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Introduction: Colorectal cancer (CRC), a leading cause of cancer-related 
morbidity and mortality worldwide, often presents asymptomatically, resulting 
in late diagnosis. Accumulating evidence links gut microbiota dysbiosis to CRC 
initiation and progression.
Objective: This study aimed to investigate the differences in gut microbiota 
composition and diversity among healthy controls (HC) and patients with 
colorectal lesions—including common colorectal polyps, small colorectal 
adenomas (SCRA), large colorectal adenomas (LCRA), and intramucosal 
carcinoma (IMC)—to identify bacterial species associated with disease 
progression and provide novel insights into the diagnosis and treatment of CRC 
based on the “polyp-adenoma-carcinoma” sequence.
Methods: A total of 250 participants were recruited from the First Affiliated 
Hospital of Anhui Medical University between July 2023 and June 2024. The 
cohort included 30 HC, 52 with common colorectal polyps, 58 with SCRA, 
56 with LCRA, and 54 with IMC. Fecal samples were collected for bacterial 
DNA extraction, followed by metagenomic sequencing to analyze microbial 
diversity. Differential microbiota analysis was performed using the R package 
microbiomeMarker and LEfSe. Group classification and feature identification 
were conducted using a random forest model. Functional profiling was 
performed using DIAMOND against the KEGG and MetaCyc databases.
Results: No significant differences in α-diversity were observed across the 
groups. β-diversity analysis revealed significant differences in Bray-Curtis and 
Jaccard distances among the groups. The composition and abundance of gut 
microbiota at the phylum, class, order, family, genus, and species levels were 
significantly altered. LEfSe analysis identified specific bacterial species with 
significant differences in IMC compared to other groups. Furthermore, the 
random forest model effectively distinguished patients with IMC from other 
groups based on distinct microbial signatures. Functional profiling revealed that 
the gut microbiota undergoes metabolic reprogramming from a homeostatic 
to a pro-tumorigenic phenotype during CRC progression as well as reduced 
protective pathway abundance and impaired energy/biosynthetic metabolism 
in CRC-associated microbiota.
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Conclusion: Gut microbiota profiles varied significantly among HC, polyp, 
SCRA, LCRA, and IMC groups. Specific microbial signatures were able to 
effectively differentiate IMC from both HC and non-malignant colorectal 
lesions, highlighting their potential as diagnostic biomarkers.

KEYWORDS

colorectal cancer, colorectal adenomas, gut microbiota, intramucosal carcinoma, 
polyps

1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed 
malignancy and the second leading cause of cancer-related mortality 
worldwide (Siegel et al., 2024). Its initiation and progression result 
from complex interactions among genetic, environmental, and 
microbial factors (Thulasinathan et al., 2025). Recent research has 
emphasized the role of the gut microbiota—often referred to as the 
“hidden organ”—as a critical breakthrough in CRC studies due to its 
involvement in host metabolism, immune regulation, and the 
maintenance of mucosal integrity (Thulasinathan et al., 2025; Huang 
and Huang, 2022). Mounting evidence indicates that dysbiosis of the 
gut microbiota is not merely a consequence but may be a pivotal factor 
contributing to carcinogenesis (Huang and Huang, 2022; Roy 
et al., 2025).

Advances in metagenomic sequencing (MS) and metabolomics 
have increasingly linked abnormalities in gut microbiota composition 
and function to the development of colorectal diseases (Hemmati 
et al., 2024). MS, which sequences the genomes of all microorganisms 
in intestinal contents, provides comprehensive insights into microbial 
species, gene functions, and metabolic pathways (Fusco et al., 2023). 
Compared to traditional 16S rRNA sequencing, MS provides strain-
level resolution, functional gene annotation and novel taxon discovery 
capabilities, enabling comprehensive profiling of microbial 
communities (Wang et al., 2023; Ionescu et al., 2023; Lei et al., 2024).

Substantial evidence implicates the gut microbiota as a critical 
mediator in the progression from benign polyps to adenomatous 
lesions and ultimately CRC (Ocvirk and O'Keefe, 2021). However, 
most current research focuses on characterizing microbial changes in 
established CRC, with limited understanding of the microbial 
dynamics during the precancerous stages—specifically, the 
progression from benign polyps to adenomas and eventually 
to carcinoma.

The development of CRC typically follows the classical “adenoma-
carcinoma” sequence, a multistage progression that provides a unique 
opportunity to explore the dynamic evolution of gut microbiota (Ocvirk 
and O'Keefe, 2021). In healthy individuals, the gut microbiota exhibits 
high diversity and mutualistic balance. However, as mucosal lesions 
evolve from common colorectal polyps to SCRA, LCRA, and ultimately 
IMC, probiotics such as butyrate-producing bacteria decline while 
pro-inflammatory taxa expand (Thulasinathan et al., 2025; Ocvirk and 
O'Keefe, 2021). These alterations suggest the potential utility of microbial 
markers for early detection and provide a theoretical basis for microbiota-
targeted interventions aimed at delaying or preventing CRC onset.

