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Introduction: Vitamin By, (B;,) is an essential cofactor for key metabolic processes
in most living organisms, yet only certain bacteria can synthesize it de novo.
Common forms of By, include adenosylcobalamin (AdoCbl), methylcobalamin
(MeCbl) and cyanocobalamin (CNCbl). This study presents the By, production
capability of an extremophile—Ectopseudomonas alcaliphila MSJ19, and a
multilevel evaluation of bioactivity of various B;, forms.

Methods: B;, extracted from Ectopseudomonas alcaliphila MSJ19 was initially
analyzed by bioassay and LC—MS to confirm the presence of natural By, forms,
followed by in vitro enzyme activity assays with glycerol dehydratase (GD) and diol
dehydratase (DD). The functionality of various By, forms on these enzymes was further
evaluated using in-silico molecular docking studies. The bioactivity at the in vivo level
was assessed by introducing a coenzyme B;,-dependent 3-hydroxypropionic acid
(3-HP) biosynthetic pathway in E. coli W and Ectopseudomonas alcaliphila MSJ19
for their ability to transform glycerol into 3-HP.

Results: Bioassay and LC—-MS analysis confirmed the presence of ~7 ug/g cdw By,
in the processed extract and specific precursor-product ion transitions, indicated
the production of natural B;, forms. To functionally validate the bioactivity of the
crude B, extract, the coenzyme Bj,-dependent 3-HP biosynthesis pathway was
employed in recombinant E. coli W. Supplementation with different B;, forms
revealed a hierarchical GD and DD activity (AdoCbl > MeCbl > CNCbl) and a
dose-dependent increase in 3-HP production, with an optimal threshold around
500 nM. The conformational specificity of AdoCbl and competitive inhibition of
CNCbl and MeCbl were supported by molecular docking of all 3 By, forms with
GD and DD. Notably, crude B;, extract at 0.35nM yielded 5.9 mM 3-HP titer,
closely matching the 7.8 mM obtained with AdoCbl, confirming its bioactive
equivalence. Furthermore, recombinant Ectopseudomonas alcaliphila MSJ19
(EaM,) harboring the 3-HP pathway produced up to 3.3 mM 3-HP without external
B, supplementation, highlighting innate capability of the host to produce and
utilize bioactive By, in vivo.

Discussion: Collectively—in vitro, in silico and in vivo approaches establish a
functional framework for certifying By, bioactivity and demonstrating £EaM as a
potent chassis for production of value-added chemicals.

KEYWORDS
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1 Introduction

Vitamin B, (B),) is a unique cobalt-containing tetrapyrrole
cofactor essential for diverse metabolic processes in prokaryotes and
eukaryotes (Spataru, 2024). Clinically, B,, holds significant
importance, as its deficiency is prevalent among all age groups and
linked to pernicious anemia and several neurological diseases
(Niklewicz et al, 2023). Despite its critical role in most living
organisms, only bacteria are capable of synthesizing it de novo in two
biologically active forms, such as adenosylcobalamin (AdoCbl) and
methylcobalamin (MeCbl). Due to very low thermostability and high
photosensitivity, these natural forms are often chemically modified
into a stable cyanocobalamin (CNCbl) form. Hydroxocobalamin is
another commonly found B,, form; however, its applications aren’t
widespread compared to others. Among these, MeCbl acts as a
cofactor only for methionine synthase (MS) in mammals and bacteria.
AdoCbl, on the other hand, supports a broad range of coenzyme B,-
dependent enzymes known as isomerases, which include mutases,
eliminases, and amino mutases. Methyl malonyl-CoA mutase
(MMUQC) is a well-recognized coenzyme B,,-dependent enzyme in
humans, while other enzymes have been identified in bacteria,
including f-lysine-5,6-aminomutase (LAM), 2-methylene glutarate
(MGM), diol (DD), D-ornithine-4,5-
aminomutase (OAM), ethanolamine ammonia lyase (EAL), glutamate

mutase dehydratase
mutase (GM), glycerol dehydratase (GD), isobutyryl-CoA mutase
(IM), and ribonucleoside triphosphate reductase (RTPR) (Montoya
and Escobar-Briones, 2025). Several of these have been characterized
well, in which two isofunctional enzymes—glycerol dehydratase and
diol dehydratase are of particular interest in this study, due to their
role beyond bacterial metabolism, as catalysts for platform chemical
production such as 1,3-propanediol, 3-hydroxypropionic acid,
1-propanol and butanone (Madavi et al., 2024; Brown, 2005).
Generally, coenzyme B,,-dependent enzymes catalyze intramolecular
1,2—rearrangements mediated through the 5’-deoxyadenosyl radical
of coenzyme. Substrate binding to the enzymes generates the active
radical by homolytic cleavage of the Co-C bond. This highlights the
role of active B,, forms in mediating such radical-based catalysis
(Brunold, 2005).

