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Sulfur oxidation and implications
for oxygen consumption in Base
Mine Lake, the first pilot oil sands
pit lake in the Athabasca oil sands
region
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Base Mine Lake (BML) is the first pilot scale oil sands pit lake in the Athabasca
Oil Sands Region (AOSR). Following a whole lake alum addition in September
of 2016, a seasonally recurring zone of anoxia developed in the late summer
hypolimnion of the BML water cap. The extent to which sulfur cycling
exacerbates or mitigates this phenomenon in BML remains unclear. The objective
of this 7—year was to characterize the identity and function of the sulfur oxidizing
bacteria (SOB) and determine SOB risks to oxygen consumption in BML. The
study revealed a persistent community of SOB that collectively encoded the
genes involved in the primary sulfur oxidation pathways (Sox, rDSR, and S4l).
The majority of SOB in BML have been previously identified as heterotrophs,
allowing for metabolic flexibility depending on geochemical conditions that
varied seasonally. The relative abundance of SOB genera comprising this
community shifted as a result of the alum addition and has yet to stabilize
over time. Simultaneous consumption of thiosulfate and nitrate was observed
in the summer hypolimnion of BML post-alum, consistent with anaerobic sulfur
oxidation. Furthermore, the anoxic zone occupied the largest portion of the
hypolimnion when anaerobic sulfur oxidation was limited, suggesting it had a
mitigating effect on anoxic zone expansion through removal of reduced sulfur
species via nitrate driven sulfur oxidation by SOB. Constraining biological impacts
to oxygen consumption in this pilot OSPL will be key to managing the growing
tailings inventory of the AOSR as another ~23 OSPLs are proposed pending the
outcome of BML.

KEYWORDS

sulfur oxidizing bacteria, oil sands tailings reclamation, anoxia, oil sands pit lake, SOB
pathways

1 Introduction

Currently there are over 1.2 billion m> of fluid fine tailings (FFT) that require
reclamation in the Athabasca Oil Sands Region (AOSR) (CEC, 2020). FFT, a waste product
of oil extraction, consists of oil sands processing water, residual bitumen, and a solids
(sand and clay) content ranging from 2 to 30% (Lalonde et al.,, 2020). One proposed
FFT reclamation strategy is water capped tailings technology (WCTT) for which FFT are
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deposited in mined out pits, and capped with water columns
for long-term consolidation, establishing mine-closure landscapes
known as oil sands pit lakes (OSPL; CAPP, 2021). The viability of
WCTT as an effective reclamation method for oil sands tailings
is being examined in the first pilot scale OSPL in the AOSR, Base
Mine Lake (BML). Commissioned in 2012, BML has a surface area
of ~800 hectares and began with an 8 m water cap covering a 45m
deep layer of FFT which has since consolidated resulting in an
average water cap depth of approximately ~12 m (2021).

A metric for OSPL reclamation success is the establishment
of habitats that can support native aquatic and terrestrial fauna
(CAPP, 2021), for which an oxic zone must persist in the water cap.
In early stage development of BML (2015-2016), the oxidation of
reduced compounds (e.g., CHs, NH,") mobilizing from the FFT
into the water cap was identified to impair summer BML water
cap dissolved oxygen (DO) levels in the hypolimnion; however
this impact was offset by metalimnetic oxygen inputs, maintaining
hypolimnetic DO albeit at low concentrations (<10uM at the
FFT-Water interface [FWI]; Arriaga et al., 2019; Risacher et al,
2018). In September of 2016, a whole lake alum (aluminum
sulfate) addition aimed at the removal of suspended solids
was done thereby improving water clarity, light penetration,
and photosynthesis, consequently increasing surface DO levels.
However, a post-alum increase in algal biomass also resulted in
greater aerobic heterotrophy, exacerbating oxygen consumption,
resulting in ~2 m of anoxia in the hypolimnion during late summer
stratification (Jessen et al., 2022). This significant transition point in
BML development enabled anaerobic microbial activity, especially
sulfide generation via dissimilatory sulfate reduction, within the
BML water cap during the late summer anoxic episodes post-alum
addition (Jessen et al., 2022), which can rapidly consume oxygen
abiotically or through microbial activity. The detection of diverse
reduced S species such as sulfide (¥H,S, <15pM), thiosulfate
(<178 wM), and sulfite (<193 wM) in the BML water column post-
alum addition (Yan et al., 2022), indicates possible activity of sulfur
oxidizing bacteria (SOB) impairing DO conditions in BML.

Current studies have identified three primary sulfur oxidation
pathways used by SOB (1) the sulfur oxidation (Sox) pathway
including the complete sox (cSox) and incomplete Sox (iSox)
variations, (2) reverse dissimilatory sulfite reductase (rDSR)
pathway, and the Kelly-Trudinger (S4I) pathways (Whaley-Martin
et al., 2023). The cSox pathway is distinguished by the presence
of the complete Sox complex including soxCD resulting in the
complete oxidation of both sulfur atoms in thiosulfate to sulfate
(Friedrich et al., 2001). The iSox pathway lacks soxCD, which
prevents the complete oxidation of thiosulfate through the Sox
complex. In organisms with the iSox pathway, the unoxidized
sulfane sulfur atom may be transferred to a sulfur globule (S°)
where persulfides may be removed to cross the cell membrane
and participate in other pathways (Frigaard and Dahl, 2008; Meyer
et al, 2007). Often paired with the iSox pathway is the rDSR
pathway. The rDSR pathway is the reverse reaction that is used by
sulfur reducers and typically oxidizes sulfide and elemental sulfur
through several genes including dsrAB, generating sulfite that can
be subsequently oxidized by genes such as aprAB and sat (Kappler
and Dahl, 2001; Loy et al., 2009; Meyer and Kuever, 2007). The S4I
pathway is known for producing and consuming tetrathionate as
an intermediate (Hutt et al., 2017). Some common genes involved
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are tsdA, and doxDA (tqo) both of which oxidize thiosulfate to
tetrathionate (Brito et al., 2015; Kanao, 2024). Less common is tetH,
which disproportionates tetrathionate into sulfate, thiosulfate, and
elemental sulfur (Meulenberg et al., 1993; Watanabe et al., 2019).
Further, SOB that possess only partial or single genes associated
with sulfur oxidation have also been noted to oxidize sulfur. For
example, SOB possessing soxCD but lacking many of the other
critical genes associated with the sox pathway including soxB, have
been observed to oxidize elemental sulfur to thiosulfate and sulfate
(Lahme et al., 2020).

The BML water cap SOB community structure and sulfur
oxidation pathways, important for water cap O, persistence, have
yet to be elucidated. Thus, the objectives of this study were to
investigate the composition, metabolic potential, and physico-
geochemical driving factors of the endemic SOB community
in BML and how these were related to physicochemical and
geochemical characteristics over annual, seasonal, and spatial
scales across a 7-year time frame (2015-2021) that bracketed
the whole lake alum addition (September 2016). Clarifying the
impact of SOB on the water cap DO concentrations of BML will
be key to determining the long-term success of the WCTT for
FFT reclamation.

