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Whole genome sequencing of
Phomopsis asparagi reveals
molecular basis of asparagus
stem blight pathogenesis

Lingtao Duan'?, Yunpeng Li%, Bo Lan®?, Changfa Yin'?,
Xing Deng®?, Ziyu Yang'?, Qinghua Sun'?, Baojia Li** and
Yingqing Yang*?*

Institute of Plant Protection, Academy of Agricultural Sciences, Jiangxi, China, 2Jiangxi Provincial Key
Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization,
Jiangxi, China, *Heilongjiang University, Harbin, China

Asparagus (Asparagus officinalis L.), a nutritionally and medicinally valuable crop,
faces significant yield and quality losses due to stem blight disease caused by
the fungal pathogen Phomopsis asparagi (syn. Diaporthe asparagi). Despite the
implementation of various control measures—including agronomic practices,
resistant cultivars, chemical treatments, and biological controls—the lack of
comprehensive understanding of the pathogen’s molecular pathogenesis has
hindered the development of effective management strategies. In this study,
we present the first whole-genome assembly of P. asparagi (50.94 Mb) through
[lumina sequencing, which contains 4,362 predicted protein-coding genes. Functional
annotation identified key virulence-associated pathways, particularly those related
to oxidative stress response, reactive oxygen species (ROS) metabolism, cell wall
remodeling, and programmed cell death (PCD). Given the known temperature
sensitivity of disease development, we performed comparative transcriptomic
profiling under optimal (25 °C) and heat-stress (32 °C) conditions. Our findings
reveal that thermal stress triggers a sophisticated molecular response cascade in
P asparagi: initial environmental sensing through WRKY transcription factors and
MAPK signaling activates coordinated stress adaptation mechanisms involving
ROS generation, DNA damage repair, metabolic reprogramming (lipid and
carbohydrate metabolism), proteolytic activity, and cell wall degradation enzymes.
This multifaceted response ultimately culminates in host cell dysfunction and PCD,
facilitating fungal invasion. This work provides fundamental genomic resources
and mechanistic insights into P. asparagi pathogenicity, offering new targets for
developing science-based disease control approaches in asparagus cultivation.

KEYWORDS

asparagus stem blight, Phomopsis asparagi, reference genome, high temperature,
pathogenic pathway

1 Background and overview

Asparagus (Asparagus officinalis L.), also known as garden asparagus, belongs to the family
Liliaceae and the genus Asparagus. It is rich in essential nutrients, including dietary fiber,
oligosaccharides, amino acid derivatives, vitamins, and minerals (Nishimura et al., 2013; Jaiswal
et al.,, 2014). Additionally, it possesses medicinal properties such as lung-moistening, cough
suppression, phlegm elimination, and tumor growth inhibition (Liu, 2001; Chen, 2005; Chen,
2010; Wang et al., 2010; Zhu et al.,, 2010; Negi et al., 2010). In recent years, with the expansion

01 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1670056&domain=pdf&date_stamp=2025-11-24
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1670056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1670056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1670056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1670056/full
mailto:yyq8294@163.com
https://doi.org/10.3389/fmicb.2025.1670056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1670056

Duan et al.

