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Introduction: Short read sequencing of the 16S ribosomal RNA (rRNA) gene
targeting specific hypervariable regions is widely employed to study the human
gut microbiota. In these studies, the selection of particular 16S rRNA hypervariable
regions is a crucial step. However, the results of such studies exhibit significant
variability depending on the targeted hypervariable region.

Methods: In this study, we systematically evaluated the performance of
hypervariable regions V1V2 and V3V4 in a longitudinal gut microbiome study of
adolescent patients with anorexia nervosa (AN) and matched controls.

Results: The dominant genera, such as Bacteroides H, Faecalibacterium and
Phocaeicola A 858004 were consistently detected in both hypervariable regions
across timepoints. The within-sample longitudinal alpha diversity measures
varied between the regions with the Chaol index values being higher in the V1V2
region. The overall microbiome profiles based on beta diversity also differed
between the regions. Bland—Altman analysis revealed a general lack of strong
agreement between the two sequencing methods, except for a few taxa such as
Faecalibacterium, Ruminococcus, Roseburia, Turicibacter and Anaerotruncus.
While some results were similar across both hypervariable regions, most of the
findings were sensitive to the chosen region.

Conclusion: This study underscores the importance of primer selection in
microbiome studies of AN, as it can influence taxonomic resolution and diversity
estimates along with downstream statistical analyses.

KEYWORDS

gut microbiome, anorexia nervosa, eating disorder, gut-brain axis, longitudinal study,
16S rRNA, V1V2, V3V4

1 Introduction

The taxonomic composition of complex microbial communities studied through short-read
sequencing of specific hypervariable regions of the 16S rRNA gene has been the standard approach
for more than a decade now. A multitude of factors favour the usage of this technique, such as
high throughput, previously established computational pipelines with reference databases, and
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relatively low cost (Fuks et al., 2018; Mukherjee et al., 2018). Such studies
employing the 16 s rRNA gene have been able to decipher the varied
structure of the microbiota and have greatly contributed to our
understanding of the importance of microbiota diversity in human
health and disease (Grice et al., 2009; Pecina et al., 2015; Guerrero-
Preston et al., 2016; Kehrmann et al., 2017; Mukherjee et al., 2018). This
however, comes with a certain caveat: technical variation arising in 16S
rRNA amplicon sequencing studies, such as experimental protocols,
primer choice, ribosomal hypervariable regions, and selection of
reference databases, may considerably influence the identification and
classification of microbial taxa (Abellan-Schneyder et al., 2021). For
example, previous studies have shown that the choice of amplification
primers can influence results by introducing bias (Albertsen et al., 2015;
Meisel et al., 2016; Graspeuntner et al., 2018). At the same time, selecting
particular 16S rRNA hypervariable regions for sequencing is an
important step in 16S rRNA gene sequencing studies. The 16S rRNA
comprises nine hypervariable regions, named V1-V9, which are used to
identify the taxa and obtain an estimate of evolutionary relationships
between them. All nine hypervariable regions give an insight into the
microbial taxonomy but the quality and quantity of information that is
extracted shows considerable variation depending on the region for a
particular studied environment (Heidrich et al., 2022). For example, to
study the gut microbiota of Japanese individuals, Kameoka et al. (2021)
showed that V1V2 gave more precise estimates for the genus
Akkermansia than V3V4 based on real-time quantitative polymerase
chain reaction (QPCR) assays. Similarly, in a study aiming to characterize
the male urinary microbiota, Heidrich et al. (2022) found that VIV2
region provided higher taxonomic resolution when compared to other
16S rRNA hypervariable regions (Kameoka et al., 2021; Heidrich
et al., 2022).

