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Seed microbiomes represent a critical yet underexplored dimension of plant-

associated microbial communities, with potential to enhance crop resilience

and sustainability. While plant microbiomes have gained prominence, the

diversity and composition of seed-associated bacteria—especially across wild

and domesticated lineages—remain poorly characterised. Here, we profiled

the bacterial seed microbiome of lucerne (Medicago sativa L.) and its crop

wild relatives using an integrative approach combining amplicon sequencing,

culture-based recovery, and whole-genome analysis of representative isolates.

Amplicon profiling revealed a conserved core microbiome across all accessions,

alongside host-genotype-specific patterns and markedly higher bacterial

diversity in wild relatives. Culture-based methods recovered over half of the

abundant amplicon sequence variants (ASVs), validating the representativeness

of the isolate library. The whole genome sequencing of selected isolates

uncovered substantial intra-species variation, including genomically distinct

strains within the same species. Core taxa such as Pantoea, Paenibacillus,

and Pseudomonas were consistently recovered, while several genera enriched

in wild relatives—Massilia, Duganella, Sphingomonas—were absent or rare

in domesticated lines. Comparative microbiome analysis revealed that

domestication has reduced both taxonomic richness and microbial variability

in the lucerne seed microbiome. The dominance of conserved taxa alongside

the exclusion of wild-enriched groups suggests that breeding history influences

microbial assembly and may constrain microbiome function. The consistent

presence of core taxa across accessions is consistent with the possibility

that, vertical transmission, together with host genotype, contributes to seed

microbiome structure. By linking plant genotype with seed microbiome

composition and culturability, this study provides a high-resolution view

of seed microbial assembly shaped by evolutionary history. The resulting

culture-based microbial resource, supported by genome-level characterisation

of representative taxa, offers a robust foundation for microbiome-informed

strategies in lucerne breeding and pasture improvement.
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1 Introduction 

Global food security amid rising environmental and economic 
pressures demand a shift toward more resilient and sustainable 
cropping systems. Plant-associated microbial communities are 
increasingly recognised as key contributors to crop health, 
supporting nutrient acquisition, stress tolerance, and disease 
suppression (Compant et al., 2025; Joshi et al., 2025). Although 
the concept of beneficial plant–microbe interactions date back 
to the early 20th century, when Lorenz Hiltner first proposed 
the idea of “rhizosphere eect” (Hartmann et al., 2008), recent 
advances have revealed the complexity and functional importance 
of microbial consortia inhabiting the rhizosphere, endosphere, 
and phyllosphere. These communities influence host function 
through multiple pathways, such as nitrogen (N) fixation, 
phytohormone production, phosphorus (P) solubilisation, and 
iron sequestration (Vorholt, 2012; Berg et al., 2014; Mabood 
et al., 2014; Reinhold-Hurek et al., 2015; Tkacz and Poole, 
2015). In parallel, microbial inoculants are emerging as eco-
friendly alternatives to agrochemicals with several strains, such 
as Azospirillum (Mazospirflo-2 R , Soilgro), Azotobacter (Bio-NTM , 
Agriculture Solutions) and Bacillus megatherium (Symbion-P R ) 
already commercialised for agricultural use (Owen et al., 2015; 
Elsayed et al., 2020). 

Seeds form a distinct microbial niche with important 
implications for vertical transmission and early plant development. 
The seed-associated microbiota, comprising both epiphytic and 
endophytic populations colonise the seed coat, storage tissues, and 
embryo, and is either inherited or acquired from the environment 
(Hashidoko, 2005; Links et al., 2014; Truyens et al., 2015). Vertically 
transmitted microbes can shape microbial assembly in seedlings, 
influencing germination, growth, and responses to stress (Puente 
et al., 2009; Oukala et al., 2021; Abdelfattah et al., 2023). However, 
conventional culture-based methods often underrepresent the full 
taxonomic and functional diversity of seed microbiota (Rahman 
et al., 2018; Chandel et al., 2022b), limiting ecological insight and 
translational potential. 

Similar to other plant compartments, seeds host a “core 
microbiome,” defined as microbial taxa that are consistently 
associated with the host across environments and genotypes 
(Simonin et al., 2022). These core members are shaped by 
host selection and environmental filtering, and are believed to 
perform essential ecological functions (Turnbaugh et al., 2007; 
Shade and Handelsman, 2012; Vandenkoornhuyse et al., 2015; 
Astudillo-García et al., 2017). Across various plant species, 
seed microbiota is typically dominated by Proteobacteria, 
Firmicutes, Actinobacteria and Bacteroidetes. Genera such 
as Pantoea, Enterobacter, and Pseudomonas are frequently 
identified in the seeds of barley (Hordeum vulgare), maize 
(Zea mays), rice (Oryza sativa), and sunflower (Helianthus 
annuus) (Johnston-Monje and Raizada, 2011; Le et al., 
2017; Rahman et al., 2018; Eyre et al., 2019; Hardoim, 2019; 
Johnston-Monje et al., 2021). 

Domestication has significantly altered plant phenotypes, 
genomes, and associated microbial communities. One of the 
major consequences is the reduction in genetic diversity, as 
observed in rice, wheat (Triticum aesitivum), and common 
bean (Phaseolus vulgaris) (Haudry et al., 2007; Ram et al., 

2007; Bitocchi et al., 2013). In maize, certain core seed-
associated bacteria, including Paenibacillus, Enterobacter, 
Methylobacterium, Pantoea and Pseudomonas have persisted 
post-domestication (Johnston-Monje and Raizada, 2011), yet 
wild relatives of crops such as rice, peas (Pisum sativum) and 
soybean (Glycine max) often retain greater microbial richness 
(Shi et al., 2019). These patterns suggest that domestication 
may constrain microbiome diversity and modify plant–microbe 
interactions. Although such trends are well documented in 
cereals (Kim et al., 2020; Abdullaeva et al., 2021), seed-level 
studies in legumes remain limited, underscoring the potential 
of wild relatives as reservoirs of microbial diversity absent in 
elite cultivars. 

Lucerne or alfalfa (Medicago sativa L.; hereafter referred 
to as domesticated lucerne) is one of the earliest domesticated 
legumes (Gault et al., 1995; Bouton, 2012), is currently the most 
widely cultivated perennial pasture legumes globally and in 
Australia, valued for its role in sustainable cropping systems 
through N fixation, soil improvement, and weed and disease 
suppression (Humphries and Auricht, 2001; Latta et al., 2002). 
In contrast, Medicago crop wild relatives (hereafter referred to 
as Medicago CWRs) shaped by diverse natural environments, 
possess broader adaptive traits and potentially richer microbial 
communities (Annicchiarico et al., 2015). Domesticated lucerne 
has undergone an estimated 30% reduction in genetic diversity 
(Muller et al., 2006), with emerging evidence suggests a similar 
narrowing of its microbiome. For instance, M. polymorpha, 
a wild Medicago species, harbours plant growth-promoting 
(PGP) bacteria underrepresented in domesticated lucerne 
varieties (Martínez-Hidalgo et al., 2022). Yet, the seed-associated 
microbiome of lucerne and its CWRs remains underexplored, 
particularly in terms of diversity, culturability, and translational 
potential. As vertically transmitted microbes influence early 
plant development, elucidating these communities could 
support future strategies for microbial inoculant development 
and microbiome-informed breeding (Shade et al., 2017; 
Abdelfattah et al., 2023). 

This study characterises and compares the seed-associated 
bacterial communities of domesticated lucerne and selected 
Medicago CWRs to assess whether wild genotypes harbour 
more diverse and compositionally distinct microbiota. Eighteen 
domesticated lucerne accessions, sourced from commercial 
seed suppliers across Australia, and eighteen CWR accessions 
from Libya and Russia, were obtained from the Australian 
Pastures Genebank (APG). We hypothesised that CWR seeds 
harbor more diverse and compositionally distinct microbial 
communities than domesticated lucerne. To retain both epiphytic 
and endophytic microbes, seeds were rinsed but not surface-
sterilised. Culturable bacteria were isolated and identified 
using conventional microbiological techniques and Sanger 
sequencing. In parallel, amplicon-based 16S rRNA gene profiling 
was used to characterise broader community structure, and a 
subset of isolates underwent whole-genome sequencing (WGS). 
Together, these approaches provide integrated insights into 
the structure and culturability of Medicago seed microbiome, 
laying the groundwork for microbiome-informed lucerne 
improvement strategies. 
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2 Materials and methods 

2.1 Medicago seed collection, washing, 
and germination 

Seeds from eighteen domesticated lucerne cultivars and 
eighteen Medicago CWR accessions were sourced from commercial 
seed companies across Australia and the APG, respectively 
(Table 1). Although APG accessions trace back to international 
origins (e.g., Libya, Russia), the seed lots provided for this study 
were regenerated under Australian conditions prior to distribution. 
The seeds were stored at 4 ◦C in a Controlled Environment Room 
(CER) at AgriBio Institute, Bundoora, Victoria, Australia. For each 
accession, 0.2 g of seeds (approximately 420 seeds/g) were washed 
by rinsing four times with autoclaved reverse-osmosis (RO) water 
(Figure 1). During the final rinse, seeds were incubated for 4 min 
at room temperature to facilitate the removal of loosely associated 
bacteria from the seed coat. A 100 µL aliquot of the final wash was 
plated onto Reasoner’s 2A (R2A; Oxoid or Amyl Media, Australia) 
and plates were incubated at room temperature for 7 days to 
confirm the absence of culturable bacteria. After washing, seeds 
were placed on sterile, moist filter paper in 90 mm sealed petri 
dishes for germination. Filter papers were moistened with 3 mL of 
sterile RO water. For each accession, fifteen seeds were placed per 
petri dish, and five replicate plates were prepared. Germination was 
conducted at room temperature for 7 days. 

