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Background: Recent studies indicate that microorganisms significantly influence
lung cancer pathogenesis. This research explores the variations in microbiota
and metabolites in the lower respiratory tract between lung cancer patients
and individuals with benign pulmonary lesions to identify potential diagnostic
biomarkers.

Methods: Two hundred eight patients undergoing bronchoscopy at Tianjin
Cancer Institute & Hospital and Tianjin Chest Hospital from October 2022 to
October 2023 were screened. Ninety-five bronchoalveolar lavage fluid (BALF)
was collected for metagenomic sequencing and untargeted metabolomic
analysis. Comparisons of microbial diversity, taxonomic composition, and
metabolite profiles were conducted between groups with lung cancer and
benign lung conditions.

Results: The cohort comprised 70 patients with lung cancer and 25 with
benign lung lesions. Patients with lung cancer showed significantly reduced
p-diversity (p = 0.005). Predominant microbes in lung cancer cases included
Streptococcus, Haemophilus influenzae, and Veillonella parvula. A microbial-
based diagnostic model differentiated lung cancer from benign lesions with an
AUC of 0.931 (95%Cl: 0.916—-0.946). Metabolites increased in lung cancer were
Citric acid, N-Acetylneuraminic acid, Oxoglutaric acid, and Neopterin, whereas
L-Tryptophan, Uridine, 3-Hydroxybutyric acid decreased. The KEGG pathways
suggest a significant link between microbial presence and both tumorigenesis
and progression.

Conclusion: Specific microbial patterns in the lower respiratory tract of lung
cancer patients could assist in the auxiliary diagnosis of the disease. The notably
altered microorganisms and metabolites in the BALF from lung cancer patients,
as opposed to those with benign conditions, correlate with cancer initiation and
advancement.
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Introduction

According to the 2023 American Cancer Report, lung cancer
remains the second most common malignant tumor and the leading
cause of cancer deaths worldwide (Jemal et al., 2003; Leiter et al.,
2023). In China, lung cancer not only leads in cancer-related mortality
but also shows the most rapid increase in incidence over the past three
decades (Oncology Society of Chinese Medical Association, 2024).
Approximately half of the lung cancer patients are diagnosed at an
advanced stage, with an overall five-year survival rate of only 21.7%
(Ettinger et al., 2022), and a mere 8% for those with advanced disease
(Leiter et al., 2023). This situation underscores the critical need for
early lung cancer diagnosis and new therapeutic approaches.

In recent years, advances in microbiome technology have propelled
the study of the relationship between human microbiota and diseases
to the forefront of life sciences. From the pivotal role of gut microbes in
metabolic diseases and colorectal cancer to the involvement of skin,
oral, and respiratory microbiota in local immune regulation, the
microbiome has been established as a key regulator of host physiological
and pathological processes (Heintz-Buschart and Wilmes, 2018). The
respiratory microbiome, once thought to be sterile (Dickson et al.,
2016), has gained attention, particularly its potential link with lung
cancer pathogenesis and new therapeutic targets. Technological
advances, such as 16s rRNA and metagenomics, have revealed a diverse
microbial presence in the lungs, including bacteria, fungi, and viruses,
albeit in low abundance. Studies have documented an increase in
microbes such as Veillonella, Streptococcus in the saliva/sputum of lung
cancer patients (Baranova et al., 2022; Vogtmann et al., 2022; Roy et al.,
2022; Druzhinin etal.,, 2021; Hosgood et al., 2021). While the distinction
between lung and respiratory tract microbiota is often unclear, and
though oropharyngeal and upper respiratory microbiota related to lung
cancer are heavily influenced by environmental factors (Mendez et al.,
2019). Huang demonstrated that the microbiota in BALF closely
resembles that in lung tissue (Huang et al., 2019). In lung cancer
patients, Streptococcus, Neisseria, Haemophilus influenzae are prevalent
in BALF (Liu et al,, 2018; Jin et al., 2019). Tsay found that Streptococcus
and Veillonella are significantly enriched in the lower airways of lung
cancer patients and enhance tumor proliferation, invasion, and
infiltration via the ERK and PI3K signaling pathways (Tsay et al., 2021).
Despite numerous studies exploring the correlation between
microorganisms and lung cancer, inconsistencies in sample sources and
conclusions, such as Liu provided evidence that streptococci are
abundant in the microbiota associated with lung cancer and
staphylococci are almost absent, suggesting the pro-carcinogenic effect
of streptococcus and the protective effect of staphylococcus in the
development of lung cancer (Liu et al, 2018). This hypothesis
contradicts another study confirming that staphylococci induce DNA
damage during carcinogenesis, and streptococci may play a role in its
prevention (Urbaniak et al., 2016). The main reason for this is the small
sample size of the existing studies, which highlights the need for further
research to provide more conclusive evidence on the role of
microorganisms in lung cancer development.

