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Introduction: The high incidence rate of metabolic dysfunction-associated 
steatotic liver disease (MASLD) has been a big burden on public health globally.
Methods: To explore microbial and metabolic characteristics of MASLD, 
we  performed 16S rDNA sequencing and untargeted metabolomics on 138 
stool samples from MASLD patients. Through the construction of multi-
omics featuremaps, we identified relevant changes in microbial and metabolic 
signatures and evaluated potential clinical value in MASLD.
Results: The result showed that the high-fat, high-protein dietary pattern in 
MASLD patients is one of the reasons for the upregulation of Parabacteroides 
merdae abundance. And it can increase the branched-chain amino acid 
catabolic capacity in MASLD patients, thereby improving metabolic syndrome 
and increasing the abundance of beneficial bacteria to improve the intestinal 
microbiota balance. Then, the downregulation of Lachnospiraceae bacterium 
in MASLD patients may lead to intestinal inflammatory responses. Moreover, its 
increasing abundance might result in heightened appetite in MASLD patients, 
which leads to insulin resistance and liver damage. And the increasing in 
glycerophospholipid (GP) metabolites in the gut of MASLD patients is highly 
correlated with metabolic disorders and disease progressionassociated with 
hepatic fat accumulation and inflammatory responses (AUC > 0.9). Therefore, 
the levels of GP metabolites in the stool of MASLD patients serve as a reliable 
diagnostic biomarker for fatty liver and represent a potential target for the 
diagnosis and treatment of MASLD.
Discussion: After analysis of gut microbiota and metabolites, we 
found that Lactobacillus johnsonii down-regulated in MASLD drives 
2,6-Dichlorohydroquinone accumulation, provoking toxic buildup and 
accelerating disease progression.
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1 Introduction

Globally, the prevalence of metabolic dysfunction-associated 
steatotic liver disease (MASLD) is 29.38% and is on the rise year by 
year (Powell et al., 2021; Liu et al., 2022). Moreover, the incidence and 
prevalence of MASLD are higher in males than in females, with a 
global prevalence of 40% in males compared to 26% in females (Sahu 
et al., 2023; Younossi et al., 2023). Additionally, there are significant 
regional differences in the prevalence of MASLD. For example, the 
highest prevalence is found in South America at 75.64%, while in Asia, 
the prevalence is approximately 30%, which still represents a 
substantial healthy burden (Liu et  al., 2022; Sahu et  al., 2023). 
Furthermore, MASLD exhibits specific prevalence rates in particular 
populations. In patients with type 2 diabetes, the prevalence of 
MASLD is as high as 57.85%, and in severely obese patients 
undergoing bariatric surgery, the prevalence reaches 82.16% (Godoy-
Matos et al., 2020; Liu et al., 2022).

MASLDremains a significant burden on public health, as it not 
only damageshealthy liver function but is also closely associated with 
a variety of severe health issues (Huby and Gautier, 2022). Firstly, it 
can lead to the progression of liver diseases. Approximately 46.49% of 
MASLD patients will progress to non-alcoholic steatohepatitis 
(NASH), and about 46.72% of NASH patients will further develop 
liver fibrosis or cirrhosis (Huang et  al., 2021; Powell et  al., 2021). 
Moreover, the incidence of hepatocellular carcinoma (HCC) in 
MASLD patients is 1.46‰ (Anstee et al., 2019; Huang et al., 2021). In 
addition to these liver-related complications, MASLD is strongly 
linked to the occurrence of cardiovascular diseases. Cardiovascular 
diseases are one of the leading causes of death in MASLD patients, 
accounting for 40% of deaths in this patient population. Previous 
researches have shown that MASLD may independently increase the 
risk of cardiovascular diseases (Byrne and Targher, 2015; Zhang et al., 
2024). Furthermore, MASLD is closely related to a number of 
metabolic disorders, including type 2 diabetes, obesity, hyperlipidemia, 
and metabolic syndrome. It is also associated with pathological 
mechanisms such as insulin resistance, oxidative stress, and gut 
microbiota dysbiosis, which collectively promote disease progression 
(Liu et al., 2022). Therefore, given the high incidence and prevalence 
of MASLD globally, as well as its extensive and severe impact on 
health, early identification and intervention of MASLD are crucial for 
improving patient outcomes.

According to analyze the gut microbiota and metabolites 
characteristics of MASLD for disease diagnosis and monitoring, 
we aim to achieve non-invasive diagnosis and monitoring of MASLD 
and improve personalized health management plans (Scorletti et al., 
2020; Li et al., 2022). We performed 16S rDNA sequencing to analyze 
the gut microbiota between MASLD patients and healthy controls. 
Gut microbiota sequencing can comprehensively assess the diversity 
and balance of the intestinal microbial community. It can detect the 
composition and function of the microbiota. Abnormalities such as 
dysbiosis and enrichment of pathogenic microorganisms can 
be  identified. This can provide guidance for early prevention and 
treatment (Damhorst et al., 2021; Liu et al., 2023; Song Z. et al., 2023). 
It can also detect microbial alterations associated with various diseases 
to serve as an auxiliary diagnostic tool and monitor disease 
progression and therapeutic efficacy. Personalized dietary plans can 
be developed based on the results. This can facilitate personalized 
health management and monitoring (Jiang et al., 2024).

Moreover, incorporating untargeted metabolomics allows for an 
unbiased detection of all small-molecule metabolites in biological 
samples, including both known and unknown ones. This provides a 
comprehensive understanding of metabolic changes in biological 
systems (Buchard et al., 2021; Babu et al., 2022; Brinca et al., 2022; 
Song Q. et al., 2023; Babu et al., 2024; Wang et al., 2024). Metabolites 
are the foundation of an organism’s phenotype and can help more 
directly and effectively understand biological processes and their 
mechanisms. Based on the qualitative and quantitative analysis of 
metabolites, metabolomics can be used to explain metabolic pathways 
or networks, investigate the metabolic basis of macroscopic 
phenotypic phenomena in different biological individuals, and study 
the response mechanisms of metabolites to various stimuli such as 
different diseases, drugs, or pathogenic organisms. Untargeted 
metabolomics is a commonly used method in metabolomics research. 
The main research approach is to compare experimental and control 
groups, detect metabolites in samples, obtain quantitative information, 
and identify metabolites with statistically significant differences 
between groups. This can explain the relationship between the 
identified metabolites and biological processes or states.

We performed 16S rDNA sequencing on stool samples from 80 
MASLD patients and healthy controls to analyze the composition of 
the gut microbiota. We also performed untargeted metabolomics on 
stool samples from 58 MASLD patients and healthy controls to 
characterize the gut microbiota metabolites in MASLD patients. This 
approach aims to diagnose MASLD, improve non-invasive diagnostic 
and monitoring protocols for MASLD, and provide new guidance for 
the personalized health management of MASLD.

2 Materials and methods

2.1 Ethics statement

Sample collection was approved by the Ethics Committee for 
Scientific Research of the First People’s Hospital of Kashgar Prefecture, 
and informed consent was obtained from the patient. An additional 
number was used to register the samples in the database with no link 
to patient names or personal information.

2.2 16S ribosomal DNA sequencing of gut 
microbiota

Samples included 40 MASLD patients and 40 healthy controls 
(Ctrl). All patients were diagnosed through ultrasound examination 
and excluded individuals with NASH and other metabolic syndromes. 
MASLD patients and healthy controls were recruited from the First 
People’s Hospital of Kashgar Prefecture in 2023–2024.

