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Background: Recent studies indicate that microorganisms significantly influence 
lung cancer pathogenesis. This research explores the variations in microbiota 
and metabolites in the lower respiratory tract between lung cancer patients 
and individuals with benign pulmonary lesions to identify potential diagnostic 
biomarkers.
Methods: Two hundred eight patients undergoing bronchoscopy at Tianjin 
Cancer Institute & Hospital and Tianjin Chest Hospital from October 2022 to 
October 2023 were screened. Ninety-five bronchoalveolar lavage fluid (BALF) 
was collected for metagenomic sequencing and untargeted metabolomic 
analysis. Comparisons of microbial diversity, taxonomic composition, and 
metabolite profiles were conducted between groups with lung cancer and 
benign lung conditions.
Results: The cohort comprised 70 patients with lung cancer and 25 with 
benign lung lesions. Patients with lung cancer showed significantly reduced 
β-diversity (p  = 0.005). Predominant microbes in lung cancer cases included 
Streptococcus, Haemophilus influenzae, and Veillonella parvula. A microbial-
based diagnostic model differentiated lung cancer from benign lesions with an 
AUC of 0.931 (95%CI: 0.916–0.946). Metabolites increased in lung cancer were 
Citric acid, N-Acetylneuraminic acid, Oxoglutaric acid, and Neopterin, whereas 
L-Tryptophan, Uridine, 3-Hydroxybutyric acid decreased. The KEGG pathways 
suggest a significant link between microbial presence and both tumorigenesis 
and progression.
Conclusion: Specific microbial patterns in the lower respiratory tract of lung 
cancer patients could assist in the auxiliary diagnosis of the disease. The notably 
altered microorganisms and metabolites in the BALF from lung cancer patients, 
as opposed to those with benign conditions, correlate with cancer initiation and 
advancement.
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Introduction

According to the 2023 American Cancer Report, lung cancer 
remains the second most common malignant tumor and the leading 
cause of cancer deaths worldwide (Jemal et al., 2003; Leiter et al., 
2023). In China, lung cancer not only leads in cancer-related mortality 
but also shows the most rapid increase in incidence over the past three 
decades (Oncology Society of Chinese Medical Association, 2024). 
Approximately half of the lung cancer patients are diagnosed at an 
advanced stage, with an overall five-year survival rate of only 21.7% 
(Ettinger et al., 2022), and a mere 8% for those with advanced disease 
(Leiter et al., 2023). This situation underscores the critical need for 
early lung cancer diagnosis and new therapeutic approaches.

In recent years, advances in microbiome technology have propelled 
the study of the relationship between human microbiota and diseases 
to the forefront of life sciences. From the pivotal role of gut microbes in 
metabolic diseases and colorectal cancer to the involvement of skin, 
oral, and respiratory microbiota in  local immune regulation, the 
microbiome has been established as a key regulator of host physiological 
and pathological processes (Heintz-Buschart and Wilmes, 2018). The 
respiratory microbiome, once thought to be  sterile (Dickson et  al., 
2016), has gained attention, particularly its potential link with lung 
cancer pathogenesis and new therapeutic targets. Technological 
advances, such as 16s rRNA and metagenomics, have revealed a diverse 
microbial presence in the lungs, including bacteria, fungi, and viruses, 
albeit in low abundance. Studies have documented an increase in 
microbes such as Veillonella, Streptococcus in the saliva/sputum of lung 
cancer patients (Baranova et al., 2022; Vogtmann et al., 2022; Roy et al., 
2022; Druzhinin et al., 2021; Hosgood et al., 2021). While the distinction 
between lung and respiratory tract microbiota is often unclear, and 
though oropharyngeal and upper respiratory microbiota related to lung 
cancer are heavily influenced by environmental factors (Mendez et al., 
2019). Huang demonstrated that the microbiota in BALF closely 
resembles that in lung tissue (Huang et  al., 2019). In lung cancer 
patients, Streptococcus, Neisseria, Haemophilus influenzae are prevalent 
in BALF (Liu et al., 2018; Jin et al., 2019). Tsay found that Streptococcus 
and Veillonella are significantly enriched in the lower airways of lung 
cancer patients and enhance tumor proliferation, invasion, and 
infiltration via the ERK and PI3K signaling pathways (Tsay et al., 2021). 
Despite numerous studies exploring the correlation between 
microorganisms and lung cancer, inconsistencies in sample sources and 
conclusions, such as Liu provided evidence that streptococci are 
abundant in the microbiota associated with lung cancer and 
staphylococci are almost absent, suggesting the pro-carcinogenic effect 
of streptococcus and the protective effect of staphylococcus in the 
development of lung cancer (Liu et  al., 2018). This hypothesis 
contradicts another study confirming that staphylococci induce DNA 
damage during carcinogenesis, and streptococci may play a role in its 
prevention (Urbaniak et al., 2016). The main reason for this is the small 
sample size of the existing studies, which highlights the need for further 
research to provide more conclusive evidence on the role of 
microorganisms in lung cancer development.

