
using an in vitro colon cell model infected with C. difficile, where
single-phage treatment successfully eliminated adherent bacteria
without causing collateral damage to host cells (Shan et al., 2018),
highlighting its safety profile for potential clinical applications.
In vivo studies have yielded promising results. Ramesh et al.
administered phage therapy (108 PFU/mL) by oral gavage in a
hamster model of colitis. While all control animals succumbed
within 72 h with severe cecal pathology (bleeding and swelling), the
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phage-treated group showed significantly improved survival, with
2 x 10* PFU of phages recovered from the cecum (Ramesh et al.,
1999). Selle et al. employed an innovative approach by engineering
a phage using the Type I CRISPR-Cas system to target C. difficile-
induced intestinal inflammation. In their mouse model, a single
dose of 10° PFU of the engineered phage administered on day 4
post-infection (initiated with 105 CFU of C. difficile) reduced tissue
damage scores by 4 points compared to controls. Notably, high
phage titers (108 PFU/g) persisted in feces 4 days post-treatment,
accompanied by significant improvements in cecal inflammation
and bacterial clearance (Selle et al., 2020).

5 Bacteriophage strategies to combat
sepsis-associated infections

Sepsis, a life-threatening syndrome characterized by organ
dysfunction, represents a critical global health challenge with
persistently high mortality rates (Rudd et al., 2020). Of particular
clinical relevance is gut-origin sepsis (Assimakopoulos et al,
2018), a distinct subtype that arises when intestinal pathogens
compromise the mucosal barrier integrity, leading to both
structural damage and functional impairment of the intestinal
epithelium (Amornphimoltham et al., 2019). This reach initiates
a pathogenic cascade involving bacterial translocation, which
subsequently evokes a robust systemic inflammatory response that
may culminate in intestinal failure and progressive multiple organ
dysfunction syndrome (MODS) (Haussner et al., 2019). Mounting
experimental and clinical evidence now underscores the pivotal
contribution of gut microbiota dysbiosis to the pathogenesis of
gut-derived sepsis, thereby establishing a compelling therapeutic
rationale for investigating phage-based interventions as a precision
antimicrobial strategy (Magnan et al., 2023).

Intestinal colonization by Pseudomonas aeruginosa can rapidly
progress to life-threatening sepsis with high mortality rates
(Tabarani and Baker, 2022). It is demonstrated that a single oral
dose of lysogenic phage (10'° PFU/mL) significantly improved
survival outcomes. Phage therapy increased survival rates by 66.7%
compared to saline-treated controls while simultaneously reducing
P. aeruginosa burden in the liver and spleen by 1 log CFU/g.
Notably, phage-treated animals showed a 4-5-fold reduction in
proinflammatory cytokine levels (Watanabe et al., 2007). In a
complementary study, Prokopczuk et al., developed an engineered
Pf phage that achieved >4-log CFU/g reduction in bacterial load
in murine infection models. Most strikingly, while untreated
controls exhibited near-complete (100%) mortality, all Pf-treated
animals survived the entire observation period. Histopathological
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evaluation further confirmed the phage’s ability to prevent bacterial
dissemination to secondary organs (liver and spleen) (Prokopczuk
etal., 2023).

Enterococcus faecium has evolved from a commensal organism
to a leading nosocomial pathogen, with surveillance data
demonstrating a striking increase in its association with life-
threatening infections since the 1980s (Garcia-Solache and Rice,
2019). This epidemiological shift is particularly concerning in
cases of E. faecium-induced sepsis, where therapeutic options are
severely constrained by both intrinsic high mortality rates and the
expanding global prevalence of vancomycin-resistant (VREfm)
and multidrug-resistant strains (Cattaneo et al, 2021; Torres
et al., 2018). Stellfox et al., report the successful use of integrative
phage therapy to treat recurrent E. faecium bacteremia from
persistent gut colonization in an immunocompromised patient.
The therapeutic protocol combined conventional antibiotics
with
administered at 1 x 10° PFU via optimized dual-route delivery

(vancomycin-daptomycin) adjunctive phage therapy
(oral and intravenous) (Stellfox et al, 2024). This therapeutic
strategy achieved two essential clinical outcomes; complete sepsis
resolution with blood culture sterilization within 27 days alongside
durable prevention of recurrent bacteremia through sustained

phage maintenance therapy.

