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Introduction: Short read sequencing of the 16S ribosomal RNA (rRNA) gene 
targeting specific hypervariable regions is widely employed to study the human 
gut microbiota. In these studies, the selection of particular 16S rRNA hypervariable 
regions is a crucial step. However, the results of such studies exhibit significant 
variability depending on the targeted hypervariable region.
Methods: In this study, we systematically evaluated the performance of 
hypervariable regions V1V2 and V3V4 in a longitudinal gut microbiome study of 
adolescent patients with anorexia nervosa (AN) and matched controls.
Results: The dominant genera, such as Bacteroides H, Faecalibacterium and 
Phocaeicola A 858004 were consistently detected in both hypervariable regions 
across timepoints. The within-sample longitudinal alpha diversity measures 
varied between the regions with the Chao1 index values being higher in the V1V2 
region. The overall microbiome profiles based on beta diversity also differed 
between the regions. Bland–Altman analysis revealed a general lack of strong 
agreement between the two sequencing methods, except for a few taxa such as 
Faecalibacterium, Ruminococcus, Roseburia, Turicibacter and Anaerotruncus. 
While some results were similar across both hypervariable regions, most of the 
findings were sensitive to the chosen region.
Conclusion: This study underscores the importance of primer selection in 
microbiome studies of AN, as it can influence taxonomic resolution and diversity 
estimates along with downstream statistical analyses.
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1 Introduction

The taxonomic composition of complex microbial communities studied through short-read 
sequencing of specific hypervariable regions of the 16S rRNA gene has been the standard approach 
for more than a decade now. A multitude of factors favour the usage of this technique, such as 
high throughput, previously established computational pipelines with reference databases, and 
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relatively low cost (Fuks et al., 2018; Mukherjee et al., 2018). Such studies 
employing the 16 s rRNA gene have been able to decipher the varied 
structure of the microbiota and have greatly contributed to our 
understanding of the importance of microbiota diversity in human 
health and disease (Grice et al., 2009; Peciña et al., 2015; Guerrero-
Preston et al., 2016; Kehrmann et al., 2017; Mukherjee et al., 2018). This 
however, comes with a certain caveat: technical variation arising in 16S 
rRNA amplicon sequencing studies, such as experimental protocols, 
primer choice, ribosomal hypervariable regions, and selection of 
reference databases, may considerably influence the identification and 
classification of microbial taxa (Abellan-Schneyder et al., 2021). For 
example, previous studies have shown that the choice of amplification 
primers can influence results by introducing bias (Albertsen et al., 2015; 
Meisel et al., 2016; Graspeuntner et al., 2018). At the same time, selecting 
particular 16S rRNA hypervariable regions for sequencing is an 
important step in 16S rRNA gene sequencing studies. The 16S rRNA 
comprises nine hypervariable regions, named V1-V9, which are used to 
identify the taxa and obtain an estimate of evolutionary relationships 
between them. All nine hypervariable regions give an insight into the 
microbial taxonomy but the quality and quantity of information that is 
extracted shows considerable variation depending on the region for a 
particular studied environment (Heidrich et al., 2022). For example, to 
study the gut microbiota of Japanese individuals, Kameoka et al. (2021) 
showed that V1V2 gave more precise estimates for the genus 
Akkermansia than V3V4 based on real-time quantitative polymerase 
chain reaction (qPCR) assays. Similarly, in a study aiming to characterize 
the male urinary microbiota, Heidrich et al. (2022) found that V1V2 
region provided higher taxonomic resolution when compared to other 
16S rRNA hypervariable regions (Kameoka et  al., 2021; Heidrich 
et al., 2022).

Anorexia nervosa (AN) is a severe psychiatric disorder and has a 
high prevalence in the adolescent age group. Compared to healthy 
controls, individuals with AN have standardized mortality rates that 
are 5–10 times higher (Arcelus et al., 2011; Bulik et al., 2019; Andreani 
et al., 2024). The main characteristics of AN include insufficient energy 
intake, low body weight, body image distortion, and fear of gaining 
weight. However, the explanation of the underlying pathophysiology is 
not well understood (Herpertz-Dahlmann et al., 2021). In recent times, 
an increasing number of studies have alluded to the role of the gut 
microbiome in energy extraction from food and weight regulation as 
well as how it impacts the brain and behavior through the gut-brain 
axis. Hence, there has been a growing interest in studying the 
relationship between the microbiome and psychiatric diseases, 
including AN (Hills et al., 2019; Santacroce et al., 2021; Wu et al., 2021). 
Additionally, in microbiome studies of AN, a longitudinal design 
including a post-treatment follow-up, ideally more than 6 months, is 
advantageous as it helps shed light on the state of the microbiome after 
weight gain (Andreani et al., 2024) and may help us understand which 
microbiome alterations may be causes or consequences of the disease.