2 Methods
2.1 Site description

BML is located on the Mildred Lake mine in the AOSR
(57.011553, —111.622203), and in 2021 consisted of approximately
40 m of tailings beneath a 12 m water cap. Tailings deposition halted
in 2012, and oil sands processing water (OSPW) as well as fresh
water from a nearby reservoir (Beaver Creek Reservoir) was added
to create a water cap 8 m deep. Due to FFT consolidation the water
cap maximum depth has increased to 13 m in 2021. The lake is
dimictic with summer and winter thermal stratification. Ice usually
begins to form on the surface in November and lasts until April.
After spring turnover (April-June), the lake thermally stratifies
with peak stratification usually occurring in mid-late August, and
fall turnover, typically occurring in late August to early September
(Tedford et al., 2019). There are continuous inputs of water from
Beaver Creek Reservoir to account for evaporation and to maintain
a constant elevation 308 m above sea level (Syncrude Canada Ltd,
2021). Three sampling platforms (P1, P2, and P3) exist on BML
(Figure 1) from which samples are taken.

2.2 Sample collection and physicochemical
characterization

Between 2015-2021, 32 sampling campaigns were carried
out during which 200 depth dependent samples were collected
for geochemical and 16S rRNA analysis (Figure 1). During most
sampling campaigns, samples were collected from several depths
from the surface to the FFT-water interface (FWI) at P1 (156
samples) with the addition of other sites including P2 (30 samples),
P3 (9 samples), D17 (4 samples), E16 (4 samples), and SP (1 sample)
in 2015 and 2019-2021 (Figure 1B).
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(A) Aerial view of Base Mine Lake with sampling points marked. Image obtained from Google Earth Pro Version (2021). (B) Summary of 16S rRNA
samples collected over the course of the study. Colors represent the sampling location marked on panel a, while the number indicates the number
of depths collected that month. * indicates samples were shipped to the University of Toronto before subsampling and analysis.

Physicochemical characterization and sample collection
followed established protocols in Risacher et al. (2018) and
Whaley-Martin et al. (2020). Dissolved oxygen (DO), temperature
(°C), and pH were determined using a YSI ProDSS multiprobe
approximately every 0.5m from the water cap surface to the
FWI. Sampling depths representing varied physicochemical
conditions were then collected using a Van Dorn water sampler
(WaterMark, Forestry Suppliers Inc.; Wildco Beta Plus, Wildlife
Supply Company ®). The DO probe used was accurate to % 0.1
mg/L and calibrated to both 100% and 0% DO saturation prior
to use. Water samples for [Total S], [SOif], [SO?], [Szogf],
[ZH,S], [NO5 ], [NO; ], and [Total organic carbon] were taken
directly on the boat. Water samples for 16S were transferred to
polyethylene bags that were previously rinsed with 70% ethanol
before being triple rinsed with sample water before filling. The bag
was immediately sealed such that there was no headspace and then
placed in a clean 20 L container for transport back to the onsite
laboratory. Due to COVID restrictions, from August 2020 to July
of 2021, bulk water samples were collected in bags as described
above and shipped to the University of Toronto for subsampling.

2.3 Geochemical analyses

The sampling and measurement of [ X'H,S], [SOif], [Szogf],
[sog—], [Total S] followed detailed protocols described in Whaley-
Martin et al. (2020) and Yan et al. (2022). Briefly, [ZH,S] was
measured immediately according to the USEPA Standard Method:
4500-S2-D (Methylene Blue Method, Hach Method 8131) using
a Hach DRI1900 spectrophotometer. The detection limit (DL)
was determined to be 40 ug/L and 10 ug/L was subtracted from
every sample to account for the water color of BML following
(Yan et al., 2022). Samples for anions including SOif, NO3, and
NO, were collected, filtered, and preserved according to protocols
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outlined in Arriaga et al. (2019) and Yan et al. (2022). Briefly
the samples were centrifuged and 0.45uM filtered using Pall
Acrodisc® PES syringe filters (2015-2016; Arriaga et al 2019) or
0.2 wM filtered (2017-2021) using aPES filters (Thermo scientific™
Nalgene™ Rapid-Flow™, 2017-2019; Pall Acrodisc®, 2019-2021;
Yan et al, 2022) before being stored at 4 °C until analysis.
[SOif] was measured using a Hach DR1900 spectrophotometer
following USEPA method 375.4 (2015-2019) or using an ion
chromatography (IC) system (Dionex ICS-6000 Capillary HPIC™,
Thermo Scientific™) following USEPA method 300.0 and 300.1
(2019-2021) according to Yan et al. (2022). Similarly, from 2015
to 2019 [NOj3 ] and [NO, ] were analyzed using a Hach DR1900
spectrophotometer following Hach method 8171 (NO;) and
USEPA method 354.1 (NO; ). From 2019 to 2021, [NO;] and
[NO3 ] were analyzed using Dionex ICS-6000 Capillary HPIC™
(Thermo Scientific™) following USEPA method 300 and 300.1. As
described in Yan et al. (2022), all anions were chromatographically
separated by a Dionex IonPac™ AS18-Fast anion exchange column
(7.5m, 4 x 150 mm, Thermo Scientific™) and quantified based
on calibration curves derived from commercial IC stock standard
(Inorganic Ventures, USA).

For 52057 and SO? analysis, unfiltered water samples
were monobromobimane derivatized on the boat according to
protocols described by Rethmeier et al. (1997) and Whaley-Martin
et al. (2019), before being stored at —20 °C until analysis. The
[52027] and [SO?] were determined using a Prominence HPLC-
Florescence system (Shimadzu, Japan) following protocols in Yan
et al. (2022). The detection limit for both SZO? and SO? was
5uM (Yan et al.,, 2022). Dissolved total sulfur samples (0.45pum
filtered) were preserved in 0.2% HNO3 and stored at 4 °C until
analysis. As described in Yan et al. (2022) samples were analyzed
using inductively coupled plasma atomic emission spectroscopy
(ICP-AES, Vairan730 ES, Varian Inc.; 2015-2019) or inductively

coupled plasma optical emission spectroscopy (ICP-OES, iCAP™
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7000 Series, Thermo Scientific™; 2019-2021). The detection limit
was found to be 0.1 mg/L. Total S concentrations in conjunction
with sulfate concentrations, were used to determine reactive sulfur
(Sreact; Whaley-Martin et al., 2020), which was calculated by
subtracting [SO?;] from [Total S]. This gives a measure of all
sulfur atoms regardless of speciation that are oxidizable. Sreact
values were calculated for 156 samples from 2015-2021. Samples
taken for total organic carbon (TOC) and dissolved organic carbon
(DOC) were collected in acid washed and pre-combusted (450
°C, 8h) glass vials and stored at —20 °C until analysis at the
University of Toronto as described in Whaley-Martin et al. (2023).
Samples for dissolved organic carbon (DOC) were syringe filtered
through a Pall Acrodisc® 25 mm 0.45 wm Supor® membrane filter
using a polypropylene syringe and analysis for total carbon and
inorganic carbon was carried out on a Shimadzu TOC-L. TOC
and DOC values were determined by subtracting the concentration
of inorganic carbon from the concentration of total carbon for
unfiltered and 0.45 pm filtered samples respectively.

