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Background: Emerging evidence indicates a link between gut dysbiosis and
allergic rhinitis (AR) pathogenesis. Nevertheless, the mechanistic role of gut
microbiota in AR progression requires further characterization. To address this,
we employed an integrated multi-omics strategy to delineate gut microbial
composition and metabolic signatures in AR patients.

Methods: Fecal specimens from 23 AR patients and 15 matched healthy controls
(total n = 38) were subjected to 16S rRNA gene sequencing to assess bacterial
community structure, alongside untargeted metabolomic profiling of microbial
metabolites. Spearman’s rank correlation analysis was applied to evaluate
microbiota-metabolite interactions.

Results: Allergic rhinitis patients exhibited altered gut microbial community
structure (beta diversity, P < 0.05) with depletion of SCFA-producing genera
such as Faecalibacterium and enrichment of pro-inflammatory taxa like
Fusobacterium. Metabolomic profiling identified significant disturbances in
pathways including pantothenate and CoA biosynthesis, glycolysis, and pyruvate
metabolism. Key discriminatory metabolites included maltol and 4-coumaric
acid. Integrative analysis revealed significant correlations between specific
bacteria and metabolites, such as Faecalibacterium with D-phenyllactic acid
(p = 0.515, g = 0.046).

Conclusion: Our findings demonstrate that AR is associated with gut
dysbiosis and metabolic dysfunction, highlighting the role of microbial-derived
metabolites in immune regulation via the gut-nose axis. These insights support
the potential for microbiota-targeted therapeutic strategies in AR management.
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Introduction

Allergic rhinitis (AR) is the most common allergic disease
worldwide and one of the most common chronic diseases in
general, imposing substantial socioeconomic burdens due to its
chronicity and association with comorbidities such as asthma
and sinusitis (Bousquet et al., 2020; Patel et al., 2024; Zhang
et al, 2021). AR is a non-infectious chronic inflammatory disease
of the nasal mucosa, clinically characterized by paroxysmal
sneezing, watery rhinorrhea, nasal pruritus, nasal congestion, and
commonly accompanied by ocular pruritus and other allergic
mucosal manifestations, with a concomitant asthma prevalence
rate of approximately 35.7%-48.5% among AR patients (Sousa-
Pinto et al, 2025). The pathogenesis of AR classically involves
Th2-driven IgE sensitization, mast cell degranulation (histamine,
leukotrienes), and eosinophil-mediated inflammation, whereas
emerging evidence underscores the pivotal role of epithelium-
derived DAMPs (damage-associated molecular patterns, such as
TSLP, IL-25, and IL-33) in activating type 2 innate lymphoid cells
(ILC2s), alongside microbial dysbiosis, neuroimmune interactions,
and disease endotype stratification (He et al., 2024; Nian et al., 2020,
Yang M. et al,, 2023; Zhang et al., 2022; Zoabi et al., 2022). Despite
advances in understanding its pathophysiology (Drazdauskaité
etal., 2020; Liu et al., 2022; Wang et al., 2023a; Zheng and Yu, 2022),
the exact mechanisms driving the development of AR have not been
fully elucidated (Gerth van Wijk and Smits, 2021; Wise et al., 2023).

The gut microbiota plays a pivotal role in modulating systemic
immune homeostasis and inflammatory cascades; emerging
evidence highlights that perturbations in microbial richness,
taxonomic diversity, community structure, and microbial-derived
metabolites are mechanistically linked to the development and
progression of multiple allergic pathologies (Jin et al., 2023; Ke
et al,, 2025; Sasaki et al, 2024; Wang et al., 2023c). The gut
microbiota exerts multifaceted influences on the pathogenesis and
progression of AR through mechanisms encompassing immune
modulation, maintenance of epithelial barrier integrity, and
regulation of inflammatory responses (Aguilera et al, 2020;
Chiu et al, 2019; Ding et al., 2025; Liu et al, 2024). This
systemic influence is encapsulated within the broader framework
of interconnected mucosal immunity, such as the skin-gut-
lung axis, which underscores the role of microbial dysbiosis at
one site in influencing allergic inflammation at remote organs,
including the nasal mucosa (Yang et al., 2025). Key microbial-
derived metabolites mediate these effects, including short-chain
fatty acids (SCFAs) and polyamines that demonstrate potent
immunomodulatory properties, tryptophan catabolites (indole
derivatives) that activate the aryl hydrocarbon receptor (AhR)
signaling pathway, and secondary bile acids (BAs) exhibiting
anti-inflammatory capacities (Chen et al, 2022; Park et al,
2015, 2018; Roduit et al., 2019; Wang et al, 2024; Zhou C. J.
et al., 2021). Specifically in the context of nasal inflammation, a
recent systematic review consolidates evidence for gut microbiota
alterations in AR patients, reinforcing the concept of a gut-nose
axis, albeit with heterogeneity in specific taxa identified across
studies (Hu et al., 2024). This axis is further supported by findings
in chronic rhinosinusitis (CRS), where patients exhibit indicator
gut microbiota alterations (e.g., reduced Faecalibacterium and
Bifidobacterium), suggesting a shared gut-sinus relationship across
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different forms of sinonasal inflammation (Michalik et al., 2023).
The mechanistic underpinnings of this axis may involve microbial
translocation and immune crosstalk, as hypothesized in evolving
models where pathogens like Staphylococcus aureus could traverse
from the sinus to the gut and vice versa, potentially exacerbating
inflammation (Jad, 2024). Notably, the therapeutic potential of gut
microbiota-targeted interventions in AR has garnered preliminary
validation through a growing body of evidence from both
preclinical animal models and human clinical trials (Dong et al.,
2024; Galvan Calle et al., 2022; Hou et al., 2024; Lungaro et al., 2024;
Zhou et al., 2024). However, the causal links between microbial
dysbiosis and disease progression—particularly how microbiota-
derived metabolites mediate immune dysregulation via the gut-
nose axis—await systematic exploration.