Currently, the precise mechanisms through which microbiota
promote the onset and progression of malignant tumors are not well
understood. Microbial metabolites are key mediators of interactions
between the microbiota and the host, influencing the development and
progression of lung cancer by regulating signaling pathways, epigenetic
modifications, and immune responses. These metabolites represent a
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significant area for investigating how microbiota contribute to cancer
progression. Short-chain fatty acids (SCFAs), produced by specific gut
bacteria, are crucial in maintaining intestinal immune homeostasis.
SCFAs modulate various signaling pathways, including inhibiting tumor
growth by promoting Wnt-mediated differentiation and reducing
proliferation via the Wnt signaling pathway (Feitelson et al., 2023). Wang
demonstrated that Clostridiales were more prevalent in the immune-
activated subtype of triple-negative breast cancer. Clinically, the microbe-
derived metabolite trimethylamine N-oxide (TMAO) has been linked to
enhanced immunotherapy efficacy. TMAO activates the endoplasmic
reticulum (ER) stress kinase PERK, triggers gasdermin E-mediated
tumor cell pyroptosis, and boosts CD8 + T cell-mediated anti-tumor
immunity in vivo in triple-negative breast cancer (Wang et al., 2022).
Research in microbial metabolomics remains primarily focused on gut
microbiota, with extensive application in studies on inflammatory lung
diseases such as asthma, respiratory distress syndrome, and cystic
fibrosis. However, its association with lung cancer is less explored. A
pioneering study from Spain investigated metabolic alterations in BALE,
identifying significant differences between lung cancer patients and
healthy controls, with glycerol and phosphate emerging as potential
sensitive and specific biomarkers for lung cancer diagnosis and prognosis
(Callejon-Leblic et al., 2016). Additionally, multiple microbiota in the
lower respiratory tract beyond neoplastic lesions can influence the local
ecological environment through SCFAs (Jin et al., 2018; Yue et al., 2020).

In light of this background, BALF was collected from patients with
lung cancer and benign lung diseases for a combined analysis of
microorganisms and metabolites. This study aims to identify distinct
differences in the respiratory microbiome composition between lung
cancer patients and those with benign lung diseases, and to elucidate
how the microbiome influences lung cancer development, validate the
clinical utility of specific microbial biomarkers in lung cancer diagnosis.

Participants and methods
Patients

Patients who visited Tianjin Cancer Institute & Hospital and Tianjin
Chest Hospital for the first time from October 2022 to October 2023
and underwent bronchoscopy were screened. The final diagnosis relied
on pathological and imaging findings, and the study cohort was selected
based on inclusion and exclusion criteria. This study received approval
from the Ethics Committee of Tianjin Cancer Institute & Hospital
(E20220909). The control group comprised patients with benign lung
diseases, excluding lung cancer. Exclusion criteria for the control group
included: (1) Age under 18 years; (2) Use of antibiotics, corticosteroids,
cytokines
immunosuppressive cytotoxic —drugs,

(such as interleukins, interferons), methotrexate,
or high-dose probiotic
supplements within 3 months prior to bronchoscopy (except for high-
dose probiotic health products (<1029 CFU/d), which were excluded if
used within 3 days); (3) Acute pneumonia, pulmonary tuberculosis,
AIDS, diabetes, history of lung surgery, malignancies in the lungs or
other organs; (4) Any condition deemed unsuitable for bronchoscopy.
Inclusion criteria for lung cancer patients were: (1) Ages 18-85, with no
contraindications for bronchoscopy; (2) No previous bronchoscopy; (3)
Complete clinical and pathological data; (4) At least one measurable
lesion according to the Response Evaluation Criteria in Solid Tumors

version 1.1 (RECIST 1.1). Exclusion criteria for lung cancer patients
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were: (1) Under 18 years of age; (2) Concurrent conditions such as
pneumonia, bronchial asthma, tuberculosis, chronic bronchitis,
interstitial lung disease, chronic obstructive pulmonary disease
(COPD), AIDS, diabetes, history of lung surgery, or malignancies in
other systems; (3) Use of antibiotics, corticosteroids, cytokines (such as
interleukin, interferon), methotrexate, immunosuppressive cytotoxic
drugs, and high-dose probiotic health products within 3 months prior
to bronchoscopy (with an exception for high-dose probiotic health
products used within 3 days); (4) Incomplete clinical information (The
process for screening cases is illustrated in Figure 1).

