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As an acute and highly contagious enteric disease of swine, porcine epidemic
diarrhea virus (PEDV) has caused high piglet mortality and significant economic
losses. Commercialized vaccines provide only partial cross-protection against the
novel, highly virulent PEDV strains. Developing new vaccines against highly virulent
PEDV strains would help protect the pig industry from the serious challenges
posed by novel, highly virulent PEDV infections. Natural compounds and chemical
and biochemical source-targeted drugs designed to act on specific proteins,
enzymes, or mechanisms can complement each other’s advantages when used
in combination, thereby enhancing the effectiveness of drug-based prevention
in the control of highly virulent PEDV. Drugs targeting Toll-like receptor 3 (TLR3)
can aid vaccines to compensate for interferon (IFN) secretory deficiencies to
protect pigs from highly virulent PEDV infection. This review summarizes recent
progress in the development of vaccines against highly virulent PEDV, natural
compounds, and chemical and biochemical source-targeted drugs that have
been explored in cell and pig models with clearly defined mechanisms. It also
aims to provide comprehensive strategies for the prevention and control of highly
virulent PEDV infections in pigs.
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1 Introduction

As an acute and highly contagious enteric disease of pigs, porcine epidemic diarrhea
(PED) can result in dehydration, vomiting, diarrhea, and severe enteritis. Its lethality is
particularly high in suckling pigs (Stadler et al., 2015). Porcine epidemic diarrhea virus
(PEDV), a causative agent belonging to the genus Alphacoronavirus in the family
Coronaviridae, is an enveloped, positive, single-stranded RNA virus (Karte et al., 2020). The
PEDV genome is approximately 28 kb and contains at least seven open reading frames (ORFs),
which encode two large polyprotein precursors (ppla and pplab); the spike (S), membrane
(M), and envelope (E) structural proteins; and nucleocapsid (N) proteins, as well as an
accessory protein, ORF3 (Zhuang et al., 2025). The virus genotype includes G1 (classical Gla
and recombinant G1b) and G2 (local epidemic G2a and global epidemic G2b) (Jang
etal., 2023).

The highly pathogenic (HP)-G2b PEDV caused a pandemic that severely impacted
pig-producing nations in America and Asia during 2013-2014 and also threatened the
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global pig industry (Park et al., 2007; Puranaveja et al., 2009; Lee
etal., 2024). Most PEDV strains isolated from Vietnam belonged to
the genotypes G1 and G2 and had very high genetic similarity with
strains isolated from China and Thailand (Nguyen et al., 2023). The
virus was first recognized in Europe in the 1970s and caused high
piglet mortality and significant economic losses in Germany,
France, Belgium, Ukraine, Austria, Portugal, and the Netherlands
in 2014 (Dastjerdi et al., 2015; Grasland et al., 2015; Mesquita et al.,
2015; Stadler et al., 2015; Steinrigl et al., 2015; Theuns et al., 2015;
Dortmans et al., 2018). It was reported that the prevalence of
PEDV-positive piglets during the first week on Spanish farms
ranged from 3.7 to 12.9% in 2014 (Mesonero-Escuredo et al., 2018;
Vidal et al., 2019). A recent investigation of 106 Spanish pig farms
between 2017 and 2019 showed that the detected PEDV rate was
38.7% (Monteagudo et al., 2022). The investigation showed that
PED can rapidly spread in PEDV-negative herds and cause 100%
morbidity and 30 to 90% mortality in piglets (Jang et al., 2023).
PEDV can also cause a 12.6% reduction in the farrowing rate and
result in a 5.7% failure-to-breed rate, a 1.3% abortion rate, and 2.0%
mummified fetuses, negatively affecting the reproductive
performance of mature sows (Weng et al., 2016).

To fight the novel highly virulent PEDV infection, this review
summarizes recent progress in the development of vaccines against
highly virulent PEDV, natural compounds, and chemical and
biochemical source-targeted drugs that have been explored in cell and
pig models with clearly defined mechanisms. It also aims to provide
comprehensive strategies for the prevention and control of highly
virulent PEDV infections in pigs.

