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enteritis in black sea bream
(Acanthopagrus schlegelii) by
enhancing intestinal immunity
and modulating gut microbiota
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Aeromonas hydrophila-induced enteritis presents a significant challenge to the
intensive aquaculture of black sea bream (Acanthopagrus schlegelii). Studies
have shown that probiotic supplementation provides a promising alternative
to conventional antibiotic applications for disease prevention in aquaculture.
In this study, we investigated the protective effects of dietary supplementation
with Bacillus velezensis NDB on the growth, immunity, and intestinal microbiota
of black sea bream against A. hydrophila-induced intestinal damage. A total
of one hundred and eight black sea bream fingerlings (initial body weight of
9.44 + 0.03g) were randomly assigned to three groups (total of nine tanks,
twelve fish per tank): a control group (CON, normal diet), an infected group
(AH, normal diet for 28 days followed by A. hydrophila infection at 1.0 x 107
CFU/mL), and a probiotic-treated group (AH+NDB, diet supplemented with 1.43
x 108 CFU/g B. velezensis NDB for 28 days, followed by A. hydrophila infection
at 1.0 x 107 CFU/mL). The results showed that the weight gain rate in the
AH+NDB group was 139.44 + 48.61%, which was significantly higher than that
inthe CN (126.81 + 43.48%) and AH (132.48 + 63.54%) groups. The pathological
symptoms of black sea bream induced by A. hydrophila, including gill and
abdominal hemorrhage, villus deformation, and inflammatory infiltration, were
alleviated in the AH-+NDB group. Histological and biochemical analyses showed
the dietary supplementation of B. velezensis NDB enhanced antioxidant enzyme
activities (SOD and CAT) and reduced lipid peroxidation (MDA) in the AH+NDB
group. Compared to the AH group, the AH+NDB group exhibited significantly
upregulated expression levels of anti-inflammatory markers (il10 and tgf-8), and
significantly downregulated levels of pro-inflammatory cytokines (il, tnf-«, and
ifng). Moreover, dietary supplementation with B. velezensis NDB increased the
abundance of beneficial genera (e.g., Bacillus and Ruegeria), and decreased the
abundance of opportunistic pathogenic genera (e.g., Aeromonas and Vibrio),
thus enhancing the carbohydrate/amino acid biosynthesis and promoting the
nucleoside and nucleotide biosynthesis to alleviate A. hydrophila-induced
enteritis. Collectively, the study demonstrated that dietary supplementation with
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B. velezensis NDB can effectively promote growth performance and enhances
immune function in black sea bream, thereby providing significant benefits for

fish culture.
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black sea bream, Aeromonas hydrophila, enteritis, Bacillus velezensisNDB, immune
modulation, intestinal health

1 Introduction

Black sea bream (Acanthopagrus schlegelii) is widely distributed
in the warm waters of the Northwest Pacific, particularly along
the Chinese coastline. Its economic value and suitability for
aquaculture have gained increasing attention in Southeast Asia
(Ullah et al., 2022). The black sea bream is considered highly
suitable for intensive farming and coastal breeding due to its
hardy nature and relatively fast growth rate (Sagada et al., 2021).
However, high-density habitats in aquaculture facilities increase
physical proximity and fish stress, thereby facilitating the spread
of bacterial diseases (Pan et al, 2023). Among these, bacterial
enteritis is a leading cause of mortality in farmed fish species (Ofek
et al., 2023). Aeromonas hydrophila is one of the most prevalent
opportunistic pathogens in freshwater, marine, and estuarine
environments, posing a significant threat to intensive aquaculture
of marine fish (Abdella et al., 2024). The fish intestine serves as a
primary interface between the host and its aquatic environment,
harboring a diverse microbial community that plays a crucial
role in host health (Li J. et al., 2019). Therefore, A. hydrophila
infection can cause severe intestinal lesions and inflammation,
leading to significant mortality and economic loss in aquaculture
(Chen et al., 2024). Previous research has demonstrated that A.
hydrophila mainly suppresses beneficial gut microbiota through
direct toxin secretion, or indirectly induces microbial dysbiosis by
triggering host immune responses, ultimately leading to intestinal
damage and inflammation in fish (Liang et al., 2022). Notably,
microbial ecological imbalance is closely related to the onset
of enteritis, manifested as loss of appetite and slow growth,
which may progress to fatal consequences in severe cases (Wang
et al., 2023a). Furthermore, A. hydrophila infection has been
demonstrated to significantly disrupt gut microbial communities,
leading to an increased relative abundance of genera such as
Serratia, Candida arthromitus, and Faecalibacterium (Pan et al.,
2023). Recently, investigating and developing probiotic-based
strategies to enhance immune function in black sea bream have
received increasing attention.

Maintaining fish health serves as a fundamental prerequisite
for ensuring sustainable development in both the fisheries and
aquaculture industry. In recent years, numerous studies have
shown that probiotic supplementation can provide promising
alternatives to antibiotics in aquaculture and are crucial for the
healthy development of fish production (Gao et al., 2024; Leong
et al, 2023). Further researches indicate that these beneficial
microorganisms in aquaculture animals not only improve their
digestive enzyme activities, stimulate their host immune responses,
and enhance their intestinal health, but also modulate their gut
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microbiota, thereby protecting them from pathogens (Kharwar
et al, 2022; Xia et al, 2024). Among them, spore-forming
Bacillus species have been widely recognized superior probiotic
feed additives in aquaculture, owing to their numerous health
benefits (Du et al, 2021; Liaqgat et al, 2024). For example,
dietary supplementation with Bacillus strains has been shown
to improve disease resistance in red sea bream (Jang et al,
2023), and enhance growth performance and survival rates of
(Herjayanto et al, 2021). B. pumilus has also been reported
to reduce disease incidence in black sea bream by enhancing
resistance to bacterial pathogens (Ramesh et al., 2015). Moreover,
B. velezensis has been demonstrated to be one of the most widely
recognized probiotic strains in aquaculture, primarily attributed
to its potent antimicrobial characteristics (Chen et al.,, 2021; Li
7. et al, 2019). Li et al. (2023) reported that B. velezensis LB-
Y-1 increased the abundance of beneficial bacterial genera, such
as Parasutterella and Rikenellaceae, and decreased the abundance
of pathogenic bacteria Escherichia-Shigella, indicating its potential
application as a direct-fed microbial supplement or starter culture
in fermentation. Furthermore, B. velezensis has demonstrated
significant antimicrobial activity and growth-promoting effects
across various aquaculture species, including hybrid grouper
(Epinephelus lanceolatus & x E. fuscoguttatusQ) (LiJ. et al., 2019),
golden carp (Carassius auratus) (Yi et al, 2018), Nile tilapia
(Oreochromis niloticus) (Zhang et al., 2019) and L. vannamei
(Wang et al., 2021). Currently, research on the probiotic effects of
dietary B. velezensis supplementation on black sea bream remains
relatively scarce.

