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Introduction: Trifoliate orange (Poncirus trifoliataL. Raf) and “Ziyang Xiangcheng” 
(Citrus junos Sieb. ex Tanaka) are the predominant rootstocks for lemon 
production in China, exhibiting distinct adaptations to soil pH and differential 
impacts on plant resilience. As pivotal mediators of scion-soil interactions, 
rootstocks have emerged as key research targets for their regulatory potential in 
rhizosphere microbial communities and metabolites.
Methods: Pot-cultured systems were established with lemon (Citrus × limon 
“Eureka”) saplings grafted onto trifoliate orange (PTL) and “Ziyang Xiangcheng” 
(CJL) rootstocks. Integrated metagenomic and GC-MS metabolomic approaches 
were employed to analyze rhizosphere microbial communities and metabolites.
Results: The results demonstrated no significant difference in rhizospheric 
microbial α-diversity (richness) between PTL and CJL, although PTL exhibited 
higher evenness. β-Diversity and LEfSe analysis revealed significant structural 
divergence in communities. A total of 15 differentially enriched genera across 
three phyla were identified, among which Pseudomonas, Cupriavidus, and 
Burkholderia in CJL, along with Sphingobium in PTL, exhibited strong effects. 
Random forest modeling identified 15 key differential metabolites, with 4 
significantly upregulated in CJL and 11 in PTL. Microbial-metabolite correlation 
and GSEA analysis uncovered 10 core pathways involving genetic information 
processing, energy metabolism, environmental adaptation, and disease 
resistance mechanisms. Soil analysis showed CJL significantly surpassed PTL in 
organic matter content, catalase activity and plant height, whereas PTL exhibited 
superior cellulase, sucrase and urease activities. Mechanistically, PTL appears 
to recruit Pseudomonas mediterranea via 1-Monostearin secretion to activate 
glycerolipid metabolism, enhancing drought tolerance. Its caffeate and salicyl 
alcohol-β-glucoside secretions potentially mobilize Sphingobium and Ensifer 
adhaerens to regulate amino sugar metabolism, promoting carbon sequestration 
and root defense. Conversely, CJL likely employs L-alanine exudation to recruit 
Pseudomonas putida, triggering exopolysaccharide biosynthesis through 
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arginine-proline metabolism as a key tolerance mechanism (such as drought 
tolerance and alkali tolerance)
Discussion: The findings elucidate rootstock-specific modulation of rhizosphere 
microecosystems, highlighting distinct microbial-metabolite interactions and 
tolerance mechanisms. These results provide theoretical support for precision 
rootstock selection and microbiome engineering to advance sustainable citrus 
production.

KEYWORDS

lemon rootstocks, rhizosphere microbiota, metabolomic profiling, rootstock-microbe 
interactions, soil microecology

1 Introduction

Lemon (Citrus limon) is a globally important economic fruit tree 
whose fruits contain abundant bioactive compounds including 
vitamin C, organic acids and flavonoids, with wide applications in 
food, pharmaceutical and cosmetic industries. In commercial 
production, grafted lemon trees predominate, with rootstocks 
significantly influencing fruit quality, yield, as well as tree adaptability 
and stress resistance (Goldschmidt, 2014). However, sustainable 
lemon production faces major challenges including soil sickness, soil-
borne diseases and inefficient nutrient utilization. Conventional 
cultivation relying on chemical fertilizers and pesticides not only 
increases costs but also exacerbates soil acidification, reduces 
microbial diversity and degrades ecosystem services (Nair and 
Ngouajio, 2012). Consequently, green production models based on 
rhizosphere microecological regulation have emerged as a research 
focus. As the critical interface mediating interactions between the 
scion and the soil environment, the regulatory potential of rootstocks 

over rhizosphere microbial communities and metabolites is garnering 
increasing attention (Liu et al., 2018; Wang et al., 2014; Ruan et al., 
2020). Grafting creates a novel rootstock-scion composite whose root 
characteristics are rootstock-determined (Goldschmidt, 2014). Plants 
reshape their rhizosphere through root architecture (RellánÁlvarez 
et al., 2016; Ragland et al., 2024), exudate composition (Mommer 
et  al., 2016) and stress signaling (Tan et  al., 2024), influencing 
microbial colonization and functionality (Shi et al., 2025; Ragland 
et al., 2024), thereby regulating nutrient uptake, disease resistance and 
stress tolerance (Hodge et al., 2009). For instance, studies demonstrate 
that wild soybean under salt stress recruits Pseudomonas bacteria via 
root-secreted purine metabolites like xanthine, mitigating salt-
induced growth inhibition (Zheng et al., 2024). Similarly, maize root 
exudates attract Bacillus amyloliquefaciens OR2-30, which inhibits 
conidial formation and germination in Fusarium graminearum, 
induces reactive oxygen species (ROS) production, and triggers 
hyphal cell death (Xie et al., 2022). In potato monoculture systems, 
root secretion of nobiletin recruits Pantoea sp. MCC16, a high auxin 
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(IAA)-producing strain, restoring root functional traits and alleviating 
replant disease to enhance yield (Ma et al., 2025). Furthermore, ginger 
(Zingiber officinale) root exudates, including compounds like sinapyl 
alcohol and 6-gingerol, significantly enhance the colonization and 
proliferation of Burkholderia species in the chrysanthemum 
(Chrysanthemum morifolium) rhizosphere, strengthening suppression 
against Fusarium wilt (Zhu et al., 2025).