Nevertheless, stage-specific microbial characteristics across the 
spectrum from healthy controls to various stages of colorectal lesions—
including polyps, SCRA, LCRA, and IMC—remain inadequately 
elucidated. In this study, we systematically evaluated gut microbiota 

composition and structural variation among these groups to characterize 
the microbial successional trajectory during colorectal carcinogenesis. 
Our goal was to provide new perspectives for early diagnosis, risk 
stratification, and targeted microbial interventions in CRC prevention 
and management based on the “polyp-adenoma-carcinoma” continuum.

2 Materials and methods

2.1 Human subjects

This study prospectively enrolled 250 participants at the 
Department of Gastroenterology, The First Affiliated Hospital of 
Anhui Medical University, between July 2023 and June 2024. Based 
on colonoscopic and histopathological evaluations, individuals were 
categorized into the following groups: healthy controls (HC), common 
colorectal polyps (Polyp), small colorectal adenomas (SCRA), large 
colorectal adenomas (LCRA), and colorectal intramucosal carcinomas 
(IMC). Mid-portion fecal samples were collected using standardized 
stool collection kits prior to bowel preparation for colonoscopy and 
were preserved at −80 °C within 2 hours of collection.

Disease classification and diagnostic criteria were based on 
multiple authoritative guidelines, including the Standardized 
Diagnosis and Treatment of Colorectal Polyps, the Chinese Guidelines 
for the Diagnosis and Treatment of Colorectal Cancer (2023 Edition), 
the American Joint Committee on Cancer (AJCC) 8th Edition, and 
the Chinese Guidelines for Screening, Early Diagnosis, and Early 
Treatment of Colorectal Cancer (2020 Beijing Edition) (Wang et al., 
2024; National Health Commission of the People's Republic of China, 
2023; Giuliano et al., 2018; National Cancer Center, China, Expert 
Group of the Development of China Guideline for the Screening, 
Early Detection and Early Treatment of Colorectal Cancer, 2021). 
Specifically, common colorectal polyps were defined as hyperplastic 
or inflammatory polyps. SCRA were defined as tubular adenomas less 
than 1 cm in diameter, lacking villous features or high-grade dysplasia. 
LCRA were defined as adenomas ≥1 cm without features of advanced 
neoplasia. IMC referred to high-grade neoplasia or carcinoma 
confined to the muscularis mucosae, without submucosal invasion.

This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Anhui Medical University (Approval No. PJ 
2024-01-33).

Inclusion criteria: (A) Participants met the diagnostic and 
classification criteria; (B) No antibiotic or microecological treatment 
had been administered within 3 months prior to enrollment; (C) 
Written informed consent was obtained from all participants.

Exclusion criteria: (A) History of colorectal cancer or other 
malignancies; (B) Familial adenomatous polyposis; (C) Antibiotic use 
within the past 3 months; (D) Prior history of intestinal surgery; (E) 
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Known allergy to bowel cleansing agents; (F) Metastatic colorectal 
cancer; (G) Inability to comply with study procedures.

2.2 DNA extraction from fecal samples

Fresh fecal samples were collected, and DNA was extracted using 
the TIANamp Soil DNA Kit (spin column type, DP336). The 
concentration, integrity, and purity of the extracted DNA were 
assessed using the Agilent 5,400 system (AATI). Only samples that 
met quality standards were used for subsequent library preparation.

2.3 Library construction and metagenomic 
sequencing

Fecal DNA libraries were prepared using the Rapid Plus DNA 
Library Prep Kit for Illumina (RK20208). Library quality control 
included insert size assessment using the AATI system and accurate 
quantification of effective concentration (≥1.5 nM) using quantitative 
PCR (qPCR). Sequencing was then performed on the Illumina 
NovaSeq platform. Raw sequencing data were processed and quality-
controlled using fastp software.

2.4 Analysis of gut microbiota

Alpha diversity indices, including Chao1, Pielou evenness, 
Shannon, and Simpson indices, and beta diversity indices, including 
Bray–Curtis and Jaccard distances, were calculated at the family, 
genus, and species levels using the vegan package (version 2.6–8). 
Microbial community composition was visualized through species 
composition bar plots at multiple taxonomic levels. Comparative 
analyses of microbial communities among groups were conducted at 
the phylum, class, order, family, genus, and species levels.

Two complementary approaches were used to identify 
discriminatory taxa. LEfSe is used to identify individual species with 
statistically and biologically consistent differences between groups 
(biomarker discovery), which was performed using the 

microbiomeMarker package (version 1.9.0). Characteristic species or 
differential species were defined as linear discriminant analysis (LDA) 
score > 2.0 and a p-value < 0.05. Random forest model was constructed 
to assess the predictive power of multispecies traits and identify a set 
of taxa that, when combined, can best classify disease groups, 
explaining potential interactions and nonlinear relationships. 
Participants were randomly divided into discovery and test sets in a 
7:3 ratio. Feature species selection was conducted using the Boruta 
algorithm, and the random forest classification model was built using 
the caret package (version 6.0–94). Functional profiling of the 
metagenomic data was performed using DIAMOND to align 
predicted protein sequences against the KEGG and MetaCyc databases 
for pathway and functional annotation.

