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Hyperuricemia (HUA) has become a worldwide health issue, drawing increasing 
public attention. This study aimed to elucidate the roles of bile acids (BAs) and 
their associations with gut microbiota in a HUA rat model. We established normal 
control (N) and HUA rat groups, then characterized the BA profiles in liver, serum, 
and ileum contents using a targeted metabolomics approach. Additionally, gut 
microbiota composition was analyzed through 16S rDNA gene sequencing. The 
results were that hyperuricemia induced elevated levels of cholic acid (CA) in 
liver and elevated levels of taurocholic acid (TCA), glycocholic acid (GCA), and 
taurodeoxycholic acid (TDCA) in the ileum content, particularly the increases in the 
levels of total 12α-hydroxy bile acid in the ileum content, which were consistent 
with the increased levels of CA in the liver. These changes are correlated to 
an increase in the abundance of the genera Allobaculum and Bifidobacterium. 
Our investigation revealed the fluxes of bile acids and their association with gut 
microbiota in HUA and provides new ideas for the study of metabolic diseases 
in hyperuricemia.
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1 Introduction

Hyperuricemia (HUA), defined as elevated serum uric acid (UA) levels, has been linked 
to obesity, fatty liver disease, and type 2 diabetes (Wan et al., 2016; Civantos Modino et al., 
2012; Kodama et al., 2009). In some developed countries, approximately 20.2% of men and 
20.0% of women are affected by HUA (Chen-Xu et al., 2019). Furthermore, studies have 
highlighted a contributory role of UA in metabolic syndrome, a condition characterized by 
lipid metabolism disorders and insulin resistance (Zavaroni et al., 1993; Feng et al., 2022; Meng 
et al., 2022). Due to its widespread impact, HUA has become a significant worldwide health 
issue and attracted considerable public attention.

Bile acids assist in fat absorption in the intestine and play key roles in regulating lipid and 
glucose metabolism. Synthesis of BAs is regulated by three cholesterol hydroxylase enzymes, 
mitochondrial sterol 27-hydroxylase (CYP27A1), cholesterol 7α-hydroxylase (CYP7A1), and 
sterol 12α-hydroxylase (CYP8B1) (Liu et al., 2020). CYP7A1 and CYP27A1 are the rate-
limiting enzymes of classical and alternative pathways, respectively (Thomas et al., 2008). The 
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classical pathway synthesizes chenodeoxycholic acid (CDCA) and 
cholic acid (CA), while the alternative pathway synthesizes CDCA. The 
ratio of CDCA/CA is determined by CYP8B1 (Li-Hawkins et  al., 
2002), which is a BA 12α-hydroxylase that determines the production 
of CA (Bertaggia et al., 2017). CA can be further modified by intestinal 
microbes into secondary BAs. In previous studies, it has been 
demonstrated that 12α-hydroxy BAs are highly positively correlated 
with fat levels, and 12α-hydroxy BAs are closely related to the 
pathogenesis of lipid metabolism disorders (Iwasaki et al., 2022).

Gut microbiota converts primary bile acid to secondary bile acid 
in hepatic-intestinal circulation. Many studies have found gut 
microbiota alterations in HUA (Wei et al., 2022; Yu et al., 2018), which 
may induce the altered BA composition. Previous studies have shown 
that the gut microbiota is not only involved in converting BAs but also 
in regulating the biosynthesis of several bile acid synthesis enzymes, 
including CYP7A1 and CYP27A1(Sayin et al., 2013; Ridlon et al., 
2006). Some research has reported that the development of metabolic 
disorders was accompanied by the alteration of gut microbiome and 
metabolites, particularly bile acids (Lin et al., 2019; Jiao et al., 2018).

In the present research, we aimed to investigate the impact of 
HUA changes in a rat model with emphasis on the interplay between 
bile acids and gut microbiota. To the best of our knowledge, it is the 
first study that focused on the investigation of bile acids in the enteric-
hepatic cycle and their interplay with the microbiome during the 
development of HUA.