Bacterial DNA was extracted from human stool samples using a 
TIANamp Stool DNA Kit (TIANGEN, Beijing, China). The purity and 
concentration of the DNA were then assessed by agarose gel 
electrophoresis. PCR was performed using barcoded primers and a 
high-fidelity enzyme (Phusion® High-Fidelity PCR Master Mix with 
GC Buffer, Biolabs, New England). The PCR protocol and primers were 
in Table  1. The PCR products were detected by 2%agarose gel 
electrophoresis. Qualified PCR products were purified with magnetic 
beads and then subjected to agarose gel electrophoresis again for target 
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band recovery. Subsequently, the library was constructed using the 
TruSeq® DNA PCR-Free Sample Preparation Kit. The constructed 
library was quantified by Qubit and qPCR. After the library passed the 
quality check, sequencing was carried out on the NovaSeq 6,000 platform.

Sample data were split from the raw sequencing data based on the 
Barcode sequences and PCR primer sequences, with the Barcode and 
primer sequences being trimmed off. Fastp (v0.22.0) was used to filter 
the raw reads to obtain high-quality reads. Chimeric sequences were 
then removed by comparison, resulting in the final Effective Tags. 
Subsequently, OTU clustering (USEARCH, v7), ASV denoising 
(Deblur, v1.1.1), and taxonomic annotation (Mothur, v1.48 and 
SILVA138.1) were performed. The taxonomic annotation provided 
classification information at various taxonomic levels, including 
phylum, class, order, family, genus, and species.

Moreover, alpha diversity analysis was performed to assess sample 
complexity. The R software (v4.2.0) with the phyloseq (v1.40.0) and 
vegan (v2.6.2) packages was used for this purpose. For comparing 
multiple samples, the LEfSe tool (v1.1.2) was utilized. In terms of 
functional annotation, PICRUSt2 (v2.5.0) was employed to predict 
metagenomic functions of the marker genes based on the 
KEGG database.

The raw sequence data reported in this paper have been deposited 
in the Genome Sequence Archive (Genomics, Proteomics & 
Bioinformatics 2021) in National Genomics Data Center (Nucleic 
Acids Res 2022), China National Center for Bioinformation/Beijing 
Institute of Genomics, Chinese Academy of Sciences (GSA: 
CRA029645) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

2.3 Untargeted metabolomics

Human stool samples included 29 MASLDs and 29 healthy 
controls (Ctrl). MASLDs and healthy controls were recruited from the 
First People’s Hospital of Kashgar Prefecturein 2023–2024.

The sample preparation and extraction process for human stool 
samples stored at −80 °C. The samples are thawed on ice, mixed with 
a methanol–water solution containing an internal standard, and then 
sonicated and vortexed. After being placed at −20 °C for 30 min, the 
samples are centrifuged twice to remove sediment. The supernatant is 
then transferred for LC–MS analysis.

2.3.1 HPLC conditions
All samples were for two LC/MS methods. One aliquot was 

analyzed using positive ion conditions and was eluted from T3 column 
(Waters ACQUITY Premier HSS T3 Column 1.8 μm, 
2.1 mm × 100 mm) using 0.1% formic acid in water as solvent A and 
0.1% formic acid in acetonitrile as solvent B in the following gradient: 
5 to 20% in 2 min, increased to 60% in the following 3 min, increased 
to 99% in 1 min and held for 1.5 min, then come back to 5% mobile 
phase B witnin 0.1 min, held for 2.4 min. The analytical conditions 
were as follows, column temperature, 40 °C; flow rate, 0.4 mL/min; 
injection volume, 4 μL; Another aliquot was using negative ion 
conditions and was the same as the elution gradient of positive mode.

2.3.2 MS conditions (QE)
All the methods alternated between full scan MS and data 

dependent MSn scans using dynamic exclusion. MS analyses were 
carried out using electrospray ionization in the positive ion mode and 
negative ion mode using full scan analysis over m/z 75–1,000 at 35000 
resolution. Additional MS settings are: ion spray voltage, 3.5KV or 
3.2KV in positive or negative modes, respevtively; Sheath gas (Arb), 
30; Aux gas, 5; Ion transfer tube temperature, 320 °C; Vaporizer 
temperature, 300 °C; Collision energy, 30,40,50 V; Signal Intensity 
Threshold, 1*e6 cps; Top N vs. Top speed, 10; Exclusion duration, 3 s.

The data is analyzed using various statistical methods, including 
PCA, hierarchical cluster analysis, and differential metabolite 
selection. The identified metabolites are annotated using the KEGG 
Compound database and mapped to the KEGG Pathway database for 
further analysis.

2.4 Glutamate concentration measurement

Collect the supernatant of fecal suspension (thorough sonication-
induced lysis) in MASLD and Ctrl (n = 5 per group). And prepare the 
testing reagent. Set the appropriate parameters on the automated 
chemistry analyzer. And load the samples. The analyzer (Chemray 
800) performs the assay automatically.

3 Results

3.1 Overall gut microbiota abundance 
maps

A total of 80 stool samples were collected and divided into two 
groups: the Metabolic Dysfunction-Associated Steatotic Liver Disease 
(MASLD) group and the healthy control (Ctrl) group. Table 2 showed 
the patient’s basic clinical data including gender, age, BMI, AST, ALT, 
total bilirubin and total bile acids. In these 80 samples, KRONA was 
used to annotate the ASV results of species. A total of 18,870 bacterial 
ASVs were detected. Among them, the Firmicutes accounted for 32% 

TABLE 1  PCR protocol and primers.

Cycle temperature time

1 cycle 94 °C 30 s

30 cycles 94 °C 15 s

55 °C 15–30 s

68 °C 1 min

1 cycle 68 °C 5 min (to finish replication on all 

templates)

1 cycle 4–10 °C indefinite period (storing the sample 

prior to further analysis)

Primers

16S V4 515F GTGYCAGCMGCCGCGGTAA

806R GGACTACNVGGGTWTCTAAT

16SV3-V4 341F CCTACGGGNGGCWGCAG

785R GACTACNNGGGTATCTAATCC

16SV4-V5 515F GTGYCAGCMGCCGCGGTAA

926R CCGTCAATTCMTTTRAGT

16SV5-V7 799F AACMGGATTAGATACCCKG

1193R ACGTCATCCCCACCTTCC
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(5,996), the Proteobacteria accounted for 45% (8,434), the Bacteroidales 
accounted for 13% (2,464), and the Coriobacteriales accounted for 2% 
(304) (Figure 1A).

There were 730 shared gut microbiota ASVs totally, with the 
MASLD group having 70 unique gut microbiota ASVs (Figure 1B). 
The top 10 most abundant species at the phylum level in each group 
were selected to create a stacked bar chart of species relative abundance 
for the 80 samples (Figure 1C). In both the MASLD and Ctrl groups, 
the top 5 gut microbiota were concentrated in Bacteroidota, Firmicutes, 
Proteobacteria, Actinobacteria, and Fusobacteriota. The Ctrl group had 
a higher proportion of Bacteroidota (44.25% vs. 41.46%, nsp = 0.53), 
while the MASLD group had higher proportions of Firmicutes 
(34.51% vs. 32.87%, nsp = 0.69) and Proteobacteria (19.91% vs. 17.89%, 
nsp = 0.63) (Figure 1D). Based on ASV analysis, a heatmap of species 
abundance at the phylum level was created for different groups. The 
MASLD group was enriched in Bacteroidota, Actinobacteriota, and 
Campylobacterota, while the Ctrl group was enriched in Proteobacteria, 
Verrucomicrobiota, and Elusimicrobiota (Figure  1E). To further 
investigate the phylogenetic relationships of species at the genus level, 
the representative sequences of the top 100 genera were obtained 
through multiple sequence alignment. A phylogenetic tree was 
constructed based on the representative sequences of species at the 
genus level, displaying the genus-level phylogenetic tree (Figure 1F).