6 Bridging the gap in gut phage
therapy

Antibiotic misuse has fueled the rise of multidrug-resistant
bacteria, posing a grave threat to public health worldwide.
Equally concerning is the collateral damage from broad-spectrum
antibiotics, which devastate the gut microbiota. This destruction
triggers a chain of events: the ecological balance is disrupted, the
gut barrier is compromised, and susceptibility to opportunistic
infections rises (Singha et al., 2023). Unlike antibiotic treatment,
which frequently causes gut microbiota dysbiosis in infected
animals, phage therapy confers the added benefit of maintaining
a relatively normal microbial community structure, a protective
effect demonstrated in a C. difficile colitis model by improved
survival, reduced intestinal damage, and minimal impact on the
resident gut microbiota (Gundersen et al., 2023; Raeisi et al., 2023).
Gut microbiota dysbiosis is a key driver of intestinal inflammation,
and by precisely eliminating inflammatory pathogens such as
Yersinia, Klebsiella pneumoniae, and C. difficile, bacteriophages
reduce local and systemic pro-inflammatory cytokine (e.g., TNEF-
a) levels, thereby alleviating inflammation and promoting tissue
repair (Wang et al., 2022; Federici et al, 2022). This causal
strategy ultimately breaks the vicious cycle of pathogen-driven
inflammation at its root.

Phage therapy has demonstrated potential for treating
intestinal infections in animal models, yet its clinical translation
faces four major challenges. First, as living biological entities,
phages exhibit complex pharmacokinetics with significant
inter-individual variability. Oral administration is susceptible
to gastrointestinal environmental factors, and efficacy heavily
depends on their replication capability at the infection site, making
standardized dosing difficult (Benyamini, 2024). Second, the host
immune system can generate neutralizing antibodies, particularly
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during systemic or repeated administration, which substantially
compromises subsequent treatment efficacy (Van Nieuwenhuyse
et al., 2022). Third, the production of “phage cocktails” faces
challenges in achieving batch-to-batch consistency, and the
absence of globally unified quality control standards hinders
regulatory approval and large-scale application. Fourth, existing
animal models have inherent limitations and cannot fully replicate
the complex environment of human intestinal infections, thereby
limiting the predictive value of preclinical data (Browne et al,
2016).

Addressing the clinical translation challenges of phage
therapy necessitates an integrated multi-faceted approach. Key
priorities include developing intelligent delivery systems, such
as pH-responsive microcapsules, to safeguard phages during
gastrointestinal transit and enable site-specific release, thereby
augmenting their colonization and replication efficacy at infection
sites (Vinner et al, 2019). Concurrently, phage engineering
through gene editing and surface modifications like PEGylation
can mitigate neutralization by host antibodies and extend systemic
circulation (Gordillo Altamirano and Barr, 2019). Manufacturing
standardization requires implementing Quality by Design
principles and synthetic biology techniques to ensure consistent
production of phage cocktails with reproducible therapeutic
outcomes (Malik, 2021). Furthermore, establishing human-
relevant models—including humanized intestinal organoids
integrated with multi-omics platforms—will strengthen the
predictive validity of translational studies. Collectively, these
strategies will accelerate the transition of phage therapy from
experimental research to clinical implementation (Shield et al,
2021).

7 Conclusion

This review systematically examines phage therapy against
intestinal infections in animal models, including diseases such
as diarrhea, enteritis, and systemic sepsis caused by pathogens
like Shigella, pathogenic E. coli, L. monocytogenes, V. cholerae, S.
typhi and C. difficile. Given the global rise of antibiotic resistance,
developing such alternative therapies is critically important.

The results consistently demonstrate that phage therapy
effectively clears targeted pathogens, alleviates intestinal
inflammation, and preserves barrier integrity. It outperformed
traditional antibiotics across multiple models without inducing
the microbiota dysbiosis frequently associated with them. A
key insight is that prophylactic administration generally affords
stronger protection than therapeutic intervention. Furthermore,
combining rationally engineered phages with polyvalent cocktail
formulations produces synergistic effects, significantly boosting
the therapeutic potential.

While persistent challenges—such as narrow host range,
evolving bacterial resistance, and the complex gut environment—
remain, advances in optimized delivery systems, precision phage
engineering, and multi-omics integration are progressively
addressing these limitations. These developments establish phage
therapy as a key strategy against multidrug-resistant intestinal
infections and provide a solid foundation for clinical translation.

Future efforts should focus on developing novel engineering
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approaches to broaden host range and counter resistance,

elucidating the multifaceted interactions between phages,
host immunity, and gut microbiota, and optimizing clinical
dosing regimens and formulations to facilitate well-controlled

human trials.
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