2 Materials and methods

2.1 Animal study

The animal experiments were approved by Qingdao University 
(Qingdao, China). All animal experiments followed the guide for the 
care and use of laboratory animals. Female Wistar rats (8 weeks old) 
were purchased from Vital River Laboratory Animal Technology Co., 
Ltd. (Beijing, China). All rats were raised as four or three per cage in 
clear plastic cages in a specific pathogen-free temperature-controlled 
environment with a 12-h light/dark cycle (lights on from 8:00 a.m. to 
8:00 p.m.) and ad libitum access to water and food. All animals were 
acclimatized for 1 week before the experiment. Female rats were 
randomly divided into two groups.

The HUA group was gavaged with adenine at 100 mg/(Kg·d), and, 
after 5 weeks, the dose of adenine was reduced to 50 mg/(Kg·d), while 
at the same time, HUA (n = 7) rats were intraperitoneally injected 
with potassium oxonate (PO) at 50 mg/(Kg·d). The normal (n = 7) 
group was gavaged with the same amount of sterile water. After 
9 weeks, fresh feces were obtained by stimulating the anus. Rats that 
had been fasted for 6 h were anesthetized with isoflurane, and the 
blood samples were collected from the intra-orbital retrobulbar 
plexus. Livers, ileum contents, and serum were stored at −80 °C 
until assayed.

2.2 Bile acid analysis

Bile acid analysis was conducted at Lipid ALL Technologies. In 
brief, bile acids were extracted from serum using ice-cold methanol: 
acetonitrile (5:3) containing deuterated internal standards including 

glycocholic acid-d4, glycochenodeoxycholic acid-d9, glycodeoxycholic 
acid-d4, cholic acid-d4, ursodeoxycholic acid-d4, chenodeoxycholic 
acid-d4, deoxycholic acid-d4, and lithocholic acid-d4 (Avanti Polar 
Lipids) as previously described. Clean supernatant was transferred to 
a new tube and dried in the SpeedVac™ vacuum concentrator 
(Thermo Fisher Scientific, USA) under the OH mode. The extract was 
resuspended in 50 μL of methanol and analyzed on an Exion AD30-
UPLC (Sciex, USA) coupled with a Sciex QTRAP 6500 Plus (Sciex, 
USA) under the electrospray ionization mode. Individual bile acids 
were separated on a Phenomenex Kinetex C18 column (100×2.1 mm, 
1.7 μm) using 2% formic acid in water as mobile phase A and 
acetonitrile:isopropanol (1:1) as mobile phase B and quantitated by 
referencing the intensities of their corresponding deuterated 
internal standards.

Tissues were homogenized in 40% methanol on a bead ruptor 
(OMNI, USA). The samples were incubated at 1,500 rpm for 30 min 
at 4 °C. The samples were centrifuged at the end of incubation, and 
the clean supernatant was extracted. The extraction was repeated with 
ice-cold methanol:chloroform (3:1), and the extracts were pooled. The 
pooled extracts were dried in a SpeedVac vacuum concentrator under 
the OH mode and resuspended in 50 μL methanol containing 
deuterated internal standards prior to LC–MS analysis. The internal 
standard cocktail contained glycocholic acid-d4, 
glycochenodeoxycholic acid-d9, glycodeoxycholic acid-d4, cholic 
acid-d4, ursodeoxycholic acid-d4, chenodeoxycholic acid-d4, 
deoxycholic acid-d4, and lithocholic acid-d4 (Avanti Polar Lipids). 
Bile acids were analyzed on an Exion AD30-UPLC coupled with Sciex 
QTRAP 6500 Plus under the electrospray ionization mode of negative 
polarity. Individual bile acids were separated on a Phenomenex 
Kinetex C18 column (100×2.1 mm, 1.7 μm) using 2% formic acid in 
water as mobile phase A and acetonitrile: isopropanol (1:1) as mobile 
phase B and quantitated by referencing he  intensities of their 
corresponding deuterated internal standards.

The levels of 12α-OH BAs were the sum of the concentration of 
CA, deoxycholic acid (DCA), taurocholic acid (TCA), glycocholic acid 
(GCA), taurodeoxycholic acid (TDCA), and glycodeoxycholic acid 
(GDCA) in each sample (Xie et al., 2021).

The HPLC–MS analysis was performed according to 
proprietary protocol.