of asparagus cultivation, the incidence of diseases has increased
annually, particularly asparagus stem blight, which severely affects both
yield and quality (Yang et al., 2012a; Meng et al., 2013). The causative
agent of this disease is the fungus Phomopsis Asparagi (Sacc.) Bubak
(Meng et al,, 2013; Liu et al., 1991), a globally distributed devastating
pathogen (Zhang et al., 1995; Yang et al., 2012b; Uecker and Johnson,
1991), often referred to as the “cancer of Asparagus” Phomopsis species
are hemi-biotrophic fungi. Their hyphae initially attach to plant
epidermal tissues and secrete pectinases and cellulases to degrade the
plant cell wall. Subsequently, invasive hyphae penetrate host cells,
developing fine necrotrophic hyphae that extract nutrients, ultimately
leading to cell death and tissue necrosis (Xu et al., 2025). The disease is
particularly severe in Asian asparagus-producing countries, such as
China, Japan, Thailand, and Indonesia, with China being the most
affected. It is prevalent across all major asparagus-growing provinces
in China, with higher severity in southern regions compared to the
north. Mild infections stunt growth and reduce yield and quality, while
severe cases cause premature plant death and complete field devastation
(Yang et al., 2012a; Meng et al., 2013; Sun et al., 2023). Provinces such
as Guangdong, Guangxi, Fujian, Zhejiang, Jiangxi, Jiangsu, Shanghai,
Henan, Shandong, Hebei, and Liaoning report infection rates of
50%-100%, with 10%-30% plant mortality in heavily affected fields,
leading to significant economic losses annually (Lu et al., 2024).
Current control strategies for asparagus stem blight include cultivation
management techniques, disease-resistant breeding, Chemical
pesticides, Biocontrol agents (Qu et al., 2021; Yu et al., 2011). However,
due to environmental constraints, pathogen resistance, and technical
limitations, these methods exhibit incomplete efficacy.

The studies on the functions of ERD2, MoSNF5, ZFC3, and
ZFC2 in the pathogenic pathways of Magnaporthe oryzae (Peng,
2018; Xu, 2017; Liu, 2016), the genome annotation of Fusarium
graminearum (King et al., 2017), and the functional research on the
sterol transporter BcVastl and histone demethylase BcJarl in Botrytis
cinerea (Ha, 2023; Hou, 2019) have all elucidated the pathogenic
mechanisms of the respective fungi, providing a theoretical basis for
disease control. Similarly, Banfield’s (2015) study on Phytophthora
infestans highlighted the importance of investigating pathogenicity
pathways. These findings underscore that to better control asparagus
stem blight, further research on the pathogenic mechanisms of its
causative agent, P asparagi, as well as the disease resistance
mechanisms of asparagus, is essential. Prior studies by Lu et al. (2015)
and Zhou et al. (2024) focused on the ITS sequences and inter-simple
sequence repeat (ISSR) markers of P. asparagi, as well as its viral
sequences. Additionally, Abdelrahman et al. (2018) conducted a
differential gene expression analysis of resistant wild asparagus and
susceptible medicinal asparagus infected with P. asparagi. However,
none of these studies involved a whole-genome analysis of P. asparagi.
To address this gap, we sequenced and annotated the whole genome
and transcriptome of P. asparagi to identify pathogenicity-related
genes. Studies have shown that in barley, Magnaporthe oryzae Erd2
not only affects asexual development but also influences appressorium
penetration and invasive hyphal growth within the host (Peng, 2018).
The proteins ZFC3 and ZFC2 regulate mitochondrial gene
expression, thereby controlling the growth and development of
M. oryzae (Liu, 2016). In strawberries, deletion of the BcVASTI gene
led to increased sterol content and decreased sphingolipid levels in
the cell membrane, indicating that the sterol transporter BcVastl
modulates downstream pathogenic mechanisms by altering
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membrane sterol composition in B. cinerea (Ha, 2023). These findings
demonstrate the critical role of genomic research in controlling
pathogenic fungi.

The occurrence of stem blight requires hot and humid climatic
conditions. Since major asparagus-producing regions in Europe and
America have cool climates, stem blight is rarely observed in these
countries, and related research reports are limited (Sonoda et al., 1997;
Davis, 2001; Yang et al., 2014). In asparagus, the initial onset of stem
blight occurs from mid-April to mid-May, during which conidia are
continuously released from infected plant residues, leading to
secondary infections. The peak period of disease incidence spans from
early June to early September. As temperatures rise, hyphal invasion
and conidial release accelerate, resulting in coalescing lesions or
girdling of stems, leading to widespread outbreaks (Sun et al., 2023).
We hypothesize that the disease progression is associated with
temperature, with more severe infections occurring under high-
temperature conditions. Therefore, we conducted transcriptome
sequencing of P. asparagi infecting asparagus for 5 days under high-
temperature (32 °C) and normal-temperature (25 °C) conditions. By
analyzing the functional differences in differentially expressed genes,
we aim to uncover the molecular mechanisms underlying its
pathogenicity under high temperatures, thereby facilitating further
research on these related genes.