Over the years, a wide range of B,, quantification and
characterization methods have been developed including:
Microbiological assay, High-performance liquid chromatography
(HPLC)—Diode Array Detector (DAD), Liquid chromatography—
Mass Spectrometer (LC-MS), UV-vis spectrometry, Raman
scattering, atomic absorption spectrometry, Immunoassay,
Fluorescence detection, chemiluminescence, capillary electrophoresis,
surface plasmon resonance and induced coupled plasma-MS
(ICP-MS) (Yang et al., 2024; Trad et al., 2025; Guo et al., 2024; Kansay
etal, 2024; Fan et al., 2025). These techniques have been instrumental
in analyzing B,, from various samples such as pharmaceutical,
nutraceutical, and food products, bacterial cultures, serum, seaweeds,
algae and mushrooms. Common challenges encountered in B,
quantification are low B,, concentration in samples often below the
limit of detection (LOD) of many methods, stability and sensitivity
factors, sample matrix interference, complexity of extraction, sample
pretreatment and analytical procedures, and co-detection of B,
analogs like cobinamide, cobamide, cobyric acid and pseudo-B,,
(Santos et al., 2024; Lu et al., 2025; Konings et al., 2024; Deptula et al.,

2017). By, analogs are majorly found in bacterial fermentation extracts,
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hence sample pretreatment steps like solid phase extraction (SPE) and
immunoaffinity purification, along with LC-MS, were beneficial in
distinguishing bioactive B;, forms from B,, analogs. Though
chromatographic methods can distinguish and quantify active B,
forms, they offer little insight into the biological functionality of the
B, present (Xie et al., 2019; Chamlagain et al., 2024; Koseki et al.,
2023). In contrast, bioactivity assay of B,, extracts can be obtained
only through the measurement of biological output such as cell
growth, protein expression, enzyme activity and biochemical
production. Conventional microbiological assay using Lactobacillus
leichmannii and auxotrophic mutants of Salmonella typhimurium, and
Escherichia coli serve as perfect examples for both quantification and
bioactivity evaluation of B,, (Raux et al., 1996; Bhushan et al.,, 2016).
In addition, recent developments on PCR-based strategies provide
confirmation for B,, production on a genotypic level (Venkatesan
et al,, 2024). Yet they fail to distinguish various forms of B, and are
prone to false positives by B,, analogs and sample matrix, thus
requiring extensive sample pretreatment (Kong et al., 2017; Li et al,
2017). Each B,, quantification method has its pros and cons; most
importantly, this study does not aim to replace or challenge well-
established B, analytical methods. Rather, it focuses on the lacuna in
evaluating the bioactivity of various forms of By, from a natural
producer in terms of functional biological output.

This work aims to analyze the bioactivity of crude B,, extracted
from a novel extremophilic B, producer. Through confirming the
production of natural B,, forms by Ectopseudomonas alcaliphila MSJ19
(EaM), the study navigates toward in vitro, in silico and in vivo
approaches to evaluate B, bioactivity and shed light on the effect of
various B, forms on bioactivity. The outcomes provide valuable
insights into the functionalities of B, from natural producers and the
significance of B;, dose and forms in clinical and industrial
applications. The developed framework to functionally characterize
B, is intended to trigger more research focus toward the development
of high-throughput biological output-based B,, quantification. Finally,
the host’s capability to produce biologically active B,, has been
channeled toward 3-hydroxypropionic acid production in E. coli W
and EaM by metabolic engineering approaches. Ectopseudomonas
alcaliphila MSJ19 is an extremophile with psychrophilic (growth at
4-40 °C) and alkaliphilic (optimal pH 9-10) properties. To our
knowledge, this represents the first report evaluating B,, bioactivity
from an extremophilic strain (Venkatesan et al., 2024; Yumoto et al.,
2001). The alkaliphilic nature provides revolutionary bioprocess
advantages such as pH-based bio-containment that prevents
mesophilic contamination, elimination of complex buffering systems
and potential compatibility with non-sterile fermentation
infrastructure (Zeng et al., 2023; Wernick et al., 2016). Thus, providing
a scope for Ectopseudomonas alcaliphila MSJ19 as a potent microbial
chassis for the sustainable production of value-added biochemicals.

2 Materials and methods
2.1 Chemicals, strains, and plasmids

All chemicals, reagents and media were correspondingly
purchased from SRL-India, Sigma Aldrich, TCI chemicals and

Himedia. Yeast alcohol dehydrogenase (yYADH) was purchased from
Sigma-Aldrich. Ectopseudomonas alcaliphila MSJ19 was isolated in
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our previous study, and its 16S rRNA sequence has been deposited in
GenBank (ID: PX397011). Plasmid pDK?7 (p15a)/pddCDE, gdrAB was
developed by amplification of pddCDE genes from genomic DNA
isolated from Klebsiella pneumoniae 109 and subsequently cloned into
Kpnl and HindlIII restriction sites of pDK7 (pl5a)/dhaB123, gdrAB
plasmid. The plasmids were transformed into appropriate hosts
following the protocol adopted from (Zhou et al., 2013). All strains,
plasmids and primers used in this study are listed in Table 1.

2.2 Shake flask production of vitamin B,, by
Ectopseudomonas alcaliphila MSJ19

Overnight lysogeny broth (LB) EaM culture was pre-cultured in LB
medium until mid-late log phase of growth. Subsequently, 0.1 ODy, of
exponentially grown cells was reinoculated appropriately in LB
production medium containing precursors: CoCl, (5 mg/L), DMBI
(75 mg/L), and Betaine (1 g/L) and incubated under aerobic conditions
at 37 °C, 200 rpm. Wild-type E. coli W were cultivated under similar
conditions to serve as a negative control wherever appropriate in this
study. Cell growth was measured at regular intervals by a UV-Vis
spectrophotometer, and after 18 h, cells were harvested for B,, extraction
(4,500 rpm, 15 min). One ODyy, corresponds to 0.33 g (+0.05 g) of dried
cell mass per liter (Arasu et al., 2013).

2.3 Extraction and quantification of B,
Cells were washed twice with 100 mM potassium phosphate

buffer (pH 7.0) and resuspended in the same buffer for B,, extraction
under ice with minimal light exposure. Cell concentration was

TABLE 1 List of bacterial strains and plasmids used in this study.