In AN, 16S rRNA gene sequencing is the most commonly 
employed method to investigate the role of the microbiome in disease 
pathogenesis. However, no studies have so far evaluated the 
implications of selecting a particular hypervariable region in the 
interpretation of the findings arising from downstream statistical 
analysis. In this study, we compared the 16S rRNA gene hypervariable 
regions V1V2 and V3V4 in a gut microbiome study of adolescent 
patients with AN along with age-matched healthy controls. This work 
features longitudinal 16S rRNA gene sequencing data, collected 

during inpatient treatment and at follow-up  1-year after 
hospital admission.

2 Materials and methods

2.1 Cohort description and sample 
collection

The recruitment of study participants and data collection have 
been previously described (Andreani et al., 2024). Briefly, a total of 
sixty-four female adolescents (aged between 12 and 20 years, mean 
16 years) with AN (typical or atypical) according to the DSM-5 were 
recruited and enrolled between December 2016 and January 2020 at 
the RWTH Aachen University Hospital’s Department of Child and 
Adolescent Psychiatry. Of these, fifty-seven patients were included in 
the analysis. Stool sampling was done at nine time points, based on 
prespecified clinical milestones with different interval lengths between 
patients. These included T0 (admission), T1 (a diet of 25 Kcal/kg/day), 
T2 (a diet of 50 Kcal/kg/day), T3 (a diet of 62.5 Kcal/kg/day), T4 (a 
weight gain up to the 5th age-adjusted BMI percentile), T5 (a weight 
gain up to the 10th age-adjusted BMI percentile), T6 (a weight gain 
up to the 15th age-adjusted BMI percentile), T7 (discharge), and T8 
(1-year follow-up appointment, one year after admission). In addition, 
34 age-matched female HCs with normal body weight (between the 
20th and 80th percentile of age-adjusted body mass index [BMI-SDS]) 
were recruited. Faecal sample collection and DNA extraction from 
stool samples for patients and healthy volunteers have been previously 
described in detail (Schulz et al., 2021; Andreani et al., 2024).

The study was approved by the ethics committee of RWTH Aachen 
University Hospital and was carried out in compliance with the 
Declaration of Helsinki. Before enrollment in the study, written informed 
consent was obtained from the participants’ parents or legal guardians, 
and assent was obtained from the study participants themselves.

2.2 16S rRNA gene sequencing and 
processing

The V1V2 region of the 16S rRNA gene was amplified with 
primers 27F and 338 R using dual barcoding (Caporaso et al., 2011). 
The resulting library was sequenced on an Illumina Miseq sequencer 
(250PE). During demultiplexing, no mismatches were allowed in the 
barcode (Casava, Illumina). QIIME2 (v2019.10) was used to process 
and analyse the sequence data (Bolyen et  al., 2018). Paired end 
sequences were denoised with ‘dada2’ (Callahan et al., 2016) using 
default parameters, unless stated: reads were truncated at the first base 
where the quality score dropped below Q = 3, truncation at 230 bp 
and the minimum length of reads after truncation was 100 bp.

The V3-V4 region of the 16S rRNA gene was amplified using 
515F–806R primers, forward: GTGCCAGCMGCCGCGGTAA and 
reverse: GGACTACHVGGGTWTCTAAT, with a dual barcoding 
approach. The resulting library was sequenced on an Illumina Miseq 
sequencer (300PE). Processing of the reads was performed as 
previously reported, with the following modification: truncation at 
270 bp. An abundance table of 16S rRNA amplicon sequence variants 
(ASVs) was generated, and the taxonomic annotation of ASVs was 
obtained using the greengenes2 database (McDonald et al., 2024).
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2.3 Statistical analysis