Rootstocks modify and adapt to soil environments by actively 
recruiting or suppressing specific microorganisms, yet current research 
predominantly focuses on single rootstock varieties or single-omics 
approaches. For instance, a study comparing four citrus rootstocks 
under varying phosphorus levels revealed that low-P-tolerant 
genotypes significantly increased rhizospheric organic acid secretion 
and enhanced soil biological activity under phosphorus starvation (Luo 
and Fan, 2014). Similarly, Sun et al. (2017) demonstrated higher genus-
level microbial abundance in Citrus willsonii rootstock compared to 
Poncirus trifoliata when grafted with Satsuma mandarin, primarily 
enriching iron-uptake-associated microbiota. Further evidence from 
Raiesi et al. (2022) indicates that rootstock identity governs rhizosphere 
phosphorus fraction dynamics and biochemical properties induced by 
root activity. Conversely, rhizosphere microorganisms reciprocally 
influence rootstocks—while AMF (Arbuscular Mycorrhizal Fungi) 
effects on citrus drought resilience (Zou et al., 2013a; Wu et al., 2017), 
salt tolerance (Zou et al., 2013b), growth promotion (Chen et al., 2017), 
and disease resistance (Zhang, 2019; Watanarojanaporn et al., 2011) are 
documented, impacts of other microbiota (e.g., Actinobacteria, 
Pseudomonadota) remain understudied. Critically, the molecular 
mechanisms through which diverse rootstocks shape citrus rhizosphere 
microbiomes and metabolomes remain elusive, particularly at multi-
omics integration levels, hindering theoretical advances in rootstock-
microbe interactions and precision management development. 
Moreover, prevailing rootstock evaluation systems rely excessively on 
phenotypic parameters (e.g., grafting success rate, yield), failing to 
incorporate rhizospheric microbial functional traits into selection 
criteria, which compromises breeding precision.

Trifoliate orange (Poncirus trifoliata L. Raf) and Ziyang 
Xiangcheng (Citrus junos Sieb. ex Tanaka) are the most widely 
employed superior rootstocks in lemon production. Poncirus trifoliata 
rootstock offers advantages including strong graft compatibility, early 
high yield, drought tolerance, cold hardiness, and resistance to foot 
rot; it tolerates strongly acidic soils but exhibits poor alkaline tolerance. 
Conversely, Citrus junos rootstock is characterized by a vigorous root 
system, robust tree growth, high productivity, and cold tolerance, 
displaying exceptional alkaline tolerance but sensitivity to strongly 
acidic conditions (Zheng N. et al., 2021). To elucidate the mechanisms 
by which these distinct rootstocks influence rhizosphere microbes and 
metabolites, we conducted a two-year pot experiment. This study 
utilized lemon grafted seedlings on these two rootstocks, employing 
integrated rhizosphere soil metagenomics and metabolomics to 
characterize differences in microbial community structure and 
metabolic profiles, thereby investigating rootstock-mediated 
functional regulation of the rhizosphere microecology. Key scientific 
questions addressed include: (1) What microbial signatures are 
enriched in the rhizosphere of each rootstock type? (2) How do 
rootstock-specific rhizosphere metabolite enrichment patterns differ? 
(3) Do key microbial taxa and metabolite modules synergistically 
contribute to the stress resistance (or tolerance) traits of lemon 
rootstocks? Through integrated omics analysis, core functional 

rhizosphere metabolites and microbial biomarkers will be identified. 
On the one hand, it provides reference for screening rootstocks with 
desirable root traits for lemon cultivation, and on the other hand, it 
offers theoretical support for developing soil-applied biological agents 
and biopesticides, thereby promoting the shift of the lemon industry 
toward ‌resource-efficient and environmentally friendly practices‌.

2 Materials and methods

2.1 Experimental site and experimental 
design

The experiment was conducted in 2022 at the Institute of Tropical 
and Subtropical Cash Crops, Yunnan Academy of Agricultural 
Sciences (25°8′10″N, 99°10′53″E; Baoshan, China), a subtropical 
dry-hot valley climate zone at 700 m altitude with mean annual 
temperature of 21.5 °C and ~750 mm precipitation, using sandy loam 
soil (pH 6.5–7.0) containing 40.04 g·kg−1 organic carbon, 69.02 g·kg−1 
organic matter, 2.60 g·kg−1 total N, 182.30 mg·kg−1 alkali-hydrolyzable 
N, 20.67 g·kg−1 total K, 366.29 mg·kg−1 available K, 1.14 g·kg−1 total P, 
and 118.34 mg·kg−1 available P.

This study implemented two treatments: (1) Eureka lemon (Citrus 
limon “Eureka”) grafted onto Citrus junos rootstock (CJL) and (2) Eureka 
lemon grafted onto Poncirus trifoliata rootstock (PTL), with 18 potted 
replicates per treatment (pot dimensions: 25 cm diameter × 40 cm 
height; 5-gallon capacity) using uniformly vigorous rootstocks (height: 
10–15 cm) that were root-washed and transplanted; grafting with 
healthy Eureka lemon scions commenced when rootstock stem diameter 
reached 0.5–0.8 cm, followed by training to retain a single main stem 
pruned at 30 cm height with lateral shoots pinched to 10–15 cm length, 
under consistent cultivation conditions featuring monthly compound 
fertilizer application (N-P2O5-K2O = 17:17:17; 5 g per plant), quarterly 
foliar micronutrient-enriched water-soluble fertilizers, and standardized 
pest/disease control, culminating in rhizosphere soil collection from all 
36 biological replicates (18 per treatment) after 24 months of cultivation.

2.2 Soil sampling collection

Rhizosphere soils were carefully collected by brushing adherent 
soil from root systems, followed by removal of gravel and residual 
roots. The soil sample was divided into two parts after being screened 
by 2 mm. One part of the soil was stored at −80 °C for metagenome 
sequencing, and the other part was stored at −80 °C for GC-MS 
non-target metabolomics detection after vacuum freeze-drying.