10.3389/fmicb.2025.1654548

measured before and after lysis. Cells were lysed by ultrasonication at
30% amplitude for 6 min with a 10-s ON/OFF cycle (VCX 130, Sonics;
20 kHz), centrifuged (4,500 rpm, 10 min), supernatant filtered
through a 0.22 pm syringe filter and used as crude B,, extract for
further analysis.

For B, quantification by bioassay, the protocol mentioned in our
previously published study was followed exactly (Venkatesan et al.,
2024). To convert natural B,, forms into the more stable CNCbl form,
0.1% w/v NaCN was added to the crude B,, extract, and after 5 min
incubation (37°C), the mixture was autoclaved (121 °C, 15 min) and
cooled on ice. The samples were centrifuged (4,500 rpm, 20 min) and
the supernatant was passed through a 0.22 um syringe filter prior to
LC-MS analysis. The LC-MS analysis was performed for both crude
B, extract and cyano-converted extract, using a Waters TQD LC-MS/
MS system equipped with a Kinetex (2.6 pm, XB C18 Column, 2.1 x
100 mm). 20 mM ammonium formate in water (Mobile Phase A) and
methanol (Mobile Phase B) were used for sample elution under the
following linear gradient: 90% mobile phase A for 0-2 min, 90%
mobile phase A for 2-4 min, 10% mobile phase A for 4-5 min, 90%
mobile phase A for 5-7 min. The flow rate was maintained at 0.3 mL/
min, the column temperature was set to 35 °C, and the injection
volume was 10 pL. Mass spectrometry was conducted in positive
electrospray ionization (ESI) mode with a source temperature of
140°C, desolvation temperature of 300 °C, cone gas flow of 10 L/h and
desolvation gas flow of 1,000 L/h. The capillary voltage was set at 26 V,
and the cone voltage was 35 V. The quantification of CNCbl was
performed using multiple reaction monitoring (MRM) transitions,
monitoring the precursor ion at m/z 678.5 and the product ions at m/z
147.0 and 358.9, with collision energies of 34eV and 24¢eV,
respectively (Stumpf et al., 2024; Kahoun et al., 2022). This targeted
MRM setting was chosen to achieve high specificity and sensitivity for

Strains and plasmids Description Source

Strains

E. coliwW Wild-type strain Sankaranarayanan et al. (2014)
E. coli DH5a Cloning host MTCC, India

Kilebsiella pneumoniae MTCC 109 Source for pddCDE gene encoding for diol dehydratase MTCC, India

EcW GD Recombinant E. coli W harboring pUC19/KGSADH (Aldehyde dehydrogenase) and pDK7 Sankaranarayanan et al. (2017)
(p15a)/dhaB123 (Glycerol dehydratase), gdrAB (Glycerol dehydratase reactivation factors)
EcW DD Recombinant E. coli W harboring pUC19/KGSADH and pDK7 (p15a)/pddCDE, gdrAB This study

Ectopseudomonas alcaliphila MSJ19

An extremophilic B, producer isolated from marine sources in our previous study

Venkatesan et al. (2024)

KGSADH

EaM, Recombinant Ectopseudomonas alcaliphila MSJ19 harboring pUCPK/ dhaB123, gdrAB,

This study

Salmonella typhimurium AmetE AcbiB | Strain used for By, bioassay

Thi Nguyen et al. (2021)

Plasmids

pDK7 (p15a)/dhaB123, gdrAB dhaB123, gdrAB in pDK7 plasmid; Cm”

Ashok et al. (2013)

pDK7 (p15a)/pddCDE, gdrAB pddCDE, gdrAB in pDK7 plasmid; Cm*

This study

pUC19/KGSADH KGSADH in pUC19; Km"

Ravi and Sankaranarayanan (2023)

pUCPK/dhaB123, gdrAB, KGSADH

dhaB123, gdrAB, and mutant KGSADH in pUCPK; Km"

Thi Nguyen et al. (2021)

Primers (Forward—F; Reverse—R) Sequence (5'-3')

Restriction enzymes

pddCF CGGGTACCATGAGATCGAAAAGATT

Kpnl

pddER GTCAAGCTTTTAATCGTCGCCTT

Hindlll

Underlined sequences in Primer indicate the incorporated restriction enzyme recognition site.
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CNCb], while avoiding cross-detection of other B,, forms in crude
extracts (Reddy KotamReddy et al., 2023). The same LC-MS method
was also adopted for crude B, extracts.

2.4 Enzyme activity assay

The modified M9 medium used for shake flask studies in ECW GD
and EcW DD contained: MgSO,-7H,0, 0.5 g/L; NaCl, 1.0 g/L; NH,Cl,
1.0 g/L; yeast extract, 1 g/L; glycerol, 100 mM; potassium phosphate
buffer (pH 7.0), 100 mM; kanamycin 50 mg/L; and chloramphenicol
25 mg/L. Unless stated otherwise, LB medium and the same modified
M9 medium with appropriate antibiotics were used for primary
inoculum and secondary inoculum, respectively. Shake flask
cultivation was carried out with a working volume of 50 mL culture
with an inoculum of 0.1 ODg, in a 250 mL Erlenmeyer flask at 37°C,
250 rpm under aerobic conditions. For enzyme production, the
cultures were induced at 0.6 + 0.05 ODy,, with 0.5 mM IPTG. After
6 h incubation, cells were harvested (5,000 rpm, 15 min) and washed
once with 20 mM potassium phosphate buffer. Subsequently, cells
were resuspended in the same buffer and subjected to ultrasonication
under ice at 30% amplitude for 4 min with a 10-s ON/OFF cycle. The
obtained lysate was centrifuged (13,000 rpm, 30 min), and the
supernatant was collected to measure total protein concentration (by
the Bradford method), glycerol dehydratase (GD) and diol dehydratase
(DD) activity, respectively.