2.5 Statistical analysis

Between-group differences in alpha diversity were assessed using 
the Wilcoxon test for two-group comparisons and analysis of variance 
(ANOVA) for multiple groups. Beta diversity differences were 
evaluated using PERMANOVA. Differences in bacterial genera 
between groups were also analyzed using the Wilcoxon test. The 
diagnostic performance of the random forest model was evaluated 
using receiver operating characteristic (ROC) curves. A two-sided 
p-value < 0.05 was considered statistically significant.

3 Results

3.1 Clinical and demographic 
characteristics

A total of 250 fecal samples were analyzed from five groups: HC 
(n = 30), Polyp (n = 52), SCRA (n = 58), LCRA (n = 56), and IMC 
(n = 54) (Table 1). Patients with IMC were significantly older (p for trend 
< 0.001), had higher body mass index (BMI) (p for trend = 0.049), and 
exhibited the highest prevalence of hypertension (p for trend = 0.042). No 
significant differences were observed among the groups in terms of sex, 
smoking history, or alcohol consumption (Table 1).

TABLE 1  Relevant clinical characteristics.

Variable HC Polyp SCRA LCRA IMC F/X2 p

Cases (n) 30 52 58 56 54

Gender
Male (n, %) 18 (60.00%) 34 (65.38%) 36 (62.07%) 38 (67.86%) 41 (75.93%) χ2 = 3.31 0.507

Female (n, %) 12 (40.00%) 18 (34.62%) 22 (37.93%) 18 (32.14%) 13 (24.07%)

Age (year) 37.63 ± 9.40 50.71 ± 13.44 56.40 ± 10.90 56.07 ± 11.40 57.96 ± 11.92 F = 17.84 <0.01

BMI 22.75 ± 2.89 23.85 ± 2.96 24.64 ± 2.97 23.60 ± 2.81 24.33 ± 3.10 F = 2.43 0.049

Hypertension 

History

Yes (n, %) 1 (3.33%) 10 (19.23%) 16 (27.59%) 13 (23.21%) 17 (31.48%) χ2 = 9.91 0.042

No (n, %) 29 (96.67%) 42 (80.77%) 42 (72.41%) 43 (76.79%) 37 (68.52%)

Smoking History
Yes (n, %) 5 (16.67%) 12 (23.08%) 7 (12.07%) 18 (32.14%) 16 (29.63%) χ2 = 8.52 0.074

No (n, %) 25 (83.33%) 40 (76.92%) 51 (87.93%) 38 (67.86%) 38 (70.37%)

Alcohol 

Consumption

Yes (n, %) 3 (10.00%) 12 (23.08%) 8 (13.79%) 13 (23.21%) 15 (27.78%) χ2 = 5.87 0.209

No (n, %) 27 (90.00%) 40 (76.92%) 50 (86.21%) 43 (76.79%) 39 (72.22%)

BMI, Body mass index, calculated as weight (kg)/height (m)2; Normally distributed data are presented as mean ± standard deviation (SD); F, ANOVA; χ2, Chi-square test; M, Median; SD, 
standard deviation.
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3.2 Alpha and beta diversity

Alpha diversity indices (Chao1, Pielou, Shannon, and Simpson) 
showed no significant differences among the groups at the family, 
genus, and species levels (Figure  1), suggesting similar microbial 
richness, evenness, and diversity.

Beta diversity metrics—including Bray–Curtis and Jaccard 
distances—were calculated and visualized to evaluate microbial 
community structure at the family, genus, and species levels, using 
principal coordinates analysis (PCoA). Significant differences in beta 
diversity were identified among the five groups at all taxonomic levels 
(Figure 2).

FIGURE 1

Intergroup comparisons of alpha diversity at different taxonomic levels. Intergroup comparisons of the Chao1 index at the family, genus, and species 
levels, respectively (A–C). Intergroup comparisons of the Pielou (D–F) and the Shannon (G–I). Illustration of the Simpson index (J–L).
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3.3 Community composition distribution

To further investigate gut microbiota composition, relative 
abundance was assessed at the phylum, class, order, family, genus, 
and species levels (Figure 3). Dominant taxa were identified as 
Bacteroidota at the phylum level, Clostridia at the class level, 
Eubacteriales at the order level, Oscillospiraceae at the family 
level, Mediterraneibacter at the genus level, and Blautia wexlerae, 
Escherichia coli, and Phocaeicola vulgatus at the species level 
(Figure 3).

3.4 LEfSe analysis of differential bacterial 
species

LEfSe analysis (LDA score > 3) was performed to identify 
taxa with significantly different abundances among the five 
groups (Figure  4). The relative abundances of Phocaeicola 
vulgatus and Phocaeicola coprophilus were elevated, while 
Sellimonas intestinalis and Blautia wexlerae were reduced in the 
SCRA, LCRA, and IMC groups. Compared to the Polyp group, 
Eggerthella lenta was more abundant in the LCRA and IMC 
groups. Conversely, Bacteroides zhangweihongii and Bacteroides 
intestinalis exhibited decreased relative abundance in the SCRA 
and LCRA groups compared to the IMC group. Moreover, 
Eubacterium hominis abundance was significantly increased in 
the LCRA group than in the SCRA group, whereas Akkermansia 
muciniphila and Ruminococcus bicirculans were reduced 
(Figure 4).