Anorexia nervosa (AN) is a severe psychiatric disorder and has a
high prevalence in the adolescent age group. Compared to healthy
controls, individuals with AN have standardized mortality rates that
are 5-10 times higher (Arcelus et al., 2011; Bulik et al., 2019; Andreani
etal., 2024). The main characteristics of AN include insufficient energy
intake, low body weight, body image distortion, and fear of gaining
weight. However, the explanation of the underlying pathophysiology is
not well understood (Herpertz-Dahlmann et al., 2021). In recent times,
an increasing number of studies have alluded to the role of the gut
microbiome in energy extraction from food and weight regulation as
well as how it impacts the brain and behavior through the gut-brain
axis. Hence, there has been a growing interest in studying the
relationship between the microbiome and psychiatric diseases,
including AN (Hills et al., 2019; Santacroce et al., 2021; Wu et al., 2021).
Additionally, in microbiome studies of AN, a longitudinal design
including a post-treatment follow-up, ideally more than 6 months, is
advantageous as it helps shed light on the state of the microbiome after
weight gain (Andreani et al., 2024) and may help us understand which
microbiome alterations may be causes or consequences of the disease.

In AN, 16S rRNA gene sequencing is the most commonly
employed method to investigate the role of the microbiome in disease
pathogenesis. However, no studies have so far evaluated the
implications of selecting a particular hypervariable region in the
interpretation of the findings arising from downstream statistical
analysis. In this study, we compared the 16S rRNA gene hypervariable
regions V1V2 and V3V4 in a gut microbiome study of adolescent
patients with AN along with age-matched healthy controls. This work
features longitudinal 16S rRNA gene sequencing data, collected
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during inpatient treatment and at follow-up 1-year after
hospital admission.

2 Materials and methods

2.1 Cohort description and sample
collection

The recruitment of study participants and data collection have
been previously described (Andreani et al., 2024). Briefly, a total of
sixty-four female adolescents (aged between 12 and 20 years, mean
16 years) with AN (typical or atypical) according to the DSM-5 were
recruited and enrolled between December 2016 and January 2020 at
the RWTH Aachen University Hospital’s Department of Child and
Adolescent Psychiatry. Of these, fifty-seven patients were included in
the analysis. Stool sampling was done at nine time points, based on
prespecified clinical milestones with different interval lengths between
patients. These included TO (admission), T1 (a diet of 25 Kcal/kg/day),
T2 (a diet of 50 Kcal/kg/day), T3 (a diet of 62.5 Kcal/kg/day), T4 (a
weight gain up to the 5th age-adjusted BMI percentile), T5 (a weight
gain up to the 10th age-adjusted BMI percentile), T6 (a weight gain
up to the 15th age-adjusted BMI percentile), T7 (discharge), and T8
(1-year follow-up appointment, one year after admission). In addition,
34 age-matched female HCs with normal body weight (between the
20th and 80th percentile of age-adjusted body mass index [BMI-SDS])
were recruited. Faecal sample collection and DNA extraction from
stool samples for patients and healthy volunteers have been previously
described in detail (Schulz et al., 2021; Andreani et al., 2024).

The study was approved by the ethics committee of RWTH Aachen
University Hospital and was carried out in compliance with the
Declaration of Helsinki. Before enrollment in the study, written informed
consent was obtained from the participants’ parents or legal guardians,
and assent was obtained from the study participants themselves.

2.2 16S rRNA gene sequencing and
processing

The V1V2 region of the 16S rRNA gene was amplified with
primers 27F and 338 R using dual barcoding (Caporaso et al., 2011).
The resulting library was sequenced on an Illumina Miseq sequencer
(250PE). During demultiplexing, no mismatches were allowed in the
barcode (Casava, Illumina). QIIME2 (v2019.10) was used to process
and analyse the sequence data (Bolyen et al, 2018). Paired end
sequences were denoised with ‘dada2’ (Callahan et al., 2016) using
default parameters, unless stated: reads were truncated at the first base
where the quality score dropped below Q = 3, truncation at 230 bp
and the minimum length of reads after truncation was 100 bp.