All statistical analyses were performed with R (v. 4.4.2). Both 
datasets were combined into a phyloseq object for all downstream 
calculations using the phyloseq package (v. 1.46.0) (McMurdie and 
Holmes, 2013). Using microbial relative abundances, the within-
sample alpha diversity (represented by the Shannon and Chao1 
indices) was calculated at the genus level and between-sample 
microbial dissimilarities (beta diversity quantified by Bray-Curtis and 
Jaccard dissimilarity) were calculated at the genus and ASV levels. The 
‘core’ microbiome was defined as those taxa that had a relative 
abundance greater than 0.01% in more than 50% of the samples. The 
threshold of 0.01% relative abundance was chosen to ensure that the 
taxa are present at levels that are likely to have biological significance 
and not just technical (sequencing) artefacts. This retains the 
low-abundance taxa and avoids the very rare taxa (near-zero 
detections). Similarly, the prevalence threshold of 50% maintains that 
the taxa are sufficiently prevalent and consistently present among the 
samples. Such a priori chosen abundance-occurrence thresholds, 
although commonly used in microbiome studies, often vary between 
studies and are study-specific (Neu et  al., 2021). We  used the R 
package vegan (v. 2.6.4) (Oksanen et al., 2022) for these calculations. 
Wherever applicable, the microbial raw counts were transformed into 
compositional abundances and statistical methods suitable for 
compositional data were used for analysis. This was done to avoid 
data loss often associated with rarefaction leading to reduced 
statistical power (McMurdie and Holmes, 2014). To obtain the 
summaries of sequencing data, the biomeUtils package (v. 0.022) 
(Shetty, 2023) was used. Other R packages used for analysis, 
visualisation and graphics include packages tidyverse (v. 2.0.0) 
(Wickham et al., 2019), microViz (v. 0.12.1) (Barnett et al., 2021), 
VennDiagram (v. 1.7.3) (Chen and Boutros, 2011) and ggpubr (v. 
0.6.0) (Kassambara, 2023). We used ANCOM-BC2 (Lin and Peddada, 
2024) to analyse the microbiota composition for differential 
abundance testing. We adjusted the p-values for multiple testing using 
the Benjamini–Hochberg (BH) procedure and the taxa that had 
BH-adjusted p-values less than 0.05 were identified as significantly 
differentially abundant.

2.3.1 Agreement between V1V2 and V3V4 
abundance data

The Bland Altman (BA) method (Martin Bland and Altman, 
1986) was used as an exploratory analysis to assess the agreement 
between microbiome relative abundances from the V1V2 (method 1) 
and V3V4 (method 2) regions for patients at admission. We looked at 
(a) all common core genera from both methods, (b) alpha diversity 
indices namely Shannon and Chao1, respectively, and (c) all gut 
microbial taxa reported in the systematic review by Di Lodovico et al. 
(2021) that exhibited significant differences in their relative 
abundances compared to healthy controls. Briefly, in BA analysis, the 
mean relative abundance and differences were calculated for the 
methods 1 and 2. Then the mean of the differences (known as ‘bias’) 
was calculated along with their corresponding standard deviations 
(SD). Bias quantifies the average difference between the two methods 
and a low bias is representative of good agreement. Subsequently, the 
limits of agreement (LOA) were calculated, which provided the range 
where 95% of the differences are expected to lie. A narrow LOA 
indicates better precision and less variability between the methods.

We also looked at the agreement between microbiome relative 
abundances from the V1V2 and V3V4 regions based on the overall 
microbiome profiles in contrast to BA analysis where individual taxa 
were considered. For each patient, pairwise Jaccard and Bray-Curtis 
distances were calculated for the microbiome profiles from both 
methods to quantify the similarity and dissimilarity between the 
overall microbiome composition. A Jaccard distance of 0 and 1 
represents the maximum similarity (identical microbiome profiles) 
and dissimilarity (no common microbial taxa) respectively.

3 Results

Our cohort consisted of fifty-seven patients who were diagnosed 
with AN or atypical AN (one patient) according to DSM-5 and aged 
between 12 and 20 years, as described in detail elsewhere (Andreani 
et  al., 2024). The longitudinal data, including stool samples and 
clinical data, were collected at nine timepoints, with the first eight 
(T0-T7) taking place during the treatment at the hospital stay and the 
last timepoint (T8) at the follow-up appointment 1 year after the 
hospital admission. Additionally, our study also included a healthy 
control (HC) group of similar-aged individuals (between 14 and 
19 years) whose data were collected at a subset of six time points. A 
description of the clinical characteristics of the patients and HC 
groups has been previously detailed (Andreani et al., 2024).