3.5 Relative abundance of differential 
species

To validate the differences in species abundance identified 
through LEfSe analysis across the five groups, the Wilcoxon test was 
performed (Figure  5). Compared to the HC group, the relative 
abundances of Phocaeicola vulgatus, Phocaeicola coprophilus, and 
Bacteroides stercoris were significantly increased in the SCRA, LCRA, 
and IMC groups, whereas Blautia wexlerae and Lachnospira eligens 
were significantly decreased in all diseased groups (p < 0.05). 
Additionally, the abundances of Eubacterium hominis and Eggerthella 
lenta were significantly elevated in the LCRA group relative to the 
other groups (p < 0.05).

3.6 Random forest models identify 
bacterial species combinations 
distinguishing disease groups from healthy 
controls

Random forest models were employed to identify combinations 
of bacterial species capable of distinguishing between different groups 
(Figure  6). ROC curve analysis demonstrated that these bacterial 
combinations effectively differentiated IMC from HC (AUC = 0.902), 
IMC from Polyp (AUC = 0.845), IMC from SCRA (AUC = 0.897), 
SCRA from HC (AUC = 0.852), SCRA from Polyp (AUC = 0.902), 
and Polyp from HC (AUC = 0.868). These results indicate that distinct 
microbial signatures can effectively differentiate the IMC group from 
other groups.

FIGURE 2

Gut microbiota characteristics of different groups at different taxonomic levels. Principal coordinate analysis (PCoA) of gut microbial composition 
revealed significant differences among groups at the family, genus, and species levels. PCoA based on Bray-Curtis distance (A–C) and Jaccard distance 
(D–F).
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3.7 Potential biological functions

KEGG annotation linked predominant gut bacterial taxa to six 
core functional categories, while Kruskal-Wallis tests of EC numbers 
identified functional reprogramming across the CRC progression, 
marked by key shifts in energy metabolism, quorum-quenching 
activity, and amino acid synthesis-related enzyme dynamics 
(Figure 7). Systematic metabolic upregulation was observed across 
KEGG hierarchies: at Level 1, “Metabolism” capacity increased 
significantly with CRC progression, linking global microbial 
metabolism to disease advancement (p < 0.05, Figures 8A,B); at Level 
2, this upregulation was driven by activated central metabolic, 
carbohydrate, and nucleotide metabolism, with late-stage enrichment 
of “Infectious Diseases: Parasitic” pathways also noted (Figures 8C–F); 
at Level 3, specific pathways including carbon metabolism, purine 

metabolism, the pentose phosphate pathway, and glycine/serine/
threonine metabolism were consistently upregulated, clearly 
indicating a functional shift toward microbial biosynthetic processes 
(Figure 9).

KEGG Orthology (KO) analysis confirmed coordinated 
upregulation of genes involved in DNA replication/repair (e.g., 
K00763, pncB), stress response (e.g., K03671, trxA), and primary 
metabolism (e.g., K00928, lysC); heatmap analysis further validated 
that this functional upregulation was extensive and synchronized in 
intramucosal carcinoma (Figure 10, Supplementary Table S3).

MetaCyc analyses revealed functional remodeling of the gut 
microbiome across the CRC progression. Pathway analysis showed 
that the abundance of protective microbial pathways (such as 
PWY-6285, E. coli fatty acid biosynthesis; PWY-7596, stearidonate 
biosynthesis; PWY1A0–6,120, streptorubin B biosynthesis; and 

FIGURE 3

Comparison of gut microbial composition. The distribution of the top nine most abundant taxa at the phylum, class, order, family, genus, and species 
levels among all groups (A–F).
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PWY-6146, Methanobacterium biosynthesis) was reduced in the CRC 
continuum compared with healthy controls (Figure  11, 
Supplementary Table S4). Meanwhile, reaction analysis demonstrated 
systemic impairment in microbial energy metabolism (e.g., 
ATPASE-RXN), biosynthetic metabolism (e.g., UDPNACETYL 
MURAMATEDEHYDROG-RXN [UDP-N-acetylmuramate 
dehydrogenase; EC 1.3.1.98] and GLUC1PURIDYLTRANS-RXN 
[ambiguous; EC 2.7.7.64/2.7.7.9]), and replication (e.g., 
DNA-DIRECTED-DNA-POLYMERASE-RXN) (Figure  12, 

Supplementary Table S5). These changes collectively reflect global 
functional reprogramming of the gut microbiome.

4 Discussion

Gut microbiota dysbiosis plays a pivotal role in the 
development and progression of CRC. Comprehensive 
investigations into the gut microbiota and its associations with the 

FIGURE 4

Linear discriminant analysis effect size (LEfSe) identified microbial taxa with significantly relative abundances. Panels A–J show pairwise comparisons 
among groups: (A) HC vs. Polyp; (B) HC vs. SCRA; (C) HC vs. LCRA; (D) HC vs. IMC; (E) Polyp vs. SCRA; (F) Polyp vs. LCRA; (G) Polyp vs. IMC; (H) SCRA 
vs. LCRA; (I) SCRA vs. IMC; (J) LCRA vs.IMC.

https://doi.org/10.3389/fmicb.2025.1658160
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al.� 10.3389/fmicb.2025.1658160

Frontiers in Microbiology 08 frontiersin.org

pathological evolution of CRC may offer valuable insights for its 
prevention and treatment (Jackson and Theiss, 2020). In this study, 
MS was employed to investigate gut microbiota dynamics along the 
adenoma–carcinoma sequence, encompassing multiple 
pathological subgroups, including polyp, SCRA, LCRA, and 
IMC. Additionally, quantitative analyses were conducted to 
identify potential microbial biomarkers and explore associations 
between the gut microbiota and CRC progression, using 
α-diversity, β-diversity, and LEfSe analyses.