2.2 Isolation of culturable bacteria from 
seeds 

To isolate seed-associated bacteria, twenty healthy seedlings per 
cultivar were harvested after 7 days of germination and suspended 
in 300 µL of sterile 1 × phosphate-buered saline (PBS). Samples 
were homogenised using a Qiagen TissueLyser II (2 × 30 s at 
25 Hz). The resulting homogenate from each cultivar was serially 
diluted (1:10, 100 µL in 900 µL) and plated onto R2A to isolate 
distinct bacterial colonies from 10−2 to 10−5 dilutions. Pure 
cultures were preserved in nutrient broth (NB) supplemented with 
20% (v/v) glycerol and stored at -80 ◦C until further use (Herath 
Dissanayakalage et al., 2025a). 

2.3 Molecular identification of culturable 
bacterial endophytes 

Direct 16S colony PCR was performed on all bacterial isolates. 
For those that did not yield PCR products, genomic DNA was 
extracted and used as a template. Single colonies (1–2 mm in 
diameter) were picked using a sterile needle or pipette tip and 
suspended in 50 µL of nuclease-free water. Samples were incubated 
at 99 ◦C for 10 min, and 2 µL of the resulting supernatant was used 
directly as template DNA. 

PCR reactions (25 µL total volume) contained 12.5 µL 
of OneTaq Hot Start 2 × Master Mix with standard buer 
(M0484, Promega, Madison, WI, USA), 1.0 µL of each primer 
(10 pmol/µL; 27F: AGAGTTTGATCMTGGCTCAG and 1492R: 

GGTTACCTTGTTACGACTT), and Milli-Q water to volume. 
A no-template control was included in each run. The thermocycling 
conditions were as follows: initial denaturation at 95 ◦C for 1 min; 
35 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 
s, and elongation at 72 ◦C for 1 min; followed by a final extension 
at 72 ◦C for 5 min. 

Genomic DNA for non-amplifying isolates was extracted 
using Wizard R  Genomic DNA Purification Kit (A1120, Promega, 
Madison, WI, United States) with minor modifications to the 
manufacturer’s protocol. Overnight liquid cultures (1 mL) were 
centrifuged twice at 13,000–16,000 × g for 2 min to maximise cell 
recovery. The samples were incubated at -20 ◦C for 10 min instead 
of on ice to enhance precipitation of most of the proteins bound to 
DNA. DNA pellets were rehydrated in 50 µL rehydration solution 
at 65 ◦C for 10 min, followed by overnight incubation at 4 ◦C. 
DNA concentration was measured using a NanoDrop 2000/2000c 
spectrophotometer (Thermo Scientific, Waltham, MA, USA). The 
PCR reaction mixture and thermocycling conditions were identical 
to those described above, except 5 µL of purified DNA was used as 
the template. 

2.3.1 Sanger sequencing and taxonomic 
identification 

Amplified 16S rRNA gene products (∼ 1,400bp), normalised 
to a concentration of 50 ng/µL, were separated by electrophoresis 
at 100 V in a 1.5% agarose gel containing SYBR safe DNA gel 
stain (0.05 µL/mL) in 1 × TBE running buer. PCR bands 
were visualised under UV light (360 nm) using a ChemiDoc 
MP imaging system (Bio-Rad) to confirm amplification success. 
Amplified products were then submitted to Macrogen, Inc., 
(Seoul, South Korea) for Sanger sequencing. Raw sequence data 
were initially analysed using NCBI BLASTn for preliminary 
taxonomic identification. 

Reads were quality-trimmed in Geneious Prime (version 
2020.0.2; Biomatters Ltd., Auckland, New Zealand), using default 
parameters to remove low quality bases (Phred score < 20) and 
ambiguous ends. The reverse read was reverse-complemented 
prior to alignment. Pairwise alignment of forward and reverse 
reads was performed using the Geneious alignment tool with 
default parameters to generate consensus sequences. Taxonomic 
identity was assigned using NCBI BLASTn based on ≥97% 
sequence similarity to type strains in the 16S rRNA reference 
database. All sequences were submitted to NCBI under BioProject 
accession PRJNA1180717. 

2.3.2 Genome sequencing using Oxford 
Nanopore Technologies (ONT) 

Long-read sequencing was performed on selected bacterial 
isolates using ONT. Genomic libraries were prepared using the 
ONT ligation sequencing kit (SQK-LSK109; Kit 9 chemistry; ONT, 
Oxford, United Kingdom), with minor protocol modifications to 
improve DNA recovery. Sequencing was conducted on a MinION 
Mk1B device (MIN-101B) using R9.4.1 flow cells. Raw FAST5 
signal files were base called using the Guppy command-line tool 
(v5.0.11) (Wick et al., 2019). Demultiplexing and adapter trimming 
were performed using the guppy_barcoder module, and high-
quality FASTQ files were generated. Sequence quality was assessed 
using FastQC prior to downstream analysis. 
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TABLE 1 Domesticated lucerne and Medicago CWR seed accessions used in this study. 
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1 Sequel Green Harvest Medicago sativa Sq 100.0% 

2 Hunter River Green Harvest Medicago sativa HR 98.6% 

3 Trifecta Eden seeds Medicago sativa Ed 75.0% 

4 Aurora Australian Wheatgrass Medicago sativa Au 100.0% 

5 Siriver Healthforce Medicago sativa Sv 95.0% 

6 Ryno 6 AGF Seeds Medicago sativa R6 94.3% 

7 SF Force 5 Seed Force Medicago sativa F5 93.6% 

8 SARDI 7 Series 2 Barenbrug Medicago sativa SS 92.1% 

9 SARDI 10 Series 2 Barenbrug Medicago sativa ST 94.7% 
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SARDI Grazer Barenbrug Medicago sativa SG A
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92.6% 

11 Genesis Synergy Seeds Medicago sativa GN 93.8% 

12 Silverado Upper Murray seeds Medicago sativa SL 95.2% 

13 Mr Fothergills Sprouts Alive Medicago sativa Ft 58.6% 

14 Magna 959 (mature seeds) A farm, South Australia Medicago sativa MM 22.0% 

15 Magna 959 (young seeds) A farm, South Australia Medicago sativa MY 15.0% 

16 SF 714 Seed Force Medicago sativa SF714 80.3% 

17 SF 730 Seed Force Medicago sativa SF730 82.4% 

18 SF 914 Seed Force Medicago sativa SF914 80.9% 

19 APG 6032 Medicago sativa subsp. falcata FL32 90.2% 

20 APG 6039 Medicago sativa subsp. falcata FL39 92.1% 

21 APG 6925 Medicago sativa subsp. falcata FL25 Ru
ss

ia
 

90.9% 

22 APG 20535 Medicago littoralis var. 
littoralis 

LTV_535 94.7% 

23 APG 21384 Medicago littoralis var. 
littoralis 

LTV_384 95.0% 

24 APG 21559 Medicago littoralis var. 
littoralis 

LTV_559 94.2% 

25 APG 32892 Medicago littoralis var. 
littoralis 

LTV_892 95.9% 

26 APG 21164 Medicago laciniata LA164 96.0% 

27 APG 21177 Medicago laciniata LA177 96.8% 

28 APG 20841 Medicago laciniata LA841 Li
by
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94.9% 
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Medicago laciniata LA700 95.6% 

30 APG 20935 Medicago truncatula TR935 93.5% 

31 APG 21758 Medicago truncatula TR758 94.2% 

32 APG 21771 Medicago truncatula TR771 94.9% 

33 APG 21177 Medicago littoralis LT177 82.3% 

34 APG 21198 Medicago littoralis LT198 74.1% 

35 APG 21232 Medicago littoralis LT232 78.3% 

36 APG 21235 Medicago littoralis LT235 75.3% 
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FIGURE 1 

Dual pipeline for isolating culturable bacteria and profiling the bacterial microbiome of Medicago seeds. Washed seeds were germinated and 
processed via two complementary approaches. The culture-dependent workflow involved bacterial isolation and taxonomic identification using 
PCR and Sanger sequencing. The culture-independent workflow involved direct DNA extraction, 16S rRNA gene amplicon sequencing, and 
microbial community profiling. 