3.2 Differential microbiota maps of gut 
microbiota in MASLD

Principal Co-ordinates Analysis (PCoA) was performed on the 
MASLD and Ctrl groups, separating the samples of the two groups 
(Figure  2A). Anosim analysis based on ASV showed significant 
differences between the MASLD and Ctrl groups (p = 0.013), 
indicating that the grouping of the MASLD and Ctrl was meaningful 

(Figure 2B). Differential abundance analysis identified Parabacteroides 
merdae (MASLD vs. Ctrl, 0.012 ± 0.019 vs. 0.004 ± 0.006, p = 0.0086) 
as an increased species in the MASLD group. In contrast, 
Lachnospiraceae bacterium GAM79 (MASLD vs. Ctrl, 0.004 ± 0.009 
vs. 0.018 ± 0.033, p = 0.014) was decreased in the MASLD group 
(Figure 2C).

In the LEfSe (LDA Effect Size) analysis, the MASLD and Ctrl 
groups had significantly different species in abundance. In the 
MASLD group, enriched species included Bacillus (genus), Bacillales 
(order), Bacillaceae (family), Enterococcaceae (genus), Bifidobacterium 
longum (species), Enterococcus (genus), and Enterococcus faecium 
(species). In the Ctrl group, enriched species included 
Lachnospiraceae bacterium GAM79 (species), Oscillospiraceae 
(family), and Ruminococcus sp. N15 MGS 57(species) (Figure 2D). 
Similarly, in the phylogenetic tree, important microbial groups in the 
MASLD group were Bacillaceae (family), Bacillales (order), and 
Enterococcaceae (family). Important microbial groups in the Ctrl 
group were Oscillospiraceae (family) and Clostridia (order) 
(Figure 2E).

Considering Parabacteroides merdae inhabits the human gut, it 
specializes in branched-chain amino acid (BCAA) catabolism. 
We measured the concentration of glutamate in MASLD and Ctrl 
group. The result showed that the concentration of glutamate in 
MASLD are higher than that in Ctrl group (Figure 2F).

3.3 Functional prediction of gut microbiota 
in MASLD

The top 10 most abundant functions in the MASLD and Ctrl 
groups were analyzed. In level 1 analysis, both groups were enriched 
in Organismal Systems, Human Diseases, Cellular Processes, 
Environmental Information Processing, Not Included in Pathway or 
Brite, Genetic Information Processing, Metabolism, and Brite 
Hierarchies (Figure  3A). In level 2 analysis, both groups were 
enriched in Replication and repair, Membrane transport, 
Translation, Energy metabolism, Metabolism of cofactors and 
vitamins, Amino acid metabolism, Protein families: metabolism, 
Carbohydrate metabolism, Protein families: signaling and cellular 
processes, and Protein families: genetic information processing 
(Figure 3B).

KEGG clustering analysis was performed on the abundance 
functional pathways of the MASLD and Ctrl groups at three levels. 
At level 1, the MASLD group was enriched in Metabolism and 
Environmental Information Processing (Figure 3C). At level 2, the 
MASLD group was enriched in Metabolism of other amino acids, 
Drug resistance: antimicrobial, Carbohydrate metabolism, Transport 
and catabolism, Xenobiotics biodegradation and metabolism, 
Unclassified: genetic information processing, Glycan biosynthesis 
and metabolism, Membrane transport, Unclassified: metabolism, 
Nucleotide metabolism, Lipid metabolism, Aging, Protein families: 
signaling and cellular processes, Endocrine system, Cancer: 
overview, and Metabolism of terpenoids and polyketides (Figure 3D). 
At level 3, the MASLD group was enriched in Enzymes with EC 
numbers, Peptidases and inhibitors, Transporters, Amino sugar and 
nucleotide sugar metabolism, Transcription factors, Quorum 
sensing, Glycolysis/Gluconeogenesis, ABC transporters, Exosome, 
Purine metabolism, Glycine serine and threonine metabolism, 

TABLE 2  Basic clinical data in MASLD and healthy group.

Items MASLD Healthy 
group

p value

Gender (%) Male 52.5 57.5
nsp = 0.822

Female 47.5 42.5

Age 50.23 ± 13.13 50.10 ± 19.06 nsp = 0.973

BMI 28.63 ± 4.63 23.83 ± 4.54 ***p < 0.001

Triglyceride 

(mmol/L)

2.70 ± 1.35
1.55 ± 0.88

***p < 0.001

Total 

cholesterol 

(mmol/L)

4.57 ± 1.11

3.90 ± 1.22

*p = 0.014

ALT (U/L) 40.73 ± 37.65 28.78 ± 40.69 nsp = 0.177

AST (U/L) 37.85 ± 53.48 24.48 ± 19.92 nsp = 0.145

Total 

bilirubin 

(μmol/L)

15.32 ± 27.89

10.00 ± 5.89 nsp = 0.241

Total bile 

acids 

(μmol/L)

8.85 ± 13.70

4.70 ± 4.00

nsp = 0.070

ns,  p > 0.05; *, p < 0.05; **, p < 0.01;  ***, p < 0.001.
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Starch and sucrose metabolism, and Pyrimidine metabolism 
(Figure 3E).

In the KEGG pathway enrichment analysis, the enriched 
metabolic pathways included Carbohydrate metabolism, Energy 
metabolism, Lipid metabolism, Nucleotide metabolism, Amino acid 

metabolism, Metabolism of other amino acids, Glycan biosynthesis 
and metabolism, Metabolism of cofactors and vitamins, Metabolism 
of terpenoids and polyketides, Biosynthesis of other secondary 
metabolites, and Xenobiotics biodegradation and metabolism 
(Figure 3F). Compared with the MASLD group, the Ctrl group was 

FIGURE 1

Overall gut microbiota abundance maps: (A) Distribution of gut microbiota species composition in 80 samples; (B) Venn diagram of gut microbiota in 
the Ctrl and MASLD groups; (C) Stacked bar chart of species relative abundance at the phylum level for each sample in the Ctrl and MASLD groups; 
(D) Stacked bar chart of species relative abundance at the phylum level in the Ctrl and MASLD groups; (E) Heatmap of species abundance at the 
phylum level based on ASV for different groups in the Ctrl and MASLD groups; (F) Phylogenetic relationships of species at the genus level based on ASV 
in the gut microbiota of the Ctrl and MASLD groups.
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downregulated in four pathways: Biosynthesis of type II polyketide 
backbone, Biosynthesis of various secondary metabolites, 
melanogenesis, and caffeine metabolism (Figure 3G).

3.4 Differential metabolite maps of 
untargeted metabolomics in MASLD

A total of 58 stool samples from the MASLD and Ctrl groups 
were collected for untargeted metabolomics analysis. Finally, 3,846 
metabolites were detected, among which 3,209 metabolites were 
identified at the secondary level. Analysis of differential metabolites 
between the MASLD and Ctrl groups revealed 202 significantly 

different metabolites. Specifically, 80 metabolites were downregulated 
and 122 metabolites were upregulated in the MASLD group 
(Figure  4A). Under the positive mode, the most abundant 
metabolites were amino acid derivatives (18.86%), followed by 
benzene and substituted derivatives (16.36%) (Figure 4B). Under the 
negative mode, benzene and substituted derivatives were the most 
abundant (17.45%), followed by organic acid and its derivatives 
(16.36%) (Figure  4C). OPLS-DA was used to perform principal 
component analysis on the 58 samples, showing a significant 
separation between the metabolic profiles of the MASLD and Ctrl 
groups (Figure 4D).