2.3 Metagenomic sequencing and analysis

Total microbial genomic DNA was extracted from rhizosphere 
soils using the CTAB method and quantified using an Agilent 5,400 
Fragment Analyzer for concentration, integrity (DV50 > 20 kb), and 
purity (A260/280 ratio 1.8~2.0). Qualified DNA was fragmented into 
350 bp inserts using a Covaris M220 Focused-ultrasonicator (Woburn, 
MA, United States) for library construction. Libraries were diluted to 
1.5 nM using Qubit 2.0 Fluorometric Quantitation (Thermo Fisher 
Scientific), validated for insert size distribution via Agilent 2100 
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Bioanalyzer, and quantified by qPCR (Kapa Biosystems). Paired-end 
sequencing (2 × 150 bp) was performed on the Illumina NovaSeq 6000 
platform (San Diego, CA, United States) by Wekemo Tech Group Co., 
Ltd. (Shenzhen, China).

Raw reads underwent quality control using FastQC (v0.12.0), with 
subsequent removal of adapter sequences and host-derived reads using 
KneadData (v0.12.0) (minimum Phred score: 20). Taxonomic profiling 
was performed using Kraken2 with the Standard Plus Protozoa/RefSeq 
database, followed by abundance estimation via Bracken (v2.8). 
Functional annotation employed HUMAnN3 (v3.6.0) with DIAMOND 
alignment against UniRef90 and EggNOG v5.0 databases to quantify 
orthologous gene families (KEGG pathways) and metabolic modules. 
All analyses used default parameters unless specified.

2.4 Untargeted GC-MS metabolomics

Frozen lyophilized soil samples (50 ± 2.5 mg) were homogenized 
in 2 mL microtubes with 0.5 mL of pre-chilled (−20 °C) 
acetonitrile:isopropanol (3:3:2, v/v/v) and 3–4 zirconium beads 
(2 mm). Tissues were disrupted using a high-throughput grinder 
(30 Hz, 20 s grinding/10 s pause, 8 cycles) followed by ice-water bath 
ultrasonication (5 min). After adding an additional 0.5 mL of 
extraction solvent, samples were re-sonicated (5 min) and centrifuged 
(12,000 × g, 2 min, 4 °C). Supernatants (500 μL) were concentrated to 
dryness via vacuum centrifugation (Christ RVC 2–25, 8~10 h) and 
reconstituted in 80 μL methoxyamine hydrochloride (20 mg/mL in 
pyridine) for 60 min derivatization at 60 °C. Subsequently, 100 μL 
BSTFA-TMCS (99:1) was added, vortex-mixed (30 s), and incubated 
at 70 °C for 90 min. Derivatized extracts were centrifuged (14,000 × g, 
3 min), and supernatants (90~100 μL) were transferred to autosampler 
vials for GC-TOF MS analysis within 24 h.

Chromatographic separation was performed on an Agilent 7890B 
system equipped with a DB-5MS capillary column (30 m × 250 μm, 
0.25 μm film; Agilent J&W Scientific) under helium carrier gas (1 mL/
min constant flow). Injection volume was 1 μL in split mode (1:10 
ratio) with inlet temperature at 280 °C. Oven temperature program: 
initial 50 °C (0.5 min hold), ramped at 15 °C/min to 320 °C (9 min 
hold). Mass spectrometry utilized an Agilent 7200 Q-TOF with 
electron ionization (−70 eV) in full-scan mode (m/z 50–600, 10 
spectra/s). Interface and ion source temperatures were maintained at 
320 °C and 230 °C, respectively, with 3 min solvent delay. All 
metabolomic profiling was conducted by Wekemo Tech Group Co., 
Ltd. (Shenzhen, China).

2.5 Determination of soil physicochemical 
properties and enzyme activities

Total nitrogen (TN) was quantified by the Kjeldahl method: Soil 
samples were digested with concentrated H2SO4 and catalyst to 
convert organic nitrogen to ammonium-N, followed by steam 
distillation, boric acid absorption, and titration with HCl standard 
solution. Alkali-hydrolyzable nitrogen (AN) was measured via alkali 
diffusion: Samples were hydrolyzed with 1.8 mol·L−1 NaOH at 40 °C 
for 24 h, with liberated NH3 absorbed in boric acid for titration. 
Organic carbon (OC) was determined by K2Cr2O7 oxidation-external 
heating: Organic matter was oxidized with 0.8 mol·L−1 K2Cr2O7-H2SO4 
at 170–180 °C, and residual K2Cr2O7 titrated with FeSO4 standard 

solution. Organic matter (OM) content was calculated as OC × 1.724. 
All analyses included ‌triplicate measurements with certified reference 
materials for quality control.

Cellulase activity was assayed by DNS method: 5.0 g fresh soil 
reacted with 1% carboxymethylcellulose sodium (CMC-Na) in acetate 
buffer (pH 5.0) at 50°C for 24 h; reactions were terminated with 
3,5-dinitrosalicylic acid, and reducing sugars quantified at 540 nm (units: 
μmol glucose g−1 24 h−1). Invertase activity followed Hoffmann: 2.0 g soil 
incubated with 8% sucrose in phosphate buffer (pH 6.5) at 37 °C for 24 h, 
with glucose yield measured (units as above). Catalase activity used 
KMnO4 titration: 5.0 g soil reacted with 0.3% H2O2 at 25 °C for 20 min, 
and residual H2O2 titrated with 0.1 mol·L−1 KMnO4 (units: mL KMnO4 
consumed g−1 20 min−1). Urease activity employed indophenol blue 
colorimetry: 5.0 g soil incubated with 10% urea in citrate buffer (pH 6.7) 
at 37 °C for 24 h, with NH4

+-N production quantified (units: μg 
NH4

+-N g−1 24 h−1). All enzymatic assays were performed in triplicate 
with substrate-free controls and standard curve calibration.