2.4 DNA extraction

Approximately 0.5-3L of sample water was filtered using
0.2pum or 0.1 um aPES filters (Thermo Scientific™ Nalgene™
Rapid-Flow™ sterile vacuum filter units) until the filter was
clogged. The filters were then excised and stored at 20 °C or —80
°C until DNA extraction using a QTAGEN DNeasy PowerWater
Kit according to their protocols. The extracted DNA was then sent
to the McMaster DNA Sequencing Facility (Hamilton, Ontario,
Canada) and Genome Quebec (Montreal, Quebec, Canada) for
further analysis.

2.5 Amplicon analysis of the 16S rRNA gene

Aliquots of purified DNA were used to amplify the V4 region
of the 16S rRNA gene by PCR using Illumina adapted primers
(Bartram et al., 2011). Primers 515 F (Parada) and 806 R (Apprill)
were used to target both bacterial and archaeal DNA. PCR was
performed using 50 ng of the template and the PCR mix containing
1U of recombinant Taq DNA Polymerase (InvitrogenTM), 1x buffer,
1.5 mmol/L MgCl2, 0.4 mg/mL BSA, 0.2 mmol/L dNTPs, and 5
pM of each primer. The reaction was carried out at 98 °C for
5min, 35 cycles (98 °C) for 30s, then 30s at 50 °C and 30s 72
°C, with a final extension of 72 °C for 10min. PCR products
were checked by electrophoresis. All amplicons were normalized
using the SequalPrep normalization kit (ThermoFisher#A1051001)
and sequenced using the Illumina MiSeq platform. Raw sequences
were filtered and trimmed with a minimum quality score of 30
and a minimum read length of 100 bp using Cutadapt (Martin,
2011). DNA sequence reads were filtered and trimmed based on
the quality of the reads for each Illumina run separately, error rates
were learned, and sequence variants were determined by DADA2
version 1.6.0 (Callahan et al., 2016). Bimeras were removed and the
SILVA taxanomic database version 138.1 (Quast et al., 2013) was
used to assign taxonomy using on 16S rRNA sequences.
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2.6 Metagenomic analysis

Extracted DNA samples were sent to the McMaster University
Farncombe Genome Facility (Hamilton, Canada) and Genome
Quebec (Montreal, Canada) for metagenomic sequencing. Sample
extracts were dried and resuspended in 25 pwL of water before
construction of libraries and sequencing by Illumina HiSeq 1,500
with paired-end 150 bp sequencing following protocols in Whaley-
Martin et al. (2023). Bioinformatic analyses was completed at
the Center for Advanced Research in Environmental Genomics,
University of Ottawa (Ottawa, Canada) according to the protocols
outlined in Zhang R. et al. (2023) and Yan et al. (2025). Briefly raw
paired-end reads were filtered using fastp (v 0.23.1; Chen, 2023)
before being assessed for quality in FastQC (v 0.11.0; Andrews,
2010). DNA reads from each sample were then assembled using
MetaSPAdes (v 3.15.5, default k-mer parameters; Nurk et al,
2017). MEGAHIT (v 1.2.9; Li et al., 2015) was used to carry out
co-assembly of metagenomic short reads. Co-assembled contigs
were trimmed using Anvi'o (v7.1; Eren et al, 2021) with any
less than <2000 kb discarded. BAM files were created by aligning
metagenomic short reads to the co-assemblies via BWA-MEM (v
0.7.17; Li, 2013) and SAMtools (v 1.17; Danecek et al., 2021). The
binning of raw BAM files was done using the following tools:
MetaBAT 2 (v 2.15; Kang et al.,, 2019), MaxBin 2 (v 2.2.7; Wu
etal, 2014), CONCOCT (v 1.10; Alneberg et al., 2014) and VAMB
(v 4.1.1; Nissen et al., 2021). Bins were evaluated for quality by
CheckM2 (v 1.0.2; Chklovski et al., 2023) with the highest quality
bins from each co-assembly chosen by DAS-Tool (v 1.1.6; Sieber
et al, 2018). Bins that were selected by DAS-Tool and passed
the CheckM2 filtering were then used as Metagenome Assembled
Genomes (MAGs). The Genome taxonomy database (GTDB
release 214; Parks et al., 2021) was used to assign MAG taxonomy
via GTDB-Tk (v 2.3.0; Chaumeil et al., 2022). The protein coding
genes from assemblies were determined using Prodigal (v 2.6.3;
Hyatt et al., 2010). For annotation of gene function, representatives
of the functional guilds within contigs were retrieved using Hidden
Markov Models (HMMs) from various databases using HMMER (v
3.3.1; http://hmmer.org/)

2.7 Statistical analyses

Welch’s ¢ tests and redundancy analyses (RDA) were carried out
using R version 3.6.0 with the Vegan package version 2.6-4 being
used for the latter. The significance level used for the Welch’s ¢ tests
was 0.05. Values that were below detection limit were treated as zero
for all statistical analyses.