The V3-V4 region of the 16S rRNA gene was amplified using
515F-806R primers, forward: GTGCCAGCMGCCGCGGTAA and
reverse: GGACTACHVGGGTWTCTAAT, with a dual barcoding
approach. The resulting library was sequenced on an Illumina Miseq
sequencer (300PE). Processing of the reads was performed as
previously reported, with the following modification: truncation at
270 bp. An abundance table of 16S rRNA amplicon sequence variants
(ASVs) was generated, and the taxonomic annotation of ASVs was
obtained using the greengenes2 database (McDonald et al., 2024).
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2.3 Statistical analysis

All statistical analyses were performed with R (v. 4.4.2). Both
datasets were combined into a phyloseq object for all downstream
calculations using the phyloseq package (v. 1.46.0) (McMurdie and
Holmes, 2013). Using microbial relative abundances, the within-
sample alpha diversity (represented by the Shannon and Chaol
indices) was calculated at the genus level and between-sample
microbial dissimilarities (beta diversity quantified by Bray-Curtis and
Jaccard dissimilarity) were calculated at the genus and ASV levels. The
‘core’ microbiome was defined as those taxa that had a relative
abundance greater than 0.01% in more than 50% of the samples. The
threshold of 0.01% relative abundance was chosen to ensure that the
taxa are present at levels that are likely to have biological significance
and not just technical (sequencing) artefacts. This retains the
low-abundance taxa and avoids the very rare taxa (near-zero
detections). Similarly, the prevalence threshold of 50% maintains that
the taxa are sufficiently prevalent and consistently present among the
samples. Such a priori chosen abundance-occurrence thresholds,
although commonly used in microbiome studies, often vary between
studies and are study-specific (Neu et al., 2021). We used the R
package vegan (v. 2.6.4) (Oksanen et al., 2022) for these calculations.
Wherever applicable, the microbial raw counts were transformed into
compositional abundances and statistical methods suitable for
compositional data were used for analysis. This was done to avoid
data loss often associated with rarefaction leading to reduced
statistical power (McMurdie and Holmes, 2014). To obtain the
summaries of sequencing data, the biomeUtils package (v. 0.022)
(Shetty, 2023) was used. Other R packages used for analysis,
visualisation and graphics include packages tidyverse (v. 2.0.0)
(Wickham et al.,, 2019), microViz (v. 0.12.1) (Barnett et al., 2021),
VennDiagram (v. 1.7.3) (Chen and Boutros, 2011) and ggpubr (v.
0.6.0) (Kassambara, 2023). We used ANCOM-BC2 (Lin and Peddada,
2024) to analyse the microbiota composition for differential
abundance testing. We adjusted the p-values for multiple testing using
the Benjamini-Hochberg (BH) procedure and the taxa that had
BH-adjusted p-values less than 0.05 were identified as significantly
differentially abundant.

2.3.1 Agreement between V1V2 and V3V4
abundance data

The Bland Altman (BA) method (Martin Bland and Altman,
1986) was used as an exploratory analysis to assess the agreement
between microbiome relative abundances from the V1V2 (method 1)
and V3V4 (method 2) regions for patients at admission. We looked at
(a) all common core genera from both methods, (b) alpha diversity
indices namely Shannon and Chaol, respectively, and (c) all gut
microbial taxa reported in the systematic review by Di Lodovico et al.
(2021) that exhibited significant differences in their relative
abundances compared to healthy controls. Briefly, in BA analysis, the
mean relative abundance and differences were calculated for the
methods 1 and 2. Then the mean of the differences (known as ‘bias’)
was calculated along with their corresponding standard deviations
(SD). Bias quantifies the average difference between the two methods
and a low bias is representative of good agreement. Subsequently, the
limits of agreement (LOA) were calculated, which provided the range
where 95% of the differences are expected to lie. A narrow LOA
indicates better precision and less variability between the methods.
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We also looked at the agreement between microbiome relative
abundances from the V1V2 and V3V4 regions based on the overall
microbiome profiles in contrast to BA analysis where individual taxa
were considered. For each patient, pairwise Jaccard and Bray-Curtis
distances were calculated for the microbiome profiles from both
methods to quantify the similarity and dissimilarity between the
overall microbiome composition. A Jaccard distance of 0 and 1
represents the maximum similarity (identical microbiome profiles)
and dissimilarity (no common microbial taxa) respectively.