Our previous study demonstrated that B. velezensis NDB, a
probiotic strain isolated and characterized from Xiangshan Harbor
seawater, suggested antimicrobial activity against 12 pathogenic
bacteria (including A. hydrophila) as revealed by whole genome
sequencing analysis (Wang Z. et al, 2024). In the present
study, we explored the effects of dietary supplementation with
B. velezensis NDB on growth performance, intestinal mucosal
integrity, inflammatory gene expression, and gut microbiota
composition in black sea bream challenged with A. hydrophila
(Figure 1). This study potentially provides a valuable insight into
the application of B. velezensis NDB as a functional feed additive in
black sea bream aquaculture.

2 Materials and methods
2.1 Preparation of bacterial strain
A probiotic strain, Bacillus velezensis NDB, previously isolated

from seawater in Xiangshan Harbor (Wang Z. et al,, 2024). The
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Acanthopagrus schlegelii (black sea bream)

Adaptive feeding for two weeks
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Experimental design of feeding and infection trials with black sea bream (Acanthopagrus schlegelii). After acclimation, black sea bream were
randomly divided into three groups (n = 12). Fish in the CON group were fed the control diet, while those in the AH+NDB group were fed the

B. velezensis NDB-supplemented diet (1.43 x 10° CFU/q) for 28 days. On day 28, fish in the AH and AH-+NDB groups were intrarectally injected with
100 pL of A. hydrophila (1 x 107 CFU/mL), while the CON group received 100 L of sterile saline. Samples were collected five days post-challenge
for physiological and histological analysis. Note: During the two-week acclimation, all fish were fed with the commercial control diet.

Gut microbiota
s« Structural changes

~<Functional analysis

*<KEGG annotation

... Association analysis with
““inflammatory markers

strain was cultured on Luria-Bertani (LB) agar plates at 37 °C for
24h. Single colonies were subsequently inoculated into LB broth
and incubated at 37 °C for 14 h. A. hydrophila was cultured at 28
°C for 14 h and harvested by centrifugation at 5000 rpm for 10 min.
The bacterial pellets were resuspended in phosphate-buffered saline
(PBS) and serially diluted to achieve final concentrations of 1.43
x 108 CFU/g for B. velezensis NDB and 1.0 x 107 CFU/mL for
A. hydrophila. The probiotic suspension is uniformly sprayed onto
the surface of commercial feed pellets at a ratio of 10% (v/w),
then air-dried at 30 °C for 2h. Once the feed surface is dry, it
can be fed, ensuring that the probiotics are evenly attached to
the feed.
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2.2 Fish preparation and aquacultural
experiment

A total of 108 black sea bream fingerlings (9.44 £ 0.03 g
body weight) were obtained from Xiangshan Port Aquaculture
Co., Ltd., and reared at the Ningbo University Aquaculture Pilot
Base. For acclimatization, the experimental fish were randomly
allocated in nine 100 L fiber-reinforced tanks (n = 12 fish/tank) in
a closed water system at 24.5 °C with continued aeration, 12:12h
photoperiod, and water pH = 8 for two weeks. Fish were fed
daily with a commercial diet (Zhejiang Qiangpu Biotechnology
Co., LTD.) of 3mm diameter containing contains 45.0% crude
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protein and 10.5% crude fat. Once the two-week acclimation period
elapsed, each tank containing 12 fish was randomly assigned into
one of the three experimental groups: the control (CON) group, the
black sea bream challenged with A. hydrophila (AH) group, and the
dietary supplementation of B. velezensis NDB for black sea bream
infected by A. hydrophila (AH + NDB) group. Black sea bream
were obtained from Xiangshan Harbor Aquatic Species Co., LTD.,
and the feed was procured from Zhejiang Qiangpu Biotechnology
Co., LTD. acclimation at the Ningbo University aquaculture facility,
fish were randomly allocated into three groups (n = 12 per group):
control (CON) group, the black sea bream challenged with A.
hydrophila-challenged (AH), and A. hydrophila-challenged with
dietary B. velezensis NDB supplementation (AH + NDB). Fish in
the CON and AH groups were fed normal diets, while fish in the
AH + NDB group were fed 1.43 x 103 CFU/g of B. velezensis
NDB (Monzon-Atienza et al., 2022), administered manually twice
daily (09:00 and 17:00). The feeding rate was initially set at 2% of
body weight and adjusted daily based on intake. Throughout the
4-week experimental period, the seawater temperature (24.5 & 0.2
°C) and dissolved oxygen (9.6 & 0.3 mg/L) were maintained using
automated monitoring systems. Water quality parameters were
rigorously controlled as follows: pH 7.8-8.2 (daily measurement
with HANNA HI98107 pen-type pH meter), salinity 30-32 ppt
(daily monitoring using ATAGO handheld refractometer), total
ammonia nitrogen (TAN) < 0.05 mg/L (measured twice weekly
using HACH ammonia test kit), and nitrite nitrogen (NO, -N)
< 0.02 mg/L (measured twice weekly using the HACH nitrite test
kit). All parameters are maintained within the optimal range for
black sea bream growth.

2.3 Assessment of growth parameters of
black sea bream

After 28 days of feeding, the total number and weight of black
sea bream in each fish tank were recorded to calculate survival
rate, Weight Gain Rate (WGR), Specific Growth Rate (SGR),
Hepatosomatic Index (HSI), Viscerosomatic Index (VSI), and
Condition Factor (CF), using the formulas described previously
(Saravanan et al., 2021):

WGR = (W — Wy)/Wpx 100%
SGR = (InW — InW)/tx 100%
HSI = W},/Wx 100%

VSI = W, /Wx 100%

CF = W/L>x 100%

SR = N/Nx 100%

Note: Wy = initial average weight of black sea bream; W
= final average weight of black sea bream; N = initial number
of black sea bream; N; = final number of black sea bream;
t (d) = test days; L (cm) = body length of each fish; Wy
(g) = liver weight of each fish; Wy (g) = visceral weight of
each fish.
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2.4 Pathogen challenge test and sample
collection

One day before the bacterial challenge, thirty six fish were
placed in 100 L aerated plastic tanks and fasted to reduce intestinal
fecal content. Fish were anesthetized by bath immersion with 60
mg/L MS-222 (Sigma, E10521-10G) for 5 min before challenge. The
fish were immersed in the anesthetic solution until they lost balance
(approximately 3-5min), and rectal injection was performed by
inserting the needle approximately 3 cm into the anus. Preliminary
experiments determined that an A. hydrophila concentration of 1 x
107 CFU/mL would cause approximately 50% mortality (Pan et al.,
2023). Fish in the AH and AH+NDB groups received 100 pL of
the bacterial suspension, while the CON group was administered
100 pL of sterile saline. After injection, fish were held inverted for
2-3 min to prevent leakage.