Currently, the precise mechanisms through which microbiota 
promote the onset and progression of malignant tumors are not well 
understood. Microbial metabolites are key mediators of interactions 
between the microbiota and the host, influencing the development and 
progression of lung cancer by regulating signaling pathways, epigenetic 
modifications, and immune responses. These metabolites represent a 

significant area for investigating how microbiota contribute to cancer 
progression. Short-chain fatty acids (SCFAs), produced by specific gut 
bacteria, are crucial in maintaining intestinal immune homeostasis. 
SCFAs modulate various signaling pathways, including inhibiting tumor 
growth by promoting Wnt-mediated differentiation and reducing 
proliferation via the Wnt signaling pathway (Feitelson et al., 2023). Wang 
demonstrated that Clostridiales were more prevalent in the immune-
activated subtype of triple-negative breast cancer. Clinically, the microbe-
derived metabolite trimethylamine N-oxide (TMAO) has been linked to 
enhanced immunotherapy efficacy. TMAO activates the endoplasmic 
reticulum (ER) stress kinase PERK, triggers gasdermin E-mediated 
tumor cell pyroptosis, and boosts CD8 + T cell-mediated anti-tumor 
immunity in vivo in triple-negative breast cancer (Wang et al., 2022). 
Research in microbial metabolomics remains primarily focused on gut 
microbiota, with extensive application in studies on inflammatory lung 
diseases such as asthma, respiratory distress syndrome, and cystic 
fibrosis. However, its association with lung cancer is less explored. A 
pioneering study from Spain investigated metabolic alterations in BALF, 
identifying significant differences between lung cancer patients and 
healthy controls, with glycerol and phosphate emerging as potential 
sensitive and specific biomarkers for lung cancer diagnosis and prognosis 
(Callejón-Leblic et al., 2016). Additionally, multiple microbiota in the 
lower respiratory tract beyond neoplastic lesions can influence the local 
ecological environment through SCFAs (Jin et al., 2018; Yue et al., 2020).

In light of this background, BALF was collected from patients with 
lung cancer and benign lung diseases for a combined analysis of 
microorganisms and metabolites. This study aims to identify distinct 
differences in the respiratory microbiome composition between lung 
cancer patients and those with benign lung diseases, and to elucidate 
how the microbiome influences lung cancer development, validate the 
clinical utility of specific microbial biomarkers in lung cancer diagnosis.

Participants and methods

Patients

Patients who visited Tianjin Cancer Institute & Hospital and Tianjin 
Chest Hospital for the first time from October 2022 to October 2023 
and underwent bronchoscopy were screened. The final diagnosis relied 
on pathological and imaging findings, and the study cohort was selected 
based on inclusion and exclusion criteria. This study received approval 
from the Ethics Committee of Tianjin Cancer Institute & Hospital 
(E20220909). The control group comprised patients with benign lung 
diseases, excluding lung cancer. Exclusion criteria for the control group 
included: (1) Age under 18 years; (2) Use of antibiotics, corticosteroids, 
cytokines (such as interleukins, interferons), methotrexate, 
immunosuppressive cytotoxic drugs, or high-dose probiotic 
supplements within 3 months prior to bronchoscopy (except for high-
dose probiotic health products (<10^9 CFU/d), which were excluded if 
used within 3 days); (3) Acute pneumonia, pulmonary tuberculosis, 
AIDS, diabetes, history of lung surgery, malignancies in the lungs or 
other organs; (4) Any condition deemed unsuitable for bronchoscopy. 
Inclusion criteria for lung cancer patients were: (1) Ages 18–85, with no 
contraindications for bronchoscopy; (2) No previous bronchoscopy; (3) 
Complete clinical and pathological data; (4) At least one measurable 
lesion according to the Response Evaluation Criteria in Solid Tumors 
version 1.1 (RECIST 1.1). Exclusion criteria for lung cancer patients 
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were: (1) Under 18 years of age; (2) Concurrent conditions such as 
pneumonia, bronchial asthma, tuberculosis, chronic bronchitis, 
interstitial lung disease, chronic obstructive pulmonary disease 
(COPD), AIDS, diabetes, history of lung surgery, or malignancies in 
other systems; (3) Use of antibiotics, corticosteroids, cytokines (such as 
interleukin, interferon), methotrexate, immunosuppressive cytotoxic 
drugs, and high-dose probiotic health products within 3 months prior 
to bronchoscopy (with an exception for high-dose probiotic health 
products used within 3 days); (4) Incomplete clinical information (The 
process for screening cases is illustrated in Figure 1).