No significant differences in α-diversity indices were observed 
among the groups, which is consistent with previous studies. Potential 
contributing factors include the complexity of host variables, microbial 
ecosystem characteristics, and limitations in detection techniques and 
sample processing (Janney et al., 2020; Song et al., 2020). In contrast, 
significant differences in β-diversity were observed across the groups at 
the family, genus, and species levels. While some studies have reported 

significant β-diversity differences only at the family and genus levels 
between HC and CRC groups (Cheng et al., 2020), such variations may 
be  attributed to increased pro-inflammatory bacterial populations, 
reductions in beneficial bacteria due to intestinal microenvironmental 
shifts (Xia et al., 2023), and differences in host immune status (Fusco 
et al., 2023).

Species composition analysis revealed stage-specific variations across 
all taxonomic levels. At the phylum level, the polyp group exhibited a 
higher abundance of Bacteroidota and a lower abundance of 
Actinobacteria. Bacteroidota, known for its strong polysaccharide 
metabolic capacity, may exhibits competitive expansion under low dietary 
fiber conditions (Lam et al., 2023). High-fat/high-protein diets, as well as 
inflammatory intestinal conditions, further promote its dominance. 
Conversely, a deficiency in dietary fiber may reduce Actinobacteria 
abundance, while high-fat/high-protein diets could inhibit its growth via 
gut pH alteration and redox potential shifts (Colella et al., 2023).

FIGURE 5

Relative abundances of differentially enriched species identified by LEfSe analysis. The legend indicates sample groups: healthy controls (green), 
common polyps (pink), small adenomas (yellow), large adenomas (orange), and intramucosal carcinomas (red).
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An increased abundance of Proteobacteria was observed in the 
LCRA and IMC groups, possibly reflecting an altered redox potential 
that favors the growth of facultative anaerobes (Wu et  al., 2023). 
Moreover, immunosuppressive conditions associated with colorectal 
adenoma and carcinoma may also contribute to Proteobacteria 
proliferation (Feizi et al., 2023).

At the family level, the SCRA group displayed an increased 
abundance of Oscillospiraceae and a decreased abundance of 
Enterobacteriaceae. Oscillospiraceae may gain a competitive 
advantage in the early adenoma microenvironment by fermenting 
dietary fiber and producing short-chain fatty acids (SCFAs), which 
play roles in regulating host metabolism and immunity (Liu et al., 
2023). In contrast, Enterobacteriaceae may be disadvantaged by their 
reduced adaptability to local redox conditions, limited nutrient 
acquisition efficiency, and suboptimal immune evasion mechanisms 
(Quaglio et al., 2022).

At the genus level, the SCRA group showed increased 
Mediterraneibacter, while the LCRA group exhibited higher 
Bifidobacterium abundance. The immune microenvironment of early 
adenomas appears to be more permissive toward Mediterraneibacter, 
whereas Bifidobacterium may adapt to immune changes by modulating 
local immune responses in more advanced lesions (Cai et al., 2022; 
Karpiński et al., 2022). Notably, the abundance of Escherichia was 
decreased in the SCRA group but increased in the LCRA group, 
suggesting a role in adenoma progression. Previous studies have 

indicated that high-fat/high-protein diets lead to the production of 
intermediate metabolites such as branched-chain amino acids 
(BCAAs) and specific fatty acids, which serve as carbon and nitrogen 
sources for Escherichia, thereby promoting its proliferation (Hou 
et al., 2022).

Furthermore, Escherichia-derived endotoxins can activate the 
NF-κB pathway, enhancing local inflammation and facilitating 
abnormal proliferation and differentiation of adenomatous cells 
(Kvakova et al., 2022). Particularly, pathogenic strains like Escherichia 
coli (EPEC), may enhance adenoma invasiveness and drive disease 
progression by modulating host signaling pathways through the type 
III secretion system (Clay et al., 2022).

In this study, LEfSe analysis revealed significant enrichment 
of Phocaeicola vulgatus and Phocaeicola coprophilus in the SCRA, 
LCRA, and IMC groups, particularly in the LCRA group 
(Supplementary Table S1). Existing evidence implicates 
Phocaeicola species are associated with intestinal immune 
regulation and colorectal cancer progression. Phocaeicola vulgatus 
promotes the adenoma–carcinoma transition by inducing M2 
macrophage polarization and activating the NF-κB pathway 
(Welham et al., 2023; Ala, 2022). Phocaeicola coprophilus evades 
immune clearance by exploiting the immunosuppressive effects of 
regulatory T cells (Tregs) and gains a proliferative advantage 
through the metabolic utilization of lactic acid in the tumor 
microenvironment (Shen et al., 2022).