2.6 Plant height measurement

Plant height was measured using a ruler with 1 mm precision, 
recording the vertical distance from the soil surface at the root collar 
to the apical meristem. Three replicate measurements were taken 
per plant.

2.7 Statistical analyses

Soil physicochemical properties and enzyme activities were analyzed 
using one-way ANOVA, with significant differences (p < 0.05) 
determined by Duncan’s multiple range test for post-hoc comparisons. 
Plant height data underwent multiple comparisons through the Kruskal-
Wallis test (non-parametric method) for single-factor designs.

Integrated multi-omics analyses were performed following 
standardized workflows to ensure reproducibility and biological 
relevance. Metagenomic raw sequences underwent quality control 
using KneadData (Trimmomatic for adapter removal; Bowtie2 for 
host DNA depletion) with FastQC validation of pre- and post-
processing data quality (Bolger et  al., 2014; Langmead and 
Salzberg, 2012). Taxonomic profiling was conducted via Kraken2 
with a customized microbial database (incorporating bacterial, 
fungal, archaeal, and viral genomes from NCBI and RefSeq), 
refined through Bracken for species-level abundance 
quantification (Wood and Salzberg, 2014; Lu et al., 2017; Mandal 
et  al., 2015; Brum et  al., 2015). Functional annotation was 
implemented in HUMAnN3 using the UniRef90 database, with 
metabolic pathway abundance profiles generated via DIAMOND 
alignment (e-value ≤ 1e − 5) (Segata et al., 2011; Zhu et al., 2010; 
Kim et al., 2016; Franzosa et al., 2018). Antibiotic resistance genes 
were identified through DIAMOND alignment against the CARD 
database (bit-score > 60).

Microbial community analyses included beta-diversity assessment 
(Bray–Curtis dissimilarity), ordination analyses (PCoA/NMDS), and 
LEfSe biomarker detection (LDA score > 2) (Franzosa et al., 2018; 
Villar et  al., 2015). Metabolomics data were processed using the 
MetaboAnalyst R package in R (Chong and Xia, 2018), encompassing 
batch effect correction, OPLS-DA for biomarker selection (VIP > 1.5), 
and mummichog-based pathway enrichment analysis (FDR < 0.1). 
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Multi-omics integration involved data normalization (probabilistic 
quotient normalization for metabolites; Hellinger transformation for 
microbial features), followed by correlation analyses (sparse canonical 
correlation analysis sCCA, random forest) and joint pathway mapping 
via mummichog2-based KEGG enrichment. All statistical inferences 
were adjusted using the Benjamini-Hochberg FDR correction method.

3 Results

3.1 Analysis of rhizosphere soil microbial 
diversity in lemon trees with two types of 
rootstocks

Metagenomic sequencing of 36 samples generated a total of 
843,080,544 raw sequences. After quality control, 778,709,052 

valid sequences were obtained. The Q30 values for both raw and 
valid sequences in each sample exceeded 85%, indicating that the 
data quality was satisfactory and the sequencing depth was 
sufficient to reflect the microbial community structure in 
each sample.

To assess the microbial community diversity, we utilized the 
Chao1 index, which reflects community richness, and the Shannon 
index, which accounts for both richness and evenness. The results 
showed that there was no significant difference in the Chao1 index 
between the rhizosphere soil microbial communities of the two 
rootstock lemons (Figure 1A). However, the Shannon index was 
significantly higher in PTL compared to CJL (Figure 1B; p < 0.01). 
Beta diversity analysis of the rhizosphere soil microbial 
communities of the two rootstocks was conducted using principal 
coordinate analysis (PCoA). The results revealed that the first 
principal component (Axis 1) explained 39.59% of the variation, 

FIGURE 1

Diversity analysis of rhizosphere soil microbial communities in lemon trees with two types of rootstocks. (A) Chao1 index (richness estimator) 
comparison between CJL (Citrus junos rootstock) and PTL (Poncirus trifoliata rootstock). (B) Shannon index (diversity estimator) showing significant 
differences (**p < 0.01, Wilcoxon test). (C) Principal coordinate analysis (PCoA) based on Bray-Curtis distance, with PERMANOVA confirming significant 
compositional divergence (R2 = 0.349, p = 0.001). (D) Venn diagram illustrating shared (4495) and unique OTUs (CJL: 1,271; PTL: 1,129).
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while the second principal component (Axis 2) explained 10.87% 
(Figure 1C). The microbial community compositions of the two 
groups were significantly separated, indicating that the rootstock 
types affects the structure and composition of the rhizosphere soil 
microbial community. A Venn diagram further illustrated the 
species overlap between the two groups. The results showed that 
CJL and PTL shared 4,495 species, with 1,271 species unique to 
CJL and 1,129 species unique to PTL (Figure 1D).