Methanol (HPLC grade; Fisher Chemical, A452-4), acetonitrile 
(LC–MS grade; Fisher Chemical, A955-4), isopropanol (99.9%; Fisher 
Chemical, A451-4F), chloroform (HPLC grade; Honeywell, 049-4), 
and formic acid (98%; J&K 299272) were used in this study. Solvents 
were purchased from Sigma-Aldrich (USA) or the suppliers and 
catalogue numbers given above.

2.3 16S rDNA sequencing

Microbial community genomic DNA was extracted from fecal 
samples using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, 
GA, USA). 16s rRNA genes (V3–V4 variable regions) were amplified 
with the primers 338F (50-ACTCCTACGGGAGGCAGCAG-30) and 
806R (50-GGACTACHVGGGTWT CTAAT-30). The amplification 
reaction was performed in a 25 μL volume containing 12.5 μL of 
Phusion Hot Start Flex 2X Master Mix, 2.5 μL of forward primer, 
2.5 μL of reverse primer, and 50 ng of template DNA. The reaction was 
performed with the following polymerase chain reaction (PCR) 
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program: denaturation at 98 °C for 30 s, followed by 35 cycles of 
denaturation at 98 °C for 10 s, annealing at 54 °C for 30 s, extension 
at 72 °C for 45 s, and a final extension at 72 °C for 10 min. The PCR 
product was purified through agarose gel (2%) electrophoresis, and 
commercial sequencing was conducted on the Illumina 
MiSeq platform.

2.4 Real-time quantitative polymerase 
chain reaction

Total RNA from the tissues was extracted using Trizol reagent 
(Takara, People’s Republic of China). The total RNA was used to 
obtain cDNA using All-In-One 5X RT MasterMix (No. G592, ABM, 
People’s Republic of China). The obtained cDNA was used for a real-
time PCR reaction with BlasTaq qPCR 2X MasterMix (No. G891, 
G892, ABM, China). The primers used are shown in Table 1.

2.5 Western blot analysis

The liver and ileum tissues were homogenized and centrifuged at 
13,000g at 4 °C for 10 min. The supernatant was a protein sample. 
After the sample was denatured and boiled, the extracted proteins 
were separated using sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) and then transferred to a polyvinylidene 
fluoride (PVDF) membrane (Millipore). After blocking with 5% milk 
for 90 min, the membrane was washed three times with phosphate-
buffered saline (PBS) containing Tween 20 (PBST) and incubated 
overnight with the indicated primary antibodies at 4 °C. The 
antibodies used were as follows: rabbit anti-β-actin (D110001-0025, 
1:1,000, Sangon Biotech), rabbit anti-CYP7A1 (Cat No. F2612, 1:500, 
Affinity), and rabbit anti-CYP8B1 (abs145876, 1:500, absin). The next 
day, the membrane was washed with PBST and incubated with 
horseradish peroxidase-conjugated secondary antibodies at room 
temperature (RT) for 1 h. Anti-rabbit IgG-linked and HRP-linked 
antibodies (abs20040, 1:5,000, absin) were used. The protein contents 
were detected using an imaging system and a chemiluminescence kit 
(Millipore, MA, USA) and quantitated using ImageJ software (Bio-
Rad) to analyze the gray value of the blots. Protein expression was 
normalized to that of β-actin.

2.6 Statistical analysis

The results are expressed as mean ± SD. Statistical significance was 
analyzed using the unpaired Student’s t-test. The Mann–Whitney U 
test was used for BA data analysis because the majority of the data 

were not normally distributed. The software package GraphPad Prism 
(GraphPad Software 8.0, La Jolla, CA, USA) was used to statistically 
analyze the results. A p-value of < 0.05 was considered to be statistically 
significant. Principal component analysis (PCA) was carried out in the 
R programming environment (version 4.2.1), using the factoextra 
package (version 1.0.7) for visualization.

3 Results and discussion

3.1 Persistent increase of uric acid 
concentration in HUA rats

There was no significant difference in body weight between the 
HUA and normal (N) groups (Figure 1A). The UA content in the HUA 
group was significantly higher than that in the N group from the 1st 
to the 9th week (Figure 1B).