To address these knowledge gaps, we performed a multi-
omics analysis of fecal samples from AR patients and healthy
controls, combining 16S rRNA gene sequencing with untargeted
metabolomics. Our study aims to: (1) identify AR-specific
alterations in gut microbial composition and metabolic
pathways; (2) characterize correlations between dysbiotic taxa
and immunomodulatory metabolites. By integrating microbial
taxonomy with functional metabolomics, this work provides
a comprehensive perspective on the gut-nose axis in AR and
identifies potential targets for microbiota-based therapeutics.

Materials and methods

Study design

Participants in this study were recruited from an ongoing study
supported by the Natural Science Foundation of Liaoning Province,
China (Grant No. 2022JH2/101500014), titled “Pathogenesis of
intestinal flora dysbiosis in allergic rhinitis and the application
of washed microbiota transplantation in AR treatment” (2022-
2025). A total of 23 patients met the criteria of sample collection,
and agreed to join in this study (Group A). In addition, 15
age- and sex-matched healthy controls were recruited from
the community (Group B). All participants signed the written
informed consent. The following demographic and clinical data
were collected via in-person interviews: age, sex, weight, height,
body mass index (BMI), educational attainment, smoking history,
alcohol consumption history, marital status, family medical history,
disease duration, medication and dietary supplement usage,
Total Nasal Symptom Score (TNSS), and Rhinoconjunctivitis
Quality of Life Questionnaire (RQLQ) outcomes. This study
protocol was conducted in accordance with the Declaration of
Helsinki and approved by the Ethical Committee of General
Hospital of Northern Theater Command of PLA (Approval
number: Y(2025)092).

Study population
The diagnosis of AR was based on ARIA guidelines
(2016 revision), Chinese Society of Allergy Guidelines for

Diagnosis and Treatment of Allergic Rhinitis (2018) and Chinese
guideline for diagnosis and treatment of allergic rhinitis (2022
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revision) (Brozek etal.,2017; Cheng et al., 2018; Subspecialty
Group of Rhinology, Editorial Board of Chinese Journal of
Otorhinolaryngology Head and Neck Surgery, and Subspecialty
Group of Rhinology, Society of Otorhinolaryngology Head and
Neck Surgery, Chinese Medical Association, 2022). The inclusion
criteria of Group A were as follows: (1) paroxysmal sneezing,
clear water-like runny nose, itch, sneezing, and other symptoms
appear 2 or more, and the daily symptoms persist or accumulate
more than 1 h; (2) the presence of allergen-specific IgE antibody
(sIgE) test >0.35 IU/mL and/or positive skin prick tests (SPT);
(3) a history of a reaction in the past year; (4) age 18-
65 years; (5) voluntary participation in this study. In addition,
15 age- and sex-matched healthy controls were recruited from
the community. The inclusion criteria of Group B were as
follows: (1) there is no history of allergies or family allergies;(2)
there are no allergy-related symptoms;(3) voluntary participation
in this study. Exclusion criteria for both groups included: (1)
receipt of systemic or topical antibiotics, immunomodulatory
agents (including glucocorticoids), antihistamines, probiotics,
prebiotics, or synbiotics within 3 months prior to enrollment;
(2) use of laxatives or antidiarrheal medications, or experience
of constipation, diarrhea, or respiratory tract infection within the
preceding 4 weeks; (3) comorbid respiratory conditions including
chronic obstructive pulmonary disease, asthma, bronchiectasis,
tuberculosis, pneumonia, pulmonary heart disease, or pulmonary
malignancies; (4) history of hypertension, coronary heart disease,
hyperthyroidism, hypothyroidism, hepatic or renal dysfunction, or
hematologic disorders; (5) history of psychiatric or neurological
conditions; (6) presence of clinically significant abnormalities upon
pre-trial assessment deemed likely to confound study outcomes, as
determined by the investigators (Liu et al., 2020; Zhou M. S. et al,,
20215 Zhu et al,, 2020). All study participants shared comparable
ethnic/geographic and dietary backgrounds.

TNSS and RQLQ

To comprehensively evaluate the symptom severity and quality
of life impact of AR, we utilized two validated clinical tools:
TNSS and RQLQ. The TNSS assesses the severity of four key
nasal symptoms: nasal obstruction, rhinorrhea, sneezing, and nasal
itching. Each symptom was scored by patients on a 4-point
Likert scale: 0 = no symptoms; 1 = mild symptoms (present
but not bothersome); 2 = moderate symptoms (noticeable and
occasionally bothersome); 3 = Severe symptoms (frequent and
significantly bothersome). The total TNSS ranged from 0 to 12,
with higher scores indicating greater symptom severity. The RQLQ
is a disease-specific instrument designed to measure the impact
of AR on patients’ quality of life. The questionnaire comprises 28
items across seven domains: sleep disturbances, nasal symptoms,
ocular symptoms, practical problems, emotional function, activity
limitations, and general well-being. Each item was rated on a
7-point scale (0-6), where: 0 = No impairment; 6 = Severe
impairment. The overall RQLQ score was calculated as the mean
of all item scores, yielding a total range of 0 to 6, with higher
scores reflecting worse quality of life (QoL). Both TNSS and RQLQ
have demonstrated high reliability and validity in prior studies
of AR (Bousquet et al., 2025; Sanchez and Castro, 2019), making
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them suitable for capturing symptom burden and its functional
consequences in our cohort.