At 5 days post-infection, six fish were randomly sampled
from each group (for serum, tissue, molecular, and microbiological
analyses). Blood samples were collected from the caudal vein
and centrifuged at 3000 rpm for 15min at room temperature.
Serum was stored at —80 °C for further analysis (Kong et al,
2017). Assay kits for Superoxide Dismutase (SOD), catalase (CAT),
malondialdehyde (MDA), and gastric protease were obtained from
Jiancheng Bioengineering Institute (Nanjing, China). TransZol Up,
TransScript All-in-One First Strand cDNA Synthesis Kit, DEPC-
treated water, SuperMix for QPCR (One Step gDNA Removal), and
TransStart Green qPCR SuperMix were purchased from Beijing
Quanshijin Biotechnology Co., Ltd.

2.5 Histological analysis

Intestinal  tissues  exhibiting  significant  pathological

lesions were retrieved from—80 °C storage and fixed in 4%
paraformaldehyde. Samples were then embedded in paraffin,
dewaxed, and stained with

Hematoxylin and Eosin (HE). The sections were examined

sectioned at 4um thickness,

and photographed using an Olympus BX51 light microscope at x
100 and x 400 magnification. Tissue damage was independently
assessed via double-blind scoring by two experienced pathologists.
The severity of colonic histological injury was assessed using
a scoring system, which was quantitatively evaluated three
parameters: inflammation severity (graded 0-3 with 3 as
the maximum score), crypt damage (graded 0-5 with 5 as the
maximum score), and ulceration extent (graded 0-3 with 3 as the
maximum score) as previously described (Wang et al., 2022). All
experiments were performed with six replicates.

2.6 Liver sample for immunological
measurement

Liver tissue samples were prepared as a 10% homogenate, and
the supernatant was collected by centrifugation at 4000 rpm for
10 min at 4 °C. The supernatant was aliquoted into centrifuge tubes
for subsequent measurements. The activities of SOD, CAT, MDA,
and gastric protease were analyzed. These biochemical indices were
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measured using a commercial kit from Jiancheng Bioengineering
Institute of Nanjing.

2.7 RNA isolation and quantitative real-time
PCR (gRT-PCR) analysis

Total RNA was extracted from black seabream intestinal tissue
by the TransZol Up reagent kit. The quality and quantity of RNA
were determined by agarose gel electrophoresis and NanoDrop
2000 spectrophotometry (Vastech Inc., China). Prior to cDNA
synthesis, genomic DNA was removed from total RNA using the
FastQuant RT Kit with gDNase (Takara), followed by synthesis
of complementary DNA (cDNA). Take 1 pg of total RNA, add 4
L of 5 x TransScript All-in One SuperMix for qPCR and 1 pL
of gDNA Remover, and dilute with RNase-free water to a total
volume of 20 pL. Mix well, incubate at 42 °C for 15 min, and finally
inactivate the TransScript RT/RI and DNA Remover reagents by
heating at 85 °C for 5s. The synthesized cDNA is diluted to 30
ng/pL and can be used as an RT-PCR template. The Rotor-Gene
6000 is used to amplify the target gene and internal control gene
from the cDNA, and a standard curve is created using B-actin as
the internal control gene to ensure that the target gene and internal
control gene have similar amplification efficiencies. After validating
the standard curve, the reaction system consists of 2 pL cDNA
template, 0.8 pL forward primer (10 wM), 0.8 pL reverse primer
(I0pM), 10 pL SYBR Premix Ex TaqTM III, and ddH,0 to a
total volume of 20 L. The reaction programme was as follows:
95 °C pre-denaturation for 10 min, 95 °C denaturation for 10s,
55 °C annealing for 10s, 72 °C extension for 20, 40 cycles, and
a final extension for 10 min. Each plate included a No-Template
Control (NTC) to rule out reagent contamination. The Ct values
were automatically calculated by the detector using the standard
curve, and relative quantitative analysis was performed using the
27AACt method. PCR primers were designed using NCBI Primer
BLAST based on the NCBI database and synthesized by Shanghai

TABLE 1 Sequences of the primers used for gPCR analysis.

10.3389/fmicb.2025.1660494

Sangon Biotechnology Co., Ltd. Primer sequences are summarized
in Table 1.

2.8 Intestinal DNA extraction and 16S rRNA
gene sequencing

The PowerFecal® DNA Isolation Kit (MoBio Laboratories,
Carlsbad, CA, United States) was employed to extract DNA
from intestinal samples, in accordance with the manufacturer’s
instructions, with six samples selected from each group. Extraction
negative controls were included to monitor for potential
contamination. The quantities and qualities of the extracted
DNA were verified through a NanoDrop 2000 (ThermoFisher,
Wilmington, DE, United States) and gel electrophoresis. The
V3-V4 region of bacterial 16S rRNA gene was amplified by
PCR using the primers of ~20 ng with the following primer
order: forward primers: 5/-ACTCCTACGGGAGGCAGCA-3/;
5 -GGACTACHVGGGTWTCTAAT-3  (Pan
et al, 2021). The PCR negative controls (no-template controls)

reverse primers:

were also included in the amplification step. The high-throughput
sequencing was performed by the Shanghai Personal Biotechnology
Co., Ltd. (Shanghai, China) on an Illumina platform (Illumina,
San Diego, CA, US) with a PE250 strategy in accordance with the
previously described method (Wang et al, 2020). After quality
filtering and denoising using the DADA2 plugin in QIIME2
(version 2022.11), an average of 50,000 high-quality reads per
sample were retained for downstream analysis. To minimize batch
effects, samples were randomized across sequencing lanes during
library preparation and sequencing.