3.1 Summary of sequencing data

We compared the sequencing data across the two methods 
(V1V2 and V3V4) for both the control and the patient groups to gain 
a better understanding of the characteristics of each method 
(Supplementary Table S1).

Among patients, the V1V2 dataset had a higher number of total 
reads (10,575,880) compared to V3V4 (7,164,406) and a higher 
number of detected taxa (4,593 for V1V2 and 2,104 for V3V4). 
Meanwhile, V1V2 showed moderately higher sparsity (0.9539098) 
compared to V3V4 (0.9328799) indicating a greater percentage of 
undetected taxa among many samples when using V1V2 primers. 
Similarly, for controls, the V1V2 dataset had a higher number of total 
reads (3,771,093) in contrast to V3V4 (2,905,102) along with a greater 
number of detected taxa (3,252) compared to V3V4 (1,518). Like in 
patients, the V1V2 dataset is more sparse (0.9357342) than V3V4 
(0.8964646).

3.2 Microbiota composition at important 
timepoints

To examine the composition of gut microbiome based on 
relative abundances from regions V1V2 and V3V4 dataset over 
time, we evaluated taxa composition plots at the genus level for both 
patients and controls at three different timepoints: admission (T0), 
discharge (T7), and one-year follow-up (T8) (Figure  1; 
Supplementary Figure S1).

At T0, all patients showed high relative abundance for genera 
Bacteroides H, Faecalibacterium, Blautia A 141781, and Phocaeicola 
A 858004. Specifically, Bacteroides H and Phocaeicola A 858004 
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were predominant in most of the patients and were consistently 
present in both V1V2 and V3V4 datasets. On the other hand, 
genera such as Gemmiger A 73129, Alistipes A 871400, and 
Parabacteroides B 862066 showed lower prevalence across both 
datasets. At T7, the dominant taxa were the same ones from the 
timepoint T0 for all patients, namely, Bacteroides H, 
Faecalibacterium, Blautia A 141781, and Phocaeicola A 858004. 
Similar results were also noted for the T8 timepoint, where the 
microbial community composition showed a prevalence of the 
dominant taxa across the whole patient group. When we looked at 
both datasets, in some patients (e.g., P018, P047 and P049), 
Bacteroides H was seen to have higher abundance in the V3V4 
region than in the V1V2 region and conversely, Faecalibacterium 
was more abundant in V1V2 than in V3V4 (e.g., P041, P056 and 
P065). Additionally, both datasets were able to detect low-abundance 
taxa such as Parabacteroides B 862066, Alistipes A 871400 and 
Gemmiger A 73129. To summarise, the composition of the main 
genera was relatively consistent across all timepoints in V1V2 and 
V3V4. Moreover, both datasets showed a similar presence of 

low-abundance genera, but no region provided definitive evidence 
to support rare taxa identification.

At T0, genera Phocaeicola A 858004, Bacteroides H, 
Faecalibacterium and Gemmiger A 73129 showed a high relative 
abundance for the control group. Of these, Phocaeicola A 858004 and 
Bacteroides H were the most dominant genera in most of the control 
subjects and were consistently present in both the V1V2 and V3V4 
datasets. Genera Faecalibacterium and Gemmiger A 73129 were other 
notable taxa present at T0. We observed a lower abundance of genera 
Blautia A 141781, Alistipes A 871400, Parabacteroides B 862066 and 
Roseburia with no conclusive distinction between the distribution 
across the two datasets. At T7, the dominant genera from T0 
continued to be  similarly abundant. Of them, genera such as 
Bacteroides H and Phocaeicola A 858004 were more noticeable in some 
individuals compared to T0. Genera Lachnospira, Anaerostipes and 
Anaerobutyricum showed a slight increase in their detection, while 
Dorea A was seen to be less prevalent but appeared occasionally in 
some subjects. At T8, most of the taxa that were dominant in the 
previous timepoints were observed namely Phocaeicola A 858004, 

FIGURE 1

Microbiota composition at T0 in patients with AN. The figure shows the composition of microbes at the genus level for various samples between the 
V1V2 (left panel) and V3V4 (right panel) sequencing regions. Every sample is represented as a horizontal bar, where the colours describe the relative 
abundance of the 15 most abundant genera.
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Bacteroides H and Faecalibacterium with the addition of Alistipes A 
871400. Furthermore, the abundance of taxa Parabacteroides B 
862066, Blautia A 141781, and Lachnospira were low. Other notable 
taxa such as Mediterraneibacter A 155507 and Fusicatenibacter, 
although at lower frequencies, are also seen in certain controls.