To address the issue of asparagus stem blight in high-temperature
regions, this study employed NovaSeq platform combined with
Mlumina technology to generate a chromosome-level reference
genome for the stem blight pathogen (P. asparagi). Comparative
transcriptome analysis was conducted on fungal cultures grown at
25 °Cand 32 °C to investigate the pathogenic pathways under elevated
temperature conditions. The research aims to identify more efficient,
environmentally-friendly and cost-effective control strategies, while
providing theoretical foundations for enhancing both the nutritional
value and economic benefits of asparagus cultivation.

2 Methods
2.1 Phenotypic observation

The stem blight pathogen strain X]JQ-1 (Phomopsis asparagi) was
isolated and maintained by our laboratory from diseased asparagus
plants. The strain was cultured on potato dextrose agar (PDA)
medium at 25 °C for preservation. PDA medium was poured into
plates at 10 mL per plate. Using a 5-mm cork borer, mycelial plugs
were taken from the edge of 5-day-old XJQ-1 colonies and transferred
to the center of fresh PDA plates with an inoculation needle. The
inoculated plates were incubated at 25 °C and 32 °C for 7 days. After
incubation, mycelial plugs were taken from the colony edges and
inoculated onto tender asparagus stems. The inoculated stems were
maintained at 25 °C and 32 °C for 5 days, with symptom observation
conducted subsequently. Each treatment included five replicates.

2.2 Sequencing sample preparation
Mycelia were isolated from asparagus stem blight lesions 5 days

after inoculation with strain XJQ-1 by cork-boring and sent
for sequencing.
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2.3 Library construction and sequencing

All libraries were sequenced by Allwegene (Beijing, China).
Genomic DNA for [llumina sequencing was extracted using the CTAB
method. Briefly, DNA samples were fragmented to 350bp by
ultrasonication, followed by end-repairing, A-tailing, and ligation with
full-length adapters for Illumina sequencing and subsequent PCR
amplification. Finally, PCR products were purified (AMPure XP
system), with library size distribution analyzed using an Agilent 2,100
Bioanalyzer and quantified by real-time PCR. Whole-genome
sequencing of P, asparagi was performed using Illumina NovaSeq PE150.

For transcriptome sequencing, the NEBNext® Ultra™ RNA Library
Prep Kit for Illumina® (NEB, USA) was used to construct sequencing
libraries with index codes added to each sample. Three technical
replicates were performed per library. Library quality was evaluated
using an Agilent Bioanalyzer 2,100 system (Agilent Technologies, USA),
followed by paired-end 150bp sequencing on the Illumina
NovaSeq 6,000 platform. Raw data were processed using Trimmomatic
(v0.39) to remove low-quality bases (average quality score <20 over 4 bp),
adapter sequences, and reads shorter than 100 bp (Bolger et al., 2014).

2.4 Genome assembly and evaluation

The genome size was estimated using K-mer-based analysis prior
to assembly. Clean data obtained after preprocessing were assembled
using SOAPdenovo (v2.04) (Li et al., 2008, 2010), SPAdes (Bankevich
etal,, 2012), and ABySS (Simpson et al., 2009), followed by integration
with CISA (Lin and Liao, 2013). The preliminary assembly was refined
using gapclose (v1.12) for optimization and gap filling. The final
assembly was generated by filtering out fragments shorter than 500 bp,
followed by evaluation, statistical analysis, and subsequent
gene prediction.

2.5 Gene prediction and annotation

Gene prediction was performed using multiple approaches: de
novo prediction by TransDecoder, Glimmer, and SNAP with PASA
based on transcriptome data; Cufflinks prediction using transcriptome
data; de novo Augustus (v2.7) prediction (Stanke et al., 2008); and
homology-based Genewise (v2.4.1) prediction with reference to
related sequences (when available). Results were integrated using
EVM and validated through a second round of PASA.