Fecal sample collection

Fecal samples were collected from all participants by retaining
the mid-to-late portion of bowel movements. Using sterilized
spoons, the inner layer of fecal material was carefully sampled,
and all specimens were transferred into sterile plastic tubes under
aseptic conditions, with precautions taken to avoid contamination
from urine or contact with toilet surfaces. Additionally, all
female participants provided stool samples exclusively during their
non-menstrual phase. Within 2 h post-collection, samples were
transported to the laboratory in ice-packed coolers to maintain
a cold chain, followed by immediate storage at —80°C until
subsequent analyzes.

Gut microbiome detection and analysis

Fecal samples from AR patients and healthy controls were
collected using sterile protocols, stored at —80°C, and processed for
16S rRNA gene sequencing. Genomic DNA was extracted (QIAamp
DNA Stool Mini Kit), and the V3-V4 region was amplified
with primers 357F/806R using a two-step PCR protocol (Phusion
polymerase). Libraries were sequenced on Illumina NovaSeq (250-
bp paired-end). Bioinformatic analysis included quality filtering
[Trimmomatic (Bolger et al., 2014)], amplicon sequence variant
(ASV) clustering using the DADA2 (Callahan et al., 2016) pipeline,
chimeric removal (integrated within DADA?2), and taxonomic
annotation (SILVA 138). Alpha diversity indices (Observed species,
Chaol, ACE, Shannon, Simpson, and Phylogenetic Diversity whole
tree) and beta diversity metrics (Bray-Curtis, Jaccard, unweighted
and weighted UniFrac) and LEfSe (Segata et al., 2011) (LDA > 2,
P < 0.05) were calculated using QIIME 2 (Bolyen et al., 2019).

Metabolomics detection and analysis

Fecal metabolites were profiled via UHPLC-QTOF-MS (Agilent
6545). Samples were homogenized in 80% methanol, centrifuged,
and filtered. Raw data were processed with XCMS for peak
alignment, normalization, and QC-based filtering (RSD < 30%).
Multivariate analysis included PCA and OPLS-DA (SIMCA-P,
validated by permutation tests). The OPLS-DA model was used
strictly as an exploratory tool for variable selection and not
for predictive purposes. Differential metabolites were identified
(VIP > 1.0, FC > 1.5/ < 0.667, P < 0.05) and mapped to
KEGG pathways [MetaboAnalyst 5.0 (Pang et al., 2021)] using
hypergeometric tests. For the receiver operating characteristic
(ROC) analysis of candidate metabolites, internal validation was
performed using a 10-fold cross-validation scheme.

Statistical analysis

Statistical analysis was performed using R software (version
4.0.2). For baseline characteristics of study participants, continuous
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TABLE 1 Baseline data and clinical characteristics of the subjects.

(n =23) (n = 15)
Age, years 37.0 +10.2 3534125 0.58
Gender, n (%) 0.65
Male 11 (47.8) 6 (40.0)
Female 12 (52.2) 9 (60.0)
BMI, kg/m2 23.8+3.1 21.8+35 0.12
Ethnicity, n (%) 0.35
Han Chinese 19 (82.6) 14 (93.3)
Other 4(17.4) 1(6.7)
Smoking, years 0[0-3] 0 [0-5] 0.62
Alcohol use, years 0 [0-10] 0[0-7] 1.00
Disease duration, 12 [6-19] N/A -
months
TNSS 5[4-8] N/A -
RQLQ 42 [32-61] N/A -

Normally distributed variables are expressed as mean & SD, while non-normally distributed
variables are reported as median [interquartile range, IQR], based on Kolmogorov-Smirnov
test results (a = 0.05). TNSS, Total Nasal Symptom Score; RQLQ, Rhinoconjunctivitis
Quality of Life Questionnaire.

variables were first assessed for normality using the Kolmogorov-
Smirnov test. Normally distributed variables were compared
between groups using Independent f-test, while non-normally
distributed variables were analyzed with Mann-Whitney U
test to assess median differences. Categorical variables were
evaluated using Fisher’s exact test considering the limited sample
size. Difference of community structure of gut microbiome
among groups was analyzed using the method of permutational
multivariate ANOVA (PERMANOVA). Metabolomic profiles were
processed with log-transformation prior to statistical analysis.
Differentially expressed metabolites were identified using MS/MS
spectral data and verified through non-parametric statistical testing
(Mann-Whitney U). Spearman’s rank correlation analysis was
conducted to explore associations between gut microbiota and
metabolites, with false discovery rate (FDR) correction applied
using Benjamini-Hochberg procedure to adjust for multiple
comparisons. All reported p-values were two-tailed and P < 0.05
was considered significant.

Results

Characteristics of study populations

The study cohort comprised 38 participants, including 23
AR patient (Group A) and 15 healthy controls (Group B).
Demographic and anthropometric characteristics were comparable
between groups (Table 1). The AR group (median age: 37 years,
IQR: 31-42) and controls (median age: 35 years, IQR: 26-43)
showed no significant differences in age (P = 0.58, Mann-Whitney
U test) or gender distribution (47.8% vs. 40.0% males, P = 0.65,
%2 test). BMI was marginally higher in AR patients (mean + SD:
23.8 + 3.1 kg/m?) than in controls (21.8 + 3.5 kg/m?), though this
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difference was not statistically significant (P = 0.12, independent
t-test). Ethnic homogeneity was observed, with Han Chinese
constituting 82.6% of AR patients and 93.3% of controls (P = 0.35,
Fisher’s exact test).