FIGURE 6

Receiver operating characteristic (ROC) curves at the species level. Panels A–F represent pairwise comparisons among groups: (A) IMC vs. HC; (B) IMC 
vs. Polyp; (C) IMC vs. SCRA; (D) Polyp vs. HC; (E) SCRA vs. HC; (F) SCRA vs. Polyp.
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Our findings also demonstrated that the abundance of Blautia 
wexlerae, a bacterium belonging to the phylum Firmicutes, was 
significantly decreased in the SCRA, LCRA, and IMC groups 
compared with the HC group, in line with previous reports 
(Supplementary Table S1). The beneficial roles of Firmicutes have 
been well documented, and their decreased abundance has been 
associated with esophageal cancer, lung cancer, and type 2 diabetes 
(Lee et al., 2023).

One original finding of this study is that the abundance of 
Sellimonas intestinalis was significantly reduced in the Polyp and IMC 
groups relative to the HC group, whereas no significant change was 
observed in the SCRA and LCRA groups. This stage-specific pattern 
may reflect microbial competition dynamics (Supplementary Table S1). 

In the common polyp and IMC groups, a marked microbial imbalance 
was present, enabling more adaptive pathogenic bacteria (e.g., 
facultative anaerobes such as Enterobacteriaceae) to outcompete 
Sellimonas intestinalis for resources. In contrast, the adenoma groups 
maintained a relatively stable microbial environment with reduced 
competitive pressure, thereby preserving the abundance of Sellimonas 
intestinalis (Romanov et al., 2022). Nevertheless, due to limitations in 
sample size and specimen conditions, these findings require validation 
through larger-scale studies.

LEfSe analysis further identified significantly elevated 
Eggerthella lenta abundance in the LCRA and IMC groups 
compared with the Polyp group, with no significant increase in the 
SCRA group (Supplementary Table S1). MS and animal model 

FIGURE 7

KEGG analysis revealed reprogramming of Microbial Enzyme Activities (EC Numbers). (A) KEGG functional annotation of microbial genes. 
(B) Comparison of the average proportion of key Enzyme Commission (EC) numbers. (C) Distribution of the relative abundance of selected EC 
numbers. (D) Abundance differences of key enzymes in CRC progression. (E) Relative abundance of differentially expressed EC numbers across all 
samples. (F) LEfSe analysis of key enzyme biomarkers distinguishing different stages of CRC.
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studies have similarly shown increased abundance of Eggerthella 
lenta with disease progression in advanced adenoma and CRC 
patients (Lee et  al., 2023; Romanov et  al., 2022), suggesting a 
potential role in the malignant transformation of inflammatory 
polyps. During the early adenoma stage, only mild 
immunosuppression and minimal microbial dysbiosis are present. 
However, in advanced adenoma and IMC stages, decreased immune 
surveillance and reduced probiotic populations relieve competitive 
inhibition, allowing Eggerthella lenta to increase in abundance. This 
bacterium may further exacerbate disease progression by inducing 
epithelial–mesenchymal transition (EMT) and promoting 
metabolic reprogramming, thereby establishing a vicious cycle that 
enhances tumor invasiveness (Avelar-Barragan et al., 2022; Zhang 
et al., 2021).

The abundances of Bacteroides zhangwenhongii and Bacteroides 
intestinalis were significantly decreased in the SCRA and LCRA 
groups compared with the IMC group, suggesting their potential 
involvement in the adenoma–carcinoma transition 
(Supplementary Table S1). Clos-Garcia et al. reported abnormal levels 
of Bacteroides intestinalis in patients with colorectal adenoma and 
CRC (Clos-Garcia et al., 2020). Furthermore, animal experiments 
have confirmed that Bacteroides intestinalis can promote tumorigenesis 
in AOM-DSS-induced mice by regulating inflammation- and 
apoptosis-related gene expression (Liu et al., 2020). Since the role of 
Bacteroides zhangwenhongii in CRC remains unclear, further studies 
are needed to elucidate its mechanistic involvement.

In the LCRA group, Eubacterium hominis was increased, whereas 
Akkermansia muciniphila and Ruminococcus bicirculans were 
decreased (Supplementary Table S1). The increased abundance of 

FIGURE 8

Systematic metabolic upregulation across KEGG Hierarchies at Level 1 and Level 2. (A) Mean proportion of the “Metabolism” category (KEGG Level 1). 
(B) Distribution of “Metabolism” category abundance (KEGG Level 1). (C) Mean proportion of KEGG Level 2 metabolic subcategories. (D) Distribution of 
the abundance of KEGG Level 2 categories. (E) Abundance differences specific of KEGG Level 2 categories. (F) Relative abundance of metabolic 
features across all samples (KEGG Level 2).
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Eubacterium hominis in patients with advanced adenomas may alter 
the intestinal short-chain fatty acid (SCFA) profile (e.g., butyrate) by 
competing for metabolic substrates required by SCFA-producing 
microorganisms. This competition reduces the availability of 
substrates for beneficial bacteria, indirectly impairing the physiological 
function of intestinal epithelial cells and promoting adenoma 
progression (Cheng et al., 2020).

Random forest model analysis revealed significant microbiota 
disparities across several group comparisons (e.g., SCRA vs. Polyp, IMC 
vs. HC). The gut microbiota-based diagnostic models exhibited high 
predictive performance (AUC ≥ 0.8), suggesting that gut microbial 
profiles along the polyp–adenoma–carcinoma axis may serve as reliable 
tools for differential diagnosis. Nevertheless, these results warrant further 
validation through larger, multicenter investigations.