3 Results

Our cohort consisted of fifty-seven patients who were diagnosed
with AN or atypical AN (one patient) according to DSM-5 and aged
between 12 and 20 years, as described in detail elsewhere (Andreani
et al., 2024). The longitudinal data, including stool samples and
clinical data, were collected at nine timepoints, with the first eight
(T0-T7) taking place during the treatment at the hospital stay and the
last timepoint (T8) at the follow-up appointment 1 year after the
hospital admission. Additionally, our study also included a healthy
control (HC) group of similar-aged individuals (between 14 and
19 years) whose data were collected at a subset of six time points. A
description of the clinical characteristics of the patients and HC
groups has been previously detailed (Andreani et al., 2024).

3.1 Summary of sequencing data

We compared the sequencing data across the two methods
(V1V2 and V3V4) for both the control and the patient groups to gain
a better understanding of the characteristics of each method
(Supplementary Table S1).

Among patients, the V1V2 dataset had a higher number of total
reads (10,575,880) compared to V3V4 (7,164,406) and a higher
number of detected taxa (4,593 for V1V2 and 2,104 for V3V4).
Meanwhile, V1V2 showed moderately higher sparsity (0.9539098)
compared to V3V4 (0.9328799) indicating a greater percentage of
undetected taxa among many samples when using V1V2 primers.
Similarly, for controls, the V1V2 dataset had a higher number of total
reads (3,771,093) in contrast to V3V4 (2,905,102) along with a greater
number of detected taxa (3,252) compared to V3V4 (1,518). Like in
patients, the V1V2 dataset is more sparse (0.9357342) than V3V4
(0.8964646).

3.2 Microbiota composition at important
timepoints

To examine the composition of gut microbiome based on
relative abundances from regions V1V2 and V3V4 dataset over
time, we evaluated taxa composition plots at the genus level for both
patients and controls at three different timepoints: admission (T0),
discharge (T7), and one-year follow-up (T8) (Figure I;
Supplementary Figure S1).

At TO, all patients showed high relative abundance for genera
Bacteroides H, Faecalibacterium, Blautia A 141781, and Phocaeicola

A 858004. Specifically, Bacteroides H and Phocaeicola A 858004
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FIGURE 1
Microbiota composition at TO in patients with AN. The figure shows the composition of microbes at the genus level for various samples between the
V1V2 (left panel) and V3V4 (right panel) sequencing regions. Every sample is represented as a horizontal bar, where the colours describe the relative
abundance of the 15 most abundant genera.

were predominant in most of the patients and were consistently
present in both V1V2 and V3V4 datasets. On the other hand,
genera such as Gemmiger A 73129, Alistipes A 871400, and
Parabacteroides B 862066 showed lower prevalence across both
datasets. At T7, the dominant taxa were the same ones from the
timepoint TO for all patients, namely, Bacteroides H,
Faecalibacterium, Blautia A 141781, and Phocaeicola A 858004.
Similar results were also noted for the T8 timepoint, where the
microbial community composition showed a prevalence of the
dominant taxa across the whole patient group. When we looked at
both datasets, in some patients (e.g., P018, P047 and P049),
Bacteroides H was seen to have higher abundance in the V3V4
region than in the V1V2 region and conversely, Faecalibacterium
was more abundant in V1V2 than in V3V4 (e.g., P041, P056 and
P065). Additionally, both datasets were able to detect low-abundance
taxa such as Parabacteroides B 862066, Alistipes A 871400 and
Gemmiger A 73129. To summarise, the composition of the main
genera was relatively consistent across all timepoints in V1V2 and
V3V4. Moreover, both datasets showed a similar presence of
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low-abundance genera, but no region provided definitive evidence
to support rare taxa identification.