2 Progress and strategies in vaccines
against highly virulent PEDV

Viral entry, attachment, induction of neutralizing antibodies, and
membrane fusion are mediated by the Sland S2 domains of the PEDV
S glycoprotein. The CO-26 K-equivalent (COE) and N-terminal
domain (NTD) in the S1 region are crucial neutralizing epitopes and
potential co-receptor binding sites for the vaccine development of
PEDV (Kirchdoerfer et al, 2021). Lipid nanoparticle (LNP)-
encapsulated mRNA (mRNA-LNP) vaccines encoding a PEDV
multiepitope chimeric spike (Sm) protein (PEDV-S mRNA-LNP) have
been demonstrated to activate CD4 + and CD8 + T cells and induce
PEDV-specific IgG and IgA in the serum and colostrum of S-mRNA-
immunized sows, which could be transferred to suckling neonatal
piglets, providing protection against AH2012/12 infection
(Kirchdoerfer et al., 2021; Zhao et al., 2024).

Whole-virus vaccines in traditional PEDV vaccines include
inactivated and attenuated vaccines. In contrast to traditional PEDV
vaccines, subunit vaccines can provide safety, without viral nucleic
acids, the redesigned antigens and multiple antigens combination with
the adjuvant addition in immunity efficacy elevation (Du et al., 2016).
A complete subunit vaccine production system would greatly facilitate
a quick response to emergency epidemics (Li Z. et al., 2020). The study
showed that the full-length S protein subunit vaccine could effectively
induce high levels of S-specific IgG, IgA, and neutralizing antibodies
in pigs infected with AH2012/12. It also increased the proliferation of
peripheral blood mononuclear cells and increased interferon-y
(IFN-v) and interleukin-4 (IL-4) expression levels in peripheral blood
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to reduce diarrheal index scores, fecal viral loads, and intestinal
pathological damage in immunized piglets (Guo et al., 2024).

The addition of trypsin is crucial but also increases the complexity
of vaccine production and cost in the propagation of PEDV. It has
been reported that PEDV trypsin independence is associated with the
S2’ site and Y976/977 of the PEDV spike (S) protein (Li M. et al,,
2023).Li M et al. used AJ1102 and the trypsin-independent genotype
1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying
a chimeric S protein and successfully constructed the trypsin-
independent PEDV strain rAJ1102-S2JS2008 (Li M. et al., 2023). It
was able to effectively replicate in the absence of trypsin and could
induce neutralizing antibodies against AJ1102 and JS2008, providing
protection to pigs against G1 and G2 PEDV infections (Niu and Wang,
2022; Li M. et al., 2023).

Immunizing sows with PEDV vaccines between 20 and 30 days
will provide substantial passive immunity to their newborn piglets,
especially mucosal immunity, which is essential for the sows (Lin
et al,, 2016). As a particle-mediated delivery system for vaccines,
biodegradable and biocompatible poly (D, L-lactide-co-glycolic acid)
(PLGA) nanoparticles (NPs) can protect the entrapped vaccine from
protease-mediated degradation at mucosal surfaces and stimulate the
underlying mucosal immune cells to provide protection for sows
infected with AH2012/12 (Binjawadagi et al., 2014a; Binjawadagi
et al., 2014b). PLGA nanoparticle-entrapped PEDV killed vaccine
antigens (KAg) (PLGA-KAg) have been shown to improve PEDV-
specific IgG and IgA antibody titers, induce lymphocyte proliferation
responses, and increase IFN-y levels in pregnant sows and their
suckling piglets (Li et al., 2017).

As a potential adjuvant, flagellin can induce Th1 and Th2 mixed-
cell responses (Li et al., 2018). Flagellin can be used in combination
with inactivated or killed PEDV vaccines to elevate mucosal and
systemic IgG and IgA levels, thereby protecting piglets from PEDV
AH2012/12 infection (Xu X. et al., 2020).