2.9 Bioinformatics and statistical analysis

Microbiome bioinformatics analysis was conducted using
QIIME2 (version 2022.11), following the official tutorials. Before
analysis, the raw sequence data underwent demultiplexing, quality
filtering, denoising, merging, and chimera removal using the

Item Forward primer (5’ to 3/) Reverse primer (5" to 3/)
tfa GACACCTCACACCTCTCAGCC GCAAACACACCGAAGAAGGTC
il1 AGAATCAAGGAGGGAGACAGGA GTAGAGGAAGACAGAGACCAA
ils CCGCTGCATCCAAACAGAGAG ATCACTTTCTTCACCCAGGGAGC
il10 CCGAGACTTCTACGAAGCAAAC CTGGATGGACTGCATGTGAGG
ifng CATGGGTGGCATTTTGGACA CAGCTCCTGGACCTTCTTCA
mydss AGCCGTACCCAGAACCAG CGGAGCACGAAGTAAACG

IkB-o GTGAGGTGGAAGGGAGTG AACAGCGTAATGGTCGTG

tof-B TGTCTCCCCTACCCGCCGTCATC ACCTCGCCTCCCGCTTCATCACT
claudin7 ACTGTTGGGGTTTTTCCTGTCTC GTGATGATGTTGTCCCCGATGTA
nfkb TGAATTACCCCAACAGCATCG TTGGGTGTCCTGACACAAACC
B-actin ACAGTGCCCATCTATGAAGGCT GGCTGTGGTGGTGAAGGAGTAG

B-actin, reference gene; tnf-, tumor necrosis factor alpha; ill, interleukin 1; il8, interleukin 8; il10, interleukin 10; ifng, interferon gamma; myd88, MYD88 innate immune signal transduction

adaptor; Ik B-a, inhibitor of NF-kB alpha; tgf-B, transforming growth factor beta; claudin7, Claudin-7 (tight junction protein); nfkb, nuclear factor kappa .
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DADA2 plugin to generate Amplicon Sequence Variants (ASVs).
Taxonomic classification of ASVs was performed using the SILVA
138 database. Prior to downstream alpha and beta diversity
analyses, all samples were rarefied to an even depth of 30,000
sequences per sample to account for uneven sequencing effort.
Mothur version 1.36.0 was employed to analyze alpha diversity,
utilizing the observed species index, Chaol index, Shannon index,
and Simpson index. Principal Coordinate Analysis (PCoA) based
on weighted UniFrac distances was executed to assess beta diversity.
Finally, the RDP Classifier software was utilized to annotate
species and analyze community changes in the processed sequences
(Gao et al,, 2022). Linear discriminant analysis effect size (LEfSe)
was analyzed using the R statistical package (v3.1.1). Spearman
correlation analysis was conducted using the R psych and pheatmap
packages (v3.1.1). Functional prediction of the gut microbiota for
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Metabolic
Pathways From all Domains of Life (MetaCyc) pathways was
performed using the Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2) software.

2.10 Statistical analysis

All experimental data are presented as mean =+ standard
deviation (SD). The normality of data distribution was assessed
using the Shapiro-Wilk test, and the homogeneity of variances was
verified using Levene’s test. Data conforming to normal distribution
were analyzed by one-way analysis of variance (ANOVA) followed
by Tukey’s post hoc test, while the data that did not conform to a
normal distribution were analyzed using the Mann-Whitney test.
All statistical analyses were performed using SPSS software (version
26.0) and GraphPad Prism (version 9.0). A value of p < 0.05
indicates statistically significant differences.

3 Results

3.1 Growth performance and physiological
indicators of black sea bream

Injecting 100 pL of 1 x 107 CFU/mL of A. hydrophila solution
or an equivalent volume of physiological saline was administered
via anal injection into black sea bream. Mild inflammation in the
anal region was observed in both the CON and AH+NDB groups
on day one post-injection (Figure 2A), which largely subsided by
the second day. In contrast, fish in the AH group exhibited marked
symptoms including lethargy, reduced swimming activity, and
petechial hemorrhages at the fin bases. Additionally, hemorrhagic
lesions were evident in the gills, skin, and abdominal areas,
accompanied by pronounced abdominal distension (Figure 2B).
Upon dissection, ascitic fluid accumulation and varying degrees of
hemorrhage in the skin and intestines were noted, with histological
signs of tissue deformation and necrosis (Figure 2E). The intestinal
morphology in the CON and AH+NDB groups, by contrast,
showed no significant lesions (Figures 2D, F). Cumulative mortality
rates at the end of the challenge period (5 days) were 0% in the CON
group (0 of 36 fish), 18.52% in the AH group (2 of 36 fish), and
5.56% in the AH+NDB group (1 of 36 fish). Mortality commenced
on day two post-infection, reaching 18.52%, indicative of typical
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A. hydrophila-induced pathology. In contrast, the AH+NDB group
exhibited only mild anal inflammation, with no significant lesions
observed elsewhere (Figure 2C). Growth performance parameters
of black sea bream are summarized in Table 2. Unexpectedly, no
significant differences were detected among groups in terms of
WGR, SGR, VSI, HSI, CF and SR (p > 0.05).

3.2 Pathological changes in intestinal tissue

Histopathological analysis was was conducted to assess
intestinal tissue damage induced by A. hydrophila infection. In
the CON group, no macroscopic signs of ulceration or congestion
were observed, and HE-stained sections showed normal intestinal
architecture with intact epithelium (Figures 3A-D). In contrast,
the AH group exhibited notable pathological changes, including
congestion, epithelial erosion, villus deformation with widened
interspaces, epithelial rupture and detachment, reduced goblet
cell numbers, and marked infiltration of inflammatory cells
(Figures 3B-E). In the AH+NDB group, intestinal morphology
was largely preserved, and characterized by intact epithelial lining,
abundant goblet cells, and minimal inflammatory cell infiltration
(Figures 3C-F). As shown in Figure 3G, dietary supplementation
with B. velezensis NDB significantly decreased histopathological
score as compared to the AH group (p < 0.05).

3.3 Changes in digestive enzyme activities
and liver antioxidant capacity

Dietary supplementation with B. velezensis NDB significantly
increased superoxide dismutase (SOD) activity (185.39 £ 3.52
U/mgprot) (Figure 4A) and catalase (CAT) activity (22.70 £ 2.21
U/mgprot) (p < 0.01) in the livers compared to that of the AH
group (Figure 4B). Compared with the CON group, the activity of
CAT in the liver of black sea bream infected with A. hydrophila
in the AH group was significantly decreased, and the content of
Malondialdehyde (MDA) was significantly increased (p < 0.05)
(Figure 4C). However, the MDA content of the AH+NDB group
was significantly lower than that of the AH group (4.71 £ 0.14
U/mgprot) (p < 0.001). Compared with the CON group, A.
hydrophila infection significantly decreased gastric pepsin activity
(5.540 £ 0.001 mgprot/mL) and intestinal pepsin activity (3.14
=+ 0.75 mgprot/mL) (p < 0.05) in the AH group (Figures 4D, E).
Compared with the AH group, dietary supplementation with B.
velezensis NDB significantly increased gastric pepsin activity (8.24
=+ 0.34 mgprot/mL) and intestinal gastric pepsin activity (5.2 & 2.0
mgprot/mL) (p < 0.05), the values of which nearly approach those
of the CON group.