The key species identified by LEfSe were not the same as the 
top-level characteristics of the random forest model. This is to 
be expected because the two approaches solve different problems. 
LEfSe identifies a single taxa with the largest effect size, while a 
random forest selects a combination of features that work together 
to maximize prediction accuracy, even if some individual features 
have only moderate effects. This highlights that CRC progression is 
associated with strong individual bacterial signaling and complex 
multispecies community shifts. Future models could explore the 

capabilities of combining both approaches to potentially 
improve performance.

The progression of CRC may not follow a linear trajectory. 
Potential “tipping points” could exist, for instance, the transition from 
health to polyp represents one critical shift, while the advancement 
from late colorectal adenoma (LCRA) to intramucosal carcinoma 
(IMC) constitutes another drastic alteration, with the intermediate 
phase (sessile serrated lesions, SCRA) possibly maintaining relative 
stability. Crucially, changes in species composition do not directly 
equate to linear functional alterations. In early stages, reductions in 
beneficial bacteria might be compensated by increased abundance of 
functionally redundant taxa, preserving functional homeostasis. 
Functional collapse likely occurs only when dysbiosis surpasses a 
critical threshold. At specific phases, host-derived drivers such as 
immune responses and inflammatory states may override microbial 
influences, generating complex fluctuations in the microbiota rather 
than linear progression.

We noticed that the IMC group exhibited significant differences 
in age, BMI, and hypertension status compared to other groups in this 
study. As reported, age-related declines in anaerobic bacteria like 
Bifidobacterium have been observed, resulting in the low systemic 
inflammatory status and malnutrition in older adults (Rinninella 
et al., 2019). While obesity disrupts the microbiota-host metabolic 

FIGURE 9

Systematic metabolic upregulation across KEGG Hierarchies at Level3. (A) Mean proportion of the “Metabolism” category (KEGG Level 3). 
(B) Distribution of the abundance of KEGG Level 3 metabolic pathways. (C) Abundance differences of specific KEGG Level 3 metabolic pathways. 
(D) Relative abundance of differentially expressed metabolic pathways.
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balance by reducing butyrate-producing bacteria (e.g., Akkermansia, 
Faecalibacterium) and expanding pro-inflammatory taxa (e.g., 
Enterobacteriaceae, Alistipes) (Gerard, 2016). These factors are 
established independent factors of gut dysbiosis and may confound 
the interpretation of microbiota changes attributed solely to the cancer 
stage. Additionally, the sample size distribution across groups was 
uneven, and significant intergroup differences in age and BMI may 

confound microbiota comparisons. Participants with normal intestinal 
mucosa confirmed by colonoscopy were enrolled in the healthy 
control group. Those with inflammatory findings, polyps, previous 
colorectal surgery, or allergies to bowel preparation agents were 
excluded. Due to these stringent inclusion criteria, recruitment of 
eligible healthy control subjects proved challenging, resulting in a 
relatively small sample size for this group. To statistically account for 

FIGURE 10

KEGG KO analysis confirmed a hyper-proliferative phenotype at Gene-Level. (A) Functional classification of KEGG KO genes. (B) Abundance 
distribution of KEGG KO genes. (C) Abundance differences of key KEGG KO genes. (D) Relative abundance of differentially expressed KEGG KO genes 
across all samples.
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these confounders, we employed generalized linear models (GLMs) 
to adjust for age, BMI, and hypertension. Our analysis revealed that 
while the significance of certain microbial taxa changed after 
adjustment, the overall trends remained consistent, thus supporting 
the robustness of our primary findings. The results of the multifactor 
adjustment can be  found in Supplementary Table S2. Larger 
multicenter cohorts and analyses with multivariate adjustments are 
required to validate the robustness of our findings.

This study systematically examined gut microbiota differences 
among five defined groups, identifying key microbial signatures 
along the “colorectal polyp–adenoma–carcinoma” axis. Compared 
with previous studies, this work further stratified colorectal polyp 
subtypes and analyzed the corresponding variations in intestinal 
microbiota. Subgroup analysis revealed significant differences in 
the abundances of Phocaeicola vulgatus, Phocaeicola coprophilus, 
and Sellimonas intestinalis, while Bacteroides zhangwenhongii and 
Bacteroides intestinalis were identified as potential contributors to 
the adenoma–carcinoma transition. Moreover, random forest-
based prediction models demonstrated robust diagnostic 
performance. However, this study has several limitations. We used 

shotgun metagenomic sequencing to obtain detailed insights into 
microbial identification, which can get achieve more detailed 
taxonomic resolution and functional profiling, such as metabolic 
pathway annotation via HUMAnN3, MetaCyc, or KEGG compared 
with 16S rRNA sequencing. Although it theoretically enables 
detection of fungal and viral genomes, our study exclusively 
reported bacterial profiles. This limitation may arise from 
insufficient fungal/viral DNA for robust detection and 
bioinformatic filtering to exclude non-bacterial reads. Further, 
integrating both metagenomic sequencing and 16S rRNA 
sequencing might enable more efficient and accurate 
characterization of microbial community composition, diversity, 
and functional potential.