2.8 Sulfur oxidizing bacterial enrichments

Sample water for enrichments were placed in sterile 90-150 mL
containers with no headspace and stored at 4 °C until enrichments
were started. Enrichments were carried out using neutrophilic
sulfur oxidizing media (NSOM). The NSOM consisted of 90 mL
of 1.1% (w/v) KHPOy4, 90 mL of 0.44% (w/v) NH4Cl, 90 mL of
0.11% (w/v) MgSOy4, 720 mL of tap water, and 2.2mL of a trace
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metal solution (~73 g/L EDTA, 13 g/L NaOH, 7.4 g/L ZnSO4
7H,0, 7.4 g/L CaCly, 3.7 g/L MnCl, 6H,0, 0.7 g/L CoCl, 6H,0,
0.7 g/L ammonium molybdate, 7.4 g/L FeSO4 7H,0, 0.3 g/L
CuSO4 5H,0). Added to the NSOM was sodium thiosulfate and
potassium tetrathionate to reach a final concentration of 31.6 mM
thiosulfate and 16.5 mM tetrathionate in the media. Once the media
was complete, it was filter sterilized using Thermo ScientificTM
NalgeneTM Rapid-FlowTM sterile single use vacuum filter units
either 0.2pum or 0.1 pm aPES filter membranes, before being
stored at 4 °C until use. Elemental sulfur was also added to
the enrichments however, due to its low solubility, the elemental
sulfur was weighed directly into the previously acid washed and
autoclaved Erlenmeyer flasks before being autoclaved 3 times at
~110 °C, for a minimum of 30 min each, to sterilize it. Elemental
sulfur was added to the flasks to reach a concentration of 62.4 mM
in the enrichment, however due to low solubility the concentration
of dissolved elemental sulfur was lower. Sample water from BML
and NSOM were added to enrichment flasks in a 1:1 ratio to
create the 1° enrichment. Enrichments were then stored in the
dark at room temperature. The pH of the enrichment was regularly
measured using a sterilized bench top pH probe inside of a
biological safety cabinet. Once the pH of the 1° enrichment
decreased to less than pH 5, a new enrichment (2° enrichment)
was made by adding fresh NSOM and the previous enrichment
in a ratio of 2:1, to a new Erlenmeyer flask that had previously
been prepared with elemental sulfur. The new enrichment was then
adjusted to pH 7 % 0.05, using optima HCI and NaOH. The pH of
the 2° enrichment was then monitored in the same way and once
the pH dropped below 5, the above process was repeated to create
a 3° enrichment. Once the 3° enrichment dropped below pH 5 the
enrichment was ended, and the communities preserved at —80 °C.
At the end of each 3° enrichment samples were taken for 16S rRNA
analysis according to the same protocols as used for field samples
except a smaller volume (12-13 mL) was filtered.

3 Results and discussion

3.1 Identity and function of the SOB
community

16S rRNA relative abundance data were analyzed for 200 BML
samples collected over a 7-year period, from 2015 to 2021. A
total of 14,712,302 high quality reads from the V4 region of
the 16S rRNA gene were acquired from the 200 samples. Each
sample averaged 73,562 reads with a minimum of 132 reads and
a maximum of 407,830 reads. These were analyzed as amplicon
sequence variants (ASVs) rather than operational taxonomic units
(OTUs), to increase precision and comparability with other studies
(Callahan et al., 2017, 2019; Caruso et al, 2019). Using co-
assembled metagenome assembled genome (MAG) data from 45
P1 samples spanning multiple depths to seasons from 2015 to
2020, 17 MAGs, belonging to 9 genera, were investigated for their
sulfur oxidation potential. Nine additional SOB genera without
corresponding MAG data were metabolically classified based on
existing literature (Figure 2; Beller et al., 2006; Geelhoed et al., 2010;
Handley et al., 2014; Li et al., 2019; Meyer et al., 2007; Mufimann
etal., 2007; Petushkova et al., 2024; Rudenko et al., 2020; Veith et al.,
2012; Watanabe et al., 2014; Whaley-Martin et al., 2023). Combined

Frontiers in Microbiology

10.3389/fmicb.2025.1662147

16S rRNA data and MAG results revealed the SOB community of
BML was collectively capable of multiple sulfur oxidation pathways,
including the cSox, iSox, rDSR and S4I pathways (Figure 2). MAGs
reconstructed for Sulfurimonas spp. did not possess a complete set
of genes for any one of the above pathways, instead containing
s0xCD exclusively, and thus potentially only capable of oxidizing
elemental sulfur to thiosulfate and sulfate (Figure 2). Research on
published genomes has found this to be a common occurrence
within the genus Sulfurimonas (Lahme et al., 2020).

The SOB genera found to occur in BML have been observed
in oil contexts in previous studies as well as freshwater,
marine, soil/sediment, wastewater, and metal mining environments
highlighting their broad ecological relevance and habitat range
(Alegado et al., 2013; Arce-Rodriguez et al., 2019; Baker and
Banfield, 2003; Biderre-Petit et al., 2011; Golby et al., 2012; Grote
et al.,, 2007; Haosagul et al., 2020; Hubert et al., 2012; Jiao et al,,
2018; Jin et al,, 2017; Kojima et al., 2014; Lee et al., 2012; Liu et al,,
2009; Luo et al., 2018; Matsunaga et al., 1991; Mcilroy et al., 2016;
Nedashkovskaya et al., 2004; Postec et al., 2015; Qu and Yuan, 2008;
Revathy et al., 2016; Rochman, 2016; Salam et al., 2023; Schleifer
etal., 1991; Sethuraman et al., 2022; Stasik et al., 2021; Van den Ende
and Van Gemerden, 1993; Van Trappen et al., 2004; Whaley-Martin
et al., 2023; Young et al,, 2009). While individually these SOB
are not exclusive to BML, to the best of our knowledge no other
study has reported the occurrence of all these SOB in one context,
suggesting BML has a unique and complex SOB community.

Many SOB have demonstrated heterotrophic growth and
according to existing literature, instances of non-sulfur energy
metabolisms, most commonly heterotrophic, have been reported
for at least 16 of the 18 SOB genera identified in BML waters
(Asao et al., 2007; Fan et al., 2023; Geelhoed et al., 2010; Giide
et al., 1981; Hahn et al., 2010; Han et al., 2017; Han and Perner,
2015; Harrison et al., 1980; Hubert et al., 2012; Jeon et al., 2004;
Kodama and Watanabe, 2004; Kojima and Fukui, 2011; Lefévre
et al,, 2012; Li and Zhou, 2015; Meijer et al., 1990; Oshkin et al.,
2016; Petushkova et al., 2024; Prescott et al., 2002; Sethuraman
etal., 2022; Zeng et al., 2013). Possession of both heterotrophic and
autotrophic metabolisms, often referred to as mixotrophy, has been
previously observed in bacteria, including SOB (Mubarok et al.,
2017; Sun et al., 2019). Previous research has identified mixotrophs
abundantly grow in environments such as groundwater and boreal
lakes, due to their ability to satisfy carbon requirements using
both inorganic and organic carbon which gives them increased
resistance to changes in labile organic carbon (Heinze et al,
2023; Taubert et al., 2021). Therefore, while there is the potential
for these genera to be heterotrophic, the presence of sulfur
metabolic capabilities and especially the presence of the entire
genetic machinery required to carry out all three primary sulfur
oxidation pathways across these SOB (Figure 2) suggests there may
be dynamic biogeochemical windows where sulfur oxidation is
occurring in BML.

3.2 Trends in SOB abundance through time
and depth

From 2015 to 2021 the total relative abundance of
SOB in BML reached as high as 29% and averaged 6.7%

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1662147
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Arrey et al.