GD activity was measured by following the protocol developed by
Sankaranarayanan et al. (2017), and the same method was employed
to measure DD activity. Briefly, the substrate mixture (~1.8 mL),
containing 20 mM potassium phosphate buffer (pH 8.0), 3 mM MgCl,
and 40 mM 1,2-PDO, was placed in a l-cm path length
spectrophotometer cuvette. B,, solution (100 pL) was added to this
assay mixture, containing 0.15 mM NADH and 1.5 mM ATP. B,
concentration and type were varied individually to study their effects.
Then, the coupling enzyme (40 pL) yADH (12 U/mL) was added
using an air-tight gas chromatography syringe, and the cuvette was
incubated for 3 min in a water bath at 37 °C. The enzymatic reaction
was initiated by injecting 50 pL of crude GD or crude DD enzyme
solution, appropriately (typically <0.03 U/mL). The NADH
concentration was determined at 340 nm with the extinction
coefficient (g54) 0of 6.22 mM™" cm™" on a UV spectrophotometer. One
unit of GD or DD activity was defined as the amount of enzyme
required to convert 1 pmol of 1,2-PDO to propionaldehyde per
minute under given assay conditions.

2.5 Molecular docking of various By, forms
with GD and DD

Molecular docking was performed between each B,, form—
AdoCbl, CNCbl, MeCbl and the active sites of GD and DD. High-
resolution crystal structures of GD (PDB ID: 1IWP) and DD (PDB
ID: 1DIO) were retrieved from the protein data bank (PDB)
(Yamanishi et al., 2002; Shibata et al., 1999). The crystal structures
were refined by eliminating water molecules and ligands using
PyMOL software (version 3.1.3). Refined proteins were subsequently
processed using Autodock tools (v 1.5.7) by setting grid parameters
for both GD and DD based on reference active site coordinates
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reported already (Yamanishi et al., 2002; Masuda et al., 2000). 3D
structure of all the ligand molecules AdoCbl, CNCbl, and MeCbl were
procured from protein structures (PDB ID: 5C8A, 5NP4, 3SC0)
co-crystalized with respective ligands. Each B}, ligand was assigned its
respective charges and docked into the aforementioned active site
grid. Docked conformations exhibiting higher binding and similar
interactions with key active site residues were considered for
further evaluation.

2.6 Shake flask 3-HP production in EcW GD
and EcW DD

Shake flask 3-HP production with the respective host was carried
out aerobically using the same modified M9 medium (50 mL) with a
starting inoculum of 0.1 ODy, in a 250-ml Erlenmeyer flask incubated
at 37°C, 250 rpm. The cultures were induced at 0.6 + 0.05 ODg,, with
0.lmM IPTG and supplemented with various forms and
concentrations of B,, respectively, at 3, 6, 9, and 12 h of cultivation.
The details on B, form and concentration supplemented for each
shake flask experiment were furnished in Supplementary Table 1.
Samples were collected periodically to determine the cell mass,
residual substrate and metabolites. Briefly, the collected culture
samples were centrifuged (10,000 rpm, 10 min), then the supernatant
was diluted appropriately and filtered using a 0.22 pm PVDF
membrane filter (Millipore). Then the samples were passed through
an HPLC system equipped with an Aminex HPX-87H column
(300 mm x 7.8 mm, Bio-Rad, United States) maintained at 65°C. The
mobile phase consisted of 2.5 mM H,SO, with a flow rate of 0.5 mL/
min, and metabolite concentrations were analyzed using a Refractive
Index Detector (RID) and a Photo-diode array detector (PDA) (Ravi
and Sankaranarayanan, 2024).

2.7 Shake flask 3-HP production in
recombinant Ectopseudomonas alcaliphila
MSJ19 (EaM,)

Shake flask cultivation of the EaM, for 3-HP production was
carried out in the same B,, production medium with the addition of
Kanamycin (30 mg/L). The cultivation was carried out aerobically at
37°C, 200 rpm, with an initial cell concentration of 0.1 ODg. 100 mM
of glycerol (carbon source for 3-HP production) was added when the
cell concentration reached 0.7 ~ 1 ODy. The samples were withdrawn
periodically to determine the cell mass, glycerol, 3-HP and
other metabolites.

3 Results

3.1 Production of natural forms of B,, by
Ectopseudomonas alcaliphila MSJ19

Consistent with our previous study, the B,, levels of
Ectopseudomonas alcaliphila MSJ19 (EaM) quantified by bioassay
were 7.18 pg/g cdw (Venkatesan et al., 2024). To validate B,, forms,
LC-MS analysis was performed for: (a) crude B,, extract, (b) cyano-
converted B,, extract, and (c) crude B,, extract spiked with 0.5 pM
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each of standard AdoCbl and MeCbl (Figure 1). A distinct peak at RT
4.32 min was observed for cyano-converted B,, extract corresponding
to MRM transitions m/z 147.0 and 358.9, matching precisely with the
standard CNCDbl profile. These transitions were selected based on their
high sensitivity and specificity for CNCbl quantification. The
concentration of B, was quantified as 6.93 pg/g cdw. In contrast, no
corresponding peaks were observed at RT 4.3 min for either the crude
extract or the spiked crude extract, indicating that CNCbl was not
natively present in the bacterial extract. These results collectively
support that EaM produces only the natural (coenzyme) forms of
B,,—namely, MeCbl and AdoCbl—which are not detected in this LC-
MS method due to their distinct transition requirements (such as m/z
685.6 and 665.6, respectively) (Heal et al., 2014). By providing a clear
distinction between the presence of natural and non-natural forms of
By, the present strategy offers a streamlined and scalable framework
for both qualitative and quantitative assessment of B,, production in
industrially relevant microbial strains.