Differential metabolites between the MASLD and Ctrl groups 
were screened using following criteria: VIP > 1 and p-value < 0.05. 

FIGURE 2

Differential microbiota maps of gut microbiota in MASLD: (A) PCoA plot of the Ctrl and MASLD groups; (B) Anosim analysis based on ASV between the 
Ctrl and MASLD groups; (C) Bar chart of species differences analysis based on ASV between the MASLD and Ctrl groups; (D) Bar chart of LEfSe based 
on ASV between the MASLD and Ctrl groups; (E) Phylogenetic tree based on ASV between the MASLD and Ctrl groups; (F) The concentration of 
glutamate in MASLD and Ctrl group.
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Metabolite tracing analysis was used to identify the metabolic 
functions of these metabolites based on their sources. The analysis of 
metabolite tracing mainly relied on the KEGG database, HMDB 
database, and CHEBI database.

Differential metabolite fold-change (FC) analysis was conducted 
between the MASLD and Ctrl groups. The top  16 upregulated 
metabolites mainly included amino acid and its metabolites (including 
Ala-Pro-Asp., Thr-Arg-Gln-Glu, His-Ala-Arg-Glu, Ala-Val-Asp-Asp., 

FIGURE 3

Functional prediction of gut microbiota in MASLD: (A) Bar chart of the top 10 most abundant function information distribution (level 1) between the 
MASLD and Ctrl groups; (B) Bar chart of the top 10 most abundant function information distribution (level 2) between the MASLD and Ctrl groups; 
(C) KEGG pathway enrichment analysis (level 1) between the MASLD and Ctrl groups; (D) KEGG pathway enrichment analysis (level 2) between the 
MASLD and Ctrl groups; (E) KEGG pathway enrichment analysis (level 3) between the MASLD and Ctrl groups; (F) Bar chart of enriched metabolic 
pathways in the MASLD group; (G) Bar chart of downregulated pathways in the Ctrl group.
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FIGURE 4

Differential metabolite maps of untargeted metabolomics in MASLD. (A) Venn diagram of differential metabolites between the MASLD and Ctrl groups; 
(B) Distribution proportion of metabolite types detected in positive mode; (C) Distribution proportion of metabolite types detected in negative mode; 
(D) OPLS-DA-based PCA analysis of the MASLD and Ctrl groups; (E) Bar chart of FCchanges in differential metabolites between the MASLD and Ctrl 
groups; (F) Dot plot of VIP score for differential metabolites between the MASLD and Ctrl groups; (G–J) Violin plots of differential metabolites including 
Thr-Arg-Gln-Glu, 14,15-Leukotriene C4 (ExC4), LPC (16:0/0:0), and 2,6-Dihydroxyanthraquinone; (K) Heatmap of correlation analysis of differential 
metabolites.
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N,N-Dimethyl-L-Valine), organic acid and its derivatives (including 
3-Hydroxypropanoic Acid, Methylmalonic Acid), benzene and 
substituted derivatives (including 4-Hydroxy-3-methylbenzoic acid, 
2-Hydroxy-1,4-naphthoquinone, Rhein), GP [14,15-Leukotriene C4 
(ExC4), LPC (16:0/0:0)], carbohydrates and its metabolites (including 
Maltose), Terpenoids (including Reciniferatoxin), FA 
(2-Hydroxyoctadecanoic acid), and others (3-Ethylphenyl sulfate). 
The top  4 downregulated metabolites included heterocyclic 
compounds (including Pipercitine, Mycinamicin VII), organic acid 
and its derivatives (including Garcinia acid, Phenylpyruvic acid) 
(Figure 4E). Differential metabolite analysis based on VIP score was 
performed between the MASLD and Ctrl groups. Upregulated 
metabolites included amino acid and its metabolites (including 
N-Acetyl-L-alanine, L-Isserine,(4S,5S)-5-Hydroxy-2-methyl-1,4,5,6-
tetrahydropyrimidine-4-carboxylic acid, Thr-Arg-Gln-Glu, 
Phosphoserine), benzene and substituted derivatives (including 
2,6-Dihydroxyanthraquinone), organic acid and its derivatives 
(including 1-phospho-alpha-D-glucuronic acid, Bromochloroacetic 
acid, 2-Oxopropyl-CoM), and GP (including 14,15-Leukotriene 
C4(ExC4), 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-
phosphoserine, 1-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycerol-
3-phosphate). Downregulated metabolites included organic acid and 
its derivatives (including Oxaceprol, Garcinia acid), Heterocyclic 
compounds (including 8-Hydroxyguanine), amino acid and its 
metabolites (including D-Alloisoleucine), others 
(1,1-Dimethoxynonane), and benzene and substituted derivatives 
(including 2-Hydroxy-3-methylbenzaldehyde,2,6-Dichlorohydroquinone, 2- 
Chloro-4-methylphenol) (Figure 4F).

The violin plots showed that Thr-Arg-Gln-Glu (Figure  4G), 
14,15-Leukotriene C4(ExC4) (Figure 4H), LPC (16:0/0:0) (Figure 4I), 
and 2,6-Dihydroxyanthraquinone (Figure 4J) were all upregulated in 
the MASLD group. In the correlation analysis of differential metabolites, 
14,15 - Leukotriene C4 (ExC4) was highly positively correlated with 
L-Isserine (r = 0.8688, p < 0.0001), 2-Chloro-4-methylphenol was 
highly positively correlated with 4-Carboxy-4′-sulfoazobenzene 
(r = 0.8515, p < 0.0001), and D-Alloisoleucine was highly positively 
correlated with Dioxindole (r = 0.8167, p < 0.0001) (Figure 4K).

3.5 Pathway enrichment analysis of 
differential metabolites in untargeted 
metabolomics

KEGG pathway enrichment analysis was performed on the 
metabolites detected in the MASLD and Ctrl groups. The upregulated 
pathways in the MASLD group included Amino sugar and nucleotide 
sugar metabolism, Prolactin signaling pathway, Pyrimidine 
metabolism, Glycine, serine and threonine metabolism, Starch and 
sucrose metabolism, Glycolysis/Gluconeogenesis, Valine, leucine and 
isoleucine degradation, Biosynthesis of nucleotide sugars, Carbohydrate 
digestion and absorption, Insulin signaling pathway, Lysosome, 
Non-alcoholic fatty liver disease, Vitamin B6 metabolism, Pentose 
phosphate pathway, Propanoate metabolism, ABC transporters, 
Metabolic pathways, beta−Alanine metabolism, Glucagon signaling 
pathway, and C − type lectin receptor signaling pathway (Figure 5A). 
Subsequently, a pathway-based metabolic change analysis method was 

conducted according to the differential abundance score (DA Score). 
The DA Score can capture the overall changes of all metabolites in a 
pathway. The Insulin signaling pathway and Non − alcoholic fatty liver 
disease pathway were significantly upregulated (Figure 5B).

Then, functional annotation and enrichment analysis of 
differential metabolites were performed using the HMDB database. 
The upregulated metabolite pathways were enriched in Vitamin K 
Metabolism, Morphine Action Pathway, Codeine Action Pathway, 
Glycogen Synthetase Deficiency, Starch and Sucrose Metabolism, 
Glycogenosis, Type VI. Hers Disease, Glycogenosis, Type III. Cori 
Disease, Debrancher Glycogenosis, Glycogenosis, Type 
IV. Amylopectinosis, Anderson Disease, Mucopolysaccharidosis 
VII. Sly Syndrome, Sucrase-Isomaltase Deficiency, Valproic Acid 
Metabolism Pathway, Tay-Sachs Disease, Sialuria or French Type 
Sialuria, Amino Sugar Metabolism, Salla Disease/Infantile Sialic Acid 
Storage Disease, G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease, 
Porphyria Variegata (PV), Congenital Erythropoietic Porphyria (CEP) 
or Gunther Disease, Acute Intermittent Porphyria, Hereditary 
Coproporphyria (HCP), and Porphyrin Metabolism (Figure 5C).