10.3389/fmicb.2025.1662147

Complete Sox Pathway
Incomplete Sox Pathway

efaaasAA4

FIGURE 2

BML Metagenomic Data

W Methylovulum
Sediminibacterium
M Frigidibacter

Sulfurimonas
Hydrogenophaga
M Polarmonas

Algoriphagus
B Polynucleobacter
B Sandarakinorhabdus

S0 —SOXCD S,0,% +5S0,*
O

S, pathway

Arrm A
1k TetH

25,0, —— 5406 ———— 5°+5,0,% +50,%
TtrB*

d ,
Periplasm

. Cytoplasm

DoxD 2
25,0, — > S,0¢

——SoxZY-SH
5,05%
SoxAX
[T
AAAAAAAA
SoxZY-S-S-SOy AANNAAAAAA
OOOOOEE
) 5042'4— SoxB
A -
SoxZY-S-S ~SoxCD” SoxZY-S-SO4
|
AA‘AA
AAAAA Ao CAARA
Dsr AprBA-I| Sat
R-S-S 5 HSO; APS SO,>
sHdr AprBA-I|
HdrAACB
rDSR Pathway

Literature Data

A Thiovirga Xanthobacter Halothiobacillus
Sulfuritalea Beggiatoa A Magnetospirillum
A Thiobacillus A Thiocapsa A Sulfuricurvum

Sulfur oxidation genes possessed by SOB in BML based on metagenomic and literature data (Adapted from Whaley-Martin et al.,, 2023). *denotes
genes shown are part of a complex and not solely responsible for the associated reaction.

(Supplementary Figure 1). Therefore, while there was consistent
presence of SOB, the overall relative abundance was smaller than
mining environments where SOB have previously been studied
(Liu, F. Y. L. et al., 2025; Liu et al., 2025; Twible et al., 2024;
Whaley-Martin et al.,, 2023). The presence of SOB with varying
metabolic pathways during summer stratification periods (July and
August), varied year to year and with oxygen concentration. SOB
possessing the first step of the S41 pathway (tsdA or doxD; Figures 2,
3) were present every year and were generally the most abundant
genera occurring in more oxygenated (DO > 100 M) surface
waters (Figure 3). Thiobacillus spp. which have been reported
to possess the iSox and rDSR pathway, were more sporadic in
abundance but were still observed across years and a range of
oxygen concentrations. Thiobacillus spp. were also the only SOB
examined in the study that have been reported to be capable of
catalyzing the second step of the S4I pathway (tetH; Reaction
(e), Supplementary Table 1). Here, cSox genera (soxAXYZBCD;
Figures 2, 3) were present at most oxygen concentrations in the
BML water cap until 2021 when they were only present at very
low abundance above 100 WM oxygen. iSox and rDSR genera
(soxAXYZB, dsrAB; Figures2, 3) were most abundant during
the transition year and decreased in abundance during the post
alum years. They were most abundant in the lower oxygen zones
(DO < 100 wM) and tended to decrease in abundance as oxygen
concentration increased (Figure 3). While Sulfurimonas spp. was
one of the most abundant SOB pre- alum addition (2015-2016)
and during the transition period (2017) in the lower oxygen waters
(DO < 100 pM), its abundance decreased post-alum. This suggests
that in addition to varying with oxygen concentrations, SOB
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communities were further influenced by biogeochemical changes
associated with the alum addition that resulted in post-alum
summer hypolimnetic anoxia.

As shown in Supplementary Figure 2, typically one SOB
genus was the most abundant member for each pathway
over the sampling period. Algoriphagus spp., Sulfuritalea spp.,
and Methylovulum spp. were consistently the most abundant
members of the S4I, rDSR, and iSox pathways respectively, while
both Hydrogenophaga spp. and Polynucleobacter spp. were the
dominant members of the cSox pathway (Supplementary Figure 2).
Interestingly, while Hydrogenophaga spp. were prominent cSox
SOB in all zones, Polynucleobacter spp. were only abundant in the
higher oxygen zones (>10 uM DO) of BML after 2015. Similarly,
Hydrogenophaga spp. were a prominent member of the S4I pathway
however, only in the low oxygen zones (<10 puM DO) in BML, with
the exception of 2017.

The two genera identified as capable of only autotrophic
sulfur oxidation metabolism, Thiovirga and Halothiobacillus, were
generally not dominant members of their respective pathways
with Thiovirga never comprising more than 25% of cSox SOB
abundance, and Halothiobacillus only comprising greater than 25%
of the cSox and S4I pathways in the 10-100 uM O, zones in July
and August of 2016 and 2018. There does not seem to be any
discernable pattern in the changing abundance of these strictly
autotrophic SOB however their overall abundance decreased over
time, and both were absent or present at less than 0.1% of the overall
community in July and August of 2019 and 2021. This suggests that
post alum, the high carbon conditions of BML may be selecting for
SOB capable of heterotrophy rather than strictly autotrophic SOB.
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Consistent with the notion that biogeochemical changes
occurred in BML associated with the alum addition in September
2016, three SOB community clusters were identified using UPGMA
hierarchical clustering on average SOB community abundance
determined for P1 epilimnetic, metalimnetic, and hypolimnetic
regions during July and August for 2015-2019, and 2021
(Figure 4A). Cluster b.1 consisted entirely of post-alum addition
metalimnetic and hypolimnetic SOB communities (exception, July
2015 hypolimnion). The b.1 cluster was characterized by a higher
abundance of Methylovulum spp. with inconsistent presence of
other SOB (Figure 4B). Cluster b.2 consisted of all the epilimnetic
communities over the sampling period, as well as the July 2019
metalimnetic and hypolimnetic communities. This cluster was
characterized by a high abundance of Algoriphagus spp. and
diminished abundance of other common SOB. Finally, cluster
b.3 was comprised of pre-alum metalimnetic and hypolimnetic
communities with two exceptions: the August 2015 epilimnetic
community and the August 2019 hypolimnetic community. This
cluster was characterized by high abundances of Sulfuritalea
spp. and Sulfurimonas spp. with consistent presence of other
SOB. These clusters indicate shifts in the BML SOB community
occurred surrounding the alum addition. The clear distinction
of the SOB communities specifically in the pre-alum and post-
alum metalimnetic and hypolimnetic samples further indicates the
largest impact occurred in the deeper waters (Figure 4) associated
with the emergence of the hypolimnetic anoxic zone and altered
biogeochemical cycling post-alum. This is reinforced by the single
cluster of epilimnetic SOB communities across the entire pre—
transition —post-alum time series. While the pre-alum epilimnetic
samples are grouped together, they are monophyletic with the
epilimnetic samples of other years, suggesting the alum had
a smaller impact on the SOB community composition in the
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epilimnion where oxygen was consistently present at the highest
observed concentrations.