At TO, genera Phocaeicola A 858004, Bacteroides H,
Faecalibacterium and Gemmiger A 73129 showed a high relative
abundance for the control group. Of these, Phocaeicola A 858004 and
Bacteroides H were the most dominant genera in most of the control
subjects and were consistently present in both the V1V2 and V3V4
datasets. Genera Faecalibacterium and Gemmiger A 73129 were other
notable taxa present at T0. We observed a lower abundance of genera
Blautia A 141781, Alistipes A 871400, Parabacteroides B 862066 and
Roseburia with no conclusive distinction between the distribution
across the two datasets. At T7, the dominant genera from TO
continued to be similarly abundant. Of them, genera such as
Bacteroides H and Phocaeicola A 858004 were more noticeable in some
individuals compared to T0. Genera Lachnospira, Anaerostipes and
Anaerobutyricum showed a slight increase in their detection, while
Dorea A was seen to be less prevalent but appeared occasionally in
some subjects. At T8, most of the taxa that were dominant in the
previous timepoints were observed namely Phocaeicola A 858004,
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Bacteroides H and Faecalibacterium with the addition of Alistipes A
871400. Furthermore, the abundance of taxa Parabacteroides B
862066, Blautia A 141781, and Lachnospira were low. Other notable
taxa such as Mediterraneibacter A 155507 and Fusicatenibacter,
although at lower frequencies, are also seen in certain controls.

3.3 Taxonomic overlap

To understand the overlap and uniqueness of the ‘core taxa,
‘prominent taxa’ and ‘low-prevalence taxa’ (defined by a prevalence
greater than 50, 5 and 0.5% respectively) between V1V2 and V3V4
datasets, among all samples and a detection threshold of 0.01% relative
abundance, we looked at their intersection using a Venn diagram
(Figure 2). In case of the core taxa, the V1V2 dataset included 13
unique taxa, whereas the V3V4 dataset comprised 20 unique taxa.
Seventeen taxa were common to both V1V2 and V3V4, highlighting
little overlap (34%) in the core microbiome structure between these
two amplicon regions. When we looked at the prominent taxa and
low-prevalence taxa, overlaps of 50 and 55% were observed for the
taxa derived from the two regions.

3.4 Agreement between V1V2 and V3V4
abundance data among patients

The Bland-Altman (BA) analysis was performed to evaluate the
agreement between the relative abundances and alpha diversity
measures from V1V2 and V3V4 datasets for patients at admission
(T0). BA plots visualise the differences in the microbial relative
abundances between the two methods against their means.

For this analysis, we first looked at a few select dominant genera
at admission that formed the common core for both methods, along
with a comparison of Shannon and Chao 1 alpha diversity indices
(Figure 3A). These genera included Phocaeicola_A_858,004,
Gemmiger_A_73,129, Alistipes_A_871,400, Agathobacter_164117,
Faecalibacterium, Mediterraneibacter_A_155,507 and Dorea_A. Of

10.3389/fmicb.2025.1665847

these, Gemmiger_A_73,129, Agathobacter_164117, Faecalibacterium
and Mediterraneibacter_A_155,507 showed the most consistency
between the two methods. They displayed low bias as their mean
difference was close to zero, however, with wide limits of agreement
(LOA), indicating that there were large absolute differences between
abundances calculated from V1V2 data compared to V3V4 data for
individual samples. Alistipes_A_871,400 showed a moderate variability
between the methods, although the bias was quite minimal. In
contrast, higher variability and systematic trends, indicative of
proportional  bias, were observed in Dorea_A and
Phocaeicola_A_858,004. In the case of Dorea_A, although the overall
bias was close to zero, the systematic pattern visible as a decreasing
line in the BA plot was due to many patients with an abundance of
zero in V1V2 data and abundance values greater than zero in the other
dataset (Figure 3B). In the case of Phocaeicola_A_858,004, the change
in the differences remained systematic across a range of means. An
illustration of these differences has been provided in Figure 3B, which
shows the scatterplot of abundances in V1V2 vs. V3V4 datasets for
Faecalibacterium, Dorea_A and Agathobacter_164117. The BA plot for
the Shannon Index indicated consistent overall agreement with tight
clustering of points and negligible bias, except for a few outliers.
Interestingly, Chaol Index showed a bias of around 100 with V1V2
dataset consistently overestimating the index relative to the
V3V4 dataset.