Sample collection

The bronchoscopy is conducted using an OLYMPUS BF-20 
fiberoptic bronchoscope (FB). When the bronchoscope reaches the 
lesion site, the FB is wedged into the segmental bronchial opening at 
or near the lesion. Sterile saline (0.9%) at room temperature is used, 
administered in 20 ml aliquots for a total volume of at least 80 ml, 
followed by suction at a negative pressure of 13.3 kPa. A recovery rate 
of over 40% is required for all BALF samples. The BALF is filtered 
through a double layer of gauze; 2 ml is transferred into a sterile 5 ml 
cryovial for metabolite detection and the remainder into a 15 ml 
sterile plastic tube for microbial detection. Tube openings are 
immediately sealed with parafilm and samples are stored at −80 °C 
within 30 min of collection by specially trained personnel.

Metagenomic sequencing

Samples for microbial detection are transported under a complete 
cold chain at −80 °C to Guangdong Vision Medical Technology Company 

for DNA extraction and analysis. Host-derived DNA is removed using 1 U 
of Thermo Fisher nuclease and 0.5% Tween 20 from SIGMA. Microbial 
DNA extraction is performed using the QIAGEN QIAamp® UCP 
Pathogen DNA Kit, following the manufacturer’s protocol. cDNA 
transcription is performed using reverse transcriptase and dNTPs from 
Thermo Fisher. Library construction for DNA and cDNA samples is 
conducted using the Illumina Nextera XT DNA Library Prep Kit. Library 
quality is assessed using the AGILENT Qubit dsDNA HS Assay Kit on the 
Agilent 2,100 Bioanalyzer with the Agilent High Sensitivity DNA Kit. 
Libraries are quantified accurately using Q-PCR to ensure quality, based 
on insert size and effective concentration. Metagenomic sequencing depth 
was 20 million reads. We performed quality control on the sequenced raw 
reads using fastp (version 0.23.4) to filter out low-quality data (filtering 
criteria are described below), resulting in clean reads. The read filtering 
steps were as follows: (1) removal of reads containing adapters; (2) removal 
of reads with an N content exceeding 10%; (3) removal of low-quality 
reads (where bases with a quality value≤20 account for more than 50% of 
the entire read). Detailed quality control information has been added to 
the attachment (Supplementary Table 1).

Non-targeted metabolomics process

The experiment utilizes a Waters UPLC I-Class Plus system 
coupled with a Q Exactive high-resolution mass spectrometer (Thermo 
Fisher Scientific, USA) for metabolite separation and detection. Raw 
mass spectrometry data are imported into Compound Discoverer 3.3 
(Thermo Fisher Scientific, USA) software, which integrates the BMDB 
(BGI Metabolome Database), mzCloud database, and ChemSpider 
online database for analysis. A data matrix containing metabolite peak 
areas and identification results is generated and processed for further 
analysis. Software information: Compound Discoverer Version: v.3.3. 

FIGURE 1

Case screening process.
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Parameters: Parent ion mass deviation: <5 ppm Mass deviation of 
fragment ions: <10 ppm, Retention time deviation: < 0.2 min. Official 
Website: https://mycompounddiscoverer.com/.

Bioinformatics analysis

Microbial bioinformatics analysis
After obtaining raw sequencing data, quality control was conducted 

using fastp. The quality-controlled data were aligned to the host reference 
genome sequence GRCh38 to remove host-derived sequences. The 
filtered sequences were then aligned to the Metaphlan/Kraken2 (version 
2.1.3) database to ascertain species abundance for further analysis. 
Species α-diversity was assessed using indices such as Richness, ACE, 
Chao1, Shannon, Simpson, and Evenness. β-diversity was analyzed using 
Principal Coordinates Analysis (PCoA) and Non-metric 
Multidimensional Scaling (NMDS) based on the Bray-Curtis distance. 
Statistical significance of β-diversity differences was determined using 
Permutational Multivariate Analysis of Variance (PERMANOVA). To 
identify potential biomarkers, LEfSe (LDA Effect Size) analysis was 
utilized. Differences in species abundance between groups were tested 
using the Wilcoxon test or K-S test to generate p-values. Species showing 
significant differences were selected based on p-values and LDA scores, 
and relevant plots were produced. Using the Sequential Forward Feature 
Selection algorithm and Random Forest Classifier, a subset of species 
that clearly differentiated the groups was selected to construct a 
diagnostic model. Model predictive performance was evaluated based on 
the area under the receiver operating characteristic curve (AUC). This 
project employed 10-fold cross-validation to evaluate model performance.

HUMAnN2 (version 0.11.1) was employed for gene function 
annotation and analysis. This tool analyzes microbial pathway 
abundance from metagenomic and metatranscriptomic data using the 
MetaPhlAn and ChocoPhlAn pan-genome databases, covering species 
such as archaea, bacteria, eukaryotes, and viruses. HUMAnN2 offers 
results at the genome, gene, and pathway levels, using the UniRef 9 
database for gene family definitions, MetaCyc 10 for pathway 
definitions, and MinPath for minimal pathway sets. Bowtie 11 and 
Diamond 12 were utilized to enhance nucleic acid and protein-level 
searches, respectively. Post-analysis, HUMAnN2 provided MetaCyc 
pathway results and gene family annotations, which were then 
mapped to GO and KO annotation results.