3.3 Physicochemical conditions impacting
SOB abundance and function

In addition to the metabolic repertoire of SOB and trends in
their abundance, physicochemical and geochemical characteristics
in BML also indicated ephemeral conditions conducive to active
sulfur oxidation occurring in the water cap at certain times.
While BML is not limited by total carbon, based on observed
concentrations, much of the existing carbon is recalcitrant and not
easily degraded by biological oxidation (Siddique and Kuznetsova,
2020) indicating high labile carbon substrates may be limiting in
this system. Immediately following the alum addition, increased
photic zone depth led to more primary production and the
possibility of seasonal variation in labile organic carbon associated
with algal growth, thereby impacting conditions for heterotrophic
and autotrophic growth (Jessen et al., 2022). During the transition
from spring turnover to summer stratification, settling of FFT
particles mobilized throughout the water cap due to mixing (Yan
et al., 2022) increased light penetration leading to greater primary
production and higher concentrations of labile organic carbon. As
summer progressed, this autochthonous biomass would facilitate
the growth of heterotrophs, increase consumption of carbon, and
lead to lower labile carbon conditions by late summer. This is
evidenced by the significant decrease in TOC seen from May to
August of 2018 and 2019 (p < 0.05, Figure 5C). This trend is likely
reinforced by the resuspension of particulate organic matter during
the spring turnover event, followed by their gradual settling. The
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FIGURE 4
(A) UPGMA clustering of the average percent relative abundance of the SOB community for each thermal zone in July and August of 2015-2019 and
2021 at P1. (B) Bubble plot for the average percent relative abundance of the SOB community for each thermal zone in July and August of
2015-2019 and 2021 at P1.

lower labile carbon availability of late summer would reduce the
competitive advantage of heterotrophic growth, and allow for more
autotrophic growth in the water cap. This seasonal change in labile
carbon content would favor SOB capable of heterotrophic growth
during periods of high carbon, that could switch to autotrophic
sulfur oxidation when organic carbon becomes limiting. Research
has identified in some organisms the sox operon is induced via the
presence of thiosulfate (Pyne et al., 2018). Therefore, there is the
potential for thiosulfate to be oxidized regardless of labile organic
carbon concentration and subsequently become the primary energy
source when labile organic carbon is limiting.

Prior to the alum addition (2015-2016), oxygen was persistent
to the FWI, as concentrations of oxygen consuming constituents
(OCC, e.g., sulfide, methane, ammonia) mobilizing from the FFT
into the water cap were not sufficient to result in anoxia. Previous
studies have shown the stimulation of autochthonously produced
biomass, post-alum, increased oxygen consumption associated with
its subsequent decomposition that tipped the BML system into late
summer hypolimnetic anoxia, observed for the first time in 2017
(alum addition in September 2016; Jessen et al., 2022; Yan et al.,
2022). This anoxic zone grew larger in 2018 and recurred in the late
summer of each year in this study (Figure 5A, B). A lack of oxygen
in the bottom waters would restrict the depth at which aerobic
heterotrophs could grow, favoring bacteria that have the capability
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to use other electron acceptors such as nitrate in the lowest waters.
Another effect of this anoxic zone was expansion of SRB into the
water cap and the subsequent detection of SRB-generated sulfide
in the anoxic zone every year since 2017 (Figure 5D; Jessen et al,,
2022). Additional sulfur species have also been regularly detected
throughout the water cap including thiosulfate (Yan et al,, 2022), a
common substrate for the primary sulfur oxidation pathways, i.e.,
cSox, iSox, rDSR, and S4I (Figure 5D).

The use of alternative electron acceptors by SOB genera
found in BML has also been observed previously. Nitrate use
as an electron acceptor for thiosulfate oxidation has been
observed in incubations inoculated with BML tailings directly
demonstrating the anaerobic sulfur oxidation capabilities of BML
SOB (Stasik et al., 2021). In other systems, SOB genera such as
Sulfuricurvum, Sulfurimonas, Thiobacillus, and Sulfuritalea have
also been observed to use nitrate to oxidize sulfur species including
thiosulfate, elemental sulfur, and sulfide (Aminuddin and Nicholas,
1973; Biderre-Petit et al.,, 2011; Kojima and Fukui, 2011). The
use of several other electron acceptors such as nitrite, ferric
iron, and arsenate by the SOB genera observed in BML has also
been documented (Aminuddin and Nicholas, 1973; Brock and
Gustafson, 1976; Watanabe et al., 2017). These studies collectively
suggest there is widespread potential for the anaerobic oxidation
of sulfur using alternative electron acceptors under late summer
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BML water cap biogeochemical conditions of anoxia, lower carbon
substrate availability, and micromolar concentrations of a variety of
possible sulfur substrates.

Redundancy analysis (RDA) and stepwise selection of 11
environmental variables impacting the SOB community revealed
DO, temperature, [NO, ], [NO;] and [SO?{] were significant
variables explaining SOB community variation with 39.4% of the
variance explained in the first two axes (Figure 6). Interestingly,
no specific sulfur-based electron donors were determined to be
significant in explaining SOB variation and further investigation
revealed no trend between SOB abundance and [SO?], [Szogf],
or [YH,S]. This finding is in contrast to previous studies of
metal mine tailings impoundments (TIs) which have found sulfur
species such as thiosulfate to be a major factor impacting the
endemic, autotrophic SOB communities (Liu et al., 2025; Twible
et al., 2024). All epilimnetic samples clustered together, divergent
from the metalimnetic and hypolimnetic samples that are separated
into pre-alum and post-alum clusters, providing insights into
the physicochemical and geochemical factors influencing BML
SOB communities (Figure 6). The divergence of sample clusters
is mostly driven by the presence of e acceptors, [NO; |, [NO3]
and DO, reflecting the shift of e~ acceptors during summer bottom
water anoxia post alum (Figure 6).

[SOif] varied over years in BML due to both operational
changes and biogeochemical cycling. The concentration of sulfate
in July and August of 2016 was 1.58 & 0.18 mM, before increasing
significantly in 2017 to 1.89 + 0.10mM (p < 0.001). [SOif]
then decreased to pre-alum levels in 2018 (1.53 £ 0.07 mM)
and remained relatively stable until 2021 when the concentration
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decreased to 1.43 + 0.03mM. Elevated sulfate concentrations
in 2017 were likely due to the September 2016 addition of a
large quantity of aluminum sulfate (XAI(SO4), 12H,0O, where
X is a monovalent cation) to the BML water cap. While SRB
have been detected in the water cap since 2017, the average
(Sreact) in 2021 was the highest since 2016, suggesting that a
combination of increasing SRB activity and/or decreasing SOB
activity led to the accumulation of reactive sulfur (Jessen et al,
2022; Yan et al., 2024; Supplementary Figure 3). Nitrate and nitrite
concentrations were also affected by the alum addition. Prior to
the alum addition nitrate concentrations were relatively consistent
across summer thermal zones, averaging a concentration of 29.4
+ 17.5puM (Table Supplementary 2), which was followed by a
mean 2017 summer water cap nitrate concentration of 41.9 +
22.2pM (Supplementary Table 2) during the transition year. In
July and August of 2018 nitrate concentrations were below the
limit of detection throughout the entire water cap, whereas in
2019 and 2021 the concentration of nitrate was stable through
depth (54.9 £ 5.3 uM, average of epilimnion and metalimnion;
Supplementary Table 2) until the hypolimnion at which point the
concentration fell to below the limit of detection. The depth
dependent trends of nitrate and oxygen concentrations observed in
post-alum years (2018, 2019, and 2021) were consistent with its use
as an electron acceptor in anoxic or microoxic zones. Nitrate would
be used by anaerobic heterotrophs which has been widely reported
(Wang et al., 2014; Xi et al., 2022) as well as by anaerobic SOB for
sulfur oxidation, when suitable carbon sources become limiting to
heterotrophy. The highest average summer water cap concentration
of nitrite (5.0 & 2.7 wM; Supplementary Table 2) occurred in 2016,
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Redundancy Analysis (RDA) of BML P1 SOB community relative abundance, physicochemical data (temperature [°C], dissolved oxygen percent
[DO%]), and geochemical data (INO5 1, INO3 1, and [SO%’]) in July and August of 2016-2019 and 2021 with the top 8 most significant SOB genera