3.3 Taxonomic overlap

To understand the overlap and uniqueness of the ‘core taxa’, 
‘prominent taxa’ and ‘low-prevalence taxa’ (defined by a prevalence 
greater than 50, 5 and 0.5% respectively) between V1V2 and V3V4 
datasets, among all samples and a detection threshold of 0.01% relative 
abundance, we  looked at their intersection using a Venn diagram 
(Figure 2). In case of the core taxa, the V1V2 dataset included 13 
unique taxa, whereas the V3V4 dataset comprised 20 unique taxa. 
Seventeen taxa were common to both V1V2 and V3V4, highlighting 
little overlap (34%) in the core microbiome structure between these 
two amplicon regions. When we looked at the prominent taxa and 
low-prevalence taxa, overlaps of 50 and 55% were observed for the 
taxa derived from the two regions.

3.4 Agreement between V1V2 and V3V4 
abundance data among patients

The Bland–Altman (BA) analysis was performed to evaluate the 
agreement between the relative abundances and alpha diversity 
measures from V1V2 and V3V4 datasets for patients at admission 
(T0). BA plots visualise the differences in the microbial relative 
abundances between the two methods against their means.

For this analysis, we first looked at a few select dominant genera 
at admission that formed the common core for both methods, along 
with a comparison of Shannon and Chao 1 alpha diversity indices 
(Figure  3A). These genera included Phocaeicola_A_858,004, 
Gemmiger_A_73,129, Alistipes_A_871,400, Agathobacter_164117, 
Faecalibacterium, Mediterraneibacter_A_155,507 and Dorea_A. Of 

these, Gemmiger_A_73,129, Agathobacter_164117, Faecalibacterium 
and Mediterraneibacter_A_155,507 showed the most consistency 
between the two methods. They displayed low bias as their mean 
difference was close to zero, however, with wide limits of agreement 
(LOA), indicating that there were large absolute differences between 
abundances calculated from V1V2 data compared to V3V4 data for 
individual samples. Alistipes_A_871,400 showed a moderate variability 
between the methods, although the bias was quite minimal. In 
contrast, higher variability and systematic trends, indicative of 
proportional bias, were observed in Dorea_A and 
Phocaeicola_A_858,004. In the case of Dorea_A, although the overall 
bias was close to zero, the systematic pattern visible as a decreasing 
line in the BA plot was due to many patients with an abundance of 
zero in V1V2 data and abundance values greater than zero in the other 
dataset (Figure 3B). In the case of Phocaeicola_A_858,004, the change 
in the differences remained systematic across a range of means. An 
illustration of these differences has been provided in Figure 3B, which 
shows the scatterplot of abundances in V1V2 vs. V3V4 datasets for 
Faecalibacterium, Dorea_A and Agathobacter_164117. The BA plot for 
the Shannon Index indicated consistent overall agreement with tight 
clustering of points and negligible bias, except for a few outliers. 
Interestingly, Chao1 Index showed a bias of around 100 with V1V2 
dataset consistently overestimating the index relative to the 
V3V4 dataset.

Then, we systematically looked at the agreement between the two 
methods for taxa that have previously been associated with AN as 
listed in Di Lodovico et al. (2021) (Supplementary Figure S2). Among 
the genera from Di Lodovico et al., genera Ruminococcus, Roseburia, 
Turicibacter and Anaerotruncus showed consistent overall agreement 
between the methods with minimal bias and no apparent bias trends, 
albeit a few outliers. Genera Bifidobacterium, Clostridium, 
Eubacterium and Streptococcus, on the other hand, exhibited 
systematic trends that suggest proportional biases. For Streptococcus, 
the differences were higher at higher mean abundances and in the case 
of Bifidobacterium, the differences tend to be  negative at higher 
microbial abundances, where the V3V4 dataset yielded consistently 
higher values. Furthermore, Anaerostipes showed a slight 

FIGURE 2

Venn diagram showing the intersection of the core, prominent and low-prevalence microbial taxa between V1V2 and V3V4 datasets.
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funnel-shaped pattern at lower abundances, indicating a slightly 
increased variability between the methods. The phyla Bacteroidota, 
Firmicutes and Proteobacteria showed good consistency between 
methods, indicating negligible systematic differences, although few 
outliers were observed. Meanwhile, Actinobacteria and 
Verrucomicrobiota showed negative proportional bias with decreasing 
differences at higher mean abundances.