Sample collection

The bronchoscopy is conducted using an OLYMPUS BF-20
fiberoptic bronchoscope (FB). When the bronchoscope reaches the
lesion site, the FB is wedged into the segmental bronchial opening at
or near the lesion. Sterile saline (0.9%) at room temperature is used,
administered in 20 ml aliquots for a total volume of at least 80 ml,
followed by suction at a negative pressure of 13.3 kPa. A recovery rate
of over 40% is required for all BALF samples. The BALF is filtered
through a double layer of gauze; 2 ml is transferred into a sterile 5 ml
cryovial for metabolite detection and the remainder into a 15 ml
sterile plastic tube for microbial detection. Tube openings are
immediately sealed with parafilm and samples are stored at —80 °C
within 30 min of collection by specially trained personnel.

Metagenomic sequencing

Samples for microbial detection are transported under a complete
cold chain at —80 °C to Guangdong Vision Medical Technology Company

10.3389/fmicb.2025.1669172

for DNA extraction and analysis. Host-derived DNA is removed using 1 U
of Thermo Fisher nuclease and 0.5% Tween 20 from SIGMA. Microbial
DNA extraction is performed using the QIAGEN QIAamp® UCP
Pathogen DNA Kit, following the manufacturers protocol. cDNA
transcription is performed using reverse transcriptase and dNTPs from
Thermo Fisher. Library construction for DNA and ¢cDNA samples is
conducted using the Illumina Nextera XT DNA Library Prep Kit. Library
quality is assessed using the AGILENT Qubit dsDNA HS Assay Kit on the
Agilent 2,100 Bioanalyzer with the Agilent High Sensitivity DNA Kit.
Libraries are quantified accurately using Q-PCR to ensure quality, based
on insert size and effective concentration. Metagenomic sequencing depth
was 20 million reads. We performed quality control on the sequenced raw
reads using fastp (version 0.23.4) to filter out low-quality data (filtering
criteria are described below), resulting in clean reads. The read filtering
steps were as follows: (1) removal of reads containing adapters; (2) removal
of reads with an N content exceeding 10%; (3) removal of low-quality
reads (where bases with a quality value<20 account for more than 50% of
the entire read). Detailed quality control information has been added to
the attachment (Supplementary Table 1).

Non-targeted metabolomics process

The experiment utilizes a Waters UPLC I-Class Plus system
coupled with a Q Exactive high-resolution mass spectrometer (Thermo
Fisher Scientific, USA) for metabolite separation and detection. Raw
mass spectrometry data are imported into Compound Discoverer 3.3
(Thermo Fisher Scientific, USA) software, which integrates the BMDB
(BGI Metabolome Database), mzCloud database, and ChemSpider
online database for analysis. A data matrix containing metabolite peak
areas and identification results is generated and processed for further
analysis. Software information: Compound Discoverer Version: v.3.3.

Tianjin Cancer Institute & Hospital
n=132

Tianjin Chest Hospital
n=76

confirmed pathological
diagnosis n=120

confirmed diagnosis n=60

(Dsamples collected > lyear n=40
(@with other systemic tumors n=2
(®Previous treatment history n=1

(@ Acute pneumonia n=10
(@ Incomplete clinical data n=11
® Concurrent with tumors n=1

@Incomplete clinical data  n=15 (@ Tuberculosis n=>5
n=62 n=33
lung cancer group control group (lung benign dieases)
n=70 n=25
FIGURE 1
Case screening process.
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Parameters: Parent ion mass deviation: <5 ppm Mass deviation of
fragment ions: <10 ppm, Retention time deviation: < 0.2 min. Official
Website: https://mycompounddiscoverer.com/.

Bioinformatics analysis

Microbial bioinformatics analysis

After obtaining raw sequencing data, quality control was conducted
using fastp. The quality-controlled data were aligned to the host reference
genome sequence GRCh38 to remove host-derived sequences. The
filtered sequences were then aligned to the Metaphlan/Kraken2 (version
2.1.3) database to ascertain species abundance for further analysis.
Species a-diversity was assessed using indices such as Richness, ACE,
Chaol, Shannon, Simpson, and Evenness. -diversity was analyzed using
Principal Coordinates Analysis (PCoA) and Non-metric
Multidimensional Scaling (NMDS) based on the Bray-Curtis distance.
Statistical significance of p-diversity differences was determined using
Permutational Multivariate Analysis of Variance (PERMANOVA). To
identify potential biomarkers, LEfSe (LDA Effect Size) analysis was
utilized. Differences in species abundance between groups were tested
using the Wilcoxon test or K-S test to generate p-values. Species showing
significant differences were selected based on p-values and LDA scores,
and relevant plots were produced. Using the Sequential Forward Feature
Selection algorithm and Random Forest Classifier, a subset of species
that clearly differentiated the groups was selected to construct a
diagnostic model. Model predictive performance was evaluated based on
the area under the receiver operating characteristic curve (AUC). This
projectemployed 10-fold cross-validation to evaluate model performance.