3.4 Changes in inflammatory
pathway-related genes

As shown in Figures 5A-D, the intestinal mRNA expression
levels of ill, il8, ifng and tnf-a in the AH group were higher
than those of the CON group (p < 0.05). However, dietary
supplementation with B. velezensis NDB in the AH+NDB group
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FIGURE 2

Representative pictures of the effect of B. velezensis NDB on intestinal lesions in black sea bream. (A—C) Perianal inflammatory symptoms in the
CON, AH and AH+NDB groups. (D—F) Intestinal status in the CON, AH and AH+NDB groups.

TABLE 2 Physiological parameters of black sea bream in the CON, AH and
AH + NDB groups.

ltem CON AH AH + NDB p-value
WGR (%) | 126.81 £43.48 | 132.48 + 63.54 | 139.44 + 48.61 0.891
SGR (%) 3.20 +0.54 3.14 + 1.49 323+ 1.01 0.983
VSI (%) 10714211 | 10.70 + 2.60 10.91 + 1.31 0.972
HIS (%) 3.18 £ 0.60 321+ 116 3.13+0.57 0.969
CF (%) 1.53£0.33 1.57 £0.12 1.69 £ 0.17 0.421
SR (%) 9722 +4.81 | 9444 +4.81 97.22 4+ 4.81 0.654

CON, control group; AH, the black sea bream challenged with A. hydrophila group;
AH+NDB, A. hydrophila-challenged with dietary B. velezensis NDB supplementation
group. WGR, weight gain rate; SGR, specific growth rate; VSI, viscerosomatic index; HSI,
hepatosomatic index; CFE, condition factor; SR, survival rate. Values are presented as mean +
SD (n = 12). The p-value was obtained by one-way ANOVA. No significant differences were
found among groups for any parameters (p > 0.05).
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markedly downregulated the expression of pro-inflammatory
genes, including il1, il8, ifng and tnf-a as compared to the AH group
(p < 0.05). Furthermore, the gene expression levels associated
with the NF-kB signaling pathway (nfkb, myd88 and Ik B-) were
examined as depicted in Figures 5E-G. The AH group exhibited
significantly increased expression levels of nfkb, myd88 and Ik B-o
compared to the CON group (p < 0.01), whereas the levels of which
were significantly decreased in the AH+NDB group (p < 0.01).
In contrast, dietary supplementation with B. velezensis NDB in the
AH+NDB group markedly upregulated the expression of the anti-
inflammatory genes (il10 and tgf-f) and the tight junction gene
claudin7 as compared to the AH group (Figures 5H-]). Compared
with the CON group, the gene expression levels of il10, tgf-f and
claudin7 were decreased in the AH group (p < 0.01), whereas the
levels of which were significantly increased in the AH 4+ NDB group
(p <0.01).
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FIGURE 3

Photomicrographs of hematoxylin-eosin (HE) staining cross sections of the effect of B. velezensis NDB on histomorphological changes of intestinal
segments of fish infected with A. hydrophila. Pathological changes of the intestine in the (A—D) CON, (B—E) AH, and (C—F) AH-+NDB groups.
Histological analysis of fish intestine sections under different conditions using HE staining. Blue circles: mucosal layer, red circles: cup cells, green
arrows: inflammatory cells. (G) Histopathological score. Histopathological lesions in the intestine were scored on a scale of 0-3: 0 = no lesions; 1 =
mild lesions affecting <25% of the tissue; 2 = moderate lesions affecting 25-50%; 3 = severe lesions affecting >50% of the tissue. The data are
expressed as the means £ SD (n = 6). The symbol “*" indicates any group compared with the AH group. ***p < 0.001 by one-way ANOVA and Tukey's
post-hoc test.
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FIGURE 4

Effects of B. velezensis NDB on liver antioxidant enzyme activity and digestive enzyme function. (A) Superoxide dismutase (SOD) activity in the liver.
(B) Catalase (CAT) activity in the liver. (C) Malondialdehyde (MDA) levels in the liver. (D) Pepsin enzyme activity in the stomach. (E) Pepsin enzyme
activity in the intestine. The data are expressed as the mean 4 SD (n = 12). * p < 0.05, **p < 0.01 and ***p < 0.001 by one-way ANOVA and Tukey's

post-hoc test.
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FIGURE 5
The effect of B. velezensis NDB on gene expression of inflammatory and anti-inflammatory markers in the intestine. (A—G) The mRNA expression
levels of intestinal inflammatory genes (il1, il8, ifng, tnf-a, nfcb, myd88, and Ik B-«) was detected by RT-PCR. (H-J) The mRNA expression levels of
the anti-inflammatory factors-related genes (il10 and tgf-g) and the tight junction gene claudin/. The data are expressed as the mean &+ SD (n = 12).
*p < 0.05, **p < 0.01 and ***p < 0.001 by one-way ANOVA and Tukey's post-hoc test.

3.5 Changes in intestinal microbial
composition

3.5.1 Richness and diversity of gut microbiota

The richness and diversity of microbial communities were
evaluated using alpha- and beta-diversity metrics (Figure 6A).
Compared with the CON group, the AH+NDB group showed
increased species richness, as indicated by higher species (286.17 &
36.25) and Chaol (318.83 = 39.95) indices. However, A reduction
in both Shannon (4.18 + 0.41) and Simpson (0.87 £ 0.05)
diversity indices was observed in the AH+NDB group, indicating
that dietary supplementation with B. velezensis NDB increased
microbial richness but paradoxically reduced overall community
diversity. Moreover, B-diversity was evaluated through PCoA
using weighted UniFrac distance matrices to visualize microbial
community structural variation (Figure 6B). Compared with the
CON group, the microbial community structure in the AH+NDB
group differed markedly from that in the AH group, reflecting
that both B. velezensis NDB supplementation and A. hydrophila
infection induced distinct restructuring of the intestinal microbiota
in black sea bream.
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3.5.2 Composition of gut microbiota

The microbial community structure analysis showed that at
the phylum level, A. hydrophila infection in the AH group
increased the relative abundance of Proteobacteria (96.6%),
while decreased the relative abundances of Firmicutes (2.5%),
Actinobacteria (0.4%) and Bacteroidetes (0.3%) as compared to the
CON group (Figure 6C). Compared with the CON group, dietary
supplementation with B. velezensis NDB decreased the relative
abundances of Proteobacteria (68.4%) and Actinobacteria (0.1%),
and increased the relative abundances of Firmicutes (19.9%),
Bacteroidetes (7.0%) and Spirochaetes (4.1%). At the family
level, the relative abundances of Vibrionaceae, Moraxellaceae and
Aeromonadaceae markedly increased in the AH group (33.38%,
17.82%, and 7.73%, respectively) as compared to the CON group
(7.48%, 0.06% and 0%, respectively) (Figure 6D). However, dietary
supplementation with B. velezensis NDB in the AH+NDB group
decreased the relative abundances of Vibrionaceae (21.31%),
Moraxellaceae (2.26%), and Aeromonadaceae (1.06%) as compared
to the AH group. Compared with the CON group, the relative
abundances of Bacillaceae and Rhodobacteraceae decreased in
the AH group from 14.91% and 5.10% to 0.66% and 0.70%,
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FIGURE 6