MSEA enrichment analysis was used, and the enriched pathways 
included Starch and sucrose metabolism, Neomycin, kanamycin and 
gentamicin biosynthesis, Amino sugar and nucleotide sugar metabolism, 
Fructose and mannose metabolism, Galactose metabolism, Tyrosine 
metabolism, Ubiquinone and other terpenoid-quinone biosynthesis, 
Phenylalanine, tyrosine and tryptophan biosynthesis, Phenylalanine 
metabolism, and Glyoxylate and dicarboxylate metabolism. Multiple 
metabolic pathways, including Glycerophospholipid metabolism and 
Fatty acid degradation, were also included (Figure 5D).

3.6 Diagnostic efficacy of upregulated 
glycerophospholipid metabolites in MASLD

In the MASLD group, Receiver Operating Characteristic 
(ROC)curve plottingand Area Under the Curve (AUC) were 
performed for upregulated metabolites. A total of 20 metabolites 
had AUC values greater than 0.8 (Figure 6A). Metabolites with 
AUC values greater than 0.95 included L-Isserine (AUC 0.971, CI 
0.939–1.000, Youden index 0.385, specificity 0.966, sensitivity 
0.862) (Figure 6B)and 2,6-Dichlorohydroquinone (AUC 0.958, 
CI 0.916–1.000, Youden index 0.408, specificity 0.966, sensitivity 
0.828) (Figure  6C). Upregulated GPmetabolites all had 
AUC > 0.7, including 14,15-Leukotriene C4 (ExC4) (AUC 0.96, 
CI 0.911–1.000, Youden index 0.639, specificity 1.000, sensitivity 
0.897), 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3- 
phosphoserine (AUC 0.948, CI 0.885–1.000, Youden index 0.458, 
specificity 0.897, sensitivity 0.966), 1-octadecanoyl-2-(11Z,14Z-
eicosadienoyl)-glycerol-3-phosphate (AUC 0.80, CI 0.685–0.915, 
Youden index 0.394, specificity 0.690, sensitivity 0.862), and LPC 
(16:0/0:0) (AUC 0.74, CI 0.613–0.869, Youden index 0.374, 
specificity 0.586, sensitivity 0.862) (Figure 6D). And we compared 
the diagnostic performance of AST (AUC = 0.681) and ALT 
(AUC = 0.598) at Figures 6E,F. We added correlation analysis of 
gut microbiota and metabolites. The result showed that 
Lactobacillus johnsonii down-regulated in MASLD are negative 
correlation with 2,6-Dichlorohydroquinone (Figure 6G).
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4 Discussion

MASLD still has a high incidence rate and remains a 
significant public health burden. It not only affects normal liver 
function but is also closely related to many serious health 
problems including NASH, liver fibrosis or cirrhosis, HCC, 
cardiovascular diseases. Therefore, we  performed 16S rDNA 
sequencing on stool samples from 80 MASLD patients and healthy 
controls to analyze the composition of gut microbiota. We also 
conducted untargeted metabolomics on stool samples from 58 
MASLD patients and healthy controls to characterize the gut 
microbiota metabolites in MASLD patients.

Firstly, we  found that there is a characteristic of increased 
abundance of Parabacteroides merdae in MASLD. Parabacteroides 
merdaeis one type of Bacteroides. Diet is an important factor 

affecting the abundance of Bacteroides. Bacteroides are commonly 
found in the gut of people living in Western countries (North 
America and Europe), because Western diets are usually high in 
fat and protein. MASLD patients also have a diet that is high in 
fat and protein, which is one of the main reasons for the increased 
abundance of Parabacteroides merdae. Parabacteroides merdae is 
a bacterium that commonly exists in the human gut. It mainly 
involves BCAA metabolism and can break down BCAAs such as 
leucine, isoleucine, and valine. And one intermediate is glutamate. 
BCAAs enter the cell via L-type amino acid transporters and 
reach the mitochondrion through SLC25A44. Inside the cell, 
branched-chain aminotransferase converts BCAAs into branched-
chain α-keto acids (BCKAs) including α-ketoisocaproate (KIC), 
α-keto-β-methylvalerate (KMV), and α-ketoisovalerate (KIV). 
During this reaction, the amino group is transferred to 

FIGURE 5

Pathway enrichment analysis of differential metabolites in untargeted metabolomics: (A) Dot plot of KEGG enrichment analysis for upregulated 
metabolites in MASLD; (B) Differential abundance scores of upregulated metabolites in MASLD; (C) Dot plot of HMDB functional annotation and 
enrichment analysis for upregulated metabolites in MASLD; (D) Bar chart of MSEA enrichment analysis for upregulated metabolites in MASLD.
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FIGURE 6

Diagnostic efficacy of upregulated glycerophospholipid metabolites in MASLD. (A) Table of AUC and CI for upregulated metabolites in MASLD; (B) ROC 
curve for L-Isserine; (C) ROC curve for 2,6-Dichlorohydroquinone; (D) ROC curves for glycerophospholipid metabolites 14,15-Leukotriene C4(ExC4), 
1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine, 1-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycerol-3-phosphate, and LPC 
(16:0/0:0); (E) ROC curve for ALT; (F) ROC curve for AST; (G) Correlation map between gut microbiota and metabolites.
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α-ketoglutarate (α-KG), forming glutamate (Bezsudnova et al., 
2017). Our result showed that the supernatant concentration of 
fecal suspension of glutamate in MASLD are higher than Ctrl. It 
showed gut microbiota in MASLD exhibits stronger BCAA 
metabolism than that in Ctrl. This helps reduce the levels of 
BCAAs in the blood, thereby decreasing the risk associated with 
insulin resistance and cardiovascular diseases. It also increases 
the production of short-chain fatty acids, regulates the immune 
system, and controls fat breakdown, blood glucose level, and 
energy utilization (Qiao et al., 2022). Parabacteroides merdae can 
protect cardiovascular tissue from atherosclerotic damage by 
enhancing the catabolism of BCAAs. It can also inhibit the 
mTORC1 signaling pathway in atherosclerotic plaques. Studies 
have shown that in models of obesity-and high-fat-diet-induced 
metabolic disorders, an increase in the abundance of 
Parabacteroides merdae is associated with improved insulin 
resistance and reduced fatty liver and other metabolic problems 
(Qiao et  al., 2022). Therefore, the increased abundance of 
Parabacteroides merdae in the MASLD group may be  a self-
regulatory function of MASLD patients. It regulates the 
composition of the gut microbiota, increasing the abundance of 
beneficial bacteria (such as Bifidobacterium), thereby improving 
the balance of the gut microbiota. The upregulated bacteria in 
MASLD, including Bacillus and Bifidobacterium longum, may 
be  involved in the self-regulatory process of Parabacteroides 
merdae. They can regulate the composition and structure of the 
gut microbiota, increase the abundance and composition of 
beneficial bacteria, and thus achieve self-metabolic regulation. 
Bacillus has the function of regulating gut microbiota balance, 
improving digestive function, enhancing immunity, and 
alleviating inflammation and mucosal repair in the gut. Previous 
studies have shown that the DPP4-like enzyme of Parabacteroides 
merdae can simulate the proteolytic activity of human DPP4 on 
hormones such as peptide YY, neuropeptide Y, gastric inhibitory 
polypeptide (GIP), and glucagon-like peptide 1 (GLP-1). This is 
related to the upregulation of amino acids and their metabolites, 
including short peptides, in the untargeted metabolomics of 
MASLD (Flores Ramos et  al., 2025). Thus, the high-fat, high-
protein diet of MASLD patients is one of the reasons for the 
upregulation of Parabacteroides merdae. The upregulation of 
Parabacteroides merdae can regulate the catabolism of BCAAs in 
MASLD patients to some extent. It improves metabolic syndrome 
and increases the abundance of beneficial bacteria, including 
Bifidobacterium. Thisimproves the balance of the gut microbiota 
and is related to the upregulation of amino acids and their 
metabolites, including short peptides, in the untargeted 
metabolomics of MASLD.