For the highly virulent PEDV G2 strains, traditional vaccines can
2016).
Commercialized vaccines, including recombinant PEDV S protein, an

only provide partial cross-protection (Wang et al,

inactivated whole-virus vaccine based on a non-S INDEL PEDV
strain, and a subunit vaccine using HEK-293 T cell-expressed PEDV
S1 proteins, have been used to control virulent G2 viruses in the
United States (Makadiya et al., 2016). However, commercialized
vaccines cannot provide consistency in stimulating solid lactogenic
immunity to protect suckling piglets from G2 virus infection
(Crawford et al, 2016). Virus-like particles (VLPs) can improve
immunogenicity, drain freely into lymph nodes, and be efficiently
taken up by antigen-presenting cells to promote CD4 + T helper cell
and CD8 + cytotoxic T cell responses (Dudziak et al., 2007; Mohsen
et al, 2017). As characterized nanoparticles of conformational
epitopes, VLPs can induce the subsequent humoral immunity by
interacting with B cells (Manolova et al., 2008; Hsueh et al., 2020). In
the development of safe, effective, and economical vaccines against
enteric viral diseases, VLP vaccines represent an important strategy
by stimulating cellular, mucosal, and humoral immunity. In the
current study, PEDV VLPs of CCL25/28 were demonstrated to protect
pigs from PEDVPT-P7infection by increasing systemic anti-PEDV
S-specific IgG, mucosal IgA, and cellular immunity (Leidenberger
etal., 2017; Hsu et al., 2020; Lu et al., 2020).

mRNA-LNP vaccines, the full-length S protein subunit, the
trypsin-independent genotype 1 (G1) PEDV JS2008 strain, PLGA
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nanoparticle-entrapped PEDV Kkilled vaccines, flagellin, and PEDV
VLPs of CCL25/28 have shown different immune regulation
efficiencies in enhancing systemic anti-PEDV S-specific IgG, mucosal
IgA, and cell immunity to protect pigs from highly virulent PEDV
infection (Table 1). To continue exploring vaccines, it is indispensable
to prevent and control PED infections caused by different novel highly
virulent PEDV strains in pigs.

3 Progress and strategies in drugs
targeting highly virulent PEDV

Maternal antibodies from colostrum and milk are important to
protect piglets from PEDV infection (Leidenberger et al., 2017).
PEDV mutation could decrease the full protection of the vaccines (Li
S. et al,, 2020). Therefore, it is necessary to update vaccines based on
prevalent PEDV strains and explore new strategies (Yang et al., 2023).
Antiviral natural compounds from plant extracts and Chinese herbal
medicines have been increasingly demonstrated in recent years. In
view of rich sources, unique chemical structures, and diverse activities
of natural compounds in the development of new anti-highly virulent
PEDV drugs, natural compounds will compensate for the vaccine
deficiency in against PEDV prevalent strains (Russo et al.,, 2020; Gong
et al, 2023). Recently, the anti-highly virulent PEDV of natural
products target drugs have become a hot spot because of its lower side
effects, cheaper investment and avoidable risk in developing resistance
(Behzadi et al., 2023; Liang et al., 2024). Many natural compounds
have also been reported to be effective in inhibiting highly virulent
PEDV (Sun et al., 2022). Drugs including flavonol, tomatidine, and
wogonin have been reported to affect highly virulent PEDV by
interacting with the Mpro or 3CLpro proteins of PEDV in vitro (Wang
et al,, 2020; Wang J. et al., 2023; Liang et al., 2024) (Table 2). These
compounds can be good candidate drugs against highly virulent
PEDV in cells or pigs, pending further demonstration in in vivo
studies. Based on their effects on highly virulent PEDV in vitro and

TABLE 1 Vaccines against highly virulent PEDV.

Vaccine Immune induction

Protection efficiency

10.3389/fmicb.2025.1666167

vivo, licorice extract, buddlejasaponin IVb, hypericum japonicum
extract, puerarin, and aloe extract have been shown to inhibit highly
virulent PEDV by interfering with the N protein, ORF3 mRNA, and
M protein; inhibiting the PI3K and NF-kB signaling pathways; and
blocking the transcription of viral N genes (Wu et al., 2020; Xu
Z. et al., 2020; Su et al., 2021; Sun et al., 2022; Rao et al., 2023; Yang
et al., 2023). These drugs could reduce the replication of highly
virulent PEDV and also alleviate clinical symptoms in pigs. They hold
promising clinical value for future exploration of their effects against
highly virulent PEDV both in vitro and in vivo.