Metabolomics bioinformatics analysis
Data exported from Compound Discoverer were imported into 

metaX for preprocessing and further analysis. Metabolites were 
identified by referencing the Human Metabolome Database (HMDB), 
and pathway annotations were performed using the KEGG PATHWAY 
database to elucidate major biochemical metabolic pathways and 
signal transduction pathways involved. Differential analysis between 
comparison groups was conducted using Partial Least Squares 
Discriminant Analysis (PLS-DA) and Orthogonal Partial Least 
Squares Discriminant Analysis (OPLS-DA).

Statistical analysis

Clinical data were analyzed using SPSS 26.0. Categorical variables 
were compared using the Chi-square test or Fisher’s exact test, chosen 

based on sample size and expected frequency for more reliable results. 
Continuous variables were compared using the t-test. All tests were 
two-sided, and a p-value <0.05 was considered statistically significant.

Results

Patient clinical characteristics

From October 2022 to October 2023, 70 lung cancer patients 
and 25 patients with benign lung diseases were enrolled from 
Tianjin Cancer Institute & Hospital and Tianjin Chest Hospital. 
The baseline characteristics of these groups are presented in 
Table 1. The lesions in the control group included interstitial lung 
disease and lesions appearing as nodules or tumor-like masses on 
imaging, which require differentiation from lung cancer, such as 
sarcoidosis, hamartoma, inflammatory nodules, and granulomas. 
Chronic bronchitis and COPD were also noted in the control 
group. Both groups were comparable in terms of age, sex, and 
smoking history.

TABLE 1  Baseline characteristics of patients.

Variable Lung 
cancer 
group 

(N = 70)

Control 
group 

(N = 25)

P

Age(year) 63.2(±7.2) 61(±8.4) 0.588

Sex 0.404

 � Male 51 (72.9%) 16 (64%)

 � Female 19 (27.1%) 9 (36%)

Smoking status 0.09

 � Never 47 (67.1%) 12 (48%)

 � Former/current 23 (32.9%) 13 (52%)

Histology –

 � Adenocarcinoma 31 (44.3%)

 � Squamous 27 (38.6%)

 � Small cell carcinoma 12 (17.1%)

Stage

 � I-II 10 (14.3%)

 � III-IV 50 (71.4%)

 � Unknown 10 (14.3%)

Benign lung diseases –

 � Interstitial lung 

disease

7 (28%)

 � Sarcoidosis/

hamartoma/

inflammatory 

nodules/granulomas

12 (48%)

 � Chronic bronchitis/

COPD

5 (20%)

 � Sleep apnea hypopnea 

syndrome

1 (4%)
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The BALF microbiome in lung cancer and 
benign lung diseases

Metagenomic sequencing was used to identify microbial species 
at the genus and species levels. At the genus level, 1,678 genera were 
detected, including various viruses and archaea. However, due to 
their low abundance, they were not further analyzed. Among the 
top 15 most abundant bacterial genera, similar genera were observed 
in both groups, although their proportions varied. In the lung 
cancer group, dominant genera included Streptococcus (20.27%), 
Rothia (15.88%), Staphylococcus (5.78%), Schaalia (5.44%), 
Prevotella (4.03%), Corynebacterium (3.10%), and Neisseria (3.03%). 
In the control group, dominant genera were Streptococcus (16.23%), 
Rothia (5.66%), Acidovorax (5.99%), Kocuria (5.56%), Prevotella 
(5.41%), Cutibacterium (4.51%), and Schaalia (3.73%). At the 
species level, 5,748 species were identified, with differences in 
species abundance between the groups. The most abundant species 
in the lung cancer group were Rothia mucilaginosa (13.86%), 
Staphylococcus aureus (5.72%), and Schaalia odontolytica (4.98%). 
In the control group, the most abundant were Rothia mucilaginosa 
(5.13%), Staphylococcus aureus (4.65%), Cutibacterium acnes 
(4.50%), Kocuria rhizophila (3.55%), and Schaalia odontolytica 
(3.46%) (Figure 2A).

Decreased β-diversity in the lung cancer 
group

While no significant differences were observed in the Shannon 
and Simpson indices for α-diversity, significant differences were noted 
in the Richness, ACE, Chao1, and Evenness indices (Figure 2B). For 
β-diversity, PCoA and NMDS analyses based on the Bray-Curtis 
distance demonstrated clear separation between the groups, with the 
lung cancer group showing decreased β-diversity, statistically 
significant (p = 0.05, R2 = 0.0312) (Figure 2C).

Differential BALF microbiota between lung 
cancer group and control group

LEfSe analysis was employed to detect microbes with significant 
differences at the species level between lung cancer and benign lung 
lesions. The analysis revealed that 78 species were significantly more 
abundant in the lung cancer group, whereas 26 species were 
significantly more abundant in the control group (Table  2, 
Supplementary Table 2, and Figure 3A).