We also looked at the relative agreement between V1V2 and 
V3V4 for alpha diversity indices, Shannon and Chao1 at different 
timepoints (Figure  4). The BA plots for the Shannon Index 
(Supplementary Figure S3) at various timepoints did not demonstrate 

a consistent measurement between V1V2 and V3V4 datasets, 
although the bias typically neared zero for a majority of the timepoints. 
Nevertheless, some heteroscedasticity was observed, especially at T8, 
where differences seem to rise slightly at lower Shannon diversity 
values. The LOAs were relatively wide, reflecting a weak concordance 
between the two methods over time. Looking at the Chao1 index 
(Supplementary Figure S3), the differences between V1V2 and V3V4 
data seem to be greater and exhibit more variability than those of the 
Shannon Index. The average bias remains positively skewed, with the 
Chao1 index consistently estimating higher richness values. 
Furthermore, the data points were more dispersed in comparison to 

FIGURE 3

(A) Bland–Altman plots of genera at T0. The BA plots compare the taxon abundance between the two sequencing regions: V1V2 and V3V4. The 
subplots display a specific taxon or alpha diversity measure, where the x-axis denotes the mean abundance of the two methods and the y-axis denotes 
the difference between the two (V3V4 - V1V2). The red dashed line indicates the mean difference (bias), and the green dotted lines represent the limits 
of agreement. (B) Scatterplot of abundances for Faecalibacterium, Dorea_A and Agathobacter_164117 from the V1V2 and V3V4 datasets. The blue 
identity line (y = x) denotes the ideal case of perfect agreement and deviations from this line reflect differences between the relative abundances from 
the two regions.
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the Shannon index. Overall, although both indices showed some 
degree of consistency between V1V2 and V3V4 datasets, the Chao1 
index has greater variability and a more noticeable systematic bias 
than Shannon.

Finally, we  also compared the agreement between the overall 
microbiome composition based on relative abundances from both 
methods for patients and controls. This was based on pairwise Jaccard 
and Bray–Curtis (BC) distance (beta diversity) for each subject as a 
measure of overall microbiome profile (dis)-similarity (Figure  5; 
Supplementary Figure S4). In the patients’ group, the overall 
microbiome profiles derived from the V1V2 and V3V4 data showed 
very little similarity between them with a median BC dissimilarity 
value of 0.38. Interestingly, 20% of the patients had a BC value greater 
than 0.5, indicating a high degree of dissimilarity between V1V2 and 
V3V4. In contrast, only 9.2% of patients had a BC value smaller than 
0.2, showing good similarity between the methods. Among the 
patients, P009, P037 and P034 showed the highest similarity; and 
P051, P027 and P006 are the least similar in terms of their overall 
microbiome profiles from the two sequencing regions. Similarly, 
among healthy controls, the two methods were substantially dissimilar 
(median BC dissimilarity of 0.34). Of these controls, K030, K032 and 
K023 were the most similar and K039, K038 and K022 showed the 
highest dissimilarity. Figure 1 and Supplementary Figure S1 show the 

overall microbiota composition of these patients and controls 
highlighting the 15 most abundant genera.