Functional annotation was conducted against general databases
including GO, KEGG, KOG, NR, Pfam, and Swiss-Prot. Protein
sequences of predicted genes were aligned to these databases using
DIAMOND (e-value <le-5). For each sequence, the top-scoring
alignment result (default thresholds: identity <40%, coverage <40%)
was selected for annotation.

2.6 Functional enrichment of differentially
expressed genes

KEGG and GO functional enrichment analyses were performed

for genes differentially expressed under high-temperature conditions
compared to normal-temperature conditions.

Frontiers in Microbiology

10.3389/fmicb.2025.1670056

3 Results
3.1 Phenotypic analysis

On PDA plates, the fungal mycelium initially appeared milky
white to white, gradually turning grayish-white to light green or
dark gray with prolonged incubation (Figures 1A-D). At 25 °C,
P. asparagi showed rapid initial growth but began to die after
15 days. In contrast, at 32 °C, the fungus grew slowly initially but
exhibited accelerated growth after 15 days. Pathogenicity tests using
detached asparagus stems showed disease symptoms consistent
with field observations (Figures 1E,F). Early infection appeared as
small milky white spots that gradually expanded into spindle- or
oval-shaped lesions, light to dark brown in color with water-soaked
margins. After 5 days of incubation at 25 °C and 32 °C, disease
severity was proportional to fungal growth rate.

3.2 Genome assembly and annotation

To construct a high-quality reference genome of Phomopsis
asparagi, we sequenced 5,017 Mb of short reads (Table 1).

Based on 15-mer analysis, the estimated genome size of
P. asparagi was 58.72 Mb, slightly larger than the assembled
genome (Figure 2A). Read alignment to the assembled genome
revealed GC bias and abundant repetitive sequences, as indicated
by GC content and read coverage depth analysis (Figure 2B). To
comprehensively elucidate the pathogenic molecular mechanisms
of P. asparagi, we achieved high-quality genome assembly and
annotation. Gene prediction identified 4,362 protein-coding
genes, with functional annotation across multiple databases (Nr,
SwissProt, GO, KEGG, and KOG) showing significant overlap
(Figure 2C). Notably: 3,020 genes matched Nr annotations, 2,602
genes were assigned GO terms, 894 and 532 entries were
annotated in KEGG and KOG, respectively. These results
demonstrate high completeness and accuracy of genome
annotation. RNA-seq validation further supported transcriptional
activity, with >80% of sequencing reads aligning to the genome
across samples (Figure 2D), confirming strong consistency
between transcriptomic and genomic data.

3.3 Prediction of fungal pathogenicity
pathways

The final genome assembly achieved a total length of
50.94 Mb with a GC content of 53.32% (Figure 3A). KEGG
analysis of fungal pathogenicity pathways revealed an integrated
pathogenic network, encompassing: environmental adaptation
(stress response), toxin biosynthesis (toxin metabolism),
secretory mechanisms (effector molecule secretion), and host
defense disruption (toxin action and cell wall degradation)—
collectively establishing fungal pathogenicity (Figure 3B).
Phylogenetic analysis demonstrated that P. asparagi forms a
distinct clade separate from other congeneric or phylogenetically
related phytopathogenic fungi (Figure 3C), reflecting its unique
genomic composition and

potentially  specialized

pathogenic strategies.
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FIGURE 1

for 5 days.

(A,B) P. asparagi cultured at 25 °C and 32 °C for 5 days, respectively; (C,D) P. asparagi cultured at 25 °C and 32 °C for 15 days, respectively; (E,F)
phenotypes after inoculating mycelial blocks of P. asparagi cultured at 25 °C and 32 °C for 7 days into Asparagus officinalis shoots and then culturing

TABLE 1 Sequencing data summary.