Lifestyle factors and clinical parameters further defined the
cohorts. Smoking and alcohol consumption were infrequent in
both groups: 8.7% of AR patients (median smoking duration:
3 years, IQR: 3-12) and 13.3% of controls (median: 5 years, IQR:
5-5) reported smoking (P = 0.62), while alcohol use was reported
by 13.0% of AR patients (median: 10 years, IQR: 7-15) and 13.3%
of controls (median: 7 years, IQR: 7-7, P = 1.00). Symptom
severity and quality of life impact were quantified by the Total
Nasal Symptom Score (TNSS: 5, IQR: 4-8) and Rhinoconjunctivitis
Quality of Life Questionnaire (RQLQ: 42, IQR: 32-61), respectively,
reflecting clinically relevant allergic burden.

Characteristics of gut microbiome

Quality control of sequencing data revealed a unimodal
distribution of effective sequence lengths, with a median of
420 bp (IQR: 414.5-419.5 bp), indicating high consistency across
samples (Supplementary Figure 1). Rarefaction curves approached
asymptote at a sequencing depth of 40,000 reads per sample
(Supplementary Figure 2), indicating that the majority of microbial
diversity within each sample was effectively captured. This confirms
that the sequencing effort was sufficient for robust downstream
analyses of alpha and beta diversity. Although the species
accumulation curve did not reach a complete plateau, the rate of
new species discovery markedly decreased after approximately 20
samples (Supplementary Figure 3), indicating that our cohort size
was sufficient to capture the majority of the microbial diversity.

The gut microbiota composition of AR patients (Group A,
n = 23) and healthy controls (Group B, n = 15) exhibited
significant differences at both phylum and genus levels. At the
phylum level (Figure 1A), Firmicutes and Bacteroidetes were
dominant in both groups. However, AR patients exhibited a marked
increase in the relative abundance of the pro-inflammatory phylum
Fusobacteriota, alongside a significant reduction in the SCFA-
producing phylum Verrucomicrobiota.

Analysis at the genus level (Figure 1B) revealed that
Faecalibacterium, a keystone SCFA-producing genus enriched in
healthy individuals, was significantly depleted in AR patients.
Other beneficial SCFA producers, including Ruminococcus and
Roseburia, also showed a tendency toward reduced abundance in
the AR group. Conversely, genera with potential pro-inflammatory
associations demonstrated an opposite trend: Fusobacterium,
which was nearly absent in HC, was present at high abundance
in AR patients. Genus-level heatmap analysis (Figure 1C) and a
star plot of the top 10 most abundant genera (Figure 1D) further
confirmed distinct clustering patterns between AR patients and HC,
reflecting clear differences in microbial community structure.

Linear discriminant analysis (Figure 1E) identified Clostridia,
Ruminococcaceae, and Faecalibacterium as key discriminators for
HC (LDA score > 3.0), while Synergistetes and Bacillales were
enriched in AR. Phylogenetic cladogram analysis (Figure 1F)
further substantiated these systematic differences from an
evolutionary perspective. HC exhibited enrichment of SCFA-
producing families such as Ruminococcaceae and Lachnospiraceae,
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FIGURE 1
Gut microbial composition and taxonomic differences between AR patients and healthy controls. (A) Bar plot showing the relative abundance of
bacterial phyla. (B) Bar plot showing the relative abundance of bacterial genera. (C) Heatmap depicting hierarchical clustering of samples based on
Z-score normalized genus-level abundances. (D) Star plot illustrating the distribution of the top 10 most abundant genera in each group.
(E) Histogram of Linear Discriminant Analysis (LDA) scores for taxa with significant differences between groups (LDA score > 2.0, P < 0.05 by
Kruskal-Wallis test). (F) Cladogram generated by LEfSe analysis, showing the phylogenetic distribution of discriminative taxa from phylum to genus
level. The LEfSe analysis uses a non-parametric factorial Kruskal—Wallis sum-rank test followed by LDA.
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whereas AR patients showed overrepresentation of potentially
pathogenic bacteria, including Collinsella. Collectively, these
findings indicate that AR is associated with gut microbial dysbiosis,
characterized by a decline in SCFA-producing bacteria and an
expansion of pro-inflammatory taxa, which may contribute to
disease pathogenesis.

Alpha diversity analysis revealed no statistically significant
differences in gut microbial richness and diversity between AR
patients and HC (Supplementary Figure 4). Indices reflecting
microbial richness—including Observed species (P = 0.174), Chaol
(P = 0.174), and ACE (P = 0.181)—and indices representing
microbial diversity, such as Shannon (P = 0.191) and Simpson
(P = 0.145), all showed P-values greater than 0.05. Notably, the
phylogenetic diversity index phylogenetic diversity whole tree
(PD whole tree) approached statistical significance (P = 0.051),
suggesting a potential tendency toward reduced phylogenetic
complexity of the gut microbiota in AR patients compared
with healthy individuals, though this trend did not reach the
conventional significance threshold (P < 0.05). Collectively, these
findings indicate that the overall taxonomic breadth of the gut
microbial community does not differ substantially between AR
patients and healthy controls, while the evolutionary composition
of the microbiota may have a subtle difference that requires further
verification with a larger sample size.