3.5 Differential abundance analysis

We used the ANCOM-BC2 (Lin and Peddada, 2024) methodology 
to perform differential abundance analysis to compare the V1V2 and 
V3V4 datasets at the genus level using all available timepoints for the 
patient group. A total of 18 genera were identified as significantly 
differentially abundant after correcting for multiple testing (Figure 6). 
It is worth noting that since these were the same samples, the 
differentially abundant taxa reflect the fact that specific taxa were 
picked up systematically differently by either of the primers used for 
library preparation. The genera Bifidobacterium_388775, CAG-83, 
Akkermansia, and Anaerobutyricum appeared to be enriched when the 
V3V4 region was considered. Of these Bifidobacterium_388775 
showed the maximum log fold change, indicating that it is substantially 
more abundant in the V3V4 region data than in V1V2 data. On the 
other hand, taxa like Sutterella, Haemophilus_D_735815, Turicibacter, 
Faecalibacillus, Erysipelatoclostridium and Streptococcus were depleted 
in V3V4 datasets hinting at the possibility that the V1V2 region might 
be better able to represent these taxa.

FIGURE 4

Longitudinal microbiome changes of AN patients depicted using alpha diversity indices (Chao1 and Shannon) for V1V2 and V3V4 data.
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We next performed a BA analysis of the differentially abundant 
taxa to see how much they differed based on the sequencing region 
(Supplementary Figure S5). The DA taxa show, expectedly, systematic 
differences between V1V2 and V3V4 regions as seen in the BA plots. 
When comparing the two sequencing methods, we  see a notable 
variation in the abundance of these differentially abundant taxa, and 
in particular, taxa such as Bifidobacterium_388775, Akkermansia, 
Alistipes_A_871404, Phocaeicola_A_858,004, and Ruminococcus_D.

4 Discussion

Short-read sequencing uses various combinations of primer pairs 
that target different regions of the bacterial 16S rRNA gene to decipher 
the composition and abundance of bacterial communities. So far, 
several studies have compared different combinations of 16S rRNA 
primers to profile the microbiome in diverse environments (Fadeev 
et al., 2021; Kameoka et al., 2021; Sirichoat et al., 2021). These studies 
conclude similarly, arguing that the selection of the 16S rRNA region 
can significantly impact the analysis of microbiota diversity and 
composition (Heidrich et  al., 2022). Additionally, many previous 

studies indicate that different regions provide non-concordant 
outcomes when applied to the same samples (Albertsen et al., 2015; 
Meisel et al., 2016; Graspeuntner et al., 2018). To our knowledge, these 
systematic assessments have not been done in the context of AN, 
resulting in non-consistent and inconclusive literature, due to the 
variety of methods applied. In this study, we compare the use of 16S 
rRNA hypervariable regions V1V2 and V3V4 to assess the differences 
and variability in microbial composition and taxonomic resolution in 
patients with AN and matched controls using a longitudinal cohort. 
We systematically look at the agreement of taxonomic abundances 
between the two regions as it might have an impact on downstream 
statistical analysis.

We observe that the number of taxa and Chao1 alpha diversity 
measure detected by amplifying and analysing the V1V2 region is 
higher compared to the V3V4 region across both patient and control 
groups. This finding is in line with previous reports, which suggest that 
the V1V2 region is more sensitive to certain bacterial taxa, capturing 
more diverse microbes (Heidrich et al., 2022; López-Aladid et al., 2023). 
Even though the detection of taxa is higher for this region, the region is 
sparse in terms of proportion. Conversely, the V3V4 dataset shows a 
higher density despite fewer taxa detected, implying that it could give a 

FIGURE 5

Distance-based analysis based on overall microbiome profiles of patients and controls at the genus level. Each boxplot summarises the within-sample 
distances (Bray–Curtis) of microbial relative abundances obtained from V1V2 and V3V4 regions, respectively.
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more robust identification of common taxa across samples. We also 
noted a difference in the sequencing depths, where V1V2 yields more 
reads, which may have resulted in the region detecting a higher number 
of taxa. This difference is likely attributable to the distinct sequencing 
chemistries used: V1V2 was sequenced with 250 bp paired-end (250PE) 
reads, while V3V4 was sequenced with 300 bp paired-end (300PE) 
reads. The longer read length in the 300PE chemistry typically leads to 
a greater loss of reads due to reduced quality towards the end of the 
reads, which may explain the lower read count and subsequently lower 
number of taxa detected in the V3V4 dataset. These observations and 
differences reiterate the importance of choosing a methodology and 16S 
hypervariable region based on the study aims, especially involving the 
balance of sensitivity and consistency in taxonomic detection.