Using the significantly different species between the two 
groups, the Sequential Forward Feature Selection algorithm and 
Random Forest Classifier were utilized to select a subset of species 
that maximally distinguished the two groups. A diagnostic model 
was developed based on seven species: Pseudomonas tolaasii, 
Rothia mucilaginosa, Klebsiella pneumoniae, Bifidobacterium 
dentium, Bifidobacterium longum, Schizosaccharomyces pombe, 
and Caulobacter sp. FWC26. The first five species were 
significantly enriched in the lung cancer group, while the latter 
two were more prevalent in the control group. The AUC of this 
model for distinguishing lung cancer from benign lung lesions was 
0.931 (95% CI: 0.916–0.946), indicating significant differences in 

BALF microbiota between lung cancer and benign lesions, 
potentially serving as microbial biomarkers for lung cancer 
(Figures 3B,C).

Microbial-related gene function prediction

HUMAnN2 and LEfSe were used to analyze microbial pathways. 
KEGG pathway analysis revealed significant upregulation in the lung 
cancer group of pathways including signal transduction (e.g., HIF-1 
signaling pathway, PI3K-Akt signaling pathway), carbohydrate 
metabolism (e.g., Citrate cycle [TCA cycle], Glycolysis/
Gluconeogenesis), nucleotide metabolism (Pyrimidine metabolism, 
Purine metabolism), amino acid metabolism (Cysteine and 
methionine metabolism, Alanine, aspartate, and glutamate 
metabolism), and energy metabolism (Oxidative phosphorylation, 
Nitrogen metabolism). This upregulation suggests that catabolic and 
anabolic activities are more active in lung cancer patients, and tumor 
growth-related signaling pathways are significantly enhanced, 
consistent with the hypercatabolic state and malignant characteristics 
of lung cancer (Figures 4A,B).

BALF metabolomics

Metabolite composition and distribution
A total of 3,653 metabolites were detected in the 95 BALF samples 

from both groups. Quality control indicators confirmed the stability, 
reproducibility, and quality of detection 
(Supplementary Figures 1A–D). Among these, 1,249 metabolites were 
successfully identified. The four primary categories, comprising over 
50% of the total, included Amino acids, peptides, and analogs 
(22.56%), Lipids (12.53%), Benzene and derivatives (12.12%), and 
Organic acids (7.24%). Metabolites were categorized according to the 
KEGG super pathway, revealing participation primarily in Amino acid 
metabolism, Biosynthesis of other secondary metabolites, Lipid 
metabolism, Xenobiotics biodegradation and metabolism, Nucleotide 
metabolism, and Carbohydrate metabolism (Figure 5A).

Significant differences in metabolites between 
lung cancer group and control group

The OPLS-DA model was utilized to analyze differences in 
metabolites between the groups. A replacement test confirmed the 
model was not overfitted and performed effectively (Figures 5B,C). A 
total of 261 significantly different metabolites were identified, with 144 
metabolites significantly upregulated and 117 metabolites significantly 
downregulated in the lung cancer group. Notable metabolites 
increased in the lung cancer group included Citric acid, 
N-Acetylneuraminic acid, Oxoglutaric acid, and Neopterin, while 
those decreased included L-Tryptophan, Uridine, and 
3-Hydroxybutyric acid (Figure 5D).

Significantly upregulated KEGG pathways among the top  10 
metabolic pathways with the smallest p-values in the lung cancer 
group included: Alanine, aspartate, and glutamate metabolism, 
Biosynthesis of amino acids, Central carbon metabolism in cancer, 
TCA cycle, and Glucagon signaling pathway. Significantly 
downregulated pathways included: beta-Alanine metabolism, Bile 
secretion, Glutathione metabolism, and Thermogenesis (Figure 5E).
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Changes in BALF metabolites are closely related 
to lung microbiota in lung cancer

Combined analysis of differential metabolites and microbial 
species revealed correlations between several species and metabolite 
changes. Species such as Streptococcus, which were highly expressed in 
the lung cancer group, and Pseudomonas tolaasii, Rothia mucilaginosa, 
Bifidobacterium dentium, Bifidobacterium longum, Haemophilus 
influenzae, and Veillonella parvula were positively correlated with the 
upregulated metabolites. The same species, except Haemophilus 

influenzae, showed negative correlations with the downregulated 
metabolites. Additionally, Cutibacterium acnes was significantly 
positively correlated with 3-Hydroxybutyric acid (Figures 6A,B).