KEGG analyses of gut microbiota showed CRC drives microbial 
metabolic remodeling into a pro-tumorigenic phenotype. Elevated 
overall metabolic capacity (KEGG Level 1) suggests hyperactive 
microbes accumulate in the tumor microenvironment (Luo et al., 
2025), potentially producing genotoxic/pro-inflammatory metabolites 
to promote tumor progression. Key Enzyme Commission (EC) 
activity shifts mark CRC: energy metabolism adapts to tumor 

FIGURE 11

MetaCyc. pathway analysis revealed loss of protective and commensal metabolic pathways. (A) Mean proportion of MetaCyc pathways across groups. 
(B) Distribution of the abundance of MetaCyc pathways. (C) Abundance differences of key MetaCyc pathways. (D) Relative abundance of differentially 
expressed MetaCyc pathways.
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demands, early loss of quorum-quenching function may expand 
pro-carcinogenic taxa (Waheed et al., 2023), and a V-shaped essential 
amino acid synthesis pattern (EC 1.1.1.3, homoserine dehydrogenase) 
reflects microbial adaptation. Coherent KEGG upregulation confirms 
system-wide activation, with enhanced central/carbohydrate/
nucleotide metabolism and upregulated DNA replication/stress 
response genes supporting microbial survival (Cheng et al., 2025), 
aligning with adenoma-carcinoma microbial shifts.

MetaCyc analyses revealed further CRC-associated 
reprogramming: lost protective pathways (e.g., PWY-6285, 
superpathway of E. coli fatty acid biosynthesis; PWY-7596, 
superpathway of cyanobacterial stearidonate biosynthesis) signal 
ecosystem dysfunction, correlating with stage-specific signatures (e.g., 
depleted Blautia wexlerae). For highlighted pathways: downregulated 
glycolytic/energy enzymes impair short-chain fatty acid (SCFA) 

production; reduced alcohol dehydrogenase disrupts bile acid 
detoxification; nucleotide metabolism disruption impacts polyamine 
synthesis; impaired sugar nucleotide synthesis drives microbial 
mucin degradation.

Observed changes reflect systematic functional collapse: energy 
metabolism shifts from ordered energy storage and mobilization (EC 
2.4.1.1, glycogen phosphorylase, 1,4-α-D-glucan:phosphate 
α-D-glucosyltransferase) to sustained high-rate energy production 
and consumption (EC 7.1.1.11, ferredoxin: NAD+ oxidoreductase [H+-
transporting], Rnf complex) then fails, and coordinated 
downregulation lowers microbial proliferative capacity. We identified 
key CRC-microbiota alterations, offering biological insights and 
potential biomarkers. Targeted DIAMOND profiling will quantify 
highlighted pathways (SCFAs, bile acids, polyamines, mucin 
degradation) to validate microbial contributions to CRC.

FIGURE 12

MetaCyc. reaction indicated systemic impairment of energy and biosynthetic metabolism. (A) Mean proportion of MetaCyc reactions across groups. 
(B) Abundance distribution of MetaCyc reactions. (C) Abundance differences of key MetaCyc reactions. (D) Relative abundance of differentially 
expressed MetaCyc reactions. (E) LEfSe analysis of key MetaCyc reaction biomarkers distinguishing different stages of CRC.
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Future mechanistic investigations and functional validations are 
needed to clarify the pathogenic roles of key taxa identified. And 
future studies should integrate comprehensive functional 
metagenomic and metabolomic analyses to gain deeper insights into 
the microbial contributions to colorectal carcinogenesis. As a result, 
our interpretations remain correlative and lack direct functional 
validation. Future studies should integrate comprehensive functional 
metagenomics with metabolomics analyses to elucidate the 
mechanistic roles of the microbiota in colorectal carcinogenesis. 
Furthermore, mechanistic investigations and functional validations 
are necessary to clarify the pathogenic contributions of the key 
microbial taxa identified. Additionally, it did not explore interactions 
among microbiota, host metabolism, and immune factors, nor did it 
fully elucidate the roles of Bacteroides zhangwenhongii and Bacteroides 
intestinalis in colorectal carcinogenesis. Future multicenter studies 
with large cohorts are needed to clarify the pathogenic mechanisms 
of these bacteria and to further delineate the relationship between gut 
microbiota and CRC. Finally, our hypothesis on the functional 
implications and potential roles of specific taxa lacks sufficient 
supporting evidence. Furthermore, although the random forest model 
achieved high AUC values, its generalizability was not fully validated, 
as k-fold cross-validation or external validation was not conducted. 
Future studies with independent validation cohorts are needed to 
confirm the robustness of these microbial diagnostic signatures.

In conclusion, the gut microbiota, particularly its community 
structure, exhibits significant differences between healthy individuals 
and patients with various stages of colorectal lesions. Specific 
combinations of bacterial species, identified through random forest 
modeling, can effectively distinguish the IMC group from other 
groups. Alterations in the gut microbiota along the “polyp–adenoma–
carcinoma” axis may drive lesion progression, thereby providing a 
foundation for early risk assessment, diagnosis, and therapeutic 
interventions in colorectal cancer.
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