An important aspect of this study is its design; it looks at both 
patients and matched healthy controls longitudinally with a focus on 
three key timepoints for the patients- hospital admission, discharge, 
and one-year follow-up. We observe that the dominant genera were 
consistently present across both datasets and sample groups at these 
different timepoints. Some of the main taxa such as Bacteroides H, 
Faecalibacterium and Phocaeicola A 858004 are detected consistently, 
suggesting they are present steadily in the gut microbiome over time. 
However, the low abundant and rare taxa are highly variable and no 
systematic pattern is observed. This shows that the highly abundant 
dominant taxa can be expectedly detected across the two sequencing 

regions but the rare taxa may be more influenced by sequencing depth 
and biases introduced during the study. An analysis of this study 
focusing on associations between the microbiome and clinical data 
was previously published (Andreani et al., 2024).

Furthermore, we used Bland–Altman analysis to compare the 
agreement of relative abundance measurements between the two 
sequencing regions to evaluate the biases introduced by the methods. 
While some taxa, including Faecalibacterium and 
Mediterraneibacter_A_155,507, showed sufficient agreement between 
the methods, most of them exhibited variability and differences. 
When we  looked at alpha diversity at different time points, the 
Shannon index showed relatively consistent agreement but the Chao1 
index indicated variability. We  also systematically looked at taxa 
previously associated with AN (Di Lodovico et al., 2021). Of those 
AN-related taxa, a few genera such as Ruminococcus, Roseburia, 
Turicibacter and Anaerotruncus showed good overall agreement while 
the others showed inconsistencies and differences. Taken together, the 
lack of strong agreement between the methods again illustrates the 
impact of the choice of the sequencing region can have on profiling 
the microbiome, especially for certain taxonomic groups.

Our analysis of differential abundance showed that 18 taxa showed 
significant systematic differences in the same samples when analysed by 
V1V2 or V3V4 regions. V3V4 dataset showed enrichment of certain 
taxa, such as Bifidobacterium_388775, CAG-83, Akkermansia and 

FIGURE 6

Differential abundance analysis using ANCOMBC2. The x-axis displays the log-fold change (LFC) of the V3V4 region relative to the V1V2 region and the 
y-axis shows the list of differentially abundant taxa.
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Anaerobutyricum. Bifidobacterium_388775 also exhibited the highest log 
fold change. In contrast, taxa such as Sutterella, Haemophilus_D_735815, 
Turicibacter and Faecalibacillus were depleted in this dataset. We then 
performed a BA analysis of these differentially abundant taxa which 
revealed systematic bias and differences, reiterating that the choice of 
sequencing region influences abundance estimates and thereby the 
downstream microbiome analysis and interpretation.

The work discussed here accentuates the significance of 
methodological considerations in the characterisation of the 
microbiome of patients diagnosed with AN. At different timepoints, 
the most abundant genera were frequently observed but it is also 
important to note that the results from differences in taxonomic 
detection, diversity estimates, and differential abundance are significant 
due to potential biases introduced by the choices of selecting the 
sequencing region. We want to emphasise that when datasets generated 
using different 16S rRNA regions are compared they need to 
be interpreted carefully since the sequencing choices affect the resulting 
taxa detection and relative abundance measurements. Studies should 
prioritise the sequencing region selection depending on their specific 
research questions, especially when comparing taxonomic profiles 
across multiple datasets. In this regard, it is worth mentioning that 
some studies have tackled these methodological challenges in 16S 
rRNA-based sequencing. For instance, Fuks et al. have suggested that 
a combination of two or more hypervariable regions can increase 
resolution when identifying bacterial taxa (Fuks et al., 2018).

The relative abundance data is intrinsically compositional which 
could lead to biases while estimating differential abundance. Since our 
study heavily relies on such data, it could be a crucial drawback and 
may bias our results. In the future, using absolute quantification 
methods could provide more robust interpretations of our findings. 
Furthermore, longitudinal studies including larger sample sizes and 
metagenomic validation could give us more concrete generalizability 
of our results. To conclude, we emphasise the importance of choosing 
an appropriate sequencing region for the study aims as it influences 
the microbiome profiles significantly. From our study, we observed 
that the V1V2 region detected a larger number of taxa but indicated 
higher sparsity as well, while the V3V4 region shows consistency of 
detection across our samples. Neither of the approaches appears to 
be systematically better, regardless of these variations. However, the 
observed differences highlight the variability that is present currently 
in the literature due to the selection of sequencing regions.
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