Discussion

In this study, the relationship between lower respiratory tract 
microbiota and lung cancer, as well as benign lung lesions, was 

FIGURE 2 (Continued)
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FIGURE 2

Lung microbiota composition in lung cancer patients and control group. (A) Microbial composition at the genus/species level for each group and 
distribution of the top 15 species (genus) in single-sample. (B) α-diversity between the two groups under different measurement indices, including: 
Shannon, Simpson, Richness, ACE, Chao1, and Evenness. ***p < 0.001; **p < 0.01; ns, no significant difference. (C) β-diversity between the lung cancer 
group and the control group based on PCoA and NMDS analyses.
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explored using BALF as the sample source. It was found that microbial 
richness in lung cancer patients was higher than in those with benign 
lung diseases, and the Evenness index was significantly lower. 
However, no significant differences were observed in the Shannon and 
Simpson indices, which are commonly used to measure microbial 
α-diversity. Previous studies have reported inconsistent findings 
regarding α-diversity between lung cancer patients and healthy or 
benign controls. For example, Cheng reported significantly lower 
α-diversity richness in lung cancer patients using 16 s rRNA 
sequencing (Cheng et al., 2024), while Jin noted a high correlation 
between lung tumor burden and local bacterial abundance (Jin et al., 
2019). The observed higher microbial richness in our study’s lung 
cancer patients could be related to the higher proportion of stage 
III-IV patients. Conversely, Kim found that the Shannon and Evenness 
indices were significantly higher in lung cancer patients (Kim et al., 
2024), yet other studies reported no differences in α-diversity between 
benign and malignant lung diseases (Jin et al., 2019; Tsay et al., 2021; 
Liu et al., 2022).

α-Diversity in microbial research is characterized by indices such 
as Richness, ACE, Chao1, Shannon, Simpson, and Evenness. It was 
observed that not all studies comprehensively presented differences 
across these indices. While these indices all reflect species diversity 
within a community, they emphasize different aspects, and 
comparisons across studies using various indices may not always 

be appropriate. Factors such as sample size, sampling methods, and 
sample storage time might also contribute to differences in 
microbial communities.

β-Diversity in lung cancer patients was found to be significantly 
lower than in those with benign lung disease. Lower β-diversity 
suggests a more consistent microbial composition in the BALF of lung 
cancer patients (Jin et al., 2019; Cheng et al., 2024; Hosgood et al., 
2019; Lu et al., 2021), indicating that changes in lower respiratory tract 
microbiota are crucial in the development and progression of 
lung cancer.

The study also analyzed differences in BALF microbial species 
between lung cancer and benign lung disease. Streptococcus species 
were significantly enriched in lung cancer patients, aligning with 
previous findings (Table 2) (Jin et al., 2019; Kim et al., 2024). Tsay 
confirmed that exposure to Prevotella, Streptococcus, and Veillonella 
upregulated ERK and PI3K signaling pathways in lung cancer (Tsay 
et al., 2021). A significant increase in Haemophilus influenzae was 
observed in lung cancer patients. King reported that this bacterium’s 
outer membrane proteins, like P2 and P6, activate innate immunity, 
with P6 stimulating macrophages to produce interleukin-8 (IL-8) 
and tumor necrosis factor-α (TNF-α). Furthermore, 
non-encapsulated strains (NTHi) of Haemophilus influenzae have 
been shown to upregulate nuclear factor-κB (NF-κB) (King, 2012), 
a pathway crucial for cell proliferation and survival. IL-8 has been 

TABLE 2  List of different microbial species in lung cancer group and control group by LEfSe analysis (LDA > 2.5).

Names Log_value Group LDAscores P_value

Rothia_mucilaginosa 5.14179 Cancer 4.622674 0.006578

Cutibacterium_acnes 4.65294 Control 4.16151 0.004059

Haemophilus_influenzae 4.278823 Cancer 4.092966 0.001062

Streptococcus_pseudopneumoniae 4.284667 Control 4.028614 0.023465

Schizosaccharomyces_pombe 4.404974 Control 3.924897 1.32E-07

Streptococcus_pneumoniae 4.232271 Control 3.800535 0.036392

Streptococcus_salivarius 4.351618 Cancer 3.724657 0.006133

Streptococcus_oralis 4.289609 Cancer 3.625046 0.021415

Klebsiella_pneumoniae 3.975981 Cancer 3.578428 0.015686

Streptococcus_mitis 4.352475 Cancer 3.532528 0.009683

Streptococcus_sanguinis 3.988466 Cancer 3.320127 0.004105

Caulobacter_sp._FWC26 3.650762 Control 3.264651 0.004005

Streptococcus_gordonii 3.759628 Cancer 3.258948 0.002572

Streptococcus_australis 3.674911 Cancer 3.071044 0.032637

Veillonella_parvula 3.646354 Cancer 3.000128 0.03438

Pseudomonas_tolaasii 3.28073 Cancer 2.867323 8.62E-06

Streptococcus_milleri 3.319731 Control 2.833595 0.041865

Streptococcus_vestibularis 3.224797 Cancer 2.824132 0.034245

Streptococcus_intermedius 3.338673 Control 2.782419 0.041813

Streptococcus_sp._NPS_308 3.329776 Cancer 2.71484 0.005176

Streptococcus_sp._FDAARGOS_192 3.146276 Cancer 2.691077 0.004757

Bifidobacterium_longum 3.056645 Cancer 2.646199 4.59E-05

Neisseria_sp._oral_taxon_014 3.002919 Control 2.616063 0.016194

Bifidobacterium_dentium 2.910455 Cancer 2.586571 1.75E-05
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associated with tumor growth and metastasis through mechanisms 
like epithelial-mesenchymal transition and angiogenesis (Yuen 
et  al., 2020). The NF-κB pathway is key in promoting cell 
proliferation, survival, and metastasis (Taniguchi and Karin, 2018). 
Additionally, significant enrichment of Veillonella parvula was 
noted in lung cancer patients (Jin et al., 2019; Tsay et al., 2021; Segal 
et  al., 2016), with previous studies showing its association with 
Th17 lymphocyte-dependent local inflammatory responses (Tsay 
et al., 2021), where Th17 lymphocytes secrete IL-17, involved in 
tumor immunity and angiogenesis (Onishi and Gaffen, 2010; Zhang 
et al., 2009).