Beta diversity analysis highlighted differences in microbial
community structures between the AR patients and HC. Using
four common distance metrics (Bray-Curtis, Jaccard, weighted
UniFrac, and unweighted UniFrac) and PERMANOVA analysis
(with effect size represented by R?), significant differences
were observed in Bray-Curtis distance (P = 0.041, R? = 0.043;
Figure 2A), Jaccard distance (P = 0.025, R2 = 0.031; Figure 2B),
0.047, R? = 0.039;
Figure 2D), while weighted UniFrac distance showed no significant
difference (P = 0.299, R? = 0.040; Figure 2C). Principal Coordinate
Analysis (PCOA) visualization consistently showed that samples

and unweighted UniFrac distance (P =

based on Bray-Curtis (Figure 2E), Jaccard (Figure 2F), and
unweighted UniFrac (Figure 2H) distances exhibited a tendency
of separation between the AR patients and HC, whereas the
PCOA plot based on weighted UniFrac (Figure 2G) distance
showed no obvious group separation. Principal Coordinate 1
(PC1) accounted for 8.6% (Bray-Curtis), 5.29% (Jaccard), 24.97%
(weighted UniFrac) and 10.76% (unweighted UniFrac) of the total
variance, while Principal Coordinate 2 (PC2) explained 6.78%
(Bray-Curtis), 3.98% (Jaccard), 18.95% (weighted UniFrac) and
5.54% (unweighted UniFrac) of the total variance, respectively.
These results collectively indicate that AR is associated with
alterations in gut microbial community structure, and the
compositional dissimilarity between AR patients and HC is mainly
driven by the presence/absence of rare taxa rather than the relative
abundance of dominant taxa.

Characteristics of gut metabolomics

The orthogonal partial least squares-discriminant analysis
(OPLS-DA) revealed distinct clustering between AR patients and
HC in both positive (POS) and negative (NEG) ionization modes
(Figures 3A, B). The model demonstrated robust validity, with high
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explanatory power (R? = 0.97 for POS, R? = 0.94 for NEG) based
on permutation testing (Figures 3C, D).

We further identified differentially abundant metabolites
between the two groups. In the POS mode (Figure 3E), metabolites
such as Epinephrine, Normeperidine, Quercetin, and Maltol
exhibited distinct z-scores between AR patients and healthy
controls. For instance, Maltol showed a notably higher abundance
in AR patients, which was validated by its ROC curve with an
AUC of 0.841 [95% CI: 0.706-0.976], 100% sensitivity, and 73.9%
specificity (Figure 3G). In the NEG mode (Figure 3F), metabolites
including Indolepyruvate, trans-Cinnamic acid, and 4-Coumaric
acid were differentially expressed. 4-Coumaric acid had an AUC
of 0.852 [95% CI: 0.731-0.973], 86.7% sensitivity, and 78.3%
specificity (Figure 3H), indicating its potential as a discriminatory
metabolite.

Pathway  enrichment

analysis  highlighted

perturbations in metabolic networks associated with AR. In

significant

the POS mode (Figure 3I), pathways such as biosynthesis of
unsaturated fatty acids, steroid hormone biosynthesis, and
nicotinate and nicotinamide metabolism were significantly
impacted. In the NEG mode (Figure 3]), key pathways included
pantothenate and CoA biosynthesis, glycolysis/gluconeogenesis,
and pyruvate metabolism, suggesting alterations in energy
metabolism and vitamin biosynthesis in AR patients.

Correlation between gut microbiome
and metabolites

To comprehensively assess the interactions between gut
microbiota and metabolites in AR patients and HC, we performed
Spearman correlation analysis across multiple metabolite classes,
including amino acids, lipids, nucleotides, peptides and other
metabolites (e.g., carbohydrates, energy-related compounds,
vitamins and cofactors). All p-values were adjusted for multiple
comparisons using the false discovery rate (FDR) method, and
only FDR-corrected p-values (g-values) are reported. Correlations
with g < 0.05 were considered statistically significant, while
those approaching significance (q¢ < 0.10) are discussed as
suggestive trends.

Significant correlations were observed primarily for peptides
and other metabolites. Among peptides (Figure 4D), the
dipeptide Asp-Glu showed a strong positive correlation with
Ruminococcus (p = 0.481, ¢ = 0.031). Among other metabolites
(Figure 4E), significant associations included positive correlations
of D-phenyllactic acid with Faecalibacterium (p = 0.515, g = 0.046),
2-methoxy-4-vinylphenol 0.565,
q = 0.021), 4-hydroxybenzaldehyde with Faecalibacterium
(p = 0.514, g = 0.046), and epinephrine with Olsenella (p = 0.537,
q =0.037). A significant negative correlation was observed between

with Ruminococcus (p =

2-methoxy-4-vinylphenol and Ruminococcus torques (p = —0.526,
q = 0.040). No significant correlations were found for amino acids,
lipids, or nucleotides after FDR correction.