Influence on the modulation of gut microbiota structure in black sea bream. (A) Alpha diversity of gut microbiota in black sea bream. (B) Principal
coordinate analysis (PCoA) of microbial p-diversity. (C) Classification at the phylum level. (D) Classification at the family level. (E) Classification at the
genus level. (F) The changes of dominant bacteria Vibrio, Bacillus, Acinetobacter, Aeromonas, Photobacterium, Ruegeria, Tenacibaculum, Nautella in
the intestinal tract. The data are expressed as the mean + SD (n = 3). * p < 0.05, **p < 0.01 and ***p < 0.001 by one-way ANOVA and Tukey's
post-hoc test.

respectively, whereas increased to 18.51% and 7.49% in the  Bacillus, Ruegeria, and Sporanaerobacter as compared to the CON
AH+NDB group. At the genus level, A. hydrophila infection  group (Figures6E,F). Compared with the AH group, dietary
in the AH group significantly increased the relative abundance  supplementation with B. velezensis NDB in the AH+NDB group
of Vibrio (65.19%), Acinetobacter (12.53%), and Aeromonas  markedly decreased the relative abundances of Vibrio (52.53%),
(6.1%) (p < 0.01), while decreased the relative abundance of  Acinetobacter (2.22%), and Aeromonas (1.13%) (p < 0.01), and
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FIGURE 7

Linear discriminant analysis effect size (LEfSe) to analyse differences in microbial community abundance. The findings with regards to phylum and
genus are shown in the plot Linear Discriminant Analysis (LDA) score > 2 (p < 0.05). (A) LEfSe analysis of relative abundance of gut microbial
populations in the AH group vs. the CON group. The green bars show the higher relative abundance of these bacterial taxa in the AH group, while the
yellow bars show the higher relative abundance of bacterial taxa in the CON group. (B) LEfSe analysis of relative abundance of gut microbial
populations in the AH+NDB group vs. the AH group. Light blue bars represent significantly higher relative abundance of these bacterial taxa in the
AH+NDB group, while red bars represent significantly higher relative abundance of these bacterial taxa in the AH group.

increased the relative abundances of Bacillus (18.24%), Ruegeria
(1.18%), and Tenacibaculum (6.86%) (p < 0.05).

3.5.3 Analysis of species differences in gut
microbiota

The LEfSe method with linear discriminant analysis (LDA)
score >2 and statistical significance defined by a p-value
< 0.05 (Kruskal-Wallis test) was employed to identify key
prokaryotic taxa with significantly altered abundance in the
gut microbiota of black sea bream (Figure?7). Compared
with the CON group, A. hydrophila infection in the AH
group significantly increased relative abundance of several
genus taxa, including Tenacibaculum, Synechococcus, Blautia,
Sphingomonas,
Aeromonas,  Shewanella,  Acinetobacter, — Pseudoalteromonas,
Vibrio, and Photobacterium (Figure 7A). Compared with the
AH group, dietary supplementation with B. velezensis NDB in

Cetobacterium, Achromobacter,  Ralstonia,

the AH+NDB group markedly increased relative abundance
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of some genus taxa, including Rhodococcus, Tenacibaculum,
Bacillus, Staphylococcus, Fusibacter, Epulopiscium, Cohaesibacter,
Nautella, Phaeobacter, Ruegeria, Shimia, Sulfitobacter, Arcobacter,
Marinicella, Neptunomonas, Enhydrobacter, Pseudoalteromonas,
Mpycoplasma, and Akkermansia (Figure 7B).

3.5.4 Functional prediction of gut microbiota

In this study, functional prediction of the gut microbiota
for KEGG and MetaCyc pathways was performed using the
PICRUSt2 software. As shown in Figure 8A, the microbial
functions of gut microbiota were mainly enriched in KEGG
pathways encompassing six major categories: cellular processes,
environmental information processing, genetic information
processing, human diseases, metabolism, and organismal systems.
Compared with the CON group, the AH and AH + NDB groups
increased some metabolic pathways, including cellular community
prokaryotes, cell motility,
transport, infectious diseases. Although most pathways exhibited

signal transduction, membrane
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reduced abundance in both the AH and AH + NDB groups
relative to the CON group, supplementation with B. velezensis
NDB (AH + NDB group) specifically enhanced some pathways
such as replication and repair, metabolism of terpenoids and
polyketides, metabolism of other amino acids, lipid metabolism,
carbohydrate metabolism and amino acid metabolism as compared
to the AH group. As illustrated in Figure 8B, the functional profiles
of gut microbiota were predominantly enriched in MetaCyc
pathways containing seven major categories: biosynthesis,
degradation/utilization/assimilation, detoxification, generation of
precursor metabolite and energy, glycan pathways, macromolecule
modification, and metabolic clusters. Notably, A. hydrophila
infection in the AH group increased the pathways related to fatty
acid and lipid biosynthesis as well as cofactor, prosthetic group,
electron, carrier and vitamin biosynthesis as compared to the CON
and AH + NDB groups. Moreover, while most pathways exhibited
reduced abundance in both AH and AH+NDB groups compared
to the CON group, supplementation with B. velezensis NDB
(AH + NDB group) increased some pathways such as secondary
metabolite biosynthesis, nucleoside and nucleotide biosynthesis,
carbohydrate biosynthesis, amino acid biosynthesis, glycolysis, and

fermentation relative to the AH group.

3.5.5 Analysis of the correlation between gut
microbiota and metabolic pathways

Correlation analysis was performed to investigate the
relationship between the gut microbiota of genus-level
microorganisms and key metabolic pathways. As shown in
Figure 9, fatty acid and lipid degradation pathways are mainly
driven by Vibrio, and the two are significantly positively correlated,
suggesting that this genus plays a dominant role in lipid
metabolism. TCA cycle is strongly positively correlated with
Geobacillus. The L-aspartic acid and L-asparagine biosynthesis
superpathway is mainly associated with the following bacterial
genera: Photobacterium, Aeromonas, Vibrionaceae, Acinetobacter,
Vibrionales, and Vibrio suggesting that these groups are jointly
involved in the amino acid synthesis process. Acid Biosynthesis
involves multiple taxonomic groups, including Acinetobacter,
Aeromonas, Vibrionaceae, Photobacterium, Vibrio, Tenacibaculum,
Bacillus, Brevinemataceae.