In MASLD, there is also a characteristic downregulation of 
Lachnospiraceae bacterium. Lachnospiraceae bacterium is a widely-
existing bacterium in the gut microbiota and has various important 
physiological functions and health benefits. Firstly, it has certain 
metabolic regulatory abilities. It can ferment dietary fiber to produce 
short-chain fatty acids such as acetate, propionate, and butyrate (Wolfe 
and Scharf, 2021). Moreover, Lachnospiraceae bacterium helps 
maintain the integrity of the intestinal barrier and regulate the 
structure of the mucus layer, thereby preventing the invasion of 
pathogens and harmful substances. In addition, the butyrate it 

produces can promote the growth and repair of colonic cells. By 
producing anti-inflammatory metabolites such as butyrate, 
Lachnospiraceae bacterium can regulate the host’s immune response 
and reduce intestinal inflammation. The abundance of Lachnospiraceae 
bacterium is closely related to the host’s metabolic health. Its presence 
in the gut is associated with reduced appetite and improved insulin 
sensitivity. In addition, it may indirectly affect the host’s metabolic 
state by regulating the composition of the gut microbiota (de Wouters 
d'Oplinter et al., 2022). It can also reduce liver damage by increasing 
the level of N-acetyl-glutamate and inhibiting ferroptosis. Moreover, 
its abundance is negatively correlated with the risk of developing 
metabolic diseases such as obesity and type 2 diabetes (Zhang et al., 
2025). Therefore, the down-regulation of Lachnospiraceae bacterium 
in MASLD may lead to intestinal inflammatory responses in patients. 
Moreover, an increase in its abundance may lead to increased appetite 
in patients, thereby increasing insulin resistance and causing 
liver damage.

Therefore, we  further explored the changes in MASLD 
metabolites through untargeted metabolomics. In the MASLD 
metabolomics analysis, we  specifically identified upregulated 
glycerophospholipid metabolites in the MASLD group, including 
14,15-Leukotriene C4 (ExC4), LPC (16:0/0:0), 1-Hexadecanoyl-
2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine, and 
1-octadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycerol-3-phosphate. 
Multiple previous studies have shown that the increase in GPs in 
the gut is highly correlated with metabolic disorders and disease 
occurrence. The rise in glycerophospholipid metabolism may lead 
to lipid deposition in blood vessels, triggering cardiovascular 
diseases such as atherosclerosis (AS). In one study, the level of 
glycerophospholipid metabolism in the gut microbiota of the 
model group significantly increased, which was closely related to 
the occurrence of atherosclerosis (Song et al., 2025). Meanwhile, 
the upregulation of GPs in the gut may be  associated with 
metabolic syndrome. For example, in the gut microbiota regulated 
by hypertriglyceridemia (HTG), glycerophospholipid metabolism 
is upregulated, which may affect the body’s metabolic status in a 
TLR4-dependent manner (Song et al., 2025). The upregulation of 
GPs may also be  related to the regulation of the gut immune 
system. These metabolites can affect the immune response of the 
gut mucosa and regulate the level of inflammation (Qi et  al., 
2024). Especially in fatty liver disease, the upregulation of GPs 
may be associated with hepatic fat accumulation and inflammatory 
responses. Certain probiotics or plant extracts can improve 
glycerophospholipid metabolism by regulating the gut microbiota, 
thereby alleviating the symptoms of fatty liver disease (Yang et al., 
2023). Therefore, regulating the glycerophospholipid metabolism 
of the gut microbiota can develop new therapeutic drugs for 
cardiovascular diseases, metabolic syndrome, and inflammatory 
diseases (Song et al., 2025). Considering this, we propose that the 
levels of glycerophospholipid metabolites in patient stool can 
be used for the diagnostic prediction of MASLD. The diagnostic 
AUC of GP metabolites is all greater than 0.7. Among them, 
14,15-Leukotriene C4 (ExC4), 1-Hexadecanoyl 
−2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine, and 
1-octadecanoyl-2-(11Z,14Z-eicosadienoyl) -glycerol-3-phosphate 
can even reach over 0.9. The increase in GP in the gut is highly 
correlated with metabolic disorders and disease occurrence, 
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especially in MASLD, where the upregulation of GPs may 
be associated with hepatic fat accumulation and inflammatory 
responses. Therefore, the levels of glycerophospholipid 
metabolites in the stool of MASLD patients are good metabolic 
indicators for diagnosing MASLD and are potential targets for the 
diagnosis and treatment of MASLD.

And based on correlation analysis of gut microbiota and 
metabolites, Lactobacillus johnsonii down-regulated in MASLD are 
negative correlation with 2,6-Dichlorohydroquinone. It suggested 
Lactobacillus johnsonii exerts a potential detoxifying effect. It employs 
intracellular reductases to reduce 2,6-Dichlorohydroquinone and 
partially dechlorinate it, thereby attenuating its oxidative-stress 
toxicity (Kamaladevi et  al., 2016; Han et  al., 2024). So, Lack of 
Lactobacillus johnsonii in MASLD reduced detoxification capacity, and 
up-regulated 2,6-Dichlorohydroquinone by redox cycling that 
produces reactive oxygen species, caused lipid peroxidation and 
DNA damage.

In conclusion, based on the high incidence rate of MASLD 
and its significant burden on public health, we aimed to explore 
the gut microbiota and metabolic maps of MASLD. We performed 
16S rDNA sequencing on stool samples from 80 MASLD patients 
and healthy controls to analyze the composition of the gut 
microbiota. Additionally, we conducted untargeted metabolomics 
on stool samples from 58 MASLD patients and healthy controls 
to characterize the gut microbiota metabolites in MASLD 
patients. Ultimately, we identified relevant characteristics through 
the mapping of MASLD gut microbiota distribution. Firstly, the 
high-fat, high-protein diet of MASLD patients is one of the 
reasons for the increased abundance of Parabacteroides merdae. 
The upregulation of Parabacteroides merdae can enhance the 
catabolism of branched-chain amino acids in MASLD patients. It 
improves metabolic syndrome and increases the abundance of 
beneficial bacteria, including Bifidobacterium. Secondly, the 
down-regulation of Lachnospiraceae bacterium in MASLD may 
lead to intestinal inflammatory responses. An increase in its 
abundance may lead to increased appetite in patients, thereby 

increasing insulin resistance and causing liver damage. Then, the 
rise in GPs in the gut is highly correlated with metabolic disorders 
and disease occurrence. In particular, in MASLD, the 
up-regulation of GPs may be  associated with hepatic fat 
accumulation and inflammatory responses. Therefore, the levels 
of glycerophospholipid metabolites in the stool of MASLD 
patients are good metabolic indicators for diagnosing fatty liver 
and are potential targets for the diagnosis and treatment of 
MASLD. And after conjoint analysis of gut microbiota and 
metabolites, we found that Lactobacillus johnsonii down-regulated 
in MASLD are negative correlation with 
2,6-Dichlorohydroquinone. Lack of the Lactobacillus johnsonii 
drives 2,6-Dichlorohydroquinone accumulation, provoking toxic 
buildup and accelerating disease progression (Figure 7).