3.2 In-vitro bioactivity evaluation of crude
B, extract

Glycerol dehydratase (GD) and diol dehydratase (DD) are
isofunctional, coenzyme B,-dependent enzymes, whose
characteristics and in vitro assays have been well studied (Toraya et al.,
2022; Nasir et al., 2020). These enzymes are known to be catalytically
active only in the presence of AdoCbl with varying degrees of
sensitivity (Marsh and Meléndez, 2012; Toraya et al., 1979). While
other By, forms, such as MeCbl and CNCbl, are often reported as
competitive inhibitors (Poppe and Rétey, 1997; Toraya and Ishida,
1991). These features make GD and DD valuable in vitro tools for
evaluating the functional bioactivity of B, from bacterial extracts.

Generally, activity assays for these isofunctional enzymes are
performed at a saturated coenzyme B,, concentration of around
10-20 pM (Kumar et al., 2016; Wei et al., 2014). However, due to the
low concentration of crude B, used for this study (0.35 nM), a
preliminary investigation was carried out to study the effect of
AdoCbl concentration on GD and DD activity. Maximal activities
were observed at 15 pM AdoCbl, yielding 14.32 U/mg for GD and
6.79 U/mg for DD. At 0.35 nM, the enzyme activity dropped to
0.32 U/mg for GD, while no significant activity was observed for
DD (Figure 2A). The difference in activities between GD and DD
correlates with their known kinetic parameters, specifically the
reported K,, values of GD (~ 8 nM to 20 nM) and DD (~ 0.7 pM)
from Klebsiella sp. (Yamanishi et al., 2002; Wang et al., 2007).
According to previous reports, GD attained 95% of its maximum
activity and DD only 4% at 120 nM AdoCbl (Yamada et al., 2004).
Relatively, the current study shows that GD and DD attained 81%
and 7% of their respective maximum activities at 100 nM AdoCbl,
confirming the accuracy of the assay and reinforcing AdoCbl
sensitivity among the enzymes. As anticipated, no significant
enzyme activity was observed when the assay was performed with
CNCbl and MeCb], even at 15 pM, the saturated concentration used
for AdoCbl (Figure 2B). The missing 5'-deoxyadenosyl radical upon
binding of CNCbl and MeCbl to the enzyme is expected to be the
sole reason for their inability to support GD and DD activity
(Toraya, 2000; Bucher et al., 2012). Previous reports support this by
showing that MeCbl and CNCbI act as competitive inhibitors for
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DD (K; of 0.73 pM and 1.8 pM, respectively) (Toraya et al., 1977)
and CNCbI for GD (K;=21.6 nM) (Poppe and Rétey, 1997).
Notably, with 0.35 nM of crude B,, extract, the GD activity
measured was 0.21 U/mg, which was slightly lower than 0.32 U/mg
obtained with standard AdoCbl at the same concentration. While
this suggests that the crude B,, extract predominantly contains
AdoCbl, it confirms that EaM has dominantly produced AdoCbl;
the lower activity could likely be due to the presence of some
MeCbl, which may exert competitive inhibition. However, further
studies are required to confirm this hypothesis. These results
collectively demonstrate that the B,, produced by Ectopseudomonas
alcaliphila MSJ19 is functionally bioactive, with in vitro-based
assays providing indirect but reliable confirmation of AdoCbl as the
dominant form in the crude extract.

3.3 In silico prediction of various By, forms
reactive specificity with GD and DD

To complement the differential catalytic activity of B,, forms on a
structural basis, molecular docking was performed between three By,
ligands—AdoCbl, CNCb], and MeCbl—and the known crystal
structures of GD and DD. A total of six docking combinations were
generated, and a complete summary of interactions and H-bond
distances for each docking conformation is provided in
Supplementary Table 2. Based on previous crystallographic studies, 12
key active site residues were defined for GD (Yamanishi et al., 2002)
and 7 for DD (Masuda et al., 2000) to assess the binding capability of
ligands within the functionally active site.

In GD, AdoCbl exhibited the most favorable binding conformation
for catalytic function, forming hydrogen bonds with five active site
residues (SER122, THR104, SER225, THR173, LYS102) and a binding
energy of —3.93 kcal/mol (Figures 3A1,D1). These interactions span
both the corrin ring and adenosyl moiety, positioning the ligand in a
favorable conformation for Co-C homolysis and radical exchange.
CNCDI exhibited a significantly lower binding energy (—14.5 kcal/
mol) and formed four interactions with active site residues (SER122,
ASP235, ALA124, THR173) (Figures 3B1,E1). While such tight
binding reflects higher affinity, the absence of the adenine moiety
blocks its catalytic ability and complements its role as a competitive
inhibitor. MeCbl also interacted only with one active residue
(SER122) and an intermediate binding energy (—5.81 kcal/mol)
(Figures 3C1,F1), further reflecting its non-catalytic but potentially
competitive inhibitory role.