2.3.3 Genome assembly, taxonomic classification, 
and comparative analysis 

Long-read genome assemblies were generated using Trycycler 

(Wick et al., 2021). Sequencing reads were first subsampled 

into multiple subsets and assembled independently using Flye 

(Freire et al., 2022). The resulting assemblies were then reconciled 

into consensus genomes using Trycycler’s consensus workflow. 
Assembled genomes were taxonomically classified using Kraken2 

(Wood et al., 2019), with a custom database built from all complete 

bacterial reference genomes available in NCBI as of March 2023. 
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To assess genome-level relatedness, average nucleotide identity 
(ANI) was calculated as a measure of overall genome relatedness 
index (OGRI) (Richter and Rosselló-Móra, 2009). Species-level 
classification was determined using an ANI threshold of ≥95%, 
consistent with established standards for prokaryotic species 
delineation. Pairwise ANI values were computed using a Perl script, 
and species-level comparisons among closely related isolates were 
performed using minimap2 (Li, 2018) for genome alignment and 
identity calculation. 

2.4 Medicago microbiome profiling 

2.4.1 DNA extraction, 16S amplicon library 
preparation, and sequencing 

Total DNA was extracted from individual Medicago seedlings 
(n = 24 seedlings per cultivar) using the QIAGEN MagAttract 96 
DNA Plant Core Kit (Qiagen R , Hilden, Germany), with minor 
modifications to the manufacturer’s protocol. Extractions were 
carried out on a Biomek R  FXP lab automation workstation 
operated via Biomek R  software v4.1 and Gen5 (v2.08) (Beckman 
Coulter, Brea, CA USA). Amplicon libraries targeting the V4 
region of the 16S rRNA gene were prepared using a two-step 
PCR with PNA blockers, indexed with Nextera XT dual indices, 
and sequenced on the Illumina MiSeq platform (2 × 300 bp). 
Detailed protocols, including thermocycling conditions and 
reagent concentrations, are provided in Supplementary Section 1. 

2.4.2 MiSeq data processing and analysis 
Raw reads, generated across six independent MiSeq runs, 

were processed using PEAR and imported into QIIME2 (Hall 
and Beiko, 2018) for quality filtering, denoising with DADA2 
(Callahan et al., 2016), and amplicon sequence variants (ASV) 
generation. Taxonomic assignment was performed using a naïve 
Bayes classifier trained on SILVA SSU database v138 database 
(Chandel et al., 2022b; Ramakodi, 2022). Diversity metrics were 
calculated within QIIME2 and visualised in R (v4.3.1) using the 
Phyloseq package (McMurdie and Holmes, 2013). Core taxa were 
defined as those present in ≥90% of samples within each species. 
To estimate culturability, ASVs were BLASTn-matched (≥96% 
identity) against a 16S database constructed from the isolate 
genomes. Detailed parameters and full analytical workflows are 
provided in Supplementary Section 2. 

3 Results 

3.1 Overview of sequence processing 
and ASV recovery 

High throughput 16S rRNA gene amplicon sequencing was 
performed on 864 seedling samples derived from 36 Medicago 
seed accessions across six MiSeq runs. Following QIIME2 
processing—including paired-end read merging, denoising, and 
quality filtering—825 high-quality amplicon libraries were retained. 
The pipeline also included removal of low-abundance features 
(frequency < 10), exclusion of features present in fewer than 

two samples, and taxonomic filtering to eliminate eukaryotic, 
mitochondrial, and chloroplast-derived sequences. The final 
dataset comprised 70,258,729 high-quality sequences clustered into 
719 ASVs. Of these, 22,295,615 sequences (31.73%) originated 
from domesticated lucerne and were assigned to 330 ASVs, 
while 47,963,114 sequences (68.27%) derived from CWRs, 
corresponding to 389 ASVs. To normalise sequencing depth 
across samples, rarefaction was applied at 5,061 reads per sample, 
resulting in 153 ASVs retained across 717 samples. Taxonomy 
subsequently collapsed to the genus level, yielding 107 unique 
genera. The relative abundance of all retained genera across 
both domesticated lucerne and CWR accessions are presented in 
Supplementary Table 1. 

3.2 Diversity patterns in the Medicago 
seed microbiome 

3.2.1 Alpha diversity 
Alpha diversity was assessed using the Shannon diversity index 

to quantify within-sample bacterial richness across all retained 
samples (n = 717). Across the dataset, Medicago CWRs exhibited 
significantly higher bacterial diversity compared to domesticated 
lucerne, with mean Shannon indices of 2.15 and 1.55 respectively 
(p = 1.16E-29) (Figure 2A and Supplementary Table 2). When 
grouped by plant species, M. laciniata harboured significantly 
more diverse seed-associated bacterial community than M. littoralis 
(p = 1.74E-10), M. littoralis var. littoralis (p = 1.53E-10) and 
M. sativa (p = 2.86E-29) (Figure 2B and Supplementary Table 3). 
Within domesticated group, diversity was significantly lower than 
M. sativa subsp. falcata (p = 1.21E-05) and M. truncatula (p = 1.82E-
16), further highlighting the potential eects of domestication 
on seed microbiome diversity (Supplementary Table 3). At the 
accession level, M. laciniata APG 21164 displayed the highest alpha 
diversity (Shannon index = 2.57), while the Sequel accession of 
domesticated lucerne had the lowest (0.97) (Figure 2C). Within the 
domesticated group, the Aurora seed accession showed the highest 
diversity (2.37), suggesting considerable genotype-level variation 
within domesticated lines (Figure 2C). 

3.2.2 Beta diversity 
Beta diversity analysis revealed clear dierences in 

bacterial community composition across Medicago species. 
Principle Coordinates Analysis (PCoA) based on Jaccard 
dissimilarity showed distinct clustering of samples by plant 
species, with domesticated lucerne accessions forming a 
centralised cluster, while Medicago CWRs exhibited more 
dispersed, species-specific groupings (Figure 3). Statistical 
comparisons using unweighted UniFrac distances confirmed 
that bacterial community composition diered significantly 
across host species (PERMANOVA, p < 0.05; Supplementary 
Table 4), consistent with the ordination patterns. In addition 
to these compositional dierences (dierences in community 
centroids), tests for homogeneity of group dispersion 
(PERMDISP) revealed significant variability in the degree of 
within-group dispersion across several species pairs. Notable 
contrasts in dispersion were observed between M. laciniata 
and M. sativa, as well as M. laciniata and M. truncatula; 
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FIGURE 2 

Alpha diversity of seed microbiomes across domesticated lucerne and crop wild relatives (CWRs). Shannon diversity indices were calculated based 
on amplicon sequence variants (ASV) data. (A) Comparison of domesticated lucerne (Medicago sativa, n = 323) and CWRs (n = 394) shows 
significantly higher diversity in wild accessions. Different letters indicate statistically significant differences (Kruskal–Wallis test, p < 0.05 CWRs), (B) 
diversity comparisons across individual Medicago species reveal interspecific variation. (C) Shannon diversity across accessions within domesticated 
and wild groups highlights accession-level differences. Each boxplot shows median, interquartile range (IQR), and whiskers extending to 1.5 × the 
IQR. 

between M. littoralis and each of M. littoralis var. littoralis, 
M. sativa, and M. truncatula; between M. littoralis var. 
littoralis and M. sativa; between M. sativa and both M. sativa 
subsp. falcata and M. truncatula; and between M. sativa 
subsp. falcata and M. truncatula (Supplementary Table 4). 
These results indicate that both shifts in average community 
composition and dierences in variability of community structure 
contribute to species-level dierentiation in the Medicago 
seed microbiome. 

3.3 Taxonomic analysis of Medicago seed 
microbiome 

3.3.1 Overview of taxonomic composition 
Taxonomic profiling of seed-associated bacterial communities 

was performed at the phylum, class, and genus levels to evaluate 

patterns of community composition across Medicago host species 
and seed accessions. Analyses were stratified by both plant species 
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FIGURE 3 

Principal coordinate analysis (PCoA) of seed-associated bacterial communities across 36 Medicago accessions. Ordination is based on Jaccard 
dissimilarity of ASV presence–absence data. Each point represents a single seedling, colour-coded by accession. Variation in community 
composition is projected along the first two principal coordinate axes. Triangles indicate accessions included in both microbiome profiling and 
culturable isolate recovery, whereas circles represent accessions analysed only through microbiome profiling. 

and genotypes to assess the relative influence of host taxonomy and 
genotype/cultivar on microbiome structure. 

At the phylum level, eight bacterial phyla were detected 
across all samples, excluding unassigned groups representing 
less than 0.1% of total sequence reads (Supplementary 

Table 5). The dominant phyla—Proteobacteria, Firmicutes, 
and Actinobacteria—were consistently abundant in both 
domesticated lucerne and Medicago CWRs (Supplementary 
Figure 1 and Supplementary Table 5) and were prevalent across 
all 36 seed accessions (Supplementary Table 6). Proteobacteria 
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was the most abundant, comprising 46.3–99.9% of the total 
bacterial community across accessions, followed by Firmicutes 
(0.005–53.2%) (Supplementary Figure 2). 

At the class level, 11 bacterial classes were identified, with 
Gammaproteobacteria (75.0–77.2%), Bacilli (20.5–21.6%), 
Actinobacteria (0.76–1.07%), and Alphaproteobacteria (0.44– 
2.96%) being the most abundant overall (Supplementary Figure 3 
and Supplementary Table 7). Notably, Alphaproteobacteria 
was more enriched in Medicago CWRs (mean relative 
abundance = 2.96%) compared to domesticated lucerne 
(0.44%), representing a key compositional distinction between 
wild and domesticated host groups. Across all accessions, 
Gammaproteobacteria remained the dominant class, with 
the M. sativa cultivar “Sequel” exhibiting the highest 
relative abundance (99.94%) (Supplementary Figure 4 and 
Supplementary Table 8). 