3.2 HUA-induced changes in the ileum 
12α-hydroxy bile acids

BAs play an important role in lipid metabolism as signaling 
molecules. To assess the BA profile in the HUA and N groups of rats, 
liquid chromatography–mass spectrometry (LC–MS) was applied to 
acquire their BA profiles. To evaluate whether the separation observed 
in PCA was statistically significant, we performed a permutational 
multivariate analysis of variance (PERMANOVA) (Adonis) test based 
on the Bray–Curtis/Euclidean distance matrices, using the vegan 
package in R. The test was conducted with 999 permutations, and a 
p-value < 0.05 was considered statistically significant. We observed a 
clear separation between the N group and HUA group rats from the 
principal component analysis (PCA) model established with the 
identified liver (Figure 2B) and ileum (Figure 2C) bile acids; there was 
no separation between the N and HUA groups in serum bile acids 
(Figure 2A).

3.3 HUA-induced changes in serum, liver, 
and ileum bile acids

To explore the dynamic changes of BAs, we  collected the 
serum, liver, and ileum contents of N and HUA group rats. In 
serum, we found that taurochenodeoxybile acid (TCDCA) and 
tauro-muribile acid (TMCA) decreased significantly compared 
with the N group (Figure  3A). In the liver, we  found that CA 
increased dramatically compared with the N group (Figure 3B). 
More importantly, in ileum contents, we  found that TMCA, 

TABLE 1  Rat primers used for research.

Gene Forward (5′ → 3′) Reverse (5′ → 3′)

GAPDH GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA

CYP7A1 AGGTCTCTGAACTGATCCGTCTACG GAGAATAGCGAGGTGCGTCTTGG

CYP27A1 TCGCACCAATGTGAATCTGGCTAG CCACTGCTCCATGCTGTCTCTTATG

CYP8B1 GTCAGGCAAGAAGATCCACCACTAC GTCAGGGTCCACCAGTTCAAAGTC
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muricholic acid (MCA), taurohyocholic acid (THC), 
tauroursodeoxycholic acid (TUDCA), taurohyodeoxycholic acid 
(THDCA), glycoursodeoxycholic acid (GUDCA), TCA, 
taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA), 
and GCA increased remarkably (Figure 3C).

3.4 HUA-induced changes in the ileum 
12α-hydroxy bile acids

There was no change in 12α-hydroxy BAs in the liver, but 
12α-hydroxy BAs significantly increased in ileum contents compared 
with the N group (Figures 4A–C).

3.5 HUA-induced changes in CYP7A1 and 
CYP8B1

To determine the cause of the increase in 12α-hydroxy bile acids 
in the ileum, we observed the bile acid synthesis pathway. We found 
that rats with HUA exhibited significant upregulation of hepatic 

mRNA abundances of CYP7A1 and CYP8B1 genes, instead of 
CYP27A1 genes, and increased contents of CYP7A1 and CYP8B1 
(Figures 5A,B).

3.6 HUA-induced changes in gut 
microbiome

The rat fecal microbiota composition was detected by sequencing 
the respective 16S rDNA genes, and the gut microbiota of five rats in 
each group was analyzed. The Shannon, Simpson, Ace, and Chao 
indices were found unchanged (Figure  6A). At the genus level, 
we found that there was obvious separation between the groups in 
microbiota (Figure 6B). The bacterial communities in the HUA group 
and the matched controls clustered separately, suggesting that there 
was a remarkable difference between the N and HUA groups 
(Figure 6C). At the phylum level, the proportion of Bacteroidetes 
increased in the HUA group, and the proportion of Firmicutes 
decreased compared to the control (Figure  6D). There was a 
remarkable difference in bacterial communities among the groups. 
Allobaculum, unclassified_f__Prevotellaceae, Bifidobacterium, 

FIGURE 1

Lipid metabolism disorders in HUA rat. (A) Body weight. (B) Serum UA. Data are shown as means ± SDs (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 
(unpaired Student’s t-test). HUA, hyperuricemia; N, normal.