There are chemical drugs targeting highly virulent PEDV,
including niclosamide, tubercidin, and ivermectin, that can inhibit the
proliferation of highly virulent PEDV in vitro by targeting the specific
viral mechanisms (Wang Y. et al., 2023; Wang et al., 2024; Xu et al,,
2024) (Table 3). Considering the evasive strategies of PEDYV, it is
important to regulate the proliferation of highly virulent PEDV by
targeting the signal transducer and activator of transcription 3
(STAT3) and RNA-dependent RNA polymerase (RdRp) (Wang
Y. et al,, 2023; Wang et al., 2024; Xu et al., 2024). Although these
targeted drugs have only been tested in vitro, they still offer
extraordinary therapy strategies for the prevention of highly virulent
PEDV. Among these drugs, PA-824 has been demonstrated to inhibit
the proliferation of highly virulent PEDV and alleviate diarrhea
symptoms in pigs caused by PEDV AH-2018-HF infection by
suppressing PEDV-induced p53 activation in vitro and in vivo (Li
etal, 2024). Especially, the specially target drugs tested in pigs will be
priority in synergistic therapy and increase anti-highly virulent
PEDV efficiency.

Biochemical source drugs, including RNA G-quadruplexes and
Karyopherin a2 (KPNA2), have shown substantial inhibition of highly
virulent PEDV replication by targeting the G4 structure in Nsp5 and
the E protein, respectively, in vitro (Gao et al., 2023; Li Y. et al., 2023).
The highly virulent PEDV genome and structural proteins (S, E, M,
and N) (Table 4) are crucial determinants of the molecular
epidemiological characteristics of PEDV (Karte et al., 2020; Jang et al.,

References

PEDV-S mRNA-LNP vaccine

PEDV-specific humoral and cellular

immune responses.

Protected immunized piglets against the

PEDV AH2012/12 strain

Kirchdoerfer et al. (2021) and Zhao et al.
(2024)

Trimeric full-length S protein

subunit vaccine

High levels of S-specific IgG, IgA, and
neutralizing antibodies; increased

expression levels of IFN-y and IL-4.

Reduced intestinal pathological damage in
immunized piglets infected with

AH2012/12

Guo et al. (2024)

Recombinant rAJ1102-S2’JS2008

Vaccine

Induced neutralizing antibodies

Protected pigs from G1 and G2 PEDV

infections.

Niu and Wang (2022) and Li M. et al. (2023)

PLGA-KAg

Improved lymphocyte proliferation
responses, IFN-y levels, and PEDV-
specific IgG and IgA antibody titers

Provided protective immunity against
PEDV AH2012/12 strain infection in
suckling piglets.

Lietal. (2017)

A flagellin -adjuvanted inactivated

porcine epidemic diarrhea virus

Elicited high levels of IgG, IgA, and

neutralizing antibodies

Conferred protective immunity to piglets

against PEDV strain AH2012/12

Xu X. et al. (2020)

S-specific IgG, mucosal IgA, and cell

immunity

(PEDV) vaccine infection.
Modulated the immune responses by Alleviated clinical signs in piglets infected | Hsu et al. (2020) and Lu et al. (2020)
enhancing systemic anti-PEDV with PEDVPT-P7.

PEDV VLPs with CCL25/28
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TABLE 2 Natural compounds targeting highly virulent PEDV.

10.3389/fmicb.2025.1666167

Natural compounds Inhibit PEDV in Effective in pigs Target References
cells

Flavonol PEDV-YN145 No report Interacts with PEDV MP*, Liang et al. (2024)
PEDV MS, YZ, SH, and

Tomatidine No report Inhibition of 3CLpro activity. Wang et al. (2020)
Cv777

Wogonin PEDV AH2012/12 No report Exerts an inhibitory effect on MP™. Wang J. et al. (2023)

1. Interfering with the PEDV N protein,
Against PEDV HM2017
Licorice extract PEDV HM2017 ORF3 mRNA, and M protein Yang et al. (2023)

infection in piglets.