and subsequently decreased each year, falling below detection from
2019 onwards. The decrease in nitrite concentrations in years
post-alum corresponds with the observed gradual decrease in
SOB abundance (Figure 3A). This suggests that nitrite may be an
important electron acceptor for SOB, as has been observed in other
SOB communities (Oberoi et al., 2021; Wang et al., 2021), without
which both SOB abundance and activity decreased.

3.4 Diversity of BML SOB and the whole
microbial community

The average Shannon diversity index (H') values of the total
BML community (1.2 to 6.7) significantly decreased between 2016
(44 £ 0.2) and 2017 (4.1 £ 0.4, p < 0.01) immediately after
the alum addition (September 2016; Figure 7A) and decreased
again between the two latest years in this study, 2020 (3.9
+ 0.6) and 2021 (24 = 0.9, p < 0.01) to a minimum that
was significantly different from every other year (p < 0.01).
In contrast to the total microbial community, the Shannon H
diversity of the SOB community showed greater annual variability,
significantly increasing from 2015 to 2017, and then decreasing
in the following years (Figure 7B). Consistent with differential
environmental influences shaping the SOB community relative to
the whole BML community, only a minor relationship occurred
between the whole community Shannon diversity and SOB
community Shannon diversity indices (R* = 0.34; Figure 7C).
When compared to various literature samples, the Shannon
diversity of the whole community for BML fell in the range of
a previously studied flooded petroleum reservoir (H = 1.6-4.9,
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Supplementary Figure 4). BML samples that had the highest
diversity were similar to values observed for Lake Shihou (H =
3.9-5.0), however it is more common for lakes to have higher
diversity values (H = 5.5-8.9, Supplementary Figure 4) than those
observed here. The lowest diversity values observed in BML (2021)
was more similar to that reported for a base metal mine TT H =
1.4-4.9, Supplementary Figure 4) indicating potential progression
of decreasing BML bacterial diversity levels to resemble more niche
environments. The highest Shannon diversity value in BML was 6.7
(Figure 7A) and was recorded in July 2019 at SP, which is a shallow
littoral sampling site (~1.4m) in the southeast corner of the lake
(Figure 1A). Samples taken in May of 2019 at E16, a slightly deeper
littoral site (~3.1 m; Figure 1A), also showed higher diversity values
(average H =5.1) compared to pelagic samples taken in May of
2019 (average H = 4.3). Consistent with their littoral nature, these
sites occurring in the epilimnetic and photic region of the lake were
consistently lighted and oxygenated during the summer months,
resulting in higher productivity and bacterial cycling of organic
carbon and nutrients.

3.5 Changes in prevalence of microbial
sulfur oxidation pathways

In 2017 and 2018, meta and hypolimnetic SOB abundance was
higher in July than in August, with comparable abundances in
the epilimnion of both months (Figure 8; Supplementary Figure 5).
The highest abundance of genera possessing the cSox pathway was
in the hypolimnion of July 2018, followed by the metalimnion
of August 2018. As the majority of the hypolimnion became

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1662147
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Arrey et al.

10.3389/fmicb.2025.1662147

A
3.5
7 .
6 —
i 5 1 3
< 4 ? e + e + ——
€ 3 . 25
«© -
5 2 . T
f=4
! g 2
0 =
———{®2015 #2016 #2017 #2018 w2019 m2020 m2021 |—— 21 5
* % 'AI 8 Y,
3.5 * 1 *k 1 °
3 I 1 I | — | * K % .
I2. L
B ’
§ 2 - —— 05
S1.5 : - .
&1 C
7] : 0
B 0.5 0 2 4 6 8
0 - . Whole Community Shannon H’
FIGURE 7
Box and whisker plots comparing the 2015-2021 annual (A) Shannon diversity index (H') values for the total BML microbial community and (B)
Shannon diversity index (H') of the BML SOB community. (C) Scatter plot of Shannon diversity index (H') values for the whole microbial community
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anoxic in August of 2018, the migration of cSox up into the
metalimnion suggests a reliance on oxygen to carry out their
metabolism. During this time, Halothiobacillus was the most
abundant cSox SOB, and the propensity for Halothiobacillus to
oxidize thiosulfate under more oxic conditions has also been
noted in base metal mine TTs (Whaley-Martin et al., 2023). While
the decrease in oxygen impacted hypolimnion SOB communities,
metalimnion SOB relative abundance also decreased between July
and August despite the constant presence of oxygen. This decrease
in abundance may be due to the decrease in labile organic carbon
and the switch to autotrophic sulfur oxidation which typically
generates less energy than heterotrophy. Additionally, the restricted
pool of reduced sulfur substrates may also be a limiting factor
for SOB growth in July and August, furthering the decrease in
abundance when they are more reliant on autotrophic sulfur
oxidation. In 2019 and 2021 there is low abundance of SOB in July
and therefore a much smaller difference in abundance from July
to August (Figure 8). Overall, the larger abundances of iSox, S4l,
and rDSR SOB, compared to cSox SOB, allows for the generation
and recycling of SOI in BML rather than more well-constrained
complete oxidation of thiosulfate to sulfate. This likely aids in the
persistence of SOB during periods of reduced labile organic carbon
and preserves S substrate for both SOB and SRB growth.

3.6 Evidence of seasonal conditions
causing ephemeral switches in sob from
heterotrophy to autotrophic sulfur
oxidation

Evidence of sulfur oxidation was observed in the hypolimnion
of July and August in years post-alum addition. Both nitrate and
thiosulfate concentrations decreased in the hypolimnion from July
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to August of every year, except for 2018, consistent with SOB
thiosulfate oxidation coupled to nitrate reduction (Figure 9). In
2018 nitrate was undetectable in the water column, coincident
with an increase in thiosulfate in the hypolimnion. This suggests
thiosulfate was not being consumed by SRB and nitrate was
key to the consumption of thiosulfate. The ratio of nitrate and
thiosulfate losses between July and August were higher than those
calculated for nitrate to nitrogen gas dependent oxidation of
thiosulfate, indicating more nitrate was being consumed than could
be accounted for by thiosulfate oxidation coupled to complete
denitrification alone (Equation 1, Supplementary Figure 6).