Sequencing Platform Clean Insert Read
type data size length
(Mb) ((]9)] (bp)
Fungi Survey Illumina 5,017 350 150
PE150
RNA-Seq Mlumina 28.11 350 150 ‘

3.4 Pathogenic pathways under
high-temperature conditions

At the functional level, we simulated host environmental
conditions using high-temperature stress as a treatment and
identified numerous significantly upregulated differentially
expressed genes (DEGs). Volcano plot analysis (Figure 4B) revealed
13,574 significantly differentially expressed genes between high- and
normal-temperature conditions, including 3,948 upregulated and
9,626 downregulated genes under high temperature. Relative
expression levels of the top five most significantly upregulated and
downregulated genes were analyzed (Figure 4D). GO biological
process enrichment analysis showed high enrichment of
stress

pathogenicity-related pathways, “oxidative

»

response,

including
ROS metabolism,” “cell wall modification,” “protein

» <

phosphorylation,

» «

response to fungus,” “signal transduction,” and
“programmed cell death” (Supplementary Figures 1, 2). These
functional processes are widely involved in virulence regulation,
host infection, and stress adaptation in plant pathogens and are
considered core modules in pathogenic strategies. KEGG enrichment
analysis of all DEGs revealed that in genetic information processing,
pathways such as ribosome, ribosome biogenesis in eukaryotes, and
aminoacyl-tRNA biosynthesis contained numerous upregulated or

downregulated genes. In metabolic pathways, starch and sucrose
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metabolism and the pentose phosphate pathway showed significant
gene expression changes (Figure 4A). Further KEGG pathway
analysis enabled construction of a representative pathogenic
mechanism map (Supplementary Figure 3), covering pathways such

»

as “MAPK signaling,” “lipase activity, “proteolytic process,” and
“amino acid and secondary metabolite biosynthesis.” Several core
genes, including KKY31689 (encoding a toxin synthase), KUI66679
(a transmembrane transporter), and XP_006379301 (an immune
regulation-related protein), were identified as highly expressed and
enriched in pathogenicity-related pathways, suggesting their
potential key roles in regulating virulence expression, secreting
active molecules, or disrupting host structures.

To systematically integrate these findings, we combined GO and
KEGG pathways to construct a comprehensive molecular network
initiated by “high-temperature stress” (Figure 4C). This network
reveals that under high-temperature conditions, P asparagi first
perceives stress signals through WRKY transcription factors and the
MAPK signaling pathway, subsequently activating multiple stress
response pathways, including “ROS generation,” “DNA repair,” “lipid
metabolism,” “
degradation” These ultimately lead to plant cell dysfunction and

» «

proteolysis,” “carbohydrate metabolism,” and “cell wall

programmed cell death (PCD). Notably, the network integrates over
20 key GO pathways and highlights representative differentially
expressed pathogenicity-related genes, significantly enhancing the
interpretability of pathogenic mechanisms through visualization.

4 Discussion

Asparagus stem blight is a devastating disease with global
distribution, occurring in nearly all major asparagus-producing
regions and causing significant economic losses. Previous studies on
P, asparagi have primarily focused on its biological characteristics,
genetic traits, disease epidemiology, and infection processes (Sun
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Genomic analysis diagrams. (A) 15-mer statistical plot. The abscissa represents k-mer depth, and the ordinate represents the proportion of frequency
at each depth to the total frequency. The red curve in the figure is the depth distribution curve of 15-mers from sequencing data, while the black curve
is the standard Poisson distribution curve closest to it. (B) Statistical chart of correlation analysis between GC content and sequencing depth. The
abscissa represents GC content, and the ordinate represents sequencing depth. The right side shows the distribution of sequencing depth, and the
upper part shows the distribution of GC content. (C) Venn diagram of functional annotations in databases, such as Nr, SwissProt, GO, KEGG, and KOG.

etal,, 2023; Lu et al., 2024; Qu et al., 2021). Lu et al. (2015) investigated
its phylogenetic relationships with similar species through rDNA-ITS
sequence analysis, but the molecular mechanisms underlying its
pathogenicity remain poorly understood. To address the high
incidence and severe damage of stem blight in high-temperature
regions, we conducted genomic and transcriptomic studies on the
pathogenic fungus P. asparagi.

When cultured on PDA medium, P. asparagi mycelium initially
appeared milky white to white, gradually turning grayish-white to
light green or dark gray with prolonged incubation (Figures 1A-D).
Pathogenicity assays showed that P asparagi exhibited higher
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virulence on asparagus under 25 °C during short-term infection,
while demonstrating enhanced pathogenicity under 32 °C during
prolonged infection (Figures 1E,F).