2. Inhibiting the PI3K signaling pathway

Buddlejasaponin IVb PEDV AH-2018-HF1

in pigs.

Relieving clinical symptoms

Inhibits the NF-kB signaling pathway. Sun et al. (2022)

Hypericum japonicum extract PEDV-CV777 and PEDV-G2

Improving intestinal

pathology in piglets

Interfering with interaction between the N
Rao et al. (2023)
protein and p53.

PEDV Yunnan province
Puerarin
strain
piglets.

Reduction of PEDV impact

on growth performance in

Regulating the IFN and NF-kB signaling
Wau et al. (2020)
pathways.

Aloe extract PEDV GDS01

infection

Protects newborn piglets from

PEDV variant GDSO01

Blocking the transcription of viral N genes. Xu Z. et al. (2020)

TABLE 3 Chemical drugs targeting highly virulent PEDV.

Drug Inhibit PEDV in cells Effective in pigs Target References
CV777, HNXX, HB, HW, and
Niclosamide recombinant PEDV strains DR13-GFP No report Targeting STAT3. Wang Y. et al. (2023)
and DR13-Rlu
CV777, HNAY, HNXX, HB, DR13-GFP, Forms hydrophobic interactions with the
Tubercidin No report Wang et al. (2024)
and GDU-GFP RdRp of PEDV.
CV777, HW, HNXX, HB (GII subtype), Induces cell cycle arrest to inhibit viral
Ivermectin No report Xu et al. (2024)
and PEDV (DR13-GFP) release.
Reducing the pathogenic effect
PA-824 PEDV AH-2018-HF Suppressing PEDV-induced p53 activation. Li et al. (2024)
of PEDV in piglets

2023; Zhuang et al., 2025). It is necessary to further explore and test
biochemical source drugs in vivo, as they may provide new options to
face emerging challenges from PEDV variant strains. As an important
direction for future studies, there is a real demand in veterinary clinics
to explore and screen high-efficiency, low-toxicity, and low-residue
drugs with targeted therapy against highly virulent PEDV (Behzadi
et al.,, 2023). Natural compounds and chemical and biochemical
source-targeted drugs can complement each others advantages
through drug combination, thereby promoting the efficacy of drug-
based prevention and control of highly virulent PEDV.

4 Progress and strategies in drugRs
targeting toll-like receptor 3 (TLR3)

Inducing antiviral innate immune and inflammatory responses is
an important precondition for repelling viral infections (Yang and
Shu, 2020). Studies have shown that the production of type I or type
III IFNs could be inhibited by highly virulent PEDV N proteins, such
as nspl, PLP2, nsp5, nsp15, and nspl6 (Deng et al., 2019; Shi et al,,
2019). This inhibition benefits highly virulent PEDV by enabling
immune evasion through suppression of IFN production pathways
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and disruption of transcription factor activation involved in IFN
induction (Cao et al., 2015a; Guo et al., 20165 Li S. et al., 2020). Pattern
recognition receptors (PRRs) can specifically recognize pathogen-
associated molecular patterns (PAMPs) by activating IFN- and
interleukin-1 (IL-1)-mediated proinflammatory responses in animals
(Rai, 2020). As a member of the virus-perceiving PRRs, Toll-like
receptor 3 (TLR3) can initiate downstream signal transduction,
upregulate the IFN-a/f expression, and induce antiviral protein
(AVP) synthesis activity by recognizing viral double-stranded RNA
(dsRNA) (Unterholzner et al., 2010; Matsumoto et al., 2011). Within
the TLR family, TLR3 is the only receptor that induces IFN-f
production through the Toll/IL-1 receptor (TIR) domain-containing
adapter-inducing interferon-f (TRIF) pathway (Yang and Shu, 2020).
The TRIF-dependent nuclear factor-kB (NF-kB) and IFN regulatory
factor 3/7 (IRF3/7) pathways are regulated by TLR3 (Matsumoto et al.,
2011). When TLR3 is activated by viral dsRNA, TRIF could elicit a
cascade of reactions by triggering tumor necrosis factor (TNF)
receptor-associated factor 3 (TRAF3) and TRAF6 (Fang et al., 2013;
Bugge et al., 2017) (Figure 1).