Additionally, we  observed significant enrichment of 
Cutibacterium acnes in the BALF of patients with benign lung 
diseases, which is among the most common bacteria on the skin. 
Lawson suggested that Cutibacterium acnes might be  linked to 
prostate cancer (Lawson and Glenn, 2022). However, other studies 
have shown that the immunomodulatory activity of Cutibacterium 
acnes provides potential antitumor properties and has been utilized 
as a vaccine adjuvant (Simonart, 2013). Our study revealed a 
significant positive correlation between Cutibacterium acnes and the 
metabolite 3-hydroxybutyric acid, which may inhibit tumor growth. 
This indicates that the enrichment of Cutibacterium acnes in the 

FIGURE 3

Differential microbial species between lung cancer group and control group. (A) Differential taxa at the species level identified by LEfSe analysis (Only 
species with a differential species count greater than 15 and in each group LDA score Top 15 are listed); (B) Species selected in the diagnostic model. 
(C) ROC curve for the diagnostic model.
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BALF of benign lung disease patients may offer a protective 
antitumor effect.

Given the significant microbial differences between lung cancer 
and benign lung diseases, we constructed a prediction model that 
achieved an AUC value of 0.931, indicating robust performance in 

distinguishing between benign and malignant lung lesions. The 
model includes seven species: Pseudomonas tolaasii, Rothia 
mucilaginosa, Klebsiella pneumoniae, Bifidobacterium dentium, 
Bifidobacterium longum, Schizosaccharomyces pombe, and 
Caulobacter sp. FWC26. Literature has documented the enrichment 

FIGURE 4

Prediction of lung microbiota function. (A) The impact of differentially enriched KEGG pathways in lung cancer group was evaluated through the LDA 
score; (B) Number of genes annotated in the differential KEGG pathways.
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of Pseudomonas and Rothia in lung cancer patients (Roy et al., 2022; 
Jin et al., 2019; Cheng et al., 2024). However, as many previous 
studies relied on 16 s rRNA sequencing, which primarily identifies 

microbiota at the genus level, the role of Pseudomonas tolaasii and 
Rothia mucilaginosa in lung cancer pathogenesis remains uncertain. 
Klebsiella pneumoniae is a prevalent opportunistic pathogen in lung 

FIGURE 5 (Continued)

https://doi.org/10.3389/fmicb.2025.1669172
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al.� 10.3389/fmicb.2025.1669172

Frontiers in Microbiology 12 frontiersin.org

cancer patients. Greathouse discovered that five genera, including 
Klebsiella, were closely associated with mutations in the tumor 
protein p53 (TP53) in patients with lung squamous cell carcinoma 
(Greathouse et al., 2018). Research on Bifidobacterium has mainly 
focused on the gastrointestinal tract, emphasizing its beneficial role 
and its potential to suppress tumor growth (Ghoddusi and Tamime, 
2014; Lee et  al., 2021). Our study suggests that the presence of 
Bifidobacterium in the respiratory tract might promote tumor 
growth through metabolite regulation. However, the potential for 
sample contamination cannot be completely dismissed. It is widely 
recognized that daily consumption of yogurt products often 
includes various intestinal probiotics. Although we attempted to 
exclude individuals taking oral probiotics during the initial 
enrollment phase, yogurt products are commonly consumed as part 
of daily diets.

We found that Pseudomonas tolaasii, Rothia mucilaginosa, 
Bifidobacterium dentium, and Bifidobacterium longum were either 
positively or significantly positively correlated with four upregulated 
metabolites in the lung cancer group. Conversely, these species were 
negatively or significantly negatively correlated with downregulated 
metabolites. These metabolite changes are linked with tumor 
development (which will be discussed in the subsequent section), 
suggesting that these microbial species may enhance tumor growth 
through metabolites.