Then, we systematically looked at the agreement between the two
methods for taxa that have previously been associated with AN as
listed in Di Lodovico et al. (2021) (Supplementary Figure S2). Among
the genera from Di Lodovico et al., genera Ruminococcus, Roseburia,
Turicibacter and Anaerotruncus showed consistent overall agreement
between the methods with minimal bias and no apparent bias trends,
Clostridium,
Eubacterium and Streptococcus, on the other hand, exhibited

albeit a few outliers. Genera Bifidobacterium,

systematic trends that suggest proportional biases. For Streptococcus,
the differences were higher at higher mean abundances and in the case
of Bifidobacterium, the differences tend to be negative at higher
microbial abundances, where the V3V4 dataset yielded consistently
Furthermore, showed a slight

higher values. Anaerostipes

Core taxa

v3v4

vivz

FIGURE 2

Prominent taxa

Venn diagram showing the intersection of the core, prominent and low-prevalence microbial taxa between V1V2 and V3V4 datasets.
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FIGURE 3
(A) Bland—Altman plots of genera at TO. The BA plots compare the taxon abundance between the two sequencing regions: V1V2 and V3V4. The
subplots display a specific taxon or alpha diversity measure, where the x-axis denotes the mean abundance of the two methods and the y-axis denotes
the difference between the two (V3V4 - V1V2). The red dashed line indicates the mean difference (bias), and the green dotted lines represent the limits
of agreement. (B) Scatterplot of abundances for Faecalibacterium, Dorea_A and Agathobacter_164117 from the V1V2 and V3V4 datasets. The blue
identity line (y = x) denotes the ideal case of perfect agreement and deviations from this line reflect differences between the relative abundances from
the two regions.

funnel-shaped pattern at lower abundances, indicating a slightly
increased variability between the methods. The phyla Bacteroidota,
Firmicutes and Proteobacteria showed good consistency between
methods, indicating negligible systematic differences, although few
outliers observed. Meanwhile, Actinobacteria and
Verrucomicrobiota showed negative proportional bias with decreasing
differences at higher mean abundances.

We also looked at the relative agreement between V1V2 and
V3V4 for alpha diversity indices, Shannon and Chaol at different
timepoints (Figure 4). The BA plots for the Shannon Index

(Supplementary Figure S3) at various timepoints did not demonstrate

were
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a consistent measurement between V1V2 and V3V4 datasets,
although the bias typically neared zero for a majority of the timepoints.
Nevertheless, some heteroscedasticity was observed, especially at T8,
where differences seem to rise slightly at lower Shannon diversity
values. The LOAs were relatively wide, reflecting a weak concordance
between the two methods over time. Looking at the Chaol index
(Supplementary Figure S3), the differences between V1V2 and V3V4
data seem to be greater and exhibit more variability than those of the
Shannon Index. The average bias remains positively skewed, with the
Chaol index consistently estimating higher richness values.
Furthermore, the data points were more dispersed in comparison to
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FIGURE 4

Longitudinal microbiome changes of AN patients depicted using alpha diversity indices (Chaol and Shannon) for V1V2 and V3V4 data.

the Shannon index. Overall, although both indices showed some
degree of consistency between V1V2 and V3V4 datasets, the Chaol
index has greater variability and a more noticeable systematic bias
than Shannon.

Finally, we also compared the agreement between the overall
microbiome composition based on relative abundances from both
methods for patients and controls. This was based on pairwise Jaccard
and Bray-Curtis (BC) distance (beta diversity) for each subject as a
measure of overall microbiome profile (dis)-similarity (Figure 5;
Supplementary Figure S4). In the patients’ group, the overall
microbiome profiles derived from the V1V2 and V3V4 data showed
very little similarity between them with a median BC dissimilarity
value of 0.38. Interestingly, 20% of the patients had a BC value greater
than 0.5, indicating a high degree of dissimilarity between V1V2 and
V3V4. In contrast, only 9.2% of patients had a BC value smaller than
0.2, showing good similarity between the methods. Among the
patients, P009, P037 and P034 showed the highest similarity; and
P051, P027 and P006 are the least similar in terms of their overall
microbiome profiles from the two sequencing regions. Similarly,
among healthy controls, the two methods were substantially dissimilar
(median BC dissimilarity of 0.34). Of these controls, K030, K032 and
K023 were the most similar and K039, K038 and K022 showed the
highest dissimilarity. Figure 1 and Supplementary Figure S1 show the
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overall microbiota composition of these patients and controls
highlighting the 15 most abundant genera.