HUMAnNN?2 (version 0.11.1) was employed for gene function
annotation and analysis. This tool analyzes microbial pathway
abundance from metagenomic and metatranscriptomic data using the
MetaPhlAn and ChocoPhlAn pan-genome databases, covering species
such as archaea, bacteria, eukaryotes, and viruses. HUMAnN?2 offers
results at the genome, gene, and pathway levels, using the UniRef 9
database for gene family definitions, MetaCyc 10 for pathway
definitions, and MinPath for minimal pathway sets. Bowtie 11 and
Diamond 12 were utilized to enhance nucleic acid and protein-level
searches, respectively. Post-analysis, HUMAnN2 provided MetaCyc
pathway results and gene family annotations, which were then
mapped to GO and KO annotation results.

Metabolomics bioinformatics analysis

Data exported from Compound Discoverer were imported into
metaX for preprocessing and further analysis. Metabolites were
identified by referencing the Human Metabolome Database (HMDB),
and pathway annotations were performed using the KEGG PATHWAY
database to elucidate major biochemical metabolic pathways and
signal transduction pathways involved. Differential analysis between
comparison groups was conducted using Partial Least Squares
Discriminant Analysis (PLS-DA) and Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA).

Statistical analysis

Clinical data were analyzed using SPSS 26.0. Categorical variables
were compared using the Chi-square test or Fisher’s exact test, chosen
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based on sample size and expected frequency for more reliable results.
Continuous variables were compared using the t-test. All tests were
two-sided, and a p-value <0.05 was considered statistically significant.

Results
Patient clinical characteristics

From October 2022 to October 2023, 70 lung cancer patients
and 25 patients with benign lung diseases were enrolled from
Tianjin Cancer Institute & Hospital and Tianjin Chest Hospital.
The baseline characteristics of these groups are presented in
Table 1. The lesions in the control group included interstitial lung
disease and lesions appearing as nodules or tumor-like masses on
imaging, which require differentiation from lung cancer, such as
sarcoidosis, hamartoma, inflammatory nodules, and granulomas.
Chronic bronchitis and COPD were also noted in the control
group. Both groups were comparable in terms of age, sex, and
smoking history.

TABLE 1 Baseline characteristics of patients.

Variable Lung Control

cancer group
group (N = 25)
(N =70)

Age(year) 63.2(+7.2) 61(+8.4) 0.588

Sex 0.404
Male 51 (72.9%) 16 (64%)

Female 19 (27.1%) 9 (36%)

Smoking status 0.09
Never 47 (67.1%) 12 (48%)
Former/current 23 (32.9%) 13 (52%)

Histology -

Adenocarcinoma 31 (44.3%)
Squamous 27 (38.6%)
Small cell carcinoma 12 (17.1%)

Stage

I-1I 10 (14.3%)
M-IV 50 (71.4%)
Unknown 10 (14.3%)

Benign lung diseases -

Interstitial lung 7 (28%)
disease

Sarcoidosis/ 12 (48%)
hamartoma/

inflammatory

nodules/granulomas

Chronic bronchitis/ 5(20%)
COPD

Sleep apnea hypopnea 1 (4%)
syndrome
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The BALF microbiome in lung cancer and
benign lung diseases

Metagenomic sequencing was used to identify microbial species
at the genus and species levels. At the genus level, 1,678 genera were
detected, including various viruses and archaea. However, due to
their low abundance, they were not further analyzed. Among the
top 15 most abundant bacterial genera, similar genera were observed
in both groups, although their proportions varied. In the lung
cancer group, dominant genera included Streptococcus (20.27%),
Rothia (15.88%), Staphylococcus (5.78%), Schaalia (5.44%),
Prevotella (4.03%), Corynebacterium (3.10%), and Neisseria (3.03%).
In the control group, dominant genera were Streptococcus (16.23%),
Rothia (5.66%), Acidovorax (5.99%), Kocuria (5.56%), Prevotella
(5.41%), Cutibacterium (4.51%), and Schaalia (3.73%). At the
species level, 5,748 species were identified, with differences in
species abundance between the groups. The most abundant species
in the lung cancer group were Rothia mucilaginosa (13.86%),
Staphylococcus aureus (5.72%), and Schaalia odontolytica (4.98%).
In the control group, the most abundant were Rothia mucilaginosa
(5.13%), Staphylococcus aureus (4.65%), Cutibacterium acnes
(4.50%), Kocuria rhizophila (3.55%), and Schaalia odontolytica
(3.46%) (Figure 2A).

Decreased f-diversity in the lung cancer
group

While no significant differences were observed in the Shannon
and Simpson indices for a-diversity, significant differences were noted
in the Richness, ACE, Chaol, and Evenness indices (Figure 2B). For
pB-diversity, PCoA and NMDS analyses based on the Bray-Curtis
distance demonstrated clear separation between the groups, with the
lung cancer group showing decreased P-diversity, statistically
significant (p = 0.05, R* = 0.0312) (Figure 2C).