The components of BALF primarily consist of cells and soluble 
substances, mostly originating from plasma, with a smaller portion 
produced locally. However, changes in BALF composition often do 
not correspond with those in blood, necessitating an analysis of BALF 
components. In our study, compared to the benign lung disease group, 
the levels of citric acid, N-acetylneuraminic acid, oxoglutaric acid, and 

FIGURE 5

Metabolite Classification and Function Prediction. (A) Metabolite classification of the two groups. (B) Score diagram of the OPLS-DA analysis model. 
(C) Replacement test chart of the OPLS-DA analysis model. (D) Volcano plot of differential metabolites (Fold Change calculated for each metabolite in 
each group and significance tested using Student’s t-test: VIP ≥ 1 in the OPLS-DA model, Fold Change ≥ 1.2 or ≤ 0.83, p-value < 0.05). The list shows 
the top three metabolites that are significantly upregulated or downregulated, as well as the metabolites we are concerned about. (E) Metabolic KEGG 
pathway enrichment analysis.
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neopterin were markedly increased in the BALF of lung cancer 
patients, while L-tryptophan, uridine, and 3-hydroxybutyric acid were 
markedly decreased. Citric acid and oxoglutaric acid, key intermediate 
metabolites in the TCA cycle, are involved in the metabolism of 
carbohydrates, fats, and proteins. An increase in citric acid suggests 
elevated metabolic activity in tumors. Elevated levels of these two 
substances in BALF indicate that their concentrations may align with 
those in plasma. Neopterin, a metabolite of guanosine triphosphate 
produced by γ-interferon-stimulated monocytes and macrophages, 
can remain stable in body fluids such as blood, pleural, and ascites for 
a long time. Elevated neopterin, observed in various malignancies, is 
associated with poor prognosis (Melichar et al., 2017). In our study, 
significantly increased levels of neopterin in the BALF of lung cancer 
patients suggest that its levels in BALF may correspond to those in 
plasma and other body fluids. N-acetylneuraminic acid, a component 
of cell surfaces, is the most widely distributed form of sialic acid in 
nature. N-acetylneuraminic acid is notably increased on tumor cell 
surfaces and in plasma (Fischer and Egg, 1990), leading to an increase 
in negative charge on the cell surface and enhanced repulsive forces 
between cells, thereby reducing intercellular adhesion. This process 
facilitates the detachment of tumor cells from the primary tumor, 
creating conditions for invasion and metastasis. Researchers have 
found that N-acetylneuraminic acid in urine are associated with lung 
cancer risk and may increase with tumor size, making it a potential 
auxiliary tool for early lung cancer diagnosis (Zhang et al., 2021). In 
our study, N-acetylneuraminic acid levels in BALF were also 

significantly elevated, with an AUC of 0.727 when used alone in the 
diagnostic model, indicating its potential utility in lung cancer 
diagnosis. Previous studies have reported increased levels of 
L-tryptophan, uridine, and 3-hydroxybu tyric acid in the plasma of 
patients with malignant tumors (Hilvo et al., 2016; Badawy, 2022; 
Vidman et  al., 2023; Yang et  al., 2024). Tumor tissues utilize 
tryptophan and its metabolites to promote growth and evade host 
defense (Badawy, 2022). Uridine metabolism plays a critical role in 
tumorigenesis by providing uridine diphosphate N-acetylglucosamine 
(UDP-GlcNAc) (Dmitrieva-Posocco et  al., 2022). Conversely, 
3-hydroxybutyric acid has been demonstrated to inhibit the growth 
of colon cancer (Dmitrieva-Posocco et al., 2022). In our study, these 
three metabolites were significantly decreased in the BALF of lung 
cancer patients. Additionally, we  discovered that Pseudomonas 
tolaasii, Rothia mucilaginosa, Bifidobacterium dentium, 
Bifidobacterium longum, and Veillonella parvula, significantly 
enriched in the lung cancer group, were negatively or significantly 
negatively correlated with these downregulated metabolites. This 
suggests that the discrepancy between plasma and BALF levels of 
these metabolites may be  influenced by the activity of 
airway microbiota.

Our study also has several limitations. First, the sample size was 
relatively small (n = 70 vs. n = 25), with a significant disparity in the 
number of cases between the two groups, which can affect model 
performance estimates and statistical comparisons. Additionally, no 
external model was used for further validation. Second, the collection 

FIGURE 6

Correlation analysis of differential metabolites and microbial species. (A) Correlation of upregulated metabolites in the lung cancer group with 
microbiota; (B) Correlation of downregulated metabolites in the lung cancer group with microbiota. **p < 0.01, *p < 0.05.
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of BALF makes it difficult to completely avoid contamination from 
oral flora, and the influence of diet is also challenging to eliminate 
entirely. Furthermore, the microbial environment in the bronchus 
where the tumor is located may differ from that in non-tumor lesion 
areas. However, the bronchoalveolar lavage process may potentially 
mix contents from multiple bronchi.

Conclusion

Microbial metagenomics and metabolomics were utilized to 
analyze the differences in microorganisms and metabolites in 
BALF between lung cancer patients and those with benign lung 
diseases. Significant differences were identified in the BALF 
microbiota of lung cancer patients compared to those with benign 
lung diseases. The microbial model in the BALF of lung cancer 
patients could serve as a biomarker for diagnosis. Moreover, the 
significantly altered microorganisms and metabolites in the BALF 
of lung cancer patients are linked with tumorigenesis 
and progression.
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