3.5 Differential abundance analysis

We used the ANCOM-BC2 (Lin and Peddada, 2024) methodology
to perform differential abundance analysis to compare the V1V2 and
V3V4 datasets at the genus level using all available timepoints for the
patient group. A total of 18 genera were identified as significantly
differentially abundant after correcting for multiple testing (Figure 6).
It is worth noting that since these were the same samples, the
differentially abundant taxa reflect the fact that specific taxa were
picked up systematically differently by either of the primers used for
library preparation. The genera Bifidobacterium_388775, CAG-83,
Akkermansia, and Anaerobutyricum appeared to be enriched when the
V3V4 region was considered. Of these Bifidobacterium_388775
showed the maximum log fold change, indicating that it is substantially
more abundant in the V3V4 region data than in V1V2 data. On the
other hand, taxa like Sutterella, Haemophilus_D_735815, Turicibacter,
Faecalibacillus, Erysipelatoclostridium and Streptococcus were depleted
in V3V4 datasets hinting at the possibility that the V1V2 region might
be better able to represent these taxa.
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We next performed a BA analysis of the differentially abundant
taxa to see how much they differed based on the sequencing region
(Supplementary Figure S5). The DA taxa show, expectedly, systematic
differences between V1V2 and V3V4 regions as seen in the BA plots.
When comparing the two sequencing methods, we see a notable
variation in the abundance of these differentially abundant taxa, and
in particular, taxa such as Bifidobacterium_388775, Akkermansia,
Alistipes_A_871404, Phocaeicola_A_858,004, and Ruminococcus_D.

4 Discussion

Short-read sequencing uses various combinations of primer pairs
that target different regions of the bacterial 16S rRNA gene to decipher
the composition and abundance of bacterial communities. So far,
several studies have compared different combinations of 16S rRNA
primers to profile the microbiome in diverse environments (Fadeev
etal., 2021; Kameoka et al., 2021; Sirichoat et al., 2021). These studies
conclude similarly, arguing that the selection of the 16S rRNA region
can significantly impact the analysis of microbiota diversity and
composition (Heidrich et al., 2022). Additionally, many previous
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studies indicate that different regions provide non-concordant
outcomes when applied to the same samples (Albertsen et al., 2015;
Meisel et al., 2016; Graspeuntner et al., 2018). To our knowledge, these
systematic assessments have not been done in the context of AN,
resulting in non-consistent and inconclusive literature, due to the
variety of methods applied. In this study, we compare the use of 16S
rRNA hypervariable regions V1V2 and V3V4 to assess the differences
and variability in microbial composition and taxonomic resolution in
patients with AN and matched controls using a longitudinal cohort.
We systematically look at the agreement of taxonomic abundances
between the two regions as it might have an impact on downstream
statistical analysis.

We observe that the number of taxa and Chaol alpha diversity
measure detected by amplifying and analysing the V1V2 region is
higher compared to the V3V4 region across both patient and control
groups. This finding is in line with previous reports, which suggest that
the V1V2 region is more sensitive to certain bacterial taxa, capturing
more diverse microbes (Heidrich et al., 2022; Lopez-Aladid et al., 2023).
Even though the detection of taxa is higher for this region, the region is
sparse in terms of proportion. Conversely, the V3V4 dataset shows a
higher density despite fewer taxa detected, implying that it could give a
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y-axis shows the list of differentially abundant taxa.
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more robust identification of common taxa across samples. We also
noted a difference in the sequencing depths, where V1V2 yields more
reads, which may have resulted in the region detecting a higher number
of taxa. This difference is likely attributable to the distinct sequencing
chemistries used: V1V2 was sequenced with 250 bp paired-end (250PE)
reads, while V3V4 was sequenced with 300 bp paired-end (300PE)
reads. The longer read length in the 300PE chemistry typically leads to
a greater loss of reads due to reduced quality towards the end of the
reads, which may explain the lower read count and subsequently lower
number of taxa detected in the V3V4 dataset. These observations and
differences reiterate the importance of choosing a methodology and 16S
hypervariable region based on the study aims, especially involving the
balance of sensitivity and consistency in taxonomic detection.