FIGURE 2

Dysregulated bile acid principal component in the HUA rats. (A–C) Principal component analysis (PCA) score plot of serum (A), liver (B), and ileum 
contents. (C) Bile acid profiles. Principal component analysis (PCA) of groups N and H. The separation between the groups was visualized in the PCA 
plots and further validated by the PERMANOVA (Adonis) test based on the Bray–Curtis/Euclidean distance matrices, which confirmed significant 
differences between the groups (p < 0.05).
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Dubosiella, unclassified_f__Lachnospiraceae, Faecalibaculum, 
Bacteroides, Parabacteroides, Coriobacteriaceae_UCG-002, Aerococcus, 
Adlercreutzia, Dorea, and Staphylococcus increased, while Monoglobus 
and Enterococcus decreased compared with the N group (Figure 6E).

3.7 The correlation between 12α-hydroxy 
bile acids and gut microbiome in HUA rats

To visualize the correlation between the gut microbiota and BA 
abundances, the Spearman correlation was conducted between the 
main 12α-hydroxy BA abundances in ileum contents and the relative 
abundances of the differential bacterial genus identified above. 

We  found that Allobaculum and Bifidobacterium had significantly 
positive correlations with total 12α-hydroxy BA, TCA, TDCA, and 
GCA. These results suggest that gut microbiota changes may impose 
a substantial impact on the 12α-hydroxy BA composition (see 
Figure 7).

4 Discussion

Uric acid is widely regarded as the final metabolic product of 
purines in humans (McQueen et al., 2012). Unlike humans, uricase 
expressed in the liver of rodents can further degrade UA into allantoin 
(Álvarez-Lario and Macarrón-Vicente, 2010), which has hindered the 

FIGURE 3

Dysregulated bile acid profile in HUA rats. (A–C) Individual BAs concentrations of serum (A), liver (B), and ileum contents (C). Data are shown as median 
(Q1, Q3) (n = 4–5, Mann–Whitney U test). *p < 0.05, **p < 0.01.
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FIGURE 4

Dysregulated 12α-hydroxy bile acid concentrations in HUA rats. (A–C) 12α-hydroxy BA concentrations of serum (A), liver (B), and ileum contents (C). 
Data are shown as median (Q1, Q3) (n = 5–6, Mann–Whitney U test). *p < 0.05, **p < 0.01.

FIGURE 5

Increased expression of CYP7A1 and CYP8B1 in HUA. (A) CYP7A1, CYP27A1, and CYP8B1 gene mRNA abundances. (B) CYP7A1 and CYP8B1 protein 
contents. Data are shown as means ± SDs (n = 5; unpaired Student’s t-test). *p < 0.05, **p < 0.01.

FIGURE 6

Altered BA profiles and their association with gut microbiota. (A) α-diversity of gut microbiota, including Shannon, Simpson, Ace, and Chao indices. 
Data are shown as means ± SDs (n = 5, Mann–Whitney U test). (B,C) The principal component analysis (B) and partial least-squares discriminant 
analysis (C) at the genus level identified by metagenomic sequencing (n = 5). (D) Relative proportion of the phylum in each group. (E) Relative 
abundance of the top 15 genera in each group. Data are shown as median (Q1, Q3) (n = 5, Mann–Whitney U test).
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establishment of suitable rodent models for HUA. In this study, 
we used adenine to simulate the purine intake in the daily human diet, 
and uricase was inhibited with PO. High-dose adenine can cause 
nephrotoxicity, significantly increasing the mortality rate of animals, 
which is not conducive to the stable establishment of long-term 
models. Therefore, we  drew on the experience of previous model 
establishment (Liu et al., 2020), first increasing the uric acid level with 
high-dose adenine and then reducing the adenine dose in the 5th 
week to maintain a high level of blood uric acid while significantly 
reducing its severe nephrotoxicity and establishing a stable chronic 
model of hyperuricemia. Through continuous monitoring of uric acid 
levels, the uric acid level in the HUA group remained consistently 
higher than that in the control group and reached its peak at 
7–9 weeks. This might be due to potassium oxazinate inhibiting the 
continuous accumulation and saturation of uric acid decomposition 
in the body, which completely disrupts the balance between uric acid 
production and catabolism, thereby causing a sudden increase in SUA 
levels. This phenomenon also indicates that the model has been 
successfully established.