This study introduces three key innovations. First, we identified a 
MASLD-specific gut-microbiota signature featuring increased 
abundances of Parabacteroides merdae and decreased abundances of 
Lachnospiraceae bacterium. Second, GPs levels emerged as early, 
non-invasive biomarkers for MASLD, enabling at-home MASLD 
monitoring. Third, integrated microbiota-metabolite analysis revealed 
that lack of Lactobacillus johnsonii compromises detoxification. 
Hence, targeted supplementation of this bacterium can improve the 
gut microenvironment and modulate MASLD progression. 
Collectively, these findings define new microbiota traits, novel 
non-invasive biomarkers, and a beneficial bacterium for intervention 
for MASLD.

However, the current research still has some limitations. First, the 
up-regulation of glycerophospholipid metabolites was found in the 
gut. Whether there is also an increase in these metabolites in the blood 
of MASLD patients needs further validation. Second, whether 
glycerophospholipid metabolites can directly cause normal livers to 
develop into fatty livers needs to be verified in vitro, possibly using 
liver organoids. And, we  found that the correlation between 
Lactobacillus johnsonii and the metabolite 2,6-dichlorohydroquinone 
suggests a potential detoxifying effect of the bacterium, it need a 
relevant functional validation in future work.

FIGURE 7

Mechanism schematic diagram of gut microbiota and metabolites in MASLD.

https://doi.org/10.3389/fmicb.2025.1666110
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Maimaitiyiming et al.� 10.3389/fmicb.2025.1666110

Frontiers in Microbiology 14 frontiersin.org

Data availability statement

The data presented in this study are publicly available. This data 
can be  found at: https://ngdc.cncb.ac.cn/gsa, accession 
number CRA029645.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee for Scientific Research of The First People’s Hospital of 
Kashgar Prefecture. The studies were conducted in accordance with 
the local legislation and institutional requirements. The participants 
provided their written informed consent to participate in this study.

Author contributions

MM: Writing – original draft. SM: Writing – original draft. TaA: 
Writing  – original draft. GA: Writing  – review & editing. TuA: 
Writing  – review & editing. YG: Writing  – review & editing. AS: 
Writing – review & editing. MA: Writing – review & editing. XW: 
Writing – review & editing. AA: Writing – review & editing. YA: 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 

by grants from the Natural Science Foundation of Xinjiang Uygur 
Autonomous Region (Grant No. 2022D01F97).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O., and Heikenwalder, M. (2019). 

From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. 
Hepatol. 16, 411–428. doi: 10.1038/s41575-019-0145-7

Babu, A. F., Csader, S., Männistö, V., Tauriainen, M. M., Pentikäinen, H., Savonen, K., 
et al. (2022). Effects of exercise on NAFLD using non-targeted metabolomics in adipose 
tissue, plasma, urine, and stool. Sci. Rep. 12:6485. doi: 10.1038/s41598-022-10481-9

Babu, A. F., Palomurto, S., Kärjä, V., Käkelä, P., Lehtonen, M., Hanhineva, K., et al. 
(2024). Metabolic signatures of metabolic dysfunction-associated steatotic liver disease 
in severely obese patients. Dig. Liver Dis. 56, 2103–2110. doi: 10.1016/j.dld.2024.05.015

Bezsudnova, E. Y., Boyko, K. M., and Popov, V. O. (2017). Properties of bacterial and 
archaeal branched-chain amino acid aminotransferases. Biochemistry (Mosc) 82, 
1572–1591. doi: 10.1134/s0006297917130028

Brinca, A. T., Ramalhinho, A. C., Sousa, Â., Oliani, A. H., Breitenfeld, L., 
Passarinha, L. A., et al. (2022). Follicular fluid: a powerful tool for the understanding 
and diagnosis of polycystic ovary syndrome. Biomedicine 10:1254. doi: 
10.3390/biomedicines10061254

Buchard, B., Teilhet, C., Abeywickrama Samarakoon, N., Massoulier, S., 
Joubert-Zakeyh, J., Blouin, C., et al. (2021). Two metabolomics phenotypes of human 
hepatocellular carcinoma in non-alcoholic fatty liver disease according to fibrosis 
severity. Meta 11:54. doi: 10.3390/metabo11010054

Byrne, C. D., and Targher, G. (2015). NAFLD: a multisystem disease. J. Hepatol. 62, 
S47–S64. doi: 10.1016/j.jhep.2014.12.012

Damhorst, G. L., Adelman, M. W., Woodworth, M. H., and Kraft, C. S. (2021). Current 
capabilities of gut microbiome-based diagnostics and the promise of clinical application. 
J. Infect. Dis. 223, S270–s275. doi: 10.1093/infdis/jiaa689

de Wouters d'Oplinter, A., Huwart, S. J. P., Cani, P. D., and Everard, A. (2022). Gut 
microbes and food reward: from the gut to the brain. Front. Neurosci. 16:947240. doi: 
10.3389/fnins.2022.947240

Flores Ramos, S., Siguenza, N., Zhong, W., Mohanty, I., Lingaraju, A., Richter, R. A., 
et al. (2025). Metatranscriptomics uncovers diurnal functional shifts in bacterial 

transgenes with profound metabolic effects. Cell Host Microbe 33, 1057–1072.e5. doi: 
10.1016/j.chom.2025.05.024

Godoy-Matos, A. F., Silva Júnior, W. S., and Valerio, C. M. (2020). NAFLD as a 
continuum: from obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 
12:60. doi: 10.1186/s13098-020-00570-y

Han, Z., Luan, X., Feng, H., Deng, Y., Yang, M., and Zhang, Y. (2024). Metagenomic 
insights into microorganisms and antibiotic resistance genes of waste antibiotic 
fermentation residues along production, storage and treatment processes. J. Environ. Sci. 
(China) 136, 45–55. doi: 10.1016/j.jes.2022.10.035

Huang, D. Q., El-Serag, H. B., and Loomba, R. (2021). Global epidemiology of 
NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. 
Gastroenterol. Hepatol. 18, 223–238. doi: 10.1038/s41575-020-00381-6

Huby, T., and Gautier, E. L. (2022). Immune cell-mediated features of non-alcoholic 
steatohepatitis. Nat. Rev. Immunol. 22, 429–443. doi: 10.1038/s41577-021-00639-3

Jiang, L., Cun, Y., Wang, Q., Wu, K., Hu, M., Wu, Z., et al. (2024). Predicting acute lung 
injury in infants with congenital heart disease after cardiopulmonary bypass by gut 
microbiota. Front. Immunol. 15:1362040. doi: 10.3389/fimmu.2024.1362040

Kamaladevi, A., Ganguli, A., and Balamurugan, K. (2016). Lactobacillus casei 
stimulates phase-II detoxification system and rescues malathion-induced physiological 
impairments in Caenorhabditis elegans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 
179, 19–28. doi: 10.1016/j.cbpc.2015.08.004

Li, Y., Zhao, D., Qian, M., Liu, J., Pan, C., Zhang, X., et al. (2022). Amlodipine, an 
anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut 
microbiota. Br. J. Pharmacol. 179, 2054–2077. doi: 10.1111/bph.15768

Liu, K., Cai, Y., Song, K., Yuan, R., and Zou, J. (2023). Clarifying the effect of gut 
microbiota on allergic conjunctivitis risk is instrumental for predictive, preventive, and 
personalized medicine: a Mendelian randomization analysis. EPMA J. 14, 235–248. doi: 
10.1007/s13167-023-00321-9