8NO; + 5803 + H,0 = 4N, +10S0;” +2HT (1)

4NO; + $05” + H,O = 4NO, +2803 +2H"  (2)

While nitrate may be reduced further to ammonia rather
than nitrogen gas, this would yield more electrons, lowering the
theoretical ratios of nitrate and thiosulfate consumed even further
from those observed in BML (Supplementary Figure 7). However,
it is common for bacteria to lack the complete set of genes
required for the reduction of nitrate to nitrogen gas, leading to
the formation of several intermediate nitrogen species (Graf et al.,
2014; Lycus et al., 2017; Roco et al., 2017; Zhang 1. H. et al., 2023).
Conversion of nitrate to nitrite, nitric oxide, and nitrous oxide
would all yield higher ratios of nitrate consumed per thiosulfate,
through the cSox pathway (Equation 2, Supplementary Figure 7).
While observed ratios of nitrate to thiosulfate consumed in
BML suggested incomplete denitrification, this ratio increased
over time and exceeded all theoretical values in 2021. These
observed comparative changes in the concentrations ratios of these
two compounds suggest increasing heterotrophic competition for
nitrate with SOB, potentially limiting the ability of SOB to use this
metabolism and explaining their diminishing abundance over time.
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FIGURE 8
Sulfur oxidizing pathways occurring (>0.1%) in BML in the P1 metalimnion and hypolimnion for July and August for 2015-2019, and 2021. Estimated
abundance of the pathway (>0.1%) corresponds with the thickness of the arrow and was calculated based on the sum of the average 16S rRNA
abundance of SOB genera that possessed each pathway based on metagenomic data and existing literature (Figure 2).

This may reflect more rapid anoxic zone establishment leading to
simultaneous anoxia and labile organic carbon, whereas previously
it was likely labile carbon was limiting in the anoxic zone allowing
for increased growth of SOB.

In addition to data from BML, enrichments using BML
water and sulfur oxidation media were observed as growing
SOB that have been previously observed as being capable
of heterotrophy, further demonstrating their ability to oxidize
sulfur (Supplementary Figure 8). As there is the potential for
simultaneous activity of several different sulfur oxidation pathways,
we cannot identify the exact pathways being used at BML,
however the results of previous studies suggest complete thiosulfate
oxidation to sulfate is likely occurring (Stasik et al, 2021).
In 2018 when anaerobic sulfur oxidation would have been
greatly reduced associated with undetectable nitrate concentrations
(Supplementary Table 2), the anoxic zone occupied the largest
percent of the hypolimnion over the time series (Figure 5B).
These results suggest anaerobic SOB potentially mitigate sulfur
oxidation risks to BML oxygen levels through their pre-emptive
removal of these reduced sulfur compounds in the lower suboxic-
anoxic waters.

Collectively these results reveal an interactive carbon-sulfur
biogeochemical cascade was triggered by the alum addition
which is dynamically reflected in SOB community changes and
oxygen concentrations in BML. The alum addition increased water
clarity, enabling greater algal biomass production, which in turn,
supported greater aerobic heterotrophic degradation in the water
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column (Figure 10). SOB genera capable of heterotrophy were
likely to be participating in heterotrophy while labile carbon
was plentiful. As the summer progressed, the decomposition
of labile organic matter along with cycling of OCC mobilizing
from the FFT, consumed more oxygen than could be replenished
from the upper waters (Arriaga et al, 2019), leading to the
formation of an anoxic zone expanding from the FWI. This
then allowed for the migration of SRB from the FFT into the
water cap where sulfate was more plentiful, and sulfide was
generated directly in the water cap. The on-going consumption
of labile organic carbon led to lower concentrations, which
when paired with increasing suboxic-anoxic conditions made
the bottom waters unsuitable for aerobic heterotrophy. These
conditions created a specific biogeochemical window in which it
was advantageous for BML SOB to switch to anaerobic sulfur
oxidation as evidenced by the simultaneous consumption of
nitrate and thiosulfate in the July-August hypolimnetic waters
post-alum addition. The anaerobic oxidation performed by
SOB would then mitigate the oxygen consumption potential of
reduced sulfur species generated in the water column. There
is also the possibility of micro-aerophilic SOB occupying the
micro-oxic waters just above the anoxic zone where autotrophy
may still be favored. In this case, the added consumption of
oxygen by SOB would further increase the expansion of the
anoxic zone (Figure 10). Therefore, determining the electron
acceptor use of SOB will be critical to managing oxygen risks
in BML.
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FIGURE 9

Mean delta observed in post-alum P1 hypolimnetic nitrate and thiosulfate concentrations between July and August (2017-2019, 2021). [NOz1 in
2018 was below the limit of detection and precluded calculation of A[NOz] for that year.
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FIGURE 10

Schematic of the interaction between physico/geochemistry and the transition from predominantly heterotrophic to sulfur oxidation processes in
BML being carried out by SOB in May compared to late summer (July and August).
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4 Conclusion

After an alum amendment in 2016, the bottom waters of
BML became anoxic during peak summer stratification from
2017 to 2021 as a result of the physical and biogeochemical
processes occurring in the lake. While the potential for SOB in
BML to consume oxygen has been explored, the intricacies of
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the community has yet to be fully understood. In this study, we
revealed a dynamic coalition of SOB communities with potential
for heterotrophic or autotrophic activity depending on the oxygen
and carbon conditions. Based on both literature and MAG data,
SOB in BML were found to dynamically possess the genetic
machinery associated with all three primary sulfur oxidation
pathways (Sox, rDSR, S4I), all of which have different implications
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for oxygen consumption in BML. Specifically, Algoriphagus spp.,
Sulfuritalea spp., and Methylovulum spp., were found to the most
abundant genera possessing the S4I, rDSR and iSox pathways
respectively. While abundance of cSox was consistently low
Hydrogenophaga spp., and Polynucleobacter spp., were the most
dominant cSox SOB in BML. Previous literature identified the
majority of BML SOB to be capable to heterotrophy, allowing
for mixotrophic metabolism, where sulfur oxidation was used
under certain conditions. Consumption of thiosulfate and nitrate
suggests transient microbial anaerobic sulfur oxidation occurred
specifically in the post-alum late summer hypolimnion driven by
carbon limitation and anoxia that potentially mitigated the further
expansion of the anoxic zone. Given the on-going changes observed
in BML biogeochemical cycling, post commissioning in 2013,
further work is needed to monitor the continued development of
SOB in this system and understand their possible implications for
oxygen consumption in this pilot pit lake that is being assessed as a
reclamation strategy for FFT in AOSR.
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