The ratio between CDCA and CA is determined by the sterol 
12a-hydroxylase (CYP8B1), which is required for CA synthesis. 
CYP8B1 is a BA 12α-hydroxylase that determines the production of 
cholic acid (CA, which is 12α-hydroxylated). CA can be  further 
modified by intestinal microbes into secondary BAs, such as DCA, 
TCA, TDCA, GCA, and GDCA, which are generated from CA and 
are 12α-hydroxylated. In our study, the expression of cytochrome 
P7A1 and cytochrome P8B1 induced by HUA was generally increased, 
while the gene expression of CYP27A1, the initiating enzyme of the 

alternative pathway, remained unchanged. It should be noted that the 
alternative pathway also involves another key enzyme, namely 
oxysterol 7α-hydroxylase (CYP7B1), which acts downstream of 
CYP27A1 to promote the synthesis of chenodeoxycholic acid (CDCA) 
(Wahlström et al., 2016). Although the expression of CYP7B1 was not 
detected in this study, the fact that the expression of the CYP27A1 
gene did not change may suggest that under our experimental 
conditions, the alternative pathway may not be  mainly activated. 
However, we cannot rule out the possibility that post-transcriptional 
regulatory or compensation mechanisms affect CYP7B1 activity. 
Future research, by specifically detecting the expression and activity 
of CYP7B1, will be of great significance for comprehensively clarifying 
the role of alternative pathways in the observed bile acid profile 
disorder in hyperuricemia.

We also discovered the elevated CA level in HUA rat liver and the 
significantly elevated TCA, TDCA, GCA, and total 12α-hydroxy BA 
levels in HUA rat ileum contents. In the ileum of obese mice, CA and 
TMCA levels were increased (Duan et al., 2019), and patients with 
NAFLD exhibited increased CA levels (Jiao et al., 2018). Our results 
are consistent with these studies. It has been demonstrated that 
12α-hydroxy BAs aggravate body weight, liver steatosis, and lipid 
homeostasis. 12α-hydroxy BAs are the therapeutic target for obesity, 
fatty liver, and hypertriglyceridemia (Hori et al., 2020). Therefore, 
we believe that 12α-hydroxy BAs are closely related to the development 
of lipid metabolism disorders in HUA.

In this study, our data show decreased phyla Firmicutes and 
increased Bacteroidota in HUA. Previous studies did not clarify the 
changes in P. Firmicutes and P. Bacteroidota in HUA. In addition, 

FIGURE 7

Heatmap of Spearman correlation coefficients between ileum contents 12α-hydroxy and microbiota. The gradient colors represent the correlation 
coefficients, with red being more positive and blue being more negative (n = 10, 5 samples per group). *p < 0.05, **p < 0.01.

https://doi.org/10.3389/fmicb.2025.1671409
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zou et al.� 10.3389/fmicb.2025.1671409

Frontiers in Microbiology 08 frontiersin.org

some studies have found a significant decrease in P. Firmicutes and a 
significant increase in P. Bacteroidota in HUA (Yu et al., 2018; Cao 
et al., 2022; Sun et al., 2022), while some others and our previous 
studies have found the opposite result (Liu et al., 2020; Pan et al., 
2020). The abundance of phyla Firmicutes and Bacteroidota in HUA 
with and without symptoms is different (Kim et al., 2022). Similar to 
HUA, there is a lack of definitive findings on the alterations of phyla 
Bacteroidota and Firmicutes in NAFLD (Aron-Wisnewsky et  al., 
2020). Gut microbiota analysis revealed that the phyla Bacteroidota 
and Firmicutes had high bile salt hydrolase (BSH) activity (Jones et al., 
2008). We therefore speculate that changes in the phyla Bacteroidota 
and Firmicutes may lead to changes in BSH activity in HUA. At the 
genus level, the abundance of Prevotella, Bifidobacterium, Bacteroides, 
Parabacteroides, and Dorea was found to increase in NAFLD (Aron-
Wisnewsky et al., 2020), and Allobaculum was found to increase in 
HFD mice (Zheng et al., 2021). Our results are consistent with the 
above-mentioned results that the abundance of Prevotella, 
Bifidobacterium, Bacteroides, Parabacteroides, and Dorea increased in 
HUA groups. It is worth noting that, in addition to BSH activity, the 
transformation of bile acids is deeply influenced by the bile acid-
induced (bai) operon, which is responsible for generating secondary 
bile acids through 7α-dehydroxylation—a process mainly dominated 
by certain Clostridium and Bacteroides species (Meibom et al., 2024; 
Ridlon and Hylemon, 2012). These biochemical modifications 
significantly alter the hydrophobicity, signal transduction 
characteristics, and physiological effects of bile acids, ultimately 
influencing host metabolism. Although the bai gene activity was not 
directly measured in this study, the changes in the composition of the 
intestinal microbiota in HUA rats suggest that the metabolism 
mediated by the bai gene may have changed, which may have 
promoted the disorder of the overall bile acid pool and is worthy of 
further research. We found evidence of dysbiosis in the HUA rat gut 
microbiota, and these changes may be  partially consistent with 
changes in obesity and NAFLD.