Although amino acids, lipids and nucleotides did not
yield statistically significant results, several trends were noted.
Amino acid (Figure 4A), 17a-Ethynylestradiol was positively
associated with Olsenella (p = 0.405, g = 0.149). Among lipids
(Figure 4B), 2-Hydroxycaproic acid showed positive correlations
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FIGURE 2
Beta diversity analysis of gut microbiota between AR patients (Group A) and healthy controls (Group B). (A—D) Boxplots of between-group
dissimilarities based on panel (A) Bray-Curtis, (B) Jaccard, (C) weighted UniFrac, and (D) unweighted UniFrac distance metrics. The P-values and
effect sizes (R?) were calculated using Permutational Multivariate Analysis of Variance (PERMANOVA) with 999 permutations. (E-H) Principal
Coordinate Analysis (PCoA) plots visualizing group separation based on the same distance metrics: (E) Bray-Curtis, (F) Jaccard, (G) weighted
UniFrac, and (H) unweighted UniFrac. The percentage of variance explained by each principal coordinate is indicated on the axes.

with Ruminococcus (p = 0.440, g = 0.096), and 12-Oxo
phytodienoic acid was positively associated with Faecalibacterium
(p = 0.503, g = 0.084). Nucleotides (Figure 4C), such as flavin
mononucleotide, showed positive trends with multiple genera
including Ruminococcus (p = 0.340, g = 0.061).
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In summary, this integrative analysis revealed significant
microbe-metabolite interactions primarily involving peptides
and other metabolites, particularly those related to microbial
metabolism of aromatic compounds, neurotransmitters, and
phenolic acids. These findings suggest a specific role for certain
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Metabolomic profiling and pathway analysis in AR patients versus healthy controls. (A,B) Orthogonal Partial Least Squares-Discriminant Analysis
(OPLS-DA) score plots derived from UHPLC-QTOF-MS data in positive (POS, A) and negative (NEG, B) ionization modes. (C,D) Corresponding
validation plots from permutation tests (200 permutations). (E,F) Heatmaps displaying Z-scores of differentially abundant metabolites in POS (E) and
NEG (F) modes. Differential metabolites were identified based on a Variable Importance in Projection (VIP) > 1.0 from the OPLS-DA model, fold
change (FC) > 1.5 or < 0.667, and a P-value < 0.05 from the Mann-Whitney U test. (G,H) Receiver Operating Characteristic (ROC) curves for the top
discriminatory metabolites, Maltol (G) and 4-Coumaric acid (H), with Area Under the Curve (AUC), sensitivity, and specificity values indicated. (I, J)
Summary of pathway enrichment analysis from MetaboAnalyst 5.0 for POS (I) and NEG (J) modes. The P-values for pathway enrichment were
calculated using a hypergeometric test and adjusted for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR) method.
Pathways with an FDR-corrected P-value (g-value) <0.05 were considered significantly perturbed.

bacterial taxa in modulating metabolic pathways relevant to AR,
warranting further validation in larger cohorts.

Discussion
The present study elucidates the intricate interplay between

gut microbial dysbiosis and metabolic perturbations in AR
pathogenesis. Our multi-omics analysis revealed an AR-associated

Frontiers in Microbiology

gut microbiome profile characterized by depletion of SCFA-
producing genera (e.g., Faecalibacterium, Ruminococcus) and
expansion of pro-inflammatory taxa (e.g., Fusobacterium,
Collinsella). This dysbiosis was paralleled by compromised
microbial metabolic pathways, notably SCFA biosynthesis,
tryptophan metabolism (e.g., indolepyruvate), and vitamin B5
(pantothenate) and CoA biosynthesis. These findings align with
the emerging paradigm of the “gut-nose axis,” wherein gut-derived
microbial metabolites modulate nasal mucosal immunity through

mechanisms involving AhR activation, SCFA-mediated Treg

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1652915
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Sun et al.

10.3389/fmicb.2025.1652915

T [

02

neg_Hexanoylglycine
0

neg_N-Isobutyrylglycine 02

neg_N-Acetylalanine l 04

neg_cis-4-Hydroxy-D-proline

neg_17a-Ethynylestradiol

pos_Creatine

neg_N-Acety-D-alloisoleucine

pos_L-Tyrosine

neg_Phenylacetylaspartic acid

-

loprevotella
DTUOBY
Fusicatenibacter
Oisenella
Faecalibacterium
Ruminococcus

[Ruminococeus] torques_group

02
neg_Flavin mononucleotide I L

S . ry 5 2 Y s
e of 1 ] & 0
g i E H B ] 3
S D :
e & & b
g
£
=
H
D I
03
02
neg_Ala-lle 01
0
0.1
I-u.z
neg_Asp Glu
s ] < 5 s g
g H 2 H
A I R B :
H H g H
H 3 : =

[Ruminococeus] torques_group.

FIGURE 4

was <0.05.

Correlation network between gut microbiota and fecal metabolites. Spearman’s rank correlation analysis between significantly altered microbial
genera and metabolites categorized as (A) amino acids, (B) lipids, (C) nucleotides, (D) peptides, and (E) other metabolites (e.g., carbohydrates,
vitamins, phenolic compounds). P-values were adjusted for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR) method.
Correlation coefficients and FDR-corrected g-values are indicated in the heatmaps. A correlation was deemed statistically significant if the g-value
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differentiation, and lipid mediator-driven inflammation (Chen
etal, 2022; Lu et al., 2025; Tang et al., 2025; Wang et al., 2024).
Although gut dysbiosis has been reported in various respiratory
and systemic diseases—such as asthma, COPD, and inflammatory
bowel disease (Ahmadi et al., 2025; Bhutta et al, 2024; Goyal
et al,, 2025; Zhang H. et al., 2025; Zhu et al., 2025)—the specific
microbial and metabolic signatures we identified in AR may reflect

a disease-specific ecological and functional shift. For instance,
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the co-depletion of Faecalibacterium and Ruminococcus alongside
elevated Fusobacterium and Collinsella, combined with disruptions
in SCFA and phenolic acid metabolism, suggests a unique gut-nose
axis profile in AR. This pattern differs from the dysbiosis seen in
asthma, which often involves distinct taxa such as Haemophilus or
Moraxella, and different metabolic pathways such as bile acid or
sphingolipid metabolism (Hufnagl et al., 2020). Thus, while some

features may overlap, the concerted changes in both taxonomy and
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metabolism support the potential for microbiota-targeted therapies
specifically tailored for AR.