3.5.6 Gut microbiota and inflammation index
correlation analysis

In this experiment, the 18 top most abundant bacterial genera
were selected for correlation analysis with key inflammatory
markers. As shown in Figure 10, Ruegeria, Bacillus, and Nautella
were significantly positively correlated with the inhibition of the
inflammatory cytokines (il10 and tgf-B) and the tight junction gene
claudin7 (p < 0.01), and significant negative correlations with pro-
inflammatory markers nfkb, ifng, il8, il1, Ik B-o and tnf-a (p < 0.05).
In contrast, Vibrio, Photobacterium, Acinetobacter, and Aeromonas
showed opposite trends, being negatively correlated with the anti-
inflammatory markers (i/10 and tgf-B) and the tight junction gene
claudin7 and positively correlated with pro-inflammatory factors,
particularly Ik B-o and myd88 (p < 0.05).
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4 Discussion

Enteritis caused by A. hydrophila is a major health concern
in marine aquaculture, often leading to disrupted intestinal
morphology, inflammation, oxidative stress, and gut microbial
dysbiosis in fish species (Ma et al, 2022; Xu et al, 2022).
Marine environments are a rich reservoir of probiotics, and
numerous studies have demonstrated that marine-derived
probiotics produce novel bioactive compounds with anticancer,
antibacterial, immunomodulatory, antioxidant, anti-inflammatory,
and antiviral properties (Eze et al., 2023). In the present study,
dietary supplementation with marine-derived B. velezensis
NDB significantly alleviated A. hydrophila-induced enteritis in
black sea bream by enhancing mucosal immunity, reducing
oxidative damage, and modulating the gut microbiota. These
findings underscore the potential of B. velezensis NDB as a
functional probiotic in marine aquaculture. A. hydrophila infection
induced typical enteric symptoms, including gill and abdominal
hemorrhages, impaired intestinal architecture, decreased goblet
cell abundance, and severe inflammatory infiltration (Figures 2, 3),
consistent with previous descriptions of bacterial enteritis in
fish (Nassar et al, 2024). Supplementation with B. velezensis
NDB at 143 x 108 CFU/g significantly attenuated these
pathological changes (Rahman et al., 2023), reduced mortality,
and promoted growth performance (Table 2) (Aini et al., 2024).
Notably, the treatment preserved villus morphology, increased
goblet cell numbers, and reduced inflammatory cell infiltration
(Liao et al, 2023). Goblet cells are essential for maintaining
mucosal defense, as they secrete protective mucus and facilitate
pathogen clearance (Kuebutornye et al., 2020). The restoration
of epithelial integrity highlights the capacity of B. velezensis NDB
to maintain the physical barrier function of the intestine under
pathogen-induced stress.

Oxidative stress is a hallmark of bacterial infections and
contributes to tissue damage. Measurement of hepatic antioxidant
enzyme activities can indirectly assess the impact of intestinal
inflammation on systemic oxidative homeostasis (Goulart et al.,
2020). Notably, SOD and CAT indicate hepatic antioxidant
capacity, while MDA reflects oxidative damage. Pepsin activity in
the stomach and intestine reflects protein digestion capacity (Zuo
et al., 2024). SOD and CAT are considered molecular biomarkers
for assessing the oxidative stress in aquatic organisms (Kembou-
Ringert et al., 2023; Qian et al., 2024). MDA is a byproduct of the
interaction between free radicals and lipids, and its concentration
can indirectly reflect levels of lipid peroxidation and free radical
generation, indicating the extent of free radical damage to cellular
structures (Suharso et al., 2022). In this study, following infection
with A. hydrophila, CAT and SOD activities decreased in black
sea bream (Figure 4), consistent with previous reports (Deng
et al., 2023). B. velezensis NDB supplementation restored SOD
and CAT activity and decreased MDA levels, suggesting that this
strain could enhance endogenous antioxidant capacity and protects
liver function.

Immune markers are effective indicators for assessing the
health status of fish (Lopez Nadal et al., 2020). In intestinal
inflammation, fgf-f promotes intestinal mucosal repair by
regulating immune cell proliferation and differentiation (Peng
et al,, 2022). III and il8, as key pro-inflammatory factors, mediate
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inflammatory cascades and neutrophil chemotaxis, respectively
(Zhang et al., 2020; Leong et al., 2024). The activation of the NF-kB

pathway is the core mechanism triggering the inflammatory storm
(Yu et al, 2020), it induces pro-inflammatory gene expression (e.g.,

phosphorylation and degradation of (Reis et al., 2016). In this study,
ill, tnf-ar) via the myd88-dependent pathway, accompanied by the

A. hydrophila infection significantly upregulated NF-kB pathway-
related genes (myd88, nfib) and downstream pro-inflammatory

factors (ill, tnf-a, ifng) (Figure 5). This confirms the excessive
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proteins are key molecules in maintaining intestinal barrier
function (Wang K. et al., 2024; Shen and Mu, 2024). Among them,
claudin 7 not only participates in the formation of tight junctions
between cells but also influences intestinal mucosal homeostasis by
regulating the expression of cell-matrix adhesion molecules (Ding
et al., 2012). In this study, pathogen infection led to a significant
decrease in claudin 7 expression (Figure 5]), which was significantly
negatively correlated with increased intestinal permeability and
tissue pathological damage (Figure 3), suggesting that impaired
barrier function is an important trigger for inflammatory spread.
Notably, B. velezensis NDB intervention not only significantly
downregulated pro-inflammatory factors (ilI, tnf-o) but also
restored claudin 7 expression (reconstructing the intestinal physical
barrier), an effect synergistically enhanced by the upregulation of
anti-inflammatory factors il10 and tgf-B (Figures 5H, I), collectively
promoting the restoration of immune homeostasis. This aligns
with findings in Nile tilapia (Oreochromis niloticus) (Zhao et al.,
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2023), suggesting that probiotics can modulate immune pathways
to alleviate intestinal inflammation.