Liu, J., Tian, Y., Fu, X., Mu, C., Yao, M., Ni, Y., et al. (2022). Estimating global 
prevalence, incidence, and outcomes of non-alcoholic fatty liver disease from 2000 to 

https://doi.org/10.3389/fmicb.2025.1666110
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://ngdc.cncb.ac.cn/gsa
https://doi.org/10.1038/s41575-019-0145-7
https://doi.org/10.1038/s41598-022-10481-9
https://doi.org/10.1016/j.dld.2024.05.015
https://doi.org/10.1134/s0006297917130028
https://doi.org/10.3390/biomedicines10061254
https://doi.org/10.3390/metabo11010054
https://doi.org/10.1016/j.jhep.2014.12.012
https://doi.org/10.1093/infdis/jiaa689
https://doi.org/10.3389/fnins.2022.947240
https://doi.org/10.1016/j.chom.2025.05.024
https://doi.org/10.1186/s13098-020-00570-y
https://doi.org/10.1016/j.jes.2022.10.035
https://doi.org/10.1038/s41575-020-00381-6
https://doi.org/10.1038/s41577-021-00639-3
https://doi.org/10.3389/fimmu.2024.1362040
https://doi.org/10.1016/j.cbpc.2015.08.004
https://doi.org/10.1111/bph.15768
https://doi.org/10.1007/s13167-023-00321-9


Maimaitiyiming et al.� 10.3389/fmicb.2025.1666110

Frontiers in Microbiology 15 frontiersin.org

2021: systematic review and meta-analysis. Chin. Med. J. 135, 1682–1691. doi: 
10.1097/cm9.0000000000002277

Powell, E. E., Wong, V. W., and Rinella, M. (2021). Non-alcoholic fatty liver disease. 
Lancet 397, 2212–2224. doi: 10.1016/s0140-6736(20)32511-3

Qi, P., Chen, X., Tian, J., Zhong, K., Qi, Z., Li, M., et al. (2024). The gut 
homeostasis-immune system axis: novel insights into rheumatoid arthritis 
pathogenesis and treatment. Front. Immunol. 15:1482214. doi: 
10.3389/fimmu.2024.1482214

Qiao, S., Liu, C., Sun, L., Wang, T., Dai, H., Wang, K., et al. (2022). Gut Parabacteroides 
merdae protects against cardiovascular damage by enhancing branched-chain amino 
acid catabolism. Nat. Metab. 4, 1271–1286. doi: 10.1038/s42255-022-00649-y

Sahu, P., Chhabra, P., and Mehendale, A. M. (2023). A comprehensive review on non-
alcoholic fatty liver disease. Cureus 15:e50159. doi: 10.7759/cureus.50159

Scorletti, E., Afolabi, P. R., Miles, E. A., Smith, D. E., Almehmadi, A., Alshathry, A., 
et al. (2020). Synbiotics Alter fecal microbiomes, but not liver fat or fibrosis, in a 
randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 158, 
1597–1610.e7. doi: 10.1053/j.gastro.2020.01.031

Song, X., Qiao, L., Dou, X., Chang, J., Zeng, X., Deng, T., et al. (2025). 
Hypertriglyceridemia-modulated gut microbiota promotes lysophosphatidylcholine 
generation to aggravate acute pancreatitis in a TLR4-dependent manner. iMeta 4:e70003. 
doi: 10.1002/imt2.70003

Song, Z., Xie, Q., Zhou, Y., Song, S., Gao, Z., Lan, Y., et al. (2023). Effect of artificial 
liver support systems on gut microbiota in patients with HBV-related acute-on-chronic 
liver failure. Pathogens 12:1094. doi: 10.3390/pathogens12091094

Song, Q., Zhang, X., Liu, W., Wei, H., Liang, W., Zhou, Y., et al. (2023). Bifidobacterium 
pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated 
hepatocellular carcinoma. J. Hepatol. 79, 1352–1365. doi: 10.1016/j.jhep.2023.07.005

Wang, S., Li, X., Zhang, B., Li, Y., Chen, K., Qi, H., et al. (2024). Tangshen formula 
targets the gut microbiota to treat non-alcoholic fatty liver disease in HFD mice: a 16S 
rRNA and non-targeted metabolomics analyses. Biomed. Pharmacother. 173:116405. doi: 
10.1016/j.biopha.2024.116405

Wolfe, Z. M., and Scharf, M. E. (2021). Differential microbial responses to antibiotic 
treatments by insecticide-resistant and susceptible cockroach strains (Blattella germanica 
L.). Sci. Rep. 11:24196. doi: 10.1038/s41598-021-03695-w

Yang, X., Li, D., Zhang, M., Feng, Y., Jin, X., Liu, D., et al. (2023). Ginkgo biloba extract 
alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota. 
J. Anim. Sci. Biotechnol. 14:97. doi: 10.1186/s40104-023-00900-w

Younossi, Z. M., Golabi, P., Paik, J. M., Henry, A., Van Dongen, C., and Henry, L. 
(2023). The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and 
nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347. 
doi: 10.1097/hep.0000000000000004

Zhang, H., Hu, Q., Zhang, Y., Yang, L., Tian, S., Zhang, X., et al. (2025). Lachnospiraceae 
bacterium alleviates alcohol-associated liver disease by enhancing N-acetyl-glutamic 
acid levels and inhibiting ferroptosis through the KEAP1-NRF2 pathway. Gut Microbes 
17:2517821. doi: 10.1080/19490976.2025.2517821

Zhang, Y., Wang, F., Tang, J., Shen, L., He, J., and Chen, Y. (2024). Association of triglyceride 
glucose-related parameters with all-cause mortality and cardiovascular disease in NAFLD 
patients: NHANES 1999-2018. Cardiovasc. Diabetol. 23:262. doi: 10.1186/s12933-024-02354-4

https://doi.org/10.3389/fmicb.2025.1666110
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1097/cm9.0000000000002277
https://doi.org/10.1016/s0140-6736(20)32511-3
https://doi.org/10.3389/fimmu.2024.1482214
https://doi.org/10.1038/s42255-022-00649-y
https://doi.org/10.7759/cureus.50159
https://doi.org/10.1053/j.gastro.2020.01.031
https://doi.org/10.1002/imt2.70003
https://doi.org/10.3390/pathogens12091094
https://doi.org/10.1016/j.jhep.2023.07.005
https://doi.org/10.1016/j.biopha.2024.116405
https://doi.org/10.1038/s41598-021-03695-w
https://doi.org/10.1186/s40104-023-00900-w
https://doi.org/10.1097/hep.0000000000000004
https://doi.org/10.1080/19490976.2025.2517821
https://doi.org/10.1186/s12933-024-02354-4

	Multi-omics analysis reveals gut microbial and metabolic signatures in metabolic dysfunction-associated steatotic liver disease
	1 Introduction
	2 Materials and methods
	2.1 Ethics statement
	2.2 16S ribosomal DNA sequencing of gut microbiota
	2.3 Untargeted metabolomics
	2.3.1 HPLC conditions
	2.3.2 MS conditions (QE)
	2.4 Glutamate concentration measurement

	3 Results
	3.1 Overall gut microbiota abundance maps
	3.2 Differential microbiota maps of gut microbiota in MASLD
	3.3 Functional prediction of gut microbiota in MASLD
	3.4 Differential metabolite maps of untargeted metabolomics in MASLD
	3.5 Pathway enrichment analysis of differential metabolites in untargeted metabolomics
	3.6 Diagnostic efficacy of upregulated glycerophospholipid metabolites in MASLD

	4 Discussion

	References