3.3.2 Taxonomic composition at the genus level 
Genus-level profiling of Medicago seed microbiome identified 

107 bacterial genera across all samples. Of these, 17 genera were 
detected in domesticated lucerne accessions and 28 in CWRs, each 
at relative abundance exceeding 0.01%. Genera below this threshold 
were grouped under “Others” (Figure 4). In domesticated lucerne, 
the bacterial community was dominated by Pantoea (53.64%), 
Paenibacillus (20.63%), Pseudomonas (16.59%), along with lower 
contributions from taxa aÿliated with Enterobacteriaceae (3.96%) 
and Erwiniaceae (1.80%). In contrast, the most abundant 
genera across Medicago CWR accessions were Pantoea (31.12%), 
Pseudomonas (27.25%), Paenibacillus (19.80%), Massilia (8.93%), 
and Duganella (4.56%) (Supplementary Table 9). Of the 107 
identified genera, 27 were shared between domesticated and 
wild accessions. Twenty genera were unique to CWRs, 13 of 
which exceeded 0.01% threshold—including Duganella (4.56%), 
Hymenobacter (0.32%), and Tumebacillus (0.11%). Eighteen 
genera were exclusive to domesticated lucerne, although only 
Xanthomonas surpassed 0.01% relative abundance (0.07%). 

To assess the influence of host genotype/cultivar on bacterial 
composition, genus-level bacterial profiles were examined across 
all 36 Medicago seed accessions. The three most abundant genera 
across accessions were Pantoea (33.36–86.63%), Pseudomonas 
(2.08–38.32%), and Paenibacillus (0.004–52.30%) (Figure 4 
and Supplementary Table 1). Notably, Massilia was enriched 
in accessions of M. littoralis (11.59–15.36%) and M. littoralis 
var. littoralis (9.46–12.10%) but was substantially less abundant 
in domesticated lucerne (0.00–2.28%). Similarly, Duganella 
was prevalent in M. laciniata (9.26–13.87%), M. truncatula 
(9.09–11.72%), and M. littoralis var. littoralis (0.02–3.21%), 
but was undetectable in domesticated accessions. The genus 
Methylobacterium-Methylorubrum was particularly enriched 
in the domesticated cultivar “Mr Fothergills.” Other taxa also 
exhibited accession-specific enrichment. For example, M. littoralis 
var. littoralis showed elevated levels of Sphingomonas (4.31– 
5.60%). In M. laciniata, Hymenobacter also showed relatively high 
abundance (0.50–2.05%). M. truncatula APG 21771 accession had 
the highest recorded levels of Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (ANPR-complex) (1.13%) and 
Stenotrophomonas (1.14%). Notably, M. sativa subsp. falcata 
was the only species to harbour Tumebacillus at >0.01% relative 
abundance (0.014–1.96%). 

To explore whether developmental stage influences 
microbiome composition, we compared young and mature 
seeds of the domesticated cultivar “Magna-959.” Both seed stages 
shared the same dominant taxa, with only minor shifts observed, 
most notably a reduction in Bacillus abundance in mature seeds 
(Supplementary Figure 5 and Supplementary Table 1). These 
results suggest compositional stability across seed maturation 
stages in this cultivar, though broader comparisons across multiple 
accessions would be required to confirm whether this reflects 
a general trend. 

3.4 Core Medicago seed microbiome 

One of the key aims of this study was to determine whether 
a conserved core microbiome is shared across the 36 Medicago 
seed accessions. Following the framework proposed by Huse 
et al. (2012), the core microbiome was defined as bacterial 
taxa present in more than 90% of samples, irrespective of their 
relative abundance. This prevalence-based definition allows for the 
inclusion of taxa that may be functionally important but are not 
necessarily dominant in abundance. Factors such as host species, 
genotype, storage conditions, and geographic origin were not used 
as exclusion criteria for core membership. 

3.4.1 Core Medicago seed microbiome: 
species-level perspective 

A total of six core bacterial taxa were identified across the 
Medicago seed microbiome, defined by their presence in >90% of 
samples across all 36 accessions. These taxa represented 5.61% of all 
taxa detected yet accounted for 3,596,021 sequences—comprising 
99.1% of all sequences assigned to the core. This indicates that core 
membership was largely driven by high-abundance taxa, with the 
exception of one taxon classified only at the domain level (Bacteria), 
which contributed <0.1% of core reads. Although unresolved at 
lower taxonomic levels, this taxon was consistently detected and 
may represent one or more conserved but poorly characterised 
bacterial lineages. 

Of the 3,596,021 sequences assigned to core taxa, 3,189,272 
(88.69%) were shared among all six Medicago species, indicating 
a predominantly conserved core seed microbiome. These core 
taxa were taxonomically classified as Pantoea (21.87–53.64%), 
Pseudomonas (16.02–33.20%), Paenibacillus (9.01–47.37%), 
Enterobacteriaceae (1.33–3.96%), Curtobacterium (0.21–2.46%), 
and one unclassified taxon assigned only at the domain level 
(Bacteria) (0.001–0.045%) (Figure 5; Supplementary Table 10). 

Species-specific core taxa were also identified. M. sativa 
subsp. falcata uniquely harboured core taxa aÿliated with 
Enterobacteriales, Tumebacillus, Novosphingobium, Azospirillum, 
Dermococcus, collectively accounting for 1.28% of its core 
sequences. M. laciniata unique core members included 
Frigoribacterium and Oxalobacteraceae (0.14%), while M. littoralis 
var. littoralis contributed Variovorax, Bradyrhizobium, and 
Kineococcus (0.12%). M. truncatula harboured a distinct subset 
of Actinobacteria—including Microbacteriaceae, Microbacterium, 
Sanguibacter, Chryseobacterium and Plantibacter—accounting for 
0.54% of its core reads. M. sativa contained Erwiniacea (1.80%) as 
its only unique core taxon. No unique core taxa were detected in 
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FIGURE 4 

Genus level relative abundance of bacterial communities across Medicago seed accessions. Stacked bar plots show the relative abundance of 
bacterial genera detected by 16S rRNA gene amplicon sequencing across 36 Medicago seed accessions, including both domesticated lucerne and 
CWRs. Each horizontal bar represents a single accession. Genera with relative abundance >0.01% in at least one accession are individually shown; 
less abundant taxa are grouped under “Others.” Taxonomic assignments are displayed at the genus level or at the lowest available taxonomic rank. 

M. littoralis, suggesting its core microbiome may be broadly nested 
within that of other species. 

3.4.2 Core seed microbiome of domesticated 
lucerne versus Medicago CWRs 

To compare the core community structure between 
domesticated lucerne and Medicago CWRs, core taxa shared 
across host groups were analysed. Of the 3,189,272 sequences 
comprising the shared core microbiome (defined by presence 
in > 90% of samples), 1,562,585 sequences (49.0%) originated 
from domesticated lucerne and 1,626,687 sequences (51.0%) from 

CWR accessions. Taxonomic overlap analysis revealed that 75% of 
the domesticated lucerne core was also present in CWRs, whereas 
only 54.6% of the CWR core overlapped with that of domesticated 
lucerne. This asymmetry suggests a broader core diversity in 
wild relatives and supports the hypothesis that domestication 
may have filtered out part of the ancestral seed microbiota. 
Unique core members in domesticated lucerne included Bacillus 
and Erwiniaceae, which were not detected in the core of any 
CWR species. In contrast, CWR-specific core taxa included 
Massilia, Comamonadaceae, Sphingomonas, Methylobacterium-
Methylorubrum and ANPR-complex. These taxa were consistently 
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FIGURE 5 

UpSet plot illustrating the distribution of core bacterial taxa (present in >90% of samples) across six Medicago species. Vertical bars represent the 
number of taxa shared among accessions, as indicated by the filled blue dots in the matrix in the bottom panel. The largest intersection (n = 6) 
corresponds to bacterial taxa consistently detected across all Medicago species, representing the shared core microbiome. Smaller intersections 
reflect taxa shared by specific subsets or uniquely associated with individual plant species. Horizontal bars on the left indicate the total number of 
core taxa identified in each Medicago species. This visualisation supports the identification of both conserved and species-specific components of 
Medicago seed core microbiome. 

FIGURE 6 

Venn diagram representing the unique and shared bacterial core 
taxa associated with domesticated lucerne and Medicago CWR 
seeds. The numbers in the intersections are the shared core taxa 
and the remaining numbers are unique core taxa of both 
domesticated lucerne and CWRs. 

detected at >90% prevalence within wild accessions but absent or 
inconsistently detected in domesticated lucerne (Figure 6). 

At the class level, the core microbiome was dominated by 
Gammaproteobacteria (76.02%), followed by Bacilli (22.96%), 
Actinobacteria (1.00%). A single core taxon classified only at 
the domain level (Bacteria) accounted for a minor fraction 
(0.03%) of total core reads. This taxon lacked assignable lower-
level taxonomy and may represent one or more uncharacterised 
bacterial lineages that were consistently detected but unresolved 
using current reference databases. At the genus level, the most 
dominant and widely shared core taxa across both groups 
were Pantoea (19.46–27.50%), Pseudomonas (8.50–17.04%), and 

Paenibacillus (10.58–12.38%) (Supplementary Table 11). These taxa 
likely represent conserved, ecologically adapted, and potentially 
functionally significant members of Medicago seed microbiome. 