At the phylum level, we observed a notable increase in the
relative abundance of Fusobacteriota, a phylum often associated
with pro-inflammatory states, alongside a significant reduction
in Verrucomicrobiota, which includes important short-chain fatty
acid (SCFA)-producing species like Akkermansia muciniphila. This
finding suggests a compromised capacity for microbial-mediated
immunoregulation in AR patients. At the genus level, the depletion
of key SCFA producers such as Faecalibacterium, Ruminococcus,
and Roseburia in the AR group further underscores this
notion. Conversely, the enrichment of genera like Fusobacterium
and Collinsella in AR patients, taxa implicated in promoting
inflammation and gut barrier dysfunction, points to a state of
gut microbial dysbiosis characterized by a reduction in beneficial,
immunoregulatory bacteria and an expansion of potentially
pathobiontic taxa. These specific alterations provide a microbial
basis for the systemic immune dysregulation observed in AR.

Interestingly, while the structure of the microbial community
differed significantly between groups, its overall richness and
diversity (alpha diversity) remained comparable. This indicates
that AR-associated dysbiosis is not a matter of simple biodiversity
loss but rather a specific rearrangement of microbial populations.
The Chaol, Shannon, and Simpson indices showed no significant
differences, indicating that species richness and evenness were
largely unchanged, which is consistent with the findings of
many previous studies (Li J. et al., 2025; Li M. et al,, 2025;
Ma et al, 2025). However, the near-significant reduction in
phylogenetic diversity (PD whole tree, P = 0.051) hints at a potential
loss of evolutionary complexity that warrants investigation in
larger cohorts. In contrast, beta diversity analysis unequivocally
demonstrated significant separation between AR and HC groups
based on Bray-Curtis, Jaccard, and unweighted UniFrac distances.
The significance of unweighted (qualitative) but not weighted
(quantitative) UniFrac distances indicates that the compositional
differences are driven primarily by the presence or absence of
low-abundance (rare) taxa, rather than by changes in the relative
abundance of the most common species (Tang et al., 2025; Zhang
Y. etal,, 2025). This subtlety highlights the importance of analyzing
community structure beyond mere diversity indices to uncover
clinically relevant dysbiosis.

The gut metabolome, as a functional readout of microbial
activity, exhibited pronounced disturbances in AR patients.
Our untargeted metabolomics approach identified
metabolites with high discriminatory power, such as Maltol

several

and 4-Coumaric acid. Pathway enrichment analysis revealed
significant alterations in critical metabolic pathways, including
unsaturated fatty acid biosynthesis, steroid hormone metabolism,
and central energy metabolism pathways like glycolysis and
pyruvate metabolism. These findings suggest profound shifts in
host-microbiota co-metabolism that could influence immune cell
function and inflammatory responses. Crucially, our integrated
analysis revealed significant correlations between specific
bacterial genera and metabolites. The positive correlation of
the dipeptide Asp-Glu and phenolic compounds like 2-methoxy-
4-vinylphenol with SCFA-producing genera (Ruminococcus,
Faecalibacterium) suggests a link between these beneficial
bacteria and the production of immunomodulatory or barrier-

strengthening metabolites. Conversely, the negative correlation
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between 2-methoxy-4-vinylphenol and Ruminococcus torques, a
species sometimes associated with gut inflammation, reinforces
the concept of functional antagonism within the microbial
community. These microbiome-metabolite interactions provide
mechanistic insights into how gut dysbiosis may contribute to AR
pathophysiology through the production or modulation of specific
bioactive molecules.

Our study describes associations between gut microbial
dysbiosis, metabolic disturbances, and AR. However, the
pathogenic impact of these microbial changes is likely indirect
and contingent upon the host’s overall health and nutritional
status (Essilfie et al., 2025; Zhang et al., 2024). The depletion of
SCFA-producers we observed, for instance, would be particularly
detrimental in a host with a diet low in fermentable fiber—the
essential substrate for bacterial SCFA generation (Shin et al,
2023; van der Hee and Wells, 2021). Conversely, a fiber-rich diet
might bolster resilience against such microbial loss. Similarly,
the disruption in vitamin B5 (pantothenate) metabolism could
be compounded by inadequate dietary intake of this vitamin,
which is crucial for energy metabolism and immune function.
Furthermore, the host’s pre-existing immune and metabolic state,
potentially influenced by factors like vitamin D status, stress,
or early-life microbial exposures, sets the threshold for how the
immune system interprets metabolites like indolepyruvate (AhR
ligand) or the lack of anti-inflammatory SCFAs. Therefore, the
AR-associated gut profile we identified might be best viewed as a
risk factor whose clinical manifestation is ultimately determined by
a complex dialogue between these gut-derived signals and the host’s
physiological context. Future studies integrating dietary records,
nutritional biomarkers, and host genotyping with multi-omics data
will be crucial to unravel these individual-specific interactions.