3.2 Analysis of rhizosphere soil microbial 
community composition in lemon trees 
with two types of rootstocks

The metagenomic sequencing identified 96, 147, 298, 641, 
1,798, and 6,895 taxonomic groups from phylum to species level, 
respectively. To investigate the microbial composition, we plotted 
the relative abundance of the top  10 microbial phyla in both 
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FIGURE 2

Microbial community abundance and group differences. (A) Relative abundance at the phylum level (top 10). (B) Relative abundance at the genus level 
(top 10). (C) LEfSe analysis (LDA score > 3.5) showing significantly different microbial taxa.
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treatments (Figure 2A). The results revealed that Pseudomonadota, 
Actinomycetota, and Thermoproteota were highly abundant in 
both rootstock rhizosphere soil microbial communities, with 
Pseudomonadota accounting for over 40% and Actinomycetota 
exceeding 20% average relative abundance in both treatments. 
Together, these three phyla constituted more than 65% of the total 
relative abundance, indicating their dominance. At the genus 
level, the top 10 microbial genera in both treatments included 
Afipia, Pseudomonas, Streptomyces, Cupriavidus, Sphingobium, 
Micromonospora, Mycolicibacterium, Nocardioides, Aminobacter, 
and unclassified genus (Figure 2B).

Building upon LEfSe analysis with a significance threshold (LDA 
score > 3.5), differentially abundant microbes were predominantly 
identified within three phyla: Actinomycetota, Pseudomonadota, and 
Nitrososphaerota (Figure 2C). Specifically, CJL-associated microbiota 
comprised seven enriched genera: Micromonospora, Rhodococcus, 
Chelativorans, Burkholderia, Cupriavidus, Azoarcus, and 
Pseudomonas. In contrast, PTL-associated microbiota revealed eight 
enriched genera: Nitrosospira, Sphingobium, Ensifer, Aminobacter, 
Pseudonocardia, Nocardioides, Mycolicibacterium, and Candidatus 
Nitrosocosmicus. Notably, four key taxa exhibited significantly higher 
discriminatory power (LDA score > 4): Pseudomonas (class 
Gammaproteobacteria), Cupriavidus (class Betaproteobacteria), and 
Burkholderia (class Betaproteobacteria) enriched in CJL; and 
Sphingobium (class Alphaproteobacteria) enriched in PTL. These 
high-impact microorganisms were consequently prioritized as focal 
differential populations.

3.3 Potential functional pathways of soil 
microorganisms in the rhizosphere of 
lemon trees with two types of rootstocks

Comparison with the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database revealed that 385 Level 3 metabolic pathways were 
annotated across all samples (Figure 3). Among these, 369 pathways 
were detected in CJL and 376 in PTL, with 9 and 16 unique pathways 
exclusive to CJL and PTL, respectively (Figure 3). Screening identified 
one rhizosphere-relevant pathway in CJL: Organismal Systems > 
Environmental Adaptation > Circadian rhythm-plant. Three pathways 
were identified in PTL: (1) Metabolism > Metabolism of Terpenoids 
and Polyketides > Type I polyketide structures; (2) Environmental 
Information Processing > Signal Transduction > MAPK signaling 

FIGURE 3

Venn diagram of annotated metabolic pathways. The 16 unique 
pathways in PTL were: (1) Metabolism; Glycan biosynthesis and 
metabolism; Glycosphingolipid biosynthesis-ganglio series. (2) 
Metabolism; Metabolism of terpenoids and polyketides; Type 
I polyketide structures. (3) Environmental Information Processing; 
Signal transduction; MAPK signaling pathway. (4) Organismal 
Systems; Immune system; Chemokine signaling pathway. (5) Cellular 
Processes; Transport and catabolism; Autophagy-other. (6) 
Organismal Systems; Development and regeneration; Axon 
guidance. (7) Environmental Information Processing; Signal 
transduction; VEGF signaling pathway. (8) Organismal Systems; 
Development and regeneration; Osteoclast differentiation. (9) 
Cellular Processes; Cellular community-eukaryotes; Signaling 
pathways regulating pluripotency of stem cells. (10) Organismal 
Systems; Immune system; Toll-like receptor signaling pathway. 
(11) Organismal Systems; Immune system; Toll and Imd signaling 
pathway. (12) Organismal Systems; Immune system; Natural killer cell 
mediated cytotoxicity. (13) Organismal Systems; Immune system; 
B cell receptor signaling pathway. (14) Organismal Systems; Immune 
system; Fc epsilon RI signaling pathway. (15) Organismal Systems; 
Immune system; Fc gamma R-mediated phagocytosis. (16) Human 
Diseases; Endocrine and metabolic disease; AGE-RAGE signaling 
pathway in diabetic complications. The 9 unique pathways in CJL 
were: (1) Environmental Information Processing; Signal transduction; 
NF-kappa B signaling pathway. (2) Environmental Information 
Processing; Signal transduction; Notch signaling pathway. 
(3) Environmental Information Processing; Signal transduction; 
Hedgehog signaling pathway-fly. (4) Environmental Information 
Processing; Signal transduction; TGF-beta signaling pathway. 
(5) Organismal Systems; Environmental adaptation; Circadian 
rhythm-plant. (6) Human Diseases; Endocrine and metabolic 
disease; Maturity onset diabetes of the young. (7) Human Diseases; 
Substance dependence; Morphine addiction. (8) Human Diseases; 
Substance dependence; Nicotine addiction. (9) Human Diseases; 
Cancer_specific types; chronic myeloid leukemia.

FIGURE 4

LEfSe analysis of metabolic pathways. Displaying the significantly different metabolic pathways between CJL and PTL, with LDA scores indicating the 
magnitude of difference.
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pathway; (3) Cellular Processes > Transport and Catabolism > 
Autophagy-other.