3.5 Microbial isolation and genomic 
characterisation 

3.5.1 Culture-based recovery and taxonomic 
identification 

A total of 530 bacterial isolates were recovered from 19 
Medicago seed accessions, including nine domesticated lucerne 
accessions (n = 213; 40%) and ten Medicago CWR accessions 
(n = 317; 60%). Of these, taxonomic identification was performed 
on 315 isolates, using either Sanger sequencing of the 16S rRNA 
gene (n = 305; NCBI GenBank BioProject PRJNA1180717) or 
whole-genome sequencing (n = 10; NCBI GenBank BioProject 
PRJNA1210666). Most identifications were resolved at the genus 
level, with only a few isolates (n = 2) assigned at higher taxonomic 
ranks due to lower sequence similarity. In total, 37 bacterial genera 
were represented among the cultured isolates. The culturable 
community was dominated by Pantoea (n = 119), followed by 
Pseudomonas (n = 29), Curtobacterium (n = 20), Erwinia (n = 21), 
Paenibacillus (n = 19), Duyella (n = 18) and Bacillus (n = 14), 
reflecting a mixture of conserved and host-specific taxa within 
Medicago seed microbiome. 

3.5.2 Whole-genome sequencing and 
comparative genomics 

To explore the phylogenetic diversity and potential novelty 
within the culturable seed community, 34 representative bacterial 
isolates were selected for long-read whole-genome sequencing. 
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Selection criteria prioritised taxa detected in at least one 
Medicago host species, with an emphasis on ecological relevance 
and representation within the seed microbiome. These selected 
strains included members of Pantoea, Paenibacillus, Pseudomonas, 
Massilia, Enterobacteriaceae and Duganella isolates. 

To evaluate taxonomic placement and potential novelty, ANI 
analysis was conducted by comparing the sequenced genomes to 
their closest NCBI reference genomes (Supplementary Table 12). 
Fourteen isolates exhibited ANI values ranging from 96.46 to 
99.85%, exceeding the 95% species delineation threshold (Jain 
et al., 2018). For example, isolate Lu_LA164_018 shared 94.58% 
ANI with P. orientalis (GenBank: GCF_003852045.1), suggesting 
it may represent a closely related, yet potentially novel, species. 
An additional, 14 isolates displayed ANI values between 80.43– 
91.76% relative to their closest references—above the genus-level 
threshold (>75%) (Wang et al., 2016), but below the species-level 
cut-o. These genomes likely represent divergent or previously 
uncharacterised species within the Medicago seed microbiome. 

To assess intra-species genomic variation, pairwise ANI 
comparisons were performed among isolates assigned to the same 
species (Supplementary Table 13). Notably, two P. fluorescens 
strains isolated from the same lucerne cultivar (SF Force 5) 
Lu_F5_006 and Lu_F5_029 exhibited a 99.9945% ANI, indicating 
they are closely related but genomically distinct. Similar strain-
level divergence was observed in Duyella gerundensis (Lu_R6_023 
vs Lu_F5_028; 98.85% ANI), and Paenibacillus nuruki (Lu_LT198-
042 vs Lu_TR771_007; 98.50% ANI), despite being isolated 
from dierent host species. Six isolates of P. alli consistently 
exceeded 99% ANI. Among these, pairs such as Lu_TR758_015 

and Lu_TR758_007 (from M. truncatula), and Lu_LT198_018 
and Lu_LT198_002 (from M. littoralis), shared 99.99% similarity, 
supporting the presence of distinct, coexisting strains within 
individual host taxa. 

3.6 Assessing the culturability of the 
abundant Medicago seed-associated 
taxa 

To assess the culturability of abundant members of the 
Medicago seed microbiome, an in-house BLAST database was 
constructed using whole-genome assemblies of 34 representative 
bacterial isolates. These isolates were selected based on their 
occurrence across multiple host accessions and aÿliation with 
high-abundance genera identified through 16S rRNA gene 
profiling. ASVs generated via QIIME2 were aligned to the isolate 
genome database using BLASTn. ASVs with ≥96% sequence 
identity to a reference genome were classified as culturable under 
the current experimental conditions, while those falling below this 
threshold were designated as non-culturable. The ≥96% threshold 
was chosen as a conservative criterion to minimise false negatives 
when aligning short-read ASVs to isolate genomes, and was 
intended for estimating culturability rather than for genus- or 
species-level delineation. Using this approach, 55.71% of abundant 
ASVs from domesticated lucerne and 63.39% from Medicago 
CWRs matched cultured representatives at ≥96% identity. The 
most frequently cultured ASVs were aÿliated with the genera 
Pantoea, Pseudomonas and Duyella (Figure 7), indicating that 

FIGURE 7 

Culturability of abundant bacterial taxa in the Medicago seed microbiome. Bar plots show the proportion of total 16S rRNA ASVs from domesticated 
lucerne and CWRs matching cultured isolates at ≥96% identity. Only ASVs affiliated with abundant cultured genera are shown. Taxa were classified 
as culturable based on sequence alignment to an in-house genome database constructed from 34 representative isolates. 
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several dominant community members were successfully captured 
through cultivation. 

Nevertheless, a substantial proportion of abundant ASVs— 
44.29% in domesticated lucerne and 36.61% in CWRs—remained 
uncultured under the applied isolation protocols. These should 
be interpreted as unculturable under the specific media and 
conditions employed, recognizing that additional taxa may be 
recovered using alternative approaches. As only 34 isolates were 
genome-sequenced, the analysis provides an indicative estimate 
of culturability for the abundant fraction of the seed microbiome 
rather than an exhaustive representation of community diversity. 
This strategy of sequencing a subset is consistent with previous seed 
microbiome study by Chandel et al. (2022b), which similarly used 
a fraction of the cultured isolate collection for genome-resolved 
culturability analyses. 

4 Discussion 

4.1 Mapping the microbial blueprint: 
profiling the Medicago seed microbiome 

This study demonstrated that Medicago seeds predominantly 
hosted bacterial taxa from the classes Gammaproteobacteria, Bacilli, 
Actinobacteria and Alphaproteobacteria (Supplementary Figure 3). 
This taxonomic structure aligns with seed microbiome profiles 
reported in other agronomically important species, including 
perennial ryegrass (Lolium perenne) (Tannenbaum et al., 2020), 
Soybean (Glycine max) (Chandel et al., 2022a; Chandel et al., 
2022b), rice (Oryza sativa) (Nakaew and Sungthong, 2018; Eyre 
et al., 2019; Kim et al., 2020), barley (Hordeum vulgare) (Bziuk 
et al., 2021) and bread wheat (Triticum aestivum) (Kuźniar
et al., 2020; Hone et al., 2021). Unlike studies focused solely on 
cultivated lines, the inclusion of both domesticated lucerne and 
diverse Medicago CWRs oers a rare comparative framework to 
examine microbiome conservation and divergence in the context 
of domestication. 

The CWRs exhibited a higher relative abundance of 
Alphaproteobacteria, including genera such as Bradyrhizobium and 
members of the ANPR-complex compared to domesticated lucerne 
(Supplementary Tables 7, 9). Two Rhizobium-aÿliated isolates 
(Lu_LT198_001 and Lu_TR935_W004) were also recovered 
from CWR accessions (Supplementary Table 14), suggesting that 
vertical transmission of mutualistic bacteria may be retained 
within wild Medicago lineages—consistent with previous reports in 
M. truncatula (Brown et al., 2020; Burns et al., 2021). The dominant 
genera in this study, Pantoea, Paenibacillus, and Pseudomonas 
were also detected in culturable seed microbiomes of domesticated 
lucerne from Argentina (López et al., 2018), where seed-associated 
bacteria were shown to persist under favourable storage conditions. 
Similar taxonomic patterns observed in the seed microbiome of 
Styrian oil pumpkin (Cucurbita pepo) (Adam et al., 2018), further 
support the concept of conserved microbial assemblages across 
diverse plant species. Notably, several lucerne cultivars obtained as 
certified organic seed lots (Hunter River, Sequel, Eden, Aurora, and 
Siriver) exhibited an increased prevalence of Enterobacteriaceae 
(Supplementary Table 1). As all 36 accessions were cultivated under 
the same controlled conditions in this study, this distinction reflects 

seed source rather than experimental treatment. This pattern is 
consistent with findings from organic raspberry cultivation systems 
(Sangiorgio et al., 2021), and studies in M. truncatula (Kêpczy´ nska
and Karczy´ nski, 2019), where members of Enterobacteriaceae with 
recognised PGP traits were also enriched. 

In one domesticated cultivar (“Magna-959”), young and 
mature seeds displayed broadly similar bacterial assemblages, with 
only a decline in Bacillus in mature seeds, distinguishing the 
developmental stages. While this preliminary observation hints at 
a degree of microbiome stability during maturation, this finding is 
based on a single accession and should be interpreted cautiously. 
Broader comparative analyses will be necessary to establish whether 
seed maturation consistently acts as a selective filter favouring 
microbial taxa adapted to desiccation and dormancy (Leprince 
et al., 2017; Chesneau et al., 2020). 