While our study provides evidence linking gut microbiome
dysbiosis and metabolic dysfunction to AR, we acknowledge
the crucial and potentially initiating role of microbiomes at the
sites of allergen exposure—namely the oral and nasopharyngeal
cavities. A growing body of literature indicates that dysbiosis of
the upper airway microbiome is associated with AR susceptibility
and severity (Pérez-Losada et al, 2023, 2024; Teng et al., 2024;
Wang et al, 2023b). For instance, alterations in the nasal
microbiota composition may disrupt local immune homeostasis
and barrier integrity, facilitating a Th2-polarized inflammatory
response to allergens (Chun et al., 2021; Salzano et al, 2018;
Zeng and Liang, 2022). This raises the compelling question of
how the gut microbiome, a remote site, interacts with these
local microbial communities. The concept of the “gut-lung axis”
or “gut-nose axis” provides a framework for understanding this
cross-talk (Chioma et al., 2021; Druszczynska et al., 2024; Ozcam
and Lynch, 2024; Sun et al, 2024). We speculate that the
upper airway microbiota may serve as the primary trigger for
AR, while the gut microbiome, through the systemic release
of microbial metabolites, acts as a critical immunomodulatory
modulator. The gut-derived metabolites we identified—such as
SCFAs, which are known to promote regulatory T-cell function and
strengthen epithelial barriers, and various phenolic acids—could
either suppress or exacerbate the inflammatory signals originating
from the nasopharynx (Chiu et al., 2024; Hou et al,, 2024; Xu
et al., 2025). Therefore, the gut microbial dysbiosis we observed
in AR patients might not be the initial cause but could create a
pro-inflammatory systemic environment that amplifies the adverse
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responses initiated by the upper airway microbiome. Future studies
that concurrently analyze the microbiome and metabolome from
multiple sites (gut, oral, nasal) in the same individuals are essential
to unravel the temporal and spatial dynamics of this interplay and
to determine the primary site of dysfunction in AR.

Our study focused on bacterial communities and their
metabolic outputs. However, we acknowledge that the gut
microbiome comprises other kingdoms, including viruses
(particularly bacteriophages) and fungi, which were not captured
by our 16S rRNA sequencing approach. Bacteriophages can
profoundly influence bacterial community structure and function
through predation and lysogeny (Gogokhia et al., 2019; Hsu
et al, 2019; Mills et al,, 2013), potentially contributing to the
dysbiosis we observed, such as the reduction of beneficial SCFA-
producing taxa. Similarly, the gut mycobiome can modulate host
immunity and interact with bacterial communities, potentially
influencing inflammatory processes relevant to AR (Yang J.
et al, 2023; Zhao et al, 2023). The metabolic perturbations
identified in our study represent the integrated output of the
entire gut ecosystem, including potential contributions from these
non-bacterial components. Future studies employing shotgun
metagenomics to characterize the virome and mycobiome,
alongside metabolomics, are warranted to fully understand the
multi-kingdom interactions within the gut-nose axis in AR
pathogenesis.

Despite the advantages of our multi-omics approach, this study
has several limitations. First, the relatively modest sample size
may have limited the power to detect subtle microbial-metabolite
associations and rendered some trends, such as the near-significant
reduction in phylogenetic diversity, inconclusive. Second, our
analysis focused primarily on bacterial communities and their
metabolic outputs, thereby overlooking the potential contributions
of other kingdoms, such as viruses (e.g., bacteriophages) and
fungi, within the gut-nose axis. Furthermore, the absence of
concurrent profiling of the upper airway (oral and nasopharyngeal)
microbiome restricts a holistic understanding of the cross-
talk between multi-kingdom microbiota across different body
sites in AR. Third, the cross-sectional nature of our design
precludes any causal inference regarding the observed shifts
in gut microbial composition and metabolism relative to AR
pathogenesis. Furthermore, it's important to note that our study
cohort consisted exclusively of adults; future comparative
studies across different age groups, particularly pediatric
populations, will be essential to determine if the microbial
and metabolic signatures identified here are age-specific or
universal hallmarks of AR. Finally, the lack of key immunological
data, including fecal sIgA levels and serum cytokine profiles,
impedes a deeper mechanistic elucidation of how the identified
microbial and metabolic signatures influence host systemic and
mucosal immunity.

To address these limitations and advance the field, we
propose several targeted directions for future research. (1) Multi-
center, large-scale longitudinal studies incorporating detailed
dietary records are essential to validate our findings, control for
confounders, and establish temporal relationships. (2) Employing
shotgun metagenomics to conduct integrated multi-kingdom
(bacterial, viral, fungal) analyses of both the gut and upper
airway microbiomes in the same individuals will provide
a more comprehensive view of microbial ecology in AR
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(3) Mechanistic causality and underlying pathways should
be investigated using gnotobiotic mouse models colonized
with microbiota from AR patients. (4) Interventional clinical
trials, such as fecal microbiota transplantation or pre/probiotic
supplementation, are warranted to assess the therapeutic potential
of modulating the gut microbiome for improving clinical
and metabolic outcomes in AR. The application of emerging
technologies, including spatially resolved metabolomics and
single-cell microbial sequencing, will further help delineate
the precise spatial and functional host-microbe interactions in
AR pathogenesis.

Conclusion

In summary, this integrated multi-omics study reveals a
distinct gut microbial and metabolic signature in patients with
allergic rhinitis, characterized by reduced phylogenetic diversity,
depletion of SCFA-producing bacteria, and dysregulation of key
immunomodulatory metabolites. The correlation between specific
microbial taxa and metabolic pathways underscores the potential
role of gut-derived metabolites in influencing nasal mucosal
immunity through systemic mechanisms. Our findings support the
concept of a “gut-nose axis” in AR pathogenesis and highlight the
potential for microbiota-directed interventions, such as probiotics
or SCFA supplementation, to restore immune homeostasis. Future
studies incorporating longitudinal design, multi-site microbiome
sampling, and functional validation are needed to establish
causality and translate these insights into clinical applications.
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