The gastrointestinal tract is the primary colonization site for
probiotics (Goh et al., 2021). By colonizing the intestinal mucosal
surface, probiotics competitively occupy adhesion sites that would
otherwise be utilized by pathogenic bacteria, thereby inhibiting
pathogenic colonization (Yousuf et al., 2023). Additionally,
enhanced adhesion to intestinal epithelial cells amplifies the
probiotics’ potential to stimulate the immune system, thereby
protecting intestinal epithelial cells from mechanical damage
(Govindaraj et al., 2021). In this research, analysis of gut microbiota
indicated that after four weeks of feeding with B. velezensis
NDB in the diet, the bacterium was found to colonize in
the intestine, with the highest abundance in AH+NDB group
(Figure 6). Following A. hydrophila infection, Aeromonas had
the highest abundance in the AH group but decreased in
the AH+NDB group, suggesting that B. velezensis NDB has
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an inhibitory effect on A. hydrophila infection. Proteobacteria,
Firmicutes, Actinobacteria, and Bacteroidetes were dominant in
the intestinal flora, similar to previous research (Lin et al,
2024). Following infection with A. hydrophila, the abundance of
Proteobacteria increased significantly, which could be regarded
as a microbial indicator of intestinal flora imbalance. Many
important pathogens belong to the Gammatimonadetes, including
Salmonella (enteritis and typhoid), Yersinia (plague), Vibrio
(cholera), and Pseudomonas aeruginosa (pulmonary infections
or cystic fibrosis-related infections) (Idola et al., 2023). Marine
bacteria in the Vibrionaceae family play significant roles in
the marine geochemical cycle and function as symbionts and
opportunistic pathogens of aquatic animals and humans (Kumar
et al., 2023). Aeromonadaceae is a family commonly found in
seawater, freshwater, silt, sewage and feces, while several species of
this family are pathogenic to fish, amphibians and humans (Lopez-
Zavala et al., 2018). The family Moraxellaceae contains a variety
of opportunistic pathogens such as Acinetobacter baumannii and
Moraxella catarrhalis (Knoot et al., 2023). This finding indicated
that dietary supplementation of B. velezensis NDB reversed this
imbalance, promoting the growth of beneficial taxa and suppressing
potential pathogens.

In addition, functional prediction of the gut microbiota and
their metabolic pathways was performed to further investigate
the potential mechanism whereby dietary supplementation of
B. velezensis NDB alleviated A. hydrophila-induced enteritis in
black sea bream. This study reveals four potential synergistic
mechanisms: First, competitive colonization and pathogenic
bacteria inhibition: B. velezensis NDB significantly reduced
the abundance of pathogenic bacteria belonging to the genera
Aeromonas and Vibrio genera (Figure7), consistent with its
ability to construct a biochemical protective barrier through
secondary metabolites (Sommerfeld et al., 2024). Previous studies
indicated that terpenoids could inhibit the NF-«kB signaling
pathway by downregulating related genes and enriching pathways
such as terpenoid/polyketide metabolism and carbohydrate
metabolism, directly disrupting the cell membranes of A.
hydrophila and inhibiting its reproduction (Salminen et al., 2008;
Sun et al, 2023). Also, this study showed downregulated pro-
inflammatory genes (nfkb, tnf-o; Figure 5), and highly abundant
KEGG pathways (e.g.,
carbohydrate biosynthesis, amino acid biosynthesis pathways and

terpenoids/polyketides metabolism,
nucleoside and nucleotide biosynthesis; Figure 8), suggesting
their dual roles in inhibiting pathogen proliferation and
inflammatory activation. Secondly, dietary supplementation
with B. velezensis NDB can regulate metabolic pathways by
significantly enhancing multiple KEGG pathways, including
cofactor/vitamin metabolism, carbohydrate biosynthesis, and
amino acid biosynthesis (Figure 8). These pathways not only
participate in the synthesis of antimicrobial substances but also
provide energy through efficient glycolysis/tricarboxylic acid
cycle. (1) Energy provision: they support antioxidant reactions
(consistent with the results of increased SOD and CAT activity
in (Figure 4); (2) Anti-inflammatory action: they compete for
carbon sources to suppress pro-inflammatory molecules (e.g.,
lipopolysaccharides, LPS) (Choi et al, 2021). Thirdly, dietary
supplementation with B. velezensis NDB can play a crucial role in

Frontiers in Microbiology

10.3389/fmicb.2025.1660494

the intestinal barrier repair effect. As illustrated in Figures 8, 9, the
AH+NDB group activated specific biosynthesis pathways (e.g.,
fatty acid/lipid biosynthesis and cofactor/prosthetic group/electron
carrier/vitamin biosynthesis), thereby supplying energy, cofactors,
and lipid precursors to sustain intestinal epithelial cell function
and directly support the recovery of intestinal physical barrier
function (Chen et al, 2023). Fourthly, marine adaptation of
B. velezensis NDB and its promotion of microbiota remodeling.
Originating from the high-salinity environment of Xiangshan
Port, B. velezensis NDB modulated the intestinal microbiota by
significantly enriching the beneficial genera (e.g., Nautella, Bacillus,
and Ruegeria), while continuously inhibiting opportunistic
pathogenic genera (e.g., Aeromonas and Vibrio) (Figure 10). This
remodeling contributed to the formation of a healthy microbial
community structure (Dawood et al., 2020; Wang et al., 2023b).
Collectively, dietary supplementation with B. velezensis NDB can
protect black sea bream against A. hydrophila-induced enteritis via
a synergistic mechanism associated with barrier repair, immune
regulation, colonization competition, metabolic regulation, and
microbiota reshaping.

In addition, this study is subject to several limitations that
warrant consideration. Firstly, current dietary supplementation
with dietary B. velezensis NDB supplementation is limited
by the 4-week experimental period, which fails to capture
potential long-term effects, necessitating prolonged intervention
trials to show that dietary B. velezensis NDB can effectively
improve the resistance of black sea bream to the pathogenic
bacteria A. hydophila. Secondly, due to equipment limitations,
this study was unable to monitor the behavior of black sea
bream over a long period, including at night, which would
have provided more comprehensive data to better assess growth
performance. Thirdly, current study on dietary supplementation
with B. velezensis NDB have not yet characterized its effects on
nutritional composition parameters of black sea bream muscle
tissue, including protein contents, amino acid profiles, and fatty
acid composition. Finally, although the present study investigated
the alterations of gut microbiota in black sea bream across the
CON, AH, and AH+NDB groups, environmental microbiota in
aquaculture systems and their potential correlations with intestinal
microbiota were not assessed. Collectively, future research should
further explore the effects of longer-term feeding B. velezensis
NDB in black sea bream, particularly those involving promoted
growth performance and enhanced muscle nutrients of black
sea bream.

5 Conclusion

This study demonstrates that dietary supplementation with
B. velezensis NDB confers significant protective effects against A.
hydrophila-induced enteritis in black sea bream. The probiotic
promoted growth performance, enhanced antioxidant enzyme
activities, preserved intestinal morphology, and modulated both
pro—and anti-inflammatory immune responses. Additionally,
it reshaped the gut microbiota by reducing the abundance of
pathogenic bacteria and promoting beneficial taxa, contributing to
microbial and immunological homeostasis. Functional predictions
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suggest that its protective mechanisms involve carbohydrate
biosynthesis, amino acid biosynthesis pathways and nucleoside
and nucleotide biosynthesis, supporting both antimicrobial
activity and host adaptation. Collectively, these findings establish
B.
enhancing intestinal health and disease resistance in marine

velezensis NDB as a promising probiotic candidate for

aquaculture systems.
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