An important aspect of this study is its design; it looks at both
patients and matched healthy controls longitudinally with a focus on
three key timepoints for the patients- hospital admission, discharge,
and one-year follow-up. We observe that the dominant genera were
consistently present across both datasets and sample groups at these
different timepoints. Some of the main taxa such as Bacteroides H,
Faecalibacterium and Phocaeicola A 858004 are detected consistently,
suggesting they are present steadily in the gut microbiome over time.
However, the low abundant and rare taxa are highly variable and no
systematic pattern is observed. This shows that the highly abundant
dominant taxa can be expectedly detected across the two sequencing
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regions but the rare taxa may be more influenced by sequencing depth
and biases introduced during the study. An analysis of this study
focusing on associations between the microbiome and clinical data
was previously published (Andreani et al., 2024).

Furthermore, we used Bland-Altman analysis to compare the
agreement of relative abundance measurements between the two
sequencing regions to evaluate the biases introduced by the methods.
While taxa, including
Mediterraneibacter_A_155,507, showed sufficient agreement between

some Faecalibacterium  and
the methods, most of them exhibited variability and differences.
When we looked at alpha diversity at different time points, the
Shannon index showed relatively consistent agreement but the Chaol
index indicated variability. We also systematically looked at taxa
previously associated with AN (Di Lodovico et al.,, 2021). Of those
AN-related taxa, a few genera such as Ruminococcus, Roseburia,
Turicibacter and Anaerotruncus showed good overall agreement while
the others showed inconsistencies and differences. Taken together, the
lack of strong agreement between the methods again illustrates the
impact of the choice of the sequencing region can have on profiling
the microbiome, especially for certain taxonomic groups.

Our analysis of differential abundance showed that 18 taxa showed
significant systematic differences in the same samples when analysed by
V1V2 or V3V4 regions. V3V4 dataset showed enrichment of certain
taxa, such as Bifidobacterium_388775, CAG-83, Akkermansia and
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Anaerobutyricum. Bifidobacterium_388775 also exhibited the highest log
fold change. In contrast, taxa such as Sutterella, Haemophilus_D_735815,
Turicibacter and Faecalibacillus were depleted in this dataset. We then
performed a BA analysis of these differentially abundant taxa which
revealed systematic bias and differences, reiterating that the choice of
sequencing region influences abundance estimates and thereby the
downstream microbiome analysis and interpretation.

The work discussed here accentuates the significance of
methodological considerations in the characterisation of the
microbiome of patients diagnosed with AN. At different timepoints,
the most abundant genera were frequently observed but it is also
important to note that the results from differences in taxonomic
detection, diversity estimates, and differential abundance are significant
due to potential biases introduced by the choices of selecting the
sequencing region. We want to emphasise that when datasets generated
using different 16S rRNA regions are compared they need to
be interpreted carefully since the sequencing choices affect the resulting
taxa detection and relative abundance measurements. Studies should
prioritise the sequencing region selection depending on their specific
research questions, especially when comparing taxonomic profiles
across multiple datasets. In this regard, it is worth mentioning that
some studies have tackled these methodological challenges in 16S
rRNA-based sequencing. For instance, Fuks et al. have suggested that
a combination of two or more hypervariable regions can increase
resolution when identifying bacterial taxa (Fuks et al., 2018).

The relative abundance data is intrinsically compositional which
could lead to biases while estimating differential abundance. Since our
study heavily relies on such data, it could be a crucial drawback and
may bias our results. In the future, using absolute quantification
methods could provide more robust interpretations of our findings.
Furthermore, longitudinal studies including larger sample sizes and
metagenomic validation could give us more concrete generalizability
of our results. To conclude, we emphasise the importance of choosing
an appropriate sequencing region for the study aims as it influences
the microbiome profiles significantly. From our study, we observed
that the V1V2 region detected a larger number of taxa but indicated
higher sparsity as well, while the V3V4 region shows consistency of
detection across our samples. Neither of the approaches appears to
be systematically better, regardless of these variations. However, the
observed differences highlight the variability that is present currently
in the literature due to the selection of sequencing regions.
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