Differential BALF microbiota between lung
cancer group and control group

LEfSe analysis was employed to detect microbes with significant
differences at the species level between lung cancer and benign lung
lesions. The analysis revealed that 78 species were significantly more
abundant in the lung cancer group, whereas 26 species were
significantly more abundant in the control group (Table 2,
Supplementary Table 2, and Figure 3A).

Using the significantly different species between the two
groups, the Sequential Forward Feature Selection algorithm and
Random Forest Classifier were utilized to select a subset of species
that maximally distinguished the two groups. A diagnostic model
was developed based on seven species: Pseudomonas tolaasii,
Rothia mucilaginosa, Klebsiella pneumoniae, Bifidobacterium
dentium, Bifidobacterium longum, Schizosaccharomyces pombe,
and Caulobacter sp. FWC26. The first five species were
significantly enriched in the lung cancer group, while the latter
two were more prevalent in the control group. The AUC of this
model for distinguishing lung cancer from benign lung lesions was
0.931 (95% CI: 0.916-0.946), indicating significant differences in
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BALF microbiota between lung cancer and benign lesions,
potentially serving as microbial biomarkers for lung cancer
(Figures 3B,C).

Microbial-related gene function prediction

HUMANN2 and LEfSe were used to analyze microbial pathways.
KEGG pathway analysis revealed significant upregulation in the lung
cancer group of pathways including signal transduction (e.g., HIF-1
signaling pathway, PI3K-Akt signaling pathway), carbohydrate
Citrate [TCA
Gluconeogenesis), nucleotide metabolism (Pyrimidine metabolism,

metabolism  (e.g., cycle cycle], Glycolysis/
Purine metabolism), amino acid metabolism (Cysteine and

methionine metabolism, Alanine, aspartate, and glutamate
metabolism), and energy metabolism (Oxidative phosphorylation,
Nitrogen metabolism). This upregulation suggests that catabolic and
anabolic activities are more active in lung cancer patients, and tumor
growth-related signaling pathways are significantly enhanced,
consistent with the hypercatabolic state and malignant characteristics

of lung cancer (Figures 4A,B).

BALF metabolomics

Metabolite composition and distribution

A total of 3,653 metabolites were detected in the 95 BALF samples
from both groups. Quality control indicators confirmed the stability,
reproducibility, and quality of detection
(Supplementary Figures 1 A-D). Among these, 1,249 metabolites were
successfully identified. The four primary categories, comprising over
50% of the total, included Amino acids, peptides, and analogs
(22.56%), Lipids (12.53%), Benzene and derivatives (12.12%), and
Organic acids (7.24%). Metabolites were categorized according to the
KEGG super pathway, revealing participation primarily in Amino acid
metabolism, Biosynthesis of other secondary metabolites, Lipid
metabolism, Xenobiotics biodegradation and metabolism, Nucleotide

metabolism, and Carbohydrate metabolism (Figure 5A).

Significant differences in metabolites between
lung cancer group and control group

The OPLS-DA model was utilized to analyze differences in
metabolites between the groups. A replacement test confirmed the
model was not overfitted and performed effectively (Figures 5B,C). A
total of 261 significantly different metabolites were identified, with 144
metabolites significantly upregulated and 117 metabolites significantly
downregulated in the lung cancer group. Notable metabolites
increased in the lung cancer group included Citric acid,
N-Acetylneuraminic acid, Oxoglutaric acid, and Neopterin, while
those Uridine, and
3-Hydroxybutyric acid (Figure 5D).

decreased included L-Tryptophan,

Significantly upregulated KEGG pathways among the top 10
metabolic pathways with the smallest p-values in the lung cancer
group included: Alanine, aspartate, and glutamate metabolism,
Biosynthesis of amino acids, Central carbon metabolism in cancer,
TCA cycle, and Glucagon signaling pathway. Significantly
downregulated pathways included: beta-Alanine metabolism, Bile
secretion, Glutathione metabolism, and Thermogenesis (Figure 5E).
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Changes in BALF metabolites are closely related
to lung microbiota in lung cancer

Combined analysis of differential metabolites and microbial
species revealed correlations between several species and metabolite
changes. Species such as Streptococcus, which were highly expressed in
the lung cancer group, and Pseudomonas tolaasii, Rothia mucilaginosa,
Bifidobacterium dentium, Bifidobacterium longum, Haemophilus
influenzae, and Veillonella parvula were positively correlated with the
upregulated metabolites. The same species, except Haemophilus

10.3389/fmicb.2025.1669172

influenzae, showed negative correlations with the downregulated
metabolites. Additionally, Cutibacterium acnes was significantly
positively correlated with 3-Hydroxybutyric acid (Figures 6A,B).