Allobaculum is considered harmful to improve lipid metabolism 
in the genus. Allobaculum abundance was significantly higher in aged 
obese mice (Kain et  al., 2019), and similarly in NAFLD rats, the 
abundance of Allobaculum was significantly and positively correlated 
with triglycerides and cholesterol (Tang et al., 2018). Recent evidence 
suggests that Bifidobacterium can conjugate, rather than only 
deconjugate, including conjugates of CA, DCA, and CDCA (Tsutsui 
et al., 2011; Lucas et al., 2021). Conjugated bile acids have greater 
water solubility and are secreted into bile; meanwhile, conjugated bile 
acids can be more easily taken up by ileal bile acid transporters/apical 
bile acid transporters (IBAT/ABAT) (Begley et  al., 2006). In our 
investigation, the Allobaculum and Bifidobacterium had significantly 
positive correlations with total 12α-hydroxy BA, TCA, TDCA, and 
GCA. Among these two bacteria, Bifidobacterium is known to produce 
CA into conjugated bile acids, which may make it easier for 
12α-hydroxy BAs to remain in the enterohepatic circulation rather 
than being excreted in the feces.

Although this study revealed the changes in bile acid 
metabolism and gut microbiota under hyperuricemia and their 
potential association, there are still some limitations: This study 
mainly revealed the changes in the correlation between bile acid 
profiles and gut microbiota under the HUA state. We have not yet 
directly confirmed through functional experiments that the 
identified specific bacterial communities (such as Allobaculum and 

Bifidobacterium) are the cause of the increase in 12α-hydroxy bile 
acid, rather than the result. Further studies, such as fecal microbial 
transplantation or antibiotic clearance experiments, will 
be conducted to establish the causal relationship between microbial 
changes and bile acid metabolism in hyperuricemia. This study only 
used rat models, and the sample type was single. In the future, 
we can analyze the serum and fecal bile acid profiles of patients with 
hyperuricemia or gout, as well as the structure of their intestinal 
flora, to confirm whether the elevated ratio of 12α-hydroxy to 
non-12α-hydroxy bile acids and the association with specific flora 
also exist in humans. This will provide clinical evidence for the 
development of novel microecological preparations or dietary 
intervention strategies targeting the gut microbiota-bile acid axis; 
Due to sample loss during the sample processing, the reduced 
sample size may affect the statistical power and universality of our 
research results. In the future, we will use a larger sample size to 
further verify and expand these preliminary observations. Female 
rats were used in this study to control gender variables. 
We recognize that the estrogenic environment may have specific 
regulatory effects on uric acid and bile acid metabolism. This is both 
a characteristic of the model and implies that the research 
conclusions need to be generalized to male individuals with caution. 
Future comparative studies between the sexes will be of great value 
to reveal possible gender dimorphism in hyperuricemia.

In conclusion, the present study demonstrated the alterations of 
bile acids and gut microbiota in the HUA rat model, particularly the 
CA synthesis in the liver and the levels of 12α-hydroxy BA in ileum 
contents. The correlations between ileum 12α-hydroxy BA and 
intestinal microbiota offered important clues to exploring the causes 
of increased 12α-hydroxy BA in the ileum. These findings allowed us 
to realize the roles of bile acids and gut microbiota in the HUA, 
providing a novel view for understanding the metabolic diseases 
among HUA patients.
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