LEfSe analysis (LDA score > 2) identified 52 metabolic pathways 
with statistically significant intergroup differences. Thirty pathways 
were significantly enriched in the CJL, while 22 showed marked 
enrichment in PTL. Among these, five characteristic pathways 
achieved an LDA threshold > 2.5 (Figure  4). The PTL exhibited 
enrichment in three pathways: Biosynthesis of terpenoids and steroids, 
Ribosome, and Valine, leucine and isoleucine biosynthesis. Conversely, 
the CJL demonstrated enrichment in Limonene and pinene 
degradation and Geraniol degradation. Notably, CJL showed 
preferential enrichment in catabolic pathways (e.g., terpenoid 
degradation, benzoate degradation, and fatty acid degradation) and 
amino acid metabolism (e.g., valine/leucine/isoleucine degradation 
and histidine metabolism). In contrast, PTL exhibited dominance in 
genetic information processing (e.g., transcription, DNA repair, and 

DNA replication), antibiotic biosynthesis (e.g., vancomycin resistance 
and streptomycin biosynthesis), and cofactor/vitamin biosynthesis 
(e.g., pantothenate and CoA biosynthesis).

3.4 Comparative analysis of rhizosphere 
soil metabolites in lemon trees with two 
types of rootstocks

Among all rhizosphere soil samples, a total of 184 compounds 
were detected. By annotating all metabolites using the KEGG database 
(br08001), 110 biologically functional compounds were identified, 
primarily categorized into seven groups. Among these, organic acids 
exhibited the highest relative abundance, followed by peptides and 
lipids. The combined relative abundance of these three categories 
accounted for over 95% in both treatments (Figure 5A).
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Comparative analysis of rhizosphere soil metabolites. (A) Relative abundance of metabolites. (B) OPLS-DA analysis of metabolite detection results. 
(C) Permutation test of OPLS-DA. (D) Random forest analysis screening for differential metabolites.
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Orthogonal partial least squares discriminant analysis (OPLS-
DA) was conducted on the rhizosphere soil metabolite detection 
results (Figure  5B). The results revealed that the point cloud 
distributions of CJL and PTL treatment samples were in distinct 
regions, indicating clear sample separation. Additionally, in the 
permutation test of OPLS-DA, the actual observed Q2 indicated by 
the arrow was on the right side of the random distribution (the 
observed value was significantly greater than the random value), 
with a p-value less than 0.01 (Figure 5C). This suggests that the 
discriminant effect of the OPLS-DA model was good, and there 
should be  significantly different metabolites between the 
two treatments.

Random forest analysis further identified 15 discriminative 
metabolites (Figure 5D). Four metabolites were significantly enriched 
in CJL: Hydroxybutyrate, Hydroxylamine, L-Alanine, and 13CD₃-
labeled Methionine. Elevations in PTL included 11 metabolites: 
Caffeate, Terephthalic acid (Benzen-1,4-dicarboxylic acid), Alizarin, 
Salicin (Salicyl alcohol-β-glucoside), 4-Hydroxycinnamic acid, 
Lactobionic acid, D-(+)-Cellobiose, Lactitol, Ergocalciferol (Vitamin 
D₂), L-Sorbose, and 1-Monostearin.

3.5 Integrative metagenomic and 
metabolomic analysis reveals 
rootstock-driven microbial-metabolic 
interactions‌

Procrustes analysis using Bray-Curtis distances was performed to 
investigate relationships between rhizosphere microbial communities, 
functional profiles, and soil metabolites in two rootstock lemon 
cultivars. Overall, significant systematic concordance was observed 
among variations in microbial taxa composition, functional traits, and 
metabolite profiles (p  < 0.001). Notably, microbial community 
structure exhibited stronger alignment with metabolite variations 

compared to functional profiles. Microbial community structure 
explained 37.1% of metabolite variance (M2 = 0.629; 1 − M2 = 0.371), 
with Dimension 1 coordinates reflecting primary associations between 
dominant microbial taxa and key metabolites. Both CJL and PTL 
samples clustered within the 0–0.2 range along this axis, indicating 
synchronous variation patterns in both treatments. Dimension 2 
coordinates captured secondary associations involving rare microbial 
species and trace metabolites. CJL samples occupied the −0.1 to 0 
range on this axis, suggesting antagonistic variation patterns 
(Figure  6A). Microbial functional profiles explained 27.2% of 
metabolite variance (M2 = 0.728; 1 − M2 = 0.272), with functional-
metabolite covariation trends mirroring community-metabolite 
associations (Figure 6B).

To further investigate microbe-metabolite interactions, a 
correlation heatmap was constructed using the top 20 most relevant 
microbes and metabolites (Figure  7). Highly correlated microbes 
predominantly belonged to the classes Actinomycetes (phylum 
Actinomycetota) and Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria (phylum Pseudomonadota), while key 
metabolites included amino acids, organic acids/derivatives, fatty 
acids, and sugars. The relative abundance of the top 15 metabolites 
showed positive correlations with EDTA-degrading bacterium BNC1 
and Stutzerimonas stutzeri, but negative correlations with 18 soil 
microbes—particularly Streptomyces sp. M2, Porphyrobacter sp. YT40, 
Frateuria edaphi, Mycolicibacterium phocaicum, Streptomyces 
phaeopurpureus, Acidovorax sp. KKS102, Azospira restricta, 
Micromonospora inositola, and Micromonospora aurantiaca. 
Conversely, the last five metabolites exhibited a reverse 
correlation pattern.