Discussion

In this study, the relationship between lower respiratory tract
microbiota and lung cancer, as well as benign lung lesions, was
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Shannon, Simpson, Richness, ACE, Chaol, and Evenness. ***p < 0.001; **p < 0.01; ns, no significant difference. (C) B-diversity between the lung cancer
group and the control group based on PCoA and NMDS analyses.
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TABLE 2 List of different microbial species in lung cancer group and control group by LEfSe analysis (LDA > 2.5).

10.3389/fmicb.2025.1669172

Names Log_value (€17e]0] ) LDAscores P_value
Rothia_mucilaginosa 5.14179 Cancer 4.622674 0.006578
Cutibacterium_acnes 4.65294 Control 4.16151 0.004059
Haemophilus_influenzae 4.278823 Cancer 4.092966 0.001062
Streptococcus_pseudopneumoniae 4.284667 Control 4.028614 0.023465
Schizosaccharomyces_pombe 4.404974 Control 3.924897 1.32E-07
Streptococcus_pneumoniae 4.232271 Control 3.800535 0.036392
Streptococcus_salivarius 4.351618 Cancer 3.724657 0.006133
Streptococcus_oralis 4.289609 Cancer 3.625046 0.021415
Klebsiella_pneumoniae 3.975981 Cancer 3.578428 0.015686
Streptococcus_mitis 4.352475 Cancer 3.532528 0.009683
Streptococcus_sanguinis 3.988466 Cancer 3.320127 0.004105
Caulobacter_sp._FWC26 3.650762 Control 3.264651 0.004005
Streptococcus_gordonii 3.759628 Cancer 3.258948 0.002572
Streptococcus_australis 3.674911 Cancer 3.071044 0.032637
Veillonella_parvula 3.646354 Cancer 3.000128 0.03438
Pseudomonas_tolaasii 3.28073 Cancer 2.867323 8.62E-06
Streptococcus_milleri 3.319731 Control 2.833595 0.041865
Streptococcus_vestibularis 3.224797 Cancer 2.824132 0.034245
Streptococcus_intermedius 3.338673 Control 2782419 0.041813
Streptococcus_sp._NPS_308 3.329776 Cancer 2.71484 0.005176
Streptococcus_sp._FDAARGOS_192 3.146276 Cancer 2.691077 0.004757
Bifidobacterium_longum 3.056645 Cancer 2.646199 4.59E-05
Neisseria_sp._oral_taxon_014 3.002919 Control 2.616063 0.016194
Bifidobacterium_dentium 2.910455 Cancer 2.586571 1.75E-05

explored using BALF as the sample source. It was found that microbial
richness in lung cancer patients was higher than in those with benign
lung diseases, and the Evenness index was significantly lower.
However, no significant differences were observed in the Shannon and
Simpson indices, which are commonly used to measure microbial
a-diversity. Previous studies have reported inconsistent findings
regarding a-diversity between lung cancer patients and healthy or
benign controls. For example, Cheng reported significantly lower
a-diversity richness in lung cancer patients using 16s rRNA
sequencing (Cheng et al., 2024), while Jin noted a high correlation
between lung tumor burden and local bacterial abundance (Jin et al.,
2019). The observed higher microbial richness in our study’s lung
cancer patients could be related to the higher proportion of stage
III-IV patients. Conversely, Kim found that the Shannon and Evenness
indices were significantly higher in lung cancer patients (Kim et al.,
2024), yet other studies reported no differences in a-diversity between
benign and malignant lung diseases (Jin et al., 2019; Tsay et al., 2021;
Liu et al., 2022).

a-Diversity in microbial research is characterized by indices such
as Richness, ACE, Chaol, Shannon, Simpson, and Evenness. It was
observed that not all studies comprehensively presented differences
across these indices. While these indices all reflect species diversity
within a community, they emphasize different aspects, and
comparisons across studies using various indices may not always
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be appropriate. Factors such as sample size, sampling methods, and
sample storage time might also contribute to differences in
microbial communities.

p-Diversity in lung cancer patients was found to be significantly
lower than in those with benign lung disease. Lower p-diversity
suggests a more consistent microbial composition in the BALF of lung
cancer patients (Jin et al., 2019; Cheng et al., 2024; Hosgood et al.,
2019; Lu et al,, 2021), indicating that changes in lower respiratory tract
microbiota are crucial in the development and progression of
lung cancer.