Genomic analysis revealed a complete P asparagi genome
assembly of 50.94 Mb, with 4,362 predicted protein-coding genes.
Functional annotation showed 3,020 genes matched Nr database
entries and 2,602 genes were assigned GO terms, confirming high
completeness and of the annotation
(Figures 1A,C,D).

Transcriptome analysis identified differentially expressed genes

accuracy genome

(DEGs) under 32 °C compared to 25 °C, which were subsequently
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Genomic map and fungal pathogenic pathway diagrams. (A) Assembled genomic map of P. asparagi. (B) Schematic diagram of the fungal pathogenic
pathway. (C) Phylogenetic tree of P. asparagi and its congeneric or closely related plant pathogenic fungi.
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analyzed for KEGG and GO functional enrichment. GO biological
process analysis revealed significant enrichment of pathogenesis-
related pathways, including: “oxidative stress response,” “ROS

» <«

metabolism,

» <

cell wall modification,” “protein phosphorylation,”

» «

«
response to fungus,

» «

signal transduction,” “programmed cell death”

(Supplementary Figures 1, 2). KEGG enrichment analysis
demonstrated that in genetic information processing pathways,
including ribosome, eukaryotic ribosome biogenesis and aminoacyl-
tRNA biosynthesis, numerous genes showed differential expression.
In metabolic pathways, starch and sucrose metabolism as well as
pentose phosphate pathway contained multiple up- or down-
The  pathogenic map
(Supplementary Figure 3) integrated key pathways such as: “MAPK

regulated  genes. mechanism

» «

signaling pathway;” “lipase activity,” “proteolytic process,” and “amino
acid and secondary metabolite biosynthesis.” Notably, several core
genes KKY31689 (encoding a toxin synthase), KUI66679 (a
transmembrane transporter) and XP_006379301 (an immune
regulation-related protein) were identified as highly expressed and

enriched in pathogenicity-related pathways, suggesting their
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potential crucial roles in regulating virulence expression, secreting
active molecules, or disrupting host structures.

Pathogenicity, as one of the most crucial traits of
phytopathogenic fungi, undergoes continuous genetic evolution.
The evolution of fungal pathogenicity essentially represents an
adaptive process to host plants and their co-evolution (Yang
et al., 2020). The virulence of P. asparagi is influenced by multiple
field conditions including temperature, humidity, asparagus
cultivars, and fertilization practices (Sonoda et al., 1997). Our
study specifically investigated temperature effects on P. asparagi
pathogenicity. Under high-temperature stress conditions,
P. asparagi initially perceives environmental signals through
WRKY transcription factors and the MAPK signaling pathway.
This subsequently activates multiple stress-response pathways,
including: “ROS generation,” “DNA repair,” “lipid metabolism,”
“cell

degradation” These coordinated responses ultimately lead to

“proteolysis,” “carbohydrate metabolism” and wall

plant cell dysfunction and programmed cell death (PCD)
(Figure 4C). The findings demonstrate how temperature
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FIGURE 4
Functional analysis and pathogenic pathway analysis diagrams. (A) KEGG functional annotation map. (B) Volcano plot of differentially expressed genes
in P. asparagi cultured at 25 °C and 32 °C. (C) Pathogenic pathway diagram under 32 °C conditions. (D) Relative gene expression levels under 32 °C and
25 °C conditions.

modulates pathogenic behavior through specific molecular
mechanisms in this pathosystem.

Comprehensive analysis revealed that P. asparagi possesses a
sophisticated pathogenicity regulatory network, where the infection
process results from coordinated actions of multiple signaling
transduction pathways, metabolic reprogramming, and immune
evasion mechanisms. By constructing a systematic mechanistic map,
we have for the first time identified the key pathways and genes
responsible for virulence induction and cell death under high-
temperature conditions, providing a theoretical foundation for future
investigations into virulence factor regulation and targeted control
strategies. However, this study did not functionally characterize
specific genes, and their precise regulatory mechanisms require
further investigation.
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