4.2 Domestication’s footprint: probing 
the lucerne seed microbiome 

Our findings support the hypothesis that domestication has 
significantly altered the composition and diversity of Medicago 
seed-associated microbiomes. Seeds of CWRs consistently 
harboured more diverse and compositionally distinct bacterial 
communities than their domesticated counterparts (Figure 2A), 
reflecting patterns reported in Glycine species (Chandel et al., 
2022b) and alpine cropping systems (Wassermann et al., 2019). 
Among Medicago accessions, M. laciniata exhibited the greatest 
bacterial richness, whereas domesticated lucerne displayed the 
lowest (Figure 2B). This reduction in diversity likely reflects the 
genetic bottlenecks imposed during domestication and selective 
breeding (Buckler et al., 2001). Nuclear DNA polymorphism 
analyses indicate an estimated 30% loss of genetic diversity in 
domesticated lucerne relative to its wild progenitors, despite its 
autotetraploid nature (Prosperi et al., 2014). Similar declines have 
been observed in rice (Zhu et al., 2012), soybean (Hyten et al., 
2006), and maize (Wright et al., 2005), where selective sweeps 
targeting agronomic traits have also reduced diversity in adjacent 
genomic regions (Clark et al., 2004; Palaisa et al., 2004; Sweeney 
and McCouch, 2007). These genomic constraints may limit not 
only allelic variation but also the plant’s capacity to recruit or retain 
beneficial microbial partners. It is also important to note that the 
CWR accessions included multiple Medicago species (M. sativa 
subsp. falcata, M. littoralis, M. truncatula, and M. laciniata), 
whereas the domesticated group consisted only of M. sativa. 
This broader taxonomic scope may contribute to the higher 
richness observed in CWRs. However, our PERMANOVA results 
revealed significant compositional dierences not only between 
domesticated M. sativa and other wild species, but also between 
domesticated M. sativa and its wild progenitor M. sativa subsp. 
falcata (p = 0.01). Together with significant PERMDISP results 
(Supplementary Table 4), which indicate greater variability among 
CWRs and a more uniform community structure in domesticated 
M. sativa, these findings suggest that the diversity contrast reflects 
both species-level eects and domestication-related bottlenecks. 

By contrast, seed microbiomes of CWRs appear more 
ecologically complex, which may reflect long-term ecological 
associations with host plants in relatively undisturbed 
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environments. Such associations have been proposed to support 
the formation of integrated, and potentially functionally diverse 
microbial consortia (Igwe and Vannette, 2018; Pérez-Jaramillo 
et al., 2018; Abdullaeva et al., 2021). In wild barley, for example, 
co-occurrence network analyses have revealed strong host-
microbe specificity, indicative of selective microbial assembly 
(Rahman et al., 2018). In domesticated lucerne, frequent genomic 
reconfiguration through selective and speed breeding may disrupt 
these ecological filters, potentially weakening the stability and 
functional breadth of seed microbiomes (Cordovez et al., 2019). 
In addition to taxonomic loss, domestication may contribute to 
functional simplification. Low-abundance or rare taxa, which are 
frequently lost during domestication, have been shown in other 
systems to carry specialised traits such as N fixation, antimicrobial 
compound synthesis, and abiotic stress resilience. Although 
present at low relative abundance, these taxa can contribute 
disproportionately to ecosystem function (Tkacz and Poole, 2015; 
Toju et al., 2018). Their depletion in Medicago could therefore 
reduce functional redundancy and limit the adaptive potential of 
the plant holobiont, a possibility that warrants further testing. 

Domestication-related shifts in microbiota have been 
documented in soybean (Chandel et al., 2022b), rice (Kim 
et al., 2020), cereal grasses (Abdullaeva et al., 2021), and wheat 
(Abdullaeva et al., 2022), and are frequently intensified by modern 
agricultural practices (Banerjee et al., 2019). Environmental 
variables such as soil chemistry, pH, fertilisation practices, and 
organic matter inputs can also influence microbial assembly 
and function (Fierer and Jackson, 2006; Lauber et al., 2009; 
Johnston-Monje and Raizada, 2011; Bulgarelli et al., 2015; Kim 
et al., 2020). While host genotype emerged as the dominant driver 
in our dataset, environmental filtering during cultivation and seed 
production likely contributed to shaping microbial community 
composition. 

Moreover, traits commonly targeted during crop improvement 
such as seed size, seed coat traits, and flowering phenology may 
inadvertently select for specific microbial assemblages, narrowing 
microbial diversity across breeding cycles. Microbial filtering that 
begins at the seed stage may propagate downstream, influencing 
microbiome composition in roots, rhizosphere, and phyllosphere, 
with consequences for plant development, immune interactions, 
and stress adaptation, as suggested in other systems (Nelson, 2018; 
Trivedi et al., 2020; Abdullaeva et al., 2021). 

We also identified low-abundance ( < 0.01%) microbial 
taxa unique to Australian domesticated lucerne cultivars 
(Supplementary Table 1). These included genera with plant-
beneficial functions such as Asticcacaulis (Okazaki et al., 2021), 
Mucilaginibacter (Madhaiyan et al., 2010), Herbaspirillum 
(Estrada et al., 2013) and Flavobacterium (Soltani et al., 2010). 
Actinoplanes (El-Tarabily, 2003) have also been associated with 
biocontrol activity. Interestingly, human-associated taxa such as 
Staphylococcus (Parlet et al., 2019) and Corynebacterium (Byrd 
et al., 2018) were also detected. While their presence may reflect 
inter-kingdom microbial exchange during seed handling, they have 
also been reported as persistent, low-abundance constituents of 
core plant microbiomes (Campisano et al., 2014; Kuźniar et al., 
2020), suggesting anthropogenic but non-transient colonisation. 
These findings raise the possibility that human intervention during 
seed production and handling may have inadvertently shaped seed 
microbiomes in domesticated species. 

The distinct microbial signatures identified in CWRs highlight 
their value not only as reservoirs of genetic diversity, but also 
as sources of ecologically important microbial taxa potentially 
lost through domestication. These findings highlight the seed as 
a critical, underexplored entry point in microbiome assembly. 
Integrating microbiome profiling into breeding pipelines may 
facilitate the reintroduction of beneficial microbes into elite 
cultivars, either through targeted genotype selection or seed-
applied synthetic communities (SynComs) designed to restore 
microbial function and improve resilience (Arnault et al., 2024; 
Luo et al., 2024). In this context, the seed microbiome represents 
a largely untapped resource for microbiome-informed crop 
improvement. 

4.3 Untangling the complexity: identifying key 
drivers shaping the Medicago seed microbiome 

The assembly of seed-associated microbiomes is shaped by 
interacting factors, including host genotype, ecological history, and 
environmental conditions. While earlier studies have emphasised 
the role of plant species and geographic origin (Rochefort et al., 
2019; Chartrel et al., 2021; Moreira et al., 2021), our findings 
indicate that host genotype—both at species and cultivar level— 
emerged as the dominant determinant of bacterial community 
composition in Medicago seeds. This pattern aligns with prior 
observations in wheat (Kuźniar et al., 2020) and is reinforced by 
our PCoA results, which revealed distinct clustering of microbiota 
by Medicago species (Figure 3). The close overlap between M. sativa 
and M. sativa subsp. falcata likely reflects their phylogenetic 
proximity (Chen et al., 2021). Notably, genotype-driven dierences 
persisted despite uniform cultivation and storage conditions, 
underscoring the robustness of host genetic influence. 

Within domesticated lucerne, cultivars exhibited distinct 
microbial assemblages, including dierences in dominant taxa. 
For instance, Erwiniaceae were enriched in cultivar “Sequel,” 
while Methylobacterium-Methylorubrum dominated cultivar “Mr. 
Fothergills” (Figure 3). Even cultivars sourced from the same 
commercial supplier (Barenbrug Australia Pty Ltd.) displayed 
divergent profiles. For example, Paenibacillus abundance was 
lower in “SARDI Grazer” than in “SARDI 7 Series 2,” and 
“SARDI 10 Series 2.” These findings are consistent with 
previous work in Arabidopsis, where genotype-specific responses 
to P. fluorescens influenced plant health (Haney et al., 2015). 
Species-specific microbial specificity was also evident, with taxa 
such as Hymenobacter and ANPR complex preferentially associated 
with M. laciniata and M. truncatula, respectively. Such patterns 
suggest that plants selectively recruit microbial partners based 
on genetically encoded traits, potentially shaping microbial 
inheritance and influencing early plant-microbe interactions. 

Although secondary to genotype, cultivation form (wild vs. 
domesticated) also contributed to microbial variation. CWRs were 
enriched in beneficial taxa such as Massilia, Duganella, Advenella, 
and Hymenobacter, many of which possess known PGP and stress-
mitigating functions (Hrynkiewicz et al., 2010; Aranda et al., 2011; 
Bonanomi et al., 2018; Raths et al., 2020; Kuzmina et al., 2022; 
Yarte et al., 2023). In contrast, domesticated accessions showed 
higher relative abundance of Enterobacteriaceae and Erwiniaceae. 
Bacterial communities in CWRs exhibited greater dispersion 
(Supplementary Table 4), likely reflecting increased ecological and 
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genetic diversity, consistent with findings in soybean (Chandel 
et al., 2022b). This supports the hypothesis that domestication not 
only narrows plant genetic diversity but also constrains microbial 
variability. 