To elucidate broader biological trends and pathway alterations, 
Gene Set Enrichment Analysis (GSEA) was applied to all features 
across the two omics datasets (Figure 8). Ten significantly differentially 
expressed pathways (adjusted p-value < 0.05) were identified. 
Compared to PTL, the CJL treatment exhibited significant activation 

FIGURE 6

Procrustes analysis. (A) Species-metabolite Procrustes analysis. (B) Functional-metabolite Procrustes analysis.
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FIGURE 7

Microbe-metabolite correlation heatmap (top 20). The vertical axis represents metagenomic features (taxonomically annotated as phylum/class/
genus/species where applicable). The horizontal axis denotes metabolomic features. The upper dendrogram reflects similarity clustering of 
metabolomic features, while the left-side dendrogram represents clustering of metagenomic features. The central heatmap illustrates pairwise 
correlations between the two omics datasets, with color intensity corresponding to correlation coefficients (see color scale at top right: warm colors 
for positive correlations, cool colors for negative correlations). NCBI85561: EDTA-degrading bacterium BNC1; NCBI361: Stutzerimonas stutzeri; 
NCBI358: Agrobacterium tumefaciens; NCBI1332080: Sphingobium baderi; NCBI106590: Cupriavidus necator; NCBI1478019: Cupriavidus sp. KK10; 
NCBI1231: Nitrosospira multiformis; NCBI684059: crenarchaeotes; NCBI183795: Pseudomonas mediterranea; NCBI44574: Nitrosomonas communis; 
NCBI53399: Hyphomicrobium denitrificans; NCBI646637: Streptomyces sp. M2; NCBI2547601: Porphyrobacter sp. YT40; NCBI2898793: Frateuria 
edaphi; NCBI319706: Mycolicibacterium phocaicum; NCBI67340: Streptomyces phaeopurpureus; NCBI358220: Acidovorax sp. KKS102; NCBI404405: 
Azospira restricta; NCBI47865: Micromonospora inositola; NCBI47850: Micromonospora aurantiaca.*p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 8

GSEA enrichment analysis bubble plot. The vertical axis represents pathways jointly enriched by the two omics datasets. The horizontal axis denotes 
the geneRatio (defined as the ratio of target genes enriched in a given pathway to the total number of target genes). The size of dots corresponds to 
the number of enriched genes, while the color intensity reflects the magnitude of the p-value (see color scale).
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of: xylene degradation, exopolysaccharide biosynthesis, biofilm 
formation (Pseudomonas aeruginosa), arginine and proline 
metabolism, and steroid degradation. Conversely, pathways markedly 
suppressed in CJL included: ribosome, glycerolipid metabolism, 
amino sugar and nucleotide sugar metabolism, biosynthesis of 
nucleotide sugars, and RNA polymerase.

4 Discussion

4.1 Structural divergences in rhizosphere 
microbial communities across rootstock 
genotypes

Rhizosphere soil microorganisms constitute an indispensable 
factor in agricultural production, as plant growth, soil fertility, 
material cycling, and energy transformation are profoundly influenced 
by their activity (Deng et al., 2017). Crop species (Compant et al., 
2019), developmental stages (Schlechter et al., 2019), root exudates 
(Sasse et al., 2018; Vives-Peris et al., 2020), and rhizodeposits (Tian 
et al., 2020) collectively shape the composition and functionality of 
plant-associated rhizosphere microbial communities. In this study, 
comparative analysis of rhizosphere microbial communities between 
lemon rootstocks revealed no significant difference in microbial 
richness, but Poncirus trifoliate Raf rootstock (PTL) exhibited 
significantly higher community evenness than Citrus junos ex Tanaka 
rootstock (CJL). This suggests that PTL-associated rhizosphere 
microbes are less sensitive to singular environmental stressors (e.g., 
pH fluctuations, nutrient variations) and possess enhanced systemic 
resilience (Zhang et al., 2014). Beta diversity analysis demonstrated 
distinct separation in microbial composition between rootstocks, 
indicating rootstock-specific modulation of rhizosphere microbiota, 
consistent with findings in barley (Bulgarelli et  al., 2015), rice 
(Edwards et  al., 2018), and common bean (Perez-Jaramillo et  al., 
2019). Further taxonomic profiling identified Pseudomonadota, 
Actinomycetota, and Thermoproteota as dominant phyla across both 
rootstocks. Pseudomonadota members, particularly pseudomonads, 
are renowned for their biocontrol potential against soil-borne 
pathogens (Biessy and Filion, 2021; Carrion et  al., 2019). 
Actinomycetota contribute to plant defense by suppressing pathogens 
and pests, decomposing soil organic matter, mobilizing mineral 
nutrients, and enhancing soil enzyme activity, thereby improving 
rhizosphere physicochemical properties. Thermoproteota, a group of 
archaeal prokaryotes, serve as key contributors to carbon cycling (Xu 
et al., 2021; Barns et al., 1996). We identified 15 enriched microbial 
genera across three phyla (Actinomycetota, Pseudomonadota, and 
Nitrososphaerota) in the two treatments. Notably, Pseudomonas (class 
Gammaproteobacteria), Cupriavidus (class Betaproteobacteria), and 
Burkholderia (class Betaproteobacteria) in the CJL group, along with 
Sphingobium (class Alphaproteobacteria) in the PTL group, exhibited 
significant differentiation with strong effects. This divergence may 
reflect co-domestication processes, whereby crop cultivars selectively 
recruit specialized microbiomes during domestication (Escudero-
Martinez and Bulgarelli, 2019). Functional annotation revealed five 
differentially enriched metabolic pathways. PTL rhizosphere exhibited 
upregulation of terpenoid and steroid biosynthesis, ribosome 
biogenesis, and branched-chain amino acid biosynthesis, whereas CJL 
microbiota specialized in limonene/pinene degradation and geraniol 

degradation. These microbial-derived metabolites mediate interplant 
communication, disease resistance, and growth promotion (Ortíz-
Castro et al., 2009), with functional specificity likely determined by 
rootstock-dependent microbial recruitment.