In DD, AdoCbl again exhibited the highest number of active
site interactions, yet fewer than in GD. Only two out of six
interactions matched with key active side residues (THR172,
SER301) following an intermediate binding energy (—7.23 kcal/
mol) (Figures 3A2,D2). This observation aligns with the in vitro
enzyme activity assay, where DD activity expressed a higher Km
than GD, thus justifying the lower specificity of AdoCbl with
DD. CNCbl had only one matching residue (THR172) among five
interactions with a lower binding energy (—12.9 kcal/mol)
(Figures 3B2,E2). MeCbl had only one matching residue (SER224)
among its two interactions with a higher binding energy
(—6.99 kcal/mol) among all 3 By, forms with DD (Figures 3C2,F2).
These binding predictions reflect the inferiority of B,,-driven
catalysis with DD as compared to GD.
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LC-MS/MS chromatograms for confirmation of natural B;, forms in Ectopseudomonas alcaliphila MSJ19 extract under specific MRM transitions:
(A) Crude By, extract (no peak observed at RT ~ 4.32 min), (B) Cyano-converted By, extract (distinct peak observed at RT 4.32 min, matching CNCbl
standard), (C) Crude By, extract spiked with 0.5 pM MeCbl and AdoCbl (no peak observed at RT ~ 4.32 min) and (D) CNCbl (concentration = 5 ppb;
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Harnessing in vitro enzyme activity assays of GD and DD to evaluate B, bioactivity: (A) AdoCbl concentration-dependent variation of GD and DD
activity (U/mg)—Concentration (nM) is plotted on a logarithmic scale. The inset shows relative activities (%) of GD and DD normalized to their
respective maximum activities. (B) Effect of By, forms on GD and DD activity; Experimental groups: Ea—Ectopseudomonas alcaliphila MSJ19 crude By,
extract; A, Adeonsylcobalamin; M, MeCbl; C, CNCbl. Error bars represent standard deviation from three independent biological replicates (n = 3)

FIGURE 3

Molecular docking of By, ligands with GD (1) and DD (2). Stereo views showing overall GD (A1-C1) and DD (A2—C2) structure in complex with (A1,A2)
AdoCbl, (B1,B2) CNChbl, and (C1,C2) MeCbl. Chains of the GD heterotrimer are colored as follows: A—green, B—cyan, C—magenta, D—yellow, E—
salmon, F—grey; Chains of the DD heterotrimer are colored as follows: A—yellow, B—salmon, E—cyan, G—grey, L—green, M—magenta. Zoomed-in
interaction maps of ligands with active site residues of GD (D1—F1) and DD (D2—F2): (D1, D2) AdoCbl, (E1, E2) CNCbl, and (F1, F2) MeCbl. Hydrogen
bonds and polar interactions are visualized between ligand atoms and neighboring amino acid residues. Ligand atom color scheme: C—grey, N—Navy
blue, O—red, S—Orange, Co—pink.

Importantly, these findings elucidate the conserved structuraland ~ binding within the active site, but they lack the adenine moiety
functional preference of GD and DD for AdoCbl. Evidently, necessary to trigger Co-C bond homolysis and substrate
comparison of available crystal structures and docking combinations  rearrangements ( ). Hence, the adenine moiety not
of this study has shown that CNCbl and MeCbl are also capable of  only acts as a radical initiator, but also participates in key interactions
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to position the cofactor in an appropriate spatial conformation for
catalytic activity. Therefore, the in-silico findings support the in vitro
enzymatic assay, confirming that only AdoCbl positions itself in a
catalytically active conformation in both GD and DD in a conserved
manner. Meanwhile, CNCbl and MeCbl are capable of competitive
inhibition due to their catalytically inactive binding conformation.

3.4 In-vivo bioactivity evaluation of crude
B,, extract

In the two-step catalytic pathway for 3-HP production, Coenzyme
By, (AdoCDbl) serves as an essential cofactor for glycerol dehydratase
(Kumar et al., 2012). Therefore, 3-HP production can act as a reliable
qualitative metric for assessment of B,, bioactivity, offering a more
meaningful output than conventional microbiological assay. To
evaluate this, EEW GD and EcW DD were supplemented individually
with AdoCbl, MeCbl, and CNCbl for 3-HP production. Among these,
AdoCbl yielded the highest 3-HP production in EcW GD, confirming
it as the most effective cofactor for GD activity. Whereas MeCbl
resulted in only 63% of this maximum, and CNCbI only 36%. A
similar trend was observed for ECW DD, yet its maximum 3-HP titre
was only 52% of that achieved with EcW GD. Such a low 3-HP titre of
DD in this expression system is obvious due to the following well-
documented reasons: (i) 1,2-PDO is the preferred substrate for DD
over glycerol (Sauvageot et al., 2002), (ii) absence of diol dehydratase
reactivase in this expression system, making DD prone to suicide
inactivation like GD in the presence of glycerol (Bili¢ et al., 2019), (iii)
gdrAB is known to be ineffective in reactivating DD (Kajiura et al.,
2007), and (iv) less By, specificity of DD as observed in enzyme activity
analysis (Poppe and Rétey, 1997). These results further demonstrate a
substantial decline in GD and DD activity with synthetic B,, forms
and justify the functional superiority of the natural B,, forms.

Notably, the modest 3-HP production with CNCbl suggests that
E. coli may possess intrinsic metabolic mechanisms to convert CNCbl

10.3389/fmicb.2025.1654548

into biologically active forms, analogous to human metabolic
pathways (Kelly, 1997). However, the relatively low 3-HP titer (70%
lower than AdoCbl) indicates that this intracellular conversion is likely
rate-limiting. The difference in 3-HP production between MeCbl and
CNCbl also reflects the metabolic complexity of their respective
conversion process, as CNCbl conversion is mediated by a four-step
enzymatic process, while MeCbl requires only a single step (Rizzo
etal., 2016).