The strong genotype eect observed here likely stems from 
host traits that modulate microbial recruitment during seed 
development and maturation (Bulgarelli et al., 2015; Nelson, 
2018). These traits may act as selective filters, enriching microbes 
capable of persisting through seed desiccation and supporting 
early-stage growth (Shade et al., 2017; Abdelfattah et al., 2023). 
The consistent recovery of species- and cultivar-specific taxa, even 
under standardised conditions, raises questions about the relative 
contributions of vertical transmission via reproductive tissues and 
horizontal acquisition from the environment (Shade et al., 2017; 
Zhang et al., 2022). Although environmental uptake during seed 
production cannot be excluded, the persistence of specific taxa 
in genetically related accessions suggest that vertical transmission 
could contribute alongside environmental acquisition. 

Collectively, these findings establish host genotype as the 
primary architect of seed microbiome structure in Medicago, with 
cultivation forms exerting a secondary but discernible influence. 
The identification of genotype-specific microbial signatures 
with plant-beneficial traits suggests opportunities to integrate 
microbiome selection into breeding pipelines. By understanding 
how host genetics govern microbial recruitment, it may be possible 
to design SynComs or breeding strategies that harness microbiome 
function in cultivated systems—restoring ecological complexity 
and potentially supporting crop performance. 

4.4 Validating the culturability of 
Medicago seed microbiome 

Culturing seed-associated bacteria expands the resources 
available for exploring their ecological roles and potential 
applications. Our study showed that CWRs harboured greater 
culturable diversity than domesticated lines, a trend that may 
reflect broader ecological heterogeneity and reduced anthropogenic 
filtering. These findings reinforce the value of CWRs as microbial 
reservoirs and are consistent with reports indicating that many 
ecologically important taxa remain uncultured under standard 
conditions (Creevey et al., 2014), underscoring the need for 
improved culturing methods. 

Among the most dominant cultured taxa were Pantoea, 
Erwinia, Pseudomonas, Paenibacillus, and Bacillus. Several of these, 
Pantoea, Pseudomonas, and Paenibacillus were also identified as 
core members of the Medicago seed microbiome (Supplementary 
Table 14). While known to exhibit PGP traits, some strains are 
pathogenic (Morris et al., 2007; Sebaihia et al., 2010; Walterson 
and Stavrinides, 2015; Grady et al., 2016; Hernández et al., 2023), 
highlighting their dual potential and the importance of validating 
ecological roles at strain-level prior to application. In addition to 
the dominant genera, several rare or low-abundance taxa, also 
referred to as satellite taxa and defined as those represented 
by a single isolate (Rabinowitz, 1981; Hanski, 1982; Dawson 
et al., 2017) were recovered, including Burkholderia, Massilia, 
Novosphingobium, Lysinimonas, and Kocuria, (see Supplementary 
Table 14 for rare taxa). Similar taxa have been identified in 

rice and wheat seed microbiomes (Costa et al., 2014). Although 
low in abundance, such taxa have been shown in other systems 
to influence community dynamics by suppressing opportunistic 
invaders and maintaining stability (Mallon et al., 2015). 

To evaluate culturability, we mapped 16S rRNA ASVs to the 
genomes of cultured isolates, indicating that a substantial portion 
of the abundant fraction of the seed microbiome in both Medicago 
CWRs and domesticated lucerne could be recovered under the 
current conditions. This approach provides an estimate of overlap 
rather than a definitive measure of ecological representativeness. 
Comparable culturability rates have been reported for ryegrass 
seed microbiome using R2A medium (Tannenbaum et al., 2020). 
However, recovery remains influenced by culturing strategies, 
including media composition, solidifying agents, and culturing 
protocols. For instance, substituting agar with phytagel in Luria-
Bertani (LB) medium has been shown to improve isolation 
eÿciency by altering sugar composition and reducing inhibitory 
eects (Kato et al., 2020; Wang et al., 2020; Youseif et al., 
2021). Additional constraints include nutrient depletion by fast-
growing bacteria, high agar concentrations, autoclaving-induced 
inhibitory compounds, and the accumulation of metabolic by-
products (Acuña et al., 2020; Bonnet et al., 2020). Plant-based 
media, such as lucerne or clover-derived “teabag” cultures have also 
been shown to enhance the recovery of fastidious taxa (Sarhan et al., 
2016; Hegazi et al., 2017), and may improve recovery of functionally 
important microbes that are otherwise diÿcult to culture. 

4.5 The core Medicago seed microbiome: 
stability, functional potential, and 
relevance for crop resilience 

Despite variation in bacterial composition across the six 
Medicago species, a conserved subset of taxa, present in over 90% 
of samples (See section “3.4 Core Medicago seed microbiome”), 
was consistently detected. This core seed microbiome holds 
agricultural relevance as a foundation for microbial inoculants, 
including biofertilisers and biocontrol agents (Eyre et al., 2019). 
These core taxa likely represent conserved microbial partners 
that persist across Medicago genotypes and confer physiological 
benefits to their hosts. Similar core microbiomes have been 
reported in soybean (Chandel et al., 2022b), maize (Johnston-
Monje and Raizada, 2011) and cereals (Abdullaeva et al., 2021), 
often independent of geography or domestication status. 

The Medicago seed microbiome exhibited a relatively small 
and taxonomically concentrated core, in contrast to crops such as 
soybean and oilseed rape (Brassica napus L.), which harbour core 
microbiomes comprising 28 and 59 bacterial genera, respectively 
(Rybakova et al., 2017; Chandel et al., 2022b). Medicago core 
taxa were restricted to a few dominant genera shared across 
accessions. This streamlined structure reflects findings in alpine 
seeds, where core taxa constituted only 0.09% of total operational 
taxonomic units (OTUs), underscoring the strong influence of 
host genotype on microbiome stability (Wassermann et al., 2019). 
Similarly, radish (Raphanus sativus) seeds hosted individual-
specific microbiomes, yet three OTUs accounted for over 70% of 
total reads per plant, indicating the dominance of conserved seed-
adapted bacteria (Rezki et al., 2018). The persistence of these core 
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FIGURE 8 

Seed-associated bacterial taxa shared among Medicago, soybean and danshen. Soybean bacterial taxa based on Chandel et al. (2022b). Danshen 
bacterial taxa based on Chen et al. (2018). Methylobacterium, Sphingomonas and Bacillus were identified as core taxa within certain Medicago 
genotypes. However, since they were absent in all Medicago genotypes, they were not represented in the Medicago core seed microbiome. 

taxa across Medicago species may reflect genotype-driven filtering 
during seed development, with possible contributions from co-
selection process reported in other systems. Traits such as seed coat 
chemistry, exudate composition, and host immune signalling likely 
shape microbial recruitment, while vertical transmission across 
generations may further stabilise these associations (Barret et al., 
2015; Mitter et al., 2017). Comparable host–microbe specificity has 
been reported in seed microbiomes of tobacco (Nicotiana tabacum) 
(Chen et al., 2020) and in rhizobiomes of sugar beet (Beta vulgaris) 
(Zachow et al., 2014), lettuce (Lactuca sativa) (Cardinale et al., 
2015) and common beans (Phaseolus vulgaris) (Mendes et al., 
2017), suggesting that such tightly conserved associations may be 
a broader feature of plant microbiomes. 

In Medicago, core taxa included Pantoea, Pseudomonas, 
Paenibacillus, Curtobacterium and members of the 
Enterobacteriaceae. Similar genera have been reported as core 
members in the seed microbiomes of soybean (Chandel et al., 
2022b) and danshen (Salvia miltiorrhiza) (Chen et al., 2018), 
suggesting a broad ecological relevance (Figure 8). For example, 
P. alfalfae sp. nov. CQ10 causes bacterial leaf blight in lucerne 
(Yao et al., 2023), whereas other Pantoea strains promote plant 
growth through phosphate solubilisation, indole-3-acetic acid 
(IAA) production (Díaz Herrera et al., 2016; Verma et al., 2017), 
fungal pathogen antagonism (Cottyn et al., 2001; Ruiza et al., 2011), 
and heavy metal tolerance (Lekired et al., 2023). This functional 
diversity underscores the importance of validating the ecological 
role of core taxa at strain level. 

Pseudomonas spp. includes both pathogenic and beneficial 
strains. While P. syringae causes diseases in crops such as barley, 
wheat, sugar beet, snap beans and tomato (Solanum lycopersicum) 
(Morris et al., 2007), other strains possess PGP traits including 
hormone modulation, N fixation, (Goswami et al., 2013; See-Too 
et al., 2016), and abiotic stress tolerance to drought (Naseem and 
Bano, 2014), temperature fluctuations (Mishra et al., 2008) and 
salinity (Saravanakumar and Samiyappan, 2007). In lucerne, co-
inoculation with P. fluorescence and R. meliloti improved growth 
under salinity stress by enhancing nutrient uptake and reducing 
sodium accumulation (Younesi et al., 2013). 