The study also analyzed differences in BALF microbial species
between lung cancer and benign lung disease. Streptococcus species
were significantly enriched in lung cancer patients, aligning with
previous findings (Table 2) (Jin et al., 2019; Kim et al., 2024). Tsay
confirmed that exposure to Prevotella, Streptococcus, and Veillonella
upregulated ERK and PI3K signaling pathways in lung cancer (Tsay
etal, 2021). A significant increase in Haemophilus influenzae was
observed in lung cancer patients. King reported that this bacterium’s
outer membrane proteins, like P2 and P6, activate innate immunity,
with P6 stimulating macrophages to produce interleukin-8 (IL-8)
(TNF-a).
non-encapsulated strains (NTHi) of Haemophilus influenzae have

and tumor necrosis factor-a Furthermore,

been shown to upregulate nuclear factor-kB (NF-kB) (King, 2012),
a pathway crucial for cell proliferation and survival. IL-8 has been
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Differential microbial species between lung cancer group and control group. (A) Differential taxa at the species level identified by LEfSe analysis (Only
species with a differential species count greater than 15 and in each group LDA score Top 15 are listed); (B) Species selected in the diagnostic model.

(C) ROC curve for the diagnostic model.
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associated with tumor growth and metastasis through mechanisms
like epithelial-mesenchymal transition and angiogenesis (Yuen
et al, 2020). The NF-kB pathway is key in promoting cell
proliferation, survival, and metastasis (Taniguchi and Karin, 2018).
Additionally, significant enrichment of Veillonella parvula was
noted in lung cancer patients (Jin et al., 2019; Tsay et al., 2021; Segal
et al., 2016), with previous studies showing its association with
Th17 lymphocyte-dependent local inflammatory responses (Tsay
et al., 2021), where Th17 lymphocytes secrete IL-17, involved in
tumor immunity and angiogenesis (Onishi and Gaffen, 2010; Zhang
et al., 2009).
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Additionally, we observed enrichment of
Cutibacterium acnes in the BALF of patients with benign lung
diseases, which is among the most common bacteria on the skin.
Lawson suggested that Cutibacterium acnes might be linked to
prostate cancer (Lawson and Glenn, 2022). However, other studies
have shown that the immunomodulatory activity of Cutibacterium
acnes provides potential antitumor properties and has been utilized
as a vaccine adjuvant (Simonart, 2013). Our study revealed a
significant positive correlation between Cutibacterium acnes and the
metabolite 3-hydroxybutyric acid, which may inhibit tumor growth.
This indicates that the enrichment of Cutibacterium acnes in the

significant
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Prediction of lung microbiota function. (A) The impact of differentially enriched KEGG pathways in lung cancer group was evaluated through the LDA
score; (B) Number of genes annotated in the differential KEGG pathways.

BALF of benign lung disease patients may offer a protective
antitumor effect.

Given the significant microbial differences between lung cancer
and benign lung diseases, we constructed a prediction model that
achieved an AUC value of 0.931, indicating robust performance in
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distinguishing between benign and malignant lung lesions. The
model includes seven species: Pseudomonas tolaasii, Rothia
mucilaginosa, Klebsiella pneumoniae, Bifidobacterium dentium,
Bifidobacterium longum, Schizosaccharomyces pombe,
Caulobacter sp. FWC26. Literature has documented the enrichment

and
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of Pseudomonas and Rothia in lung cancer patients (Roy et al., 2022;  microbiota at the genus level, the role of Pseudomonas tolaasii and
Jin et al., 2019; Cheng et al., 2024). However, as many previous  Rothia mucilaginosa in lung cancer pathogenesis remains uncertain.
studies relied on 16 s rRNA sequencing, which primarily identifies  Klebsiella pneumoniae is a prevalent opportunistic pathogen in lung
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Metabolite Classification and Function Prediction. (A) Metabolite classification of the two groups. (B) Score diagram of the OPLS-DA analysis model.
(C) Replacement test chart of the OPLS-DA analysis model. (D) Volcano plot of differential metabolites (Fold Change calculated for each metabolite in
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cancer patients. Greathouse discovered that five genera, including
Klebsiella, were closely associated with mutations in the tumor
protein p53 (TP53) in patients with lung squamous cell carcinoma
(Greathouse et al,, 2018). Research on Bifidobacterium has mainly
focused on the gastrointestinal tract, emphasizing its beneficial role
and its potential to suppress tumor growth (Ghoddusi and Tamime,
2014; Lee et al., 2021). Our study suggests that the presence of
Bifidobacterium in the respiratory tract might promote tumor
growth through metabolite regulation. However, the potential for
sample contamination cannot be completely dismissed. It is widely
recognized that daily consumption of yogurt products often
includes various intestinal probiotics. Although we attempted to
exclude individuals taking oral probiotics during the initial
enrollment phase, yogurt products are commonly consumed as part
of daily diets.
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We found that Pseudomonas tolaasii, Rothia mucilaginosa,
Bifidobacterium dentium, and Bifidobacterium longum were either
positively or significantly positively correlated with four upregulated
metabolites in the lung cancer group. Conversely, these species were
negatively or significantly negatively correlated with downregulated
metabolites. These metabolite changes are linked with tumor
development (which will be discussed in the subsequent section),
suggesting that these microbial species may enhance tumor growth
through metabolites.