While earlier studies typically employed 2000 nM AdoCbl for
optimal 3-HP production in E. coli (Nguyen-Vo et al., 2019), the
concentration of crude B, extract used is comparatively less
(0.35 nM). Therefore, this study also evaluated the effect of B,
concentration on 3-HP production across a wide range (0.35-
2,000 nM) for each B, form (Figures 4A,B). Interestingly, B,
concentration had a significant effect on 3-HP production, similar to
the enzyme activity. Remarkably, the highest 3-HP titer of 50.2 mM
was observed at 500 nM AdoCbl for EcW GD, beyond which no
significant increase in titre could be observed. The optimal 3-HP
production at 500 nM reflects seamlessly with the V., of GD,
embarking on the critical impact of B, on the rate-limiting step of the
3-HP catalytic pathway. The 3-HP production titer (41.5 mM) with
2pM  AdoCbl was also consistent with previous reports
(Sankaranarayanan et al., 2017). Similar trends were observed for
other B,, forms. Owing to the higher K, of DD, 3-HP production was
maximal (26.2 mM) only at 2,000 nM and suggesting that further
increase in B;, may still enhance activity (typically close to the V,,, of
DD (57 pM)).

Of particular interest, crude B,, extract at 0.35 nM supported a
3-HP titre of 5.9 mM in EcW GD—closely matching the 7.8 mM titer
at 0.35 nM AdoCbl. This confirms the presence of active B,, forms in
the extract. The marginal difference could be attributed to the presence
of some MeCbl in the extract, as only the total B,, concentration was
quantified. Consistently, MeCbl at 0.35 nM attained a lower 3-HP titer
of 4.2 mM. In contrast, no measurable 3-HP production was observed
at 0.35 nM cyano-converted extract, despite a very low 3-HP titer of
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Functional evaluation of By, forms and concentration on 3-HP production by EcW GD and EcW DD, respectively. (A) Summary of 3-HP production titre
(mM) of EcW GD under supplementation with different B;, forms at varying concentrations (nM). (B) Summeary of 3-HP production titre (mM) of EcW
DD under supplementation with different B, forms at varying concentrations (nM). Error bars represent standard deviation from three independent
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1.1 mM at 0.35 nM CNCbI. This suggests potential interference from
matrix effects during conversion (Nakos et al., 2017) or simply the
titre falling to the limit of detection (LOD =0.8-1.0 mM). As
expected, no 3-HP production was observed in the negative control
with E. coli W extract, thus justifying that any potential impurities in
crude bacterial extracts do not affect 3-HP production. These findings
reinforce the presence of a biologically active form of By, in crude
extract, and the chemical conversion process has led to a non-natural/
synthetic B,, form, which obviously has led to a decrease in or no
3-HP production. Collectively, these results strongly establish the
utility of 3-HP production as an in vivo functional assay for B,
bioactivity. Building on these findings, the next section validates the
in vivo B, bioactivity using recombinant Ectopseudomonas alcaliphila
MSJ19 itself.

3.5 Assessment of the 3-HP production
capability of EaM,

To evaluate the in vivo bioactivity of endogenously produced B,,,
Ectopseudomonas alcaliphila MSJ19 was engineered to express the
3-HP biosynthetic pathway via plasmid pUCPK harboring dhaB123,
gdrAB, and KGSADH. Shake flask cultivation was performed with and
without an exogenous supply of 2 pM AdoCbl, thereby ensuring that
any observed 3-HP production is solely dependent on the host’s innate
By, biosynthesis capability. Correspondingly, EaM, produced a
maximum 3-HP titre of 3.2 mM without external B,,, indicating the
endogenous production of coenzyme B,, was sufficient to activate GD
and enable 3-HP biosynthesis (Figure 5A). As expected, no 3-HP
production was observed in control flasks without glycerol
supplementation (data not shown), confirming that 3-HP originated
exclusively from glycerol metabolism and not from medium
components or endogenous carbon sources. 3-HP production was
improved (9.5 mM) under B, supplementation, indicating that 3-HP
flux can be further enhanced through B,, supplementation
(Figure 5B). In addition, glycerol consumption and 3-HP production
were relatively low in either case compared to EcW GD. This could

10.3389/fmicb.2025.1654548

be presumed due to intrinsic regulatory barriers, such as the presence
of transcriptional repressors in the host’s native glycerol catabolic
pathway and/or limited compatibility between the heterologous
plasmid system and the host transcriptional or translational
machinery (Thi Nguyen et al., 2021; Prieto-de Lima et al., 2024).
Although elucidating these factors was beyond the scope of this study,
the results clearly establish the functional bioavailability of naturally
synthesized B,, in EaM, These findings not only validate
Ectopseudomonas alcaliphila MSJ19 as a biologically competent B,
producer but also highlight its potential as a versatile microbial chassis
for value-added chemical production beyond vitamin B,.

4 Discussion

Vitamin By, is structurally complex and exists in several natural
and synthetic forms. Among them, only AdoCbl and MeCbl are
biologically active, serving as cofactors in radical-based and methyl-
transfer enzymatic reactions, respectively. Bacteria are the sole
workhorses for industrial scale production of this essential vitamin;
however, they can produce inactive B,, analogs (Thirupathaiah et al.,
2012). Therefore, assessing the bioactivity of B,, rather than relying
only on total B, quantification is essential to grade its functional
bioavailability. Recent advancements in chromatographic and
immunoassay methods have played a significant role in classifying the
forms of By, (Moller et al., 2022; Balabanova et al., 2022). However,
studies are limited in evaluating the activity of crude extracts of
natural B,, producers using a valid biological output (Chamlagain
et al,, 2021). This study details a biologically integrated workflow
combining in vitro, in silico and in vivo approaches to uncover the
potential of active forms of B,, produced by a novel extremophilic
strain (EaM).