Paenibacillus, a consistently recovered core taxon, is known for 
key PGP traits including N fixation, phytohormone production, 
and nutrient solubilisation (Das et al., 2010; Turan et al., 
2012; Pandya et al., 2015; Lal et al., 2016). Field trials have 
shown that strains such as P. polymyxa RC05 can enhance 
wheat yield and soil nutrient availability (Turan et al., 2012), 
while others oer biocontrol potential against fungal pathogens 
(DasGupta et al., 2006). 

Although some Curtobacterium species, such as 
C. flaccumfaciens, are known pathogens, increasing evidence 
highlights the PGP potential of non-pathogenic strains (Young 
et al., 1996). Isolates from soil and plant-associated environments 
have demonstrated traits including systemic resistance induction, 
enhanced photosynthesis, and improved stress tolerance (Chase 
et al., 2016). For example, strain ME1 triggered defence responses 
in cucumber (Cucumis sativus) (Raupach and Kloepper, 1998), 
while C. albidum enhanced salt stress resilience in rice (Vimal 
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et al., 2019), underscoring the genus’s biotechnological value for 
sustainable agriculture. 

Several members of Enterobacteriaceae, including Citrobacter, 
Enterobacter, Erwinia, Pantoea, and Serratia are well-documented 
for their PGP properties (Rodríguez-Díaz et al., 2008). Enterobacter 
spp., in particular, contribute to N fixation (James, 2000), 
siderophore-mediated iron acquisition, hormone production 
(Maheshwari, 2011), and suppression of seed-borne pathogens such 
as Pythium ultimum (Ryu et al., 2003; Windstam and Nelson Eric, 
2008). Some strains also enhance abiotic stress resilience, with 
E. asburiae PS13 conferring cadmium tolerance to mung beans 
(Vigna radiata) (Inouhe et al., 1994), and E. asburiae PS2 promoting 
phosphate solubilisation (Ahemad and Khan, 2010). 

Some core taxa were specific and detected at low-abundance, 
suggesting a genotype-dependent component to the Medicago core 
microbiome. For example, Bradyrhizobium, a core member unique 
to M. littoralis var. littoralis, has been reported in other systems 
to provide N fixation, phosphate solubilisation and phytohormone 
production (B. japonicum) (Cattelan et al., 1999; Boiero et al., 2007; 
Padukkage et al., 2021). 

These findings highlight that even within a conserved 
core, subtle genotype-specific microbial signatures persist. 
Profiling the seed microbiomes of Medicago CWRs may uncover 
rare yet functionally important taxa that could contribute to 
stress resilience, nutrient eÿciency, or disease suppression in 
domesticated lucerne. Further functional validation will be 
required to determine whether such taxa hold promise for 
seed-applied microbial consortia or breeding strategies aimed at 
enhancing crop performance. 

4.6 Intra-species genomic variation and 
its implications for strain-level resolution 

A diverse assemblage of bacterial species was recovered from 
Medicago seeds, with Pantoea emerging as the most abundant 
and taxonomically diverse genus among the 315 cultured isolates 
(Supplementary Table 14). While initial species-level identification 
used 16S rRNA gene sequencing, this marker lacks suÿcient 
resolution to discriminate closely related taxa, even with 98.65– 
99% similarity thresholds (Kim et al., 2014). To improve resolution, 
we performed ANI analysis on 34 genome-sequenced isolates 
against NCBI reference genomes. Using 95–96% ANI threshold 
(Konstantinidis and Tiedje, 2005; Jain et al., 2018), 12 isolates were 
resolved to species level and 22 to genus level (Wang et al., 2016). 

Pairwise ANI comparisons revealed notable intra-species 
genomic variation, with ANI scores ranging from 97.85 to 
99.99% (Supplementary Table 13), likely reflecting ecological 
dierentiation rather than artefacts (Rodriguez-R et al., 2021). 
While these findings are based solely on ANI similarity metrics, 
complementary studies from our group have shown that 
isolates sharing high genomic similarity can nonetheless exhibit 
divergent functional outcomes in bioprotection assays (Herath 
Dissanayakalage et al., 2025a) and SynCom experiments (Herath 
Dissanayakalage et al., 2025b). This aligns with previous findings of 
up to 20% gene content divergence between isolates sharing 96.0– 
99.8% ANI. Some near identical isolates (> 99.99% ANI) still varied 
by up to 10% in gene content, underscoring the need for more 

stringent criteria in defining bacterial strains (Rodriguez-R et al., 
2024). The term genomovar—describing isolates with >99.5% ANI 
but distinct profiles (Tomeu et al., 2024)—was adopted for clarity 
and applied to several groups, including P. fluorescence R124 and 
P. alli (Supplementary Table 13). This strain-level resolution has 
important implications, as isolates belonging to the same species or 
genomovar may dier in traits relevant to colonisation, persistence, 
and bioprotection. These insights emphasise the importance of 
integrating genomic, phenotypic, and ecological validation when 
evaluating strain-level diversity, particularly in the context of 
SynCom design, where strain-specific traits rather than species 
identity alone influence inoculant performance. 

4.7 Bridging the genotype–phenotype 
gap: functional unknowns and future 
directions 

While genome-based classification oers powerful resolution, 
this study highlights a persistent gap between genetic similarity 
and functional behaviour. Several isolates sharing >99.99% ANI 
exhibited divergent phenotypic outcomes in bioprotection assays 
(Herath Dissanayakalage et al., 2025a), reinforcing observations 
from this and other studies that high genomic similarity does not 
always translate into equivalent ecological function. This mismatch 
was especially evident among isolates from CWRs, which often 
harbour novel genetic elements absent from reference databases. 
Although annotation tools such as AntiSMASH, dbCAN, and 
KEGG assist in identifying candidate traits, they provide only 
partial insights into microbe–host interactions and functional 
performance in complex environments. To address this genotype-
phenotype gap, future studies would benefit from integrating omics 
approaches with targeted assays. Time-resolved transcriptomics, 
metabolomics, co-cultivation assays, and SynCom dropout designs 
oer promising avenues to identify casual relationships between 
microbial traits and host outcomes. 

In parallel, field validation will be essential to evaluate strain 
persistence, ecological stability, and scalability across environments 
and host genotypes. Extending this work to other legumes and 
stress-prone crops may further demonstrate the generalisability of 
these findings. High-resolution frameworks, such as genomovar-
based definitions, are likely to become increasingly important for 
distinguishing functionally unique strains, facilitating regulatory 
approval, and guiding microbial inoculant development. 

5 Conclusion 

This study characterised the seed-associated microbiome of 
lucerne and its CWRs through a dual pipeline that integrated 16S 
rRNA gene profiling with culture-dependent isolation and genome-
level comparative analysis. This approach enabled high-resolution 
insight into microbial composition, culturability, and intra-
species genomic diversity—providing a framework for linking 
ecological characterisation with functional application. To our 
knowledge, this represents the first study to characterise seed 
microbiomes of Australian lucerne and one of the first to 
compare seed microbiomes of lucerne and its wild relatives 
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using both sequence- and culture-based approaches. The study 
revealed a conserved core microbiome shared across accessions, 
alongside species-specific and subdominant taxa shaped by plant 
genotype and domestication history. Notably, CWRs harboured 
a broader and more culturable microbial community than 
domesticated lucerne, reinforcing their value as reservoirs of 
untapped microbial diversity. Strain-level comparative genomics 
uncovered extensive intra-species divergence, with ANI-based 
analyses revealing functional dierences even among closely related 
isolates. These findings emphasise the limitations of taxonomic 
resolution alone and underscoring the need for strain-resolved 
resources in microbiome research. 

The culture collection developed here has demonstrated 
translational utility in complementary studies, with selected isolates 
exhibiting PGP and biocontrol traits, as demonstrated in prior 
functional studies (Herath Dissanayakalage et al., 2025a; Hone 
et al., 2025). SynCom experiments using isolates from this library 
further revealed divergent functional outcomes and confirmed 
microbial persistence and ecological integration in planta, as 
shown in a companion study—emphasising the complexity of 
microbiome-host interactions and the importance of strain-level 
design in microbial applications (Herath Dissanayakalage et al., 
2025b). Additional evidence of this utility is provided by a 
recent study on phosphate solubilising microbes (PSMs), where 
isolates from this library significantly enhanced P uptake and early 
lucerne growth (Hone et al., 2025). These cross-study applications 
reinforce the broader value of curated, genome-characterised 
collections—not only as taxonomic resources, but as living libraries 
for trait-guided screening and microbial input development. 
Collectively, these outcomes highlight the importance of precision 
in microbiome-informed applications and establish this isolate 
library as a versatile resource for functional exploration. By 
integrating culture-based recovery with sequence-based approach, 
this dual pipeline oers a robust and transferable framework for 
advancing seed microbiome research across crop systems. Sequence 
data will be made publicly available upon publication, enabling 
comparative analyses and reusability. Collectively, this work 
advances microbiome science from descriptive characterisation to 
mechanistic insight and application. By establishing a functionally 
relevant microbial resource and outlining a scalable framework for 
seed microbiome research, this study lays the foundation for next-
generation, precision-designed microbial solutions to support crop 
resilience, nutrient use eÿciency, and sustainable agriculture. 
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