The components of BALF primarily consist of cells and soluble
substances, mostly originating from plasma, with a smaller portion
produced locally. However, changes in BALF composition often do
not correspond with those in blood, necessitating an analysis of BALF
components. In our study, compared to the benign lung disease group,
the levels of citric acid, N-acetylneuraminic acid, oxoglutaric acid, and
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neopterin were markedly increased in the BALF of lung cancer
patients, while L-tryptophan, uridine, and 3-hydroxybutyric acid were
markedly decreased. Citric acid and oxoglutaric acid, key intermediate
metabolites in the TCA cycle, are involved in the metabolism of
carbohydrates, fats, and proteins. An increase in citric acid suggests
elevated metabolic activity in tumors. Elevated levels of these two
substances in BALF indicate that their concentrations may align with
those in plasma. Neopterin, a metabolite of guanosine triphosphate
produced by y-interferon-stimulated monocytes and macrophages,
can remain stable in body fluids such as blood, pleural, and ascites for
a long time. Elevated neopterin, observed in various malignancies, is
associated with poor prognosis (Melichar et al., 2017). In our study,
significantly increased levels of neopterin in the BALF of lung cancer
patients suggest that its levels in BALF may correspond to those in
plasma and other body fluids. N-acetylneuraminic acid, a component
of cell surfaces, is the most widely distributed form of sialic acid in
nature. N-acetylneuraminic acid is notably increased on tumor cell
surfaces and in plasma (Fischer and Egg, 1990), leading to an increase
in negative charge on the cell surface and enhanced repulsive forces
between cells, thereby reducing intercellular adhesion. This process
facilitates the detachment of tumor cells from the primary tumor,
creating conditions for invasion and metastasis. Researchers have
found that N-acetylneuraminic acid in urine are associated with lung
cancer risk and may increase with tumor size, making it a potential
auxiliary tool for early lung cancer diagnosis (Zhang et al., 2021). In
our study, N-acetylneuraminic acid levels in BALF were also
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significantly elevated, with an AUC of 0.727 when used alone in the
diagnostic model, indicating its potential utility in lung cancer
diagnosis. Previous studies have reported increased levels of
L-tryptophan, uridine, and 3-hydroxybu tyric acid in the plasma of
patients with malignant tumors (Hilvo et al., 2016; Badawy, 2022;
Vidman et al, 2023; Yang et al., 2024). Tumor tissues utilize
tryptophan and its metabolites to promote growth and evade host
defense (Badawy, 2022). Uridine metabolism plays a critical role in
tumorigenesis by providing uridine diphosphate N-acetylglucosamine
(UDP-GIecNAc) (Dmitrieva-Posocco et al, 2022). Conversely,
3-hydroxybutyric acid has been demonstrated to inhibit the growth
of colon cancer (Dmitrieva-Posocco et al., 2022). In our study, these
three metabolites were significantly decreased in the BALF of lung
cancer patients. Additionally, we discovered that Pseudomonas
Rothia Bifidobacterium
Bifidobacterium longum, and Veillonella parvula, significantly

tolaasii, mucilaginosa, dentium,
enriched in the lung cancer group, were negatively or significantly
negatively correlated with these downregulated metabolites. This
suggests that the discrepancy between plasma and BALF levels of
these metabolites may be influenced by the activity of
airway microbiota.

Our study also has several limitations. First, the sample size was
relatively small (n = 70 vs. n = 25), with a significant disparity in the
number of cases between the two groups, which can affect model
performance estimates and statistical comparisons. Additionally, no
external model was used for further validation. Second, the collection
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of BALF makes it difficult to completely avoid contamination from
oral flora, and the influence of diet is also challenging to eliminate
entirely. Furthermore, the microbial environment in the bronchus
where the tumor is located may differ from that in non-tumor lesion
areas. However, the bronchoalveolar lavage process may potentially
mix contents from multiple bronchi.

Conclusion

Microbial metagenomics and metabolomics were utilized to
analyze the differences in microorganisms and metabolites in
BALF between lung cancer patients and those with benign lung
diseases. Significant differences were identified in the BALF
microbiota of lung cancer patients compared to those with benign
lung diseases. The microbial model in the BALF of lung cancer
patients could serve as a biomarker for diagnosis. Moreover, the
significantly altered microorganisms and metabolites in the BALF
are

of lung cancer patients linked with tumorigenesis

and progression.
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