Initially, conventional bioassay using Salmonella typhimurium
AmetE AcbiB and LC-MS were valuable in confirming the production
of natural form (AdoCbl & MeCbl) of B, (~7pg/g cdw) by
Ectopseudomonas alcaliphila MSJ19. The establishment of enzymatic
assay methods for coenzyme B,,-dependent enzymes such as GD and
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DD paved a plausible approach to further study the bioactivity of crude
B, extract. The coupled enzymatic method to measure GD activity also
stood reliable for DD activity measurement, particularly due to its
increased substrate preference to 1,2-PDO (Toraya et al, 2022).
Substrate binding to the holoenzyme triggers Co-C bond homolysis,
leading to the formation of cob(II)alamin and 5’-deoxyadenosyl radical.
Theoretically, this radical is essential to mediate 1,2-rearrangements in
the substrate during enzyme catalysis (Giedyk et al., 2015). Justifiable to
this, both GD and DD were capable of product formation only in the
presence of AdoCbl, while no notable enzyme activity was observed for
CNCbl and MeCbl even at very high concentrations (15 pM) due to
their inability to form an adenosyl radical.

Interestingly, GD activity with 0.35 nM crude extract was nearly
equivalent to that of standard AdoCbl, confirming the dominant
presence of AdoCbl in the crude extract. The lack of DD activity with
crude extract is attributed to its higher K,, of ~0.8 uM for AdoCbl,
further validating the reliability of such enzyme activity assays to
confirm B, bioactivity. Despite the non-catalytic activity of other By,
forms, they play a larger role as competitive inhibitors, and it is to
be realized that their presence in sample extracts tends to underestimate
the bioactivity of actual AdoCbl present. The potential inhibitory
effects of other B, forms were supported by molecular docking, which
revealed comparable binding energies across all B, forms, suggesting
competitive inhibition. Thus, in vitro assays combined with in silico
insights reinforce the fact that B,, bioactivity is not defined by binding
affinity alone, but also by the ability to support 5-deoxyadenosyl
radical generation and substrate rearrangements.

Transitioning toward the applicability of the coenzyme B,,-
dependent 3-HP production pathway in recombinant E. coli as an
in vivo model system for B,, bioactivity enlightened the fate of
other B,, forms beyond competitive inhibition. Contrarily, 3-HP
production in recombinant E. coli was observed under
supplementation of all 3 B, forms individually with varying
degrees (AdoCbl > MeCbl > CNCbl). Although in vitro enzyme
assay and in silico models have strongly backed the competitive
nature of other B, forms on GD and DD, this discrepancy likely
arises from the host’s intracellular B,, salvage and conversion
mechanisms, enabling conversion of other B,, forms into AdoCbl.
Haptocorrin-based B, binding, absorption by intrinsic factors,
innate mechanisms to convert various B, forms into a metabolically
active form and bioavailability were well documented in humans
(Vincenti et al., 2021). While such B,, conversion mechanisms were
very scarcely reported in bacterial systems (Reynolds et al., 1980),
this study is the first of its kind to report their impact on coenzyme
B,,-dependent platform chemical synthesis. Future work should
investigate the regulation of these conversion mechanisms and
their fine-tuning to improve the flux of AdoCbl for platform
chemical production.

A concentration-dependent variation in 3-HP titre across B,
forms, paralleled GD and DD enzymatic activity trends. These
outcomes not only validate the presence of natural B, form in
Ectopseudomonas alcaliphila MSJ19 extract but also demonstrate that
AdoCbl is indispensable for GD/DD—mediated bioconversion.
Furthermore, the distinct functional differences between natural and
synthetic B, forms, along with the concentration thresholds observed,
provide the groundwork for future studies to develop a quantitative
enzyme-based assay for B,,. These insights also offer a valuable
framework for optimizing 3-HP production.
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Finally, recombinant expression of the 3-HP pathway in
Ectopseudomonas alcaliphila MSJ19 confirms that the host’s
endogenously synthesized B,, is not only biologically active but
also sufficient to support product formation without external B,
supply. This approach effectively bypasses the tedious processes
for B,, extraction, purification and quantification, which often
suffer from factors like sample instability, interference from
analogs, and the need for advanced instrumentation (Avramia
etal, 2024; Pakeeza et al., 2024). To our knowledge, this is the first
instance to report 3-HP production in an extremophilic
Ectopseudomonas strain without an exogenous supply of B,,. This
acts as a beacon for future avenues to improve B, production in
this host and explore its possibilities as a reliable and efficient
chassis for other value-added

non-model  microbial

chemicals production.

5 Conclusion

This study presented a comprehensive multifaceted approach to
evaluate the bioactivity of B,, from a natural producer. In vitro and in
silico investigations have shed light on the specificity of GD and DD
toward AdoCbl and revealed the competitive inhibitory effects of
other B,, forms, likely due to the absence of the essential
5’-deoxyadenosyl radical. An in vivo approach to evaluate B,
bioactivity has further uncovered the effect of bacterial innate
metabolic capability to convert various B, forms into the catalytically
active form. Crude B,, extract from Ectopseudomonas alcaliphila
MSJ19 demonstrated 66% of the enzyme activity and 76% of 3-HP
production compared to standard AdoCbl, reinforcing its high
bioactive potential. Finally, the extremophilic host was able to produce
3.2 mM 3-HP without external B,, supplementation, validating its
endogenous B, biosynthetic capability and eliminating the need for
complex B,, extraction procedures. This positions Ectopseudomonas
alcaliphila MSJ19 as a promising microbial chassis not only for
sustainable B,, production but also for broader application in the
production of value-added chemicals. Overall, the study offers a
scalable, biologically relevant pipeline to assess B,, bioactivity across
microbial systems and diverse sample sources. Thus, it provides both
methodological innovation and foundational insights for metabolic
engineering of coenzyme B,,-dependent pathways.
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