TLR3 localizes to endosomes and the cell surface in
macrophages and mast cells (MCs) but is restricted to endosomes
in myeloid dendritic cells (DCs) (Matsumoto et al., 2003;
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TABLE 4 Biochemical source drugs targeting highly virulent PEDV.

Inhibit PEDV in cells

Effective in pigs

10.3389/fmicb.2025.1666167

References

RNA G-quadruplexes CV777, HNAY, HW, and DR13-GFP strains

No report

Targeting the G4 structure in Nsp5. | Li Y. et al. (2023)

KPNA2 PEDV strain GDSO01

No report

Degrading the viral E protein b
& & P Y Gao et al. (2023)

autophagy

Cytoplasm

al protein
3

FIGURE 1

TLR3 upregulates IFN-a/f expression and induces AVP synthesis activity by recognizing dsRNA. The TLR3-mediated signaling pathway includes the
TRIF-dependent NF-kB and IRF3/7 pathways. TRIF interacts with TRAF3 to elicit a cascade of reactions to induce the production of IFNs-1.

Matsumoto et al., 2011; Agier et al., 2016). Type I IFNs (a and )
are associated with viral clearance and can be produced by DCs
(Matsumoto et al., 2003). TLR3 can drive antigen-presenting DCs
to induce IFN production (Soto et al., 2020). TLR3 also promotes
IRF3, type I and II IEN receptor, and major histocompatibility
complex (MHC) I expression in MCs to enhance the cellular
antiviral response (Soto et al., 2020; Witczak et al., 2020). Viral
infection leads to TLR3 expression upregulation in DCs of mice and
humans. Virus dsRNA is recognized by the TLR3 ectodomain
(ECD) (Negishi et al., 2008; Abe et al., 2012). The TIR domain of
TLR3 can recruit TRIF (Chattopadhyay and Sen, 2014). It can
stimulate the phosphorylation of IRF3, which leads to the
production of type I IFNs (Takeda and Akira, 2004). A study
demonstrated that TLR3 positively contributes to NF-kB activation
in response to PEDV infection (Cao et al., 2015b). TLR3 activates
NF-xB signaling through TRIF-dependent conscription of two
cascades. It is most noteworthy pathway of TLR3 signaling that can
provoke TNE, IL-1, CCL2, CXCLS8, endothelial adhesion molecules,
and type I IFNs to against viruses (Komal et al., 2021). The TLR3
agonist can upregulate the expression of IFN-a/f and induce AVP
synthesis activity by recognizing virus dsRNA to activate TLR3

Frontiers in Microbiology

downstream signal transduction (Unterholzner et al, 2010;
Matsumoto et al., 2011).

Novel TLR3 agonists include RGCI100, Poly-IC, and
ARNAX. As a novel TLR3 agonist, RGC100 can target endosomal
TLR3 myeloid DCs
proinflammatory cytokine secretion in a dose-dependent manner

and activate murine to promote
(Naumann et al., 2013). Considering its immunological properties,
RGC100 may represent a promising candidate for prevention and
therapy vaccination strategies against PEDV. As a synthetic dsSRNA
analog, polycytidylic acid (Polyl:C) can be recognized by RIG-1/
MDA-5 and TLR3 receptors to activate transcription factors that
are responsible for the expression of type I IFNs and inflammatory
cytokines/chemokines (Kanmani and Kim, 2019). Poly-IC12U is
an altered form of poly IC. It reduces poly IC-associated toxicity
and regulates IFN expression by activating the TLR3 receptor
(Martins et al., 2015). As a synthetically derived form of poly-IC,
Poly-ICLC can induce strong Thl cytokine responses, including
IL-6, IL-12, TNF-a, IFN-y, and type 1 IFNs (Komal et al., 2021).
ARNAX is a synthetic DNA-dsRNA hybrid compound and can
activate MDAS5 (Komal et al., 2021). ARNAX cannot activate the

TLR3 pathway.
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Different from ARNAX, poly-IC can activate both TLR3 and
MDAS5 (Shime et al., 2017). In addition, the inflammatory status of
macrophages and DCs can also be changed by poly-IC and RGC100
(Longhi et al., 2009; Gupta et al., 2016; Takeda et al., 2018). Therefore,
TLR3 agonists, poly-IC and RGC100, ought to be considered as
adjuvants for highly virulent PEDV vaccination.

5 Conclusion

As an acute and highly contagious enteric disease of swine, highly
virulent PEDV causes high piglet mortality and significant economic
losses. However, commercialized vaccines can only provide partial
cross-protection against novel highly virulent PEDV strains. The
development of new vaccines against highly virulent PEDV including
mRNA-LNP, subunit, trypsin-independent, nanoparticle-entrapped
killed PEDV, and virus-like particle (VLP) vaccines will help protect
the swine industry from the serious challenges posed by highly
virulent PEDV infection. Natural compounds and chemical and
biochemical source-targeted drugs can enhance the effectiveness of
drug-based prevention in controlling highly virulent PEDV. As
adjuvants, TLR3 agonists can aid vaccines to compensate for IFN
secretory deficiencies to protect pigs from highly virulent PEDV
infection. Researchers working on the vaccines and drugs mentioned
in this review need more time to complete in-depth studies on
vaccines and targeted drugs against highly virulent porcine epidemic
diarrhea virus. Continued focus on the ongoing research of these
vaccines and drugs will provide valuable scientific information for
their application in PEDV control and prevention, once sufficient
evidence supports effective strategies for managing the disease.
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Glossary

AVP - Antiviral protein

COE - CO-26 K-equivalent

DC:s - Dendritic cells

dsRNA - Double-stranded RNA

ECD - Ectodomain

HP - Highly pathogenic

IKK - Nuclear factor-kappab (ikappab) kinase
IRF3/7 - IFN-regulatory factor 3/7

ISGs - IFN-stimulated genes

ISRE - IFN-stimulated response element
KAg - Killed vaccine antigens

KPNA2 - Karyopherin o 2

LNP - Lipid nanoparticle

MCs - Mast cells

MDA-5 - Melanoma differentiation-associated gene 5

MHC - Major histocompatibility complex
mRNA-LNP - LNP-encapsulated mRNA

N protein - PEDV nucleocapsid (N) protein
NF-kB - Nuclear transcription factor-kB
NPs - Nanoparticles

NTD - N-terminal domain

NTPase - Nucleoside triphosphate hydrolase
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ORFs - Open reading frames

PAMPs - Pathogen-associated molecular patterns
PED - Porcine epidemic diarrhea

PEDYV - Porcine epidemic diarrhea virus

PEDV-S mRNA-LNP vaccine - mRNA-LNP vaccines encoding a
PEDV multiepitope Sm protein

PI3K - Phosphatidylinositol 3-kinase

PKB/AKT - PI3K /protein kinase B

PLGA - Poly (D, L -lactide-co-glycolide)

PLGA-KAg - PLGA nanoparticle-entrapped PEDV KAG
PLP2 - Papain-like protease 2

PolyI:C - Polycytidylic acid

PRRs - Pattern-recognition receptors

RdRp - RNA-dependent RNA polymerase

RIG-I - Retinoic acid-inducible gene 1

STATS3 - Signal transducer and activator of transcription 3

Sm - Chimeric spike protein

STAT - Signal transducer and activator of transcription

TIR - Toll/IL-1 receptor

TLRs - Toll-like receptors

TLR3 - Toll-like receptor 3

TRAF3 - Tumor necrosis factor (TNF) receptor-associated factor 3
TRIF - TIR domain-containing adapter-inducing interferon-f};

VLPs - Virus-like particles
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