4.2 Rootstock-specific variation in 
rhizosphere metabolomic profiles

Plant secondary metabolites encompass volatile and non-volatile 
compounds, including small molecules (phenolics, amino acids, 
nucleotides, sugars, terpenoids, lipids) and macromolecules (nucleic 
acids, polysaccharides, proteins). These metabolites regulate plant 
development, innate immunity (Piasecka et al., 2015), defense signaling 
(Isah, 2019), and environmental stress responses (Yang et al., 2018). 
Roots actively or passively secrete secondary metabolites into the 
rhizosphere, where most are rapidly metabolized by soil microbes, while 
residual fractions mediate interspecies interactions (Sugiyama and 
Yazaki, 2014). Rhizosphere metabolites originate from root exudation, 
microbial metabolism, and decomposition of plant/microbial biomass 
and soil organic matter (Cheng et  al., 2018), with root exudates 
constituting the primary source (Song et al., 2020). Exudate composition 
dynamically responds to plant genotype, developmental stage, and 
environmental stressors (Korenblum et al., 2020). Metabolomic analysis 
identified 15 differentially abundant rhizosphere metabolites. CJL 
rhizosphere accumulated four metabolites, primarily amino acids 
(L-alanine, methionine) and organic acid derivatives, which enhance salt 
tolerance in crops such as maize (Neto et al., 2009), cucumber (Wu et al., 
2012), and rice (Ghasemi et al., 2014) while modulating rhizosphere 
microbiota (Yuan et al., 2018; Pang et al., 2021). PTL rhizosphere showed 
higher abundance of 11 metabolites, predominantly sugar derivatives 
and organic acids. Sugar accumulation improves abiotic stress resilience 
(Pramanik et al., 2017; Kusale et al., 2021), while organic acids mitigate 
salt stress via cation chelation (Hossain et al., 2012; Adeleke et al., 2016) 
and rhizosphere pH modulation (Yang et al., 2010; El-Beltagi et al., 2017).

4.3 Functional linkages between 
rhizosphere microbiota and metabolites 
across rootstock genotypes

Elucidating how rhizosphere metabolites regulate soil-microbe-plant 
interactions is critical for deciphering the feedback mechanisms 
underlying rootstock-specific effects on plant health and crop 
productivity. Microbiome variations between cultivars may arise from 
differences in root exudates and secondary metabolites (Iannucci et al., 
2017), which directly drive shifts in soil microbial composition and 
functionality (Pang et al., 2021). Root exudates act as primary mediators 
for recruiting beneficial rhizosphere microbes (Zhalnina et al., 2018), 
with distinct exudate profiles exerting specific impacts on rhizosphere 
microbiomes (Pascale et al., 2020). Studies demonstrate that roots release 
diverse chemicals, including sugars, amino acids, organic acids, phenolics 
(e.g., flavonoids), and terpenoids. These metabolites not only provide 
carbon substrates for microbial growth but also function as signaling 
molecules, attractants, or inhibitors to shape microbial communities, 
serving as a central hub in plant–soil-microbe interactions (Bertin et al., 
2023; Baetz and Martinoia, 2014; Hu et al., 2018; De Vries et al., 2020; 
Zhao et al., 2020). Therefore, we investigated functional linkages between 
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soil metabolites and microbiota across rootstock cultivars. Samples from 
distinct treatments exhibited highly consistent covariation patterns 
(p < 0.01) in metagenomic taxonomic composition, functional profiles, 
and metabolomic expression. Significant correlations between soil 
microbial community structure and metabolite signatures further 
substantiate that microbe-rhizosphere metabolite interactions constitute 
a key mechanism governing rhizosphere metabolic reprogramming.

This study analyzed correlated microbial taxa and metabolites, 
focusing on the top  20 most strongly associated pairs. Dominant 
microbial clades included Actinomycetes, Alphaproteobacteria, 
Betaproteobacteria, and Gammaproteobacteria, while primary 
metabolites comprised amino acids, organic acids/derivatives, fatty 
acids, and sugars. Correlation analyses revealed that five metabolites—
salicyl alcohol-β-glucoside, 4-hydroxycinnamic acid, caffeate, 
benzene-1,4-dicarboxylic acid (a microbial degradation intermediate 
of anthropogenic pollutants), and alizarin (predominantly sugar/
organic acid derivatives originating from roots)—exhibited significant 
synergism with 11 rhizobacterial species affiliated with 
Actinomycetota, Pseudomonadota, and Thermoproteota. This aligns 
with Bharti et al. (2016), demonstrating root-exuded sugars/organic 
acids facilitate soil microbial carbon cycling and growth promotion. 
Conversely, these five metabolites strongly antagonized the EDTA-
degrading bacterium BNC1, a Gram-negative strain utilizing EDTA 
as its sole C/N source; competitive niche exclusion by sugar-stimulated 
actinobacterial proliferation may drive this suppression (Trivedi et al., 
2020; Nortemann, 1992). In contrast, the remaining 15 metabolites—
primarily microbial-derived, with minor root/exogenous 
contributions (e.g., methionine-13CD3, a synthetic residue)—showed 
inverted effects: antagonism toward the aforementioned 11 
rhizobacteria, potentially mediated by bacterial interference (e.g., 
quorum sensing quenching; Trivedi et al., 2020) or dual-regulatory 
compounds like benzoate derivatives (Meng et  al., 2023), while 
synergistically promoting BNC1. This BNC1-specific enhancement 
may arise from its selective substrate utilization (e.g., vitamin 
stimulation by biotin/folate; Nortemann, 1992), though its soil 
metabolic traits remain poorly characterized.

Subsequent integration of the top  15 metabolite contributors 
identified by Random Forest analysis with differentially abundant 
microbial taxa from LEfSe (LDA > 3.5), followed by exclusion of 
exogenous compounds and non-significant correlations (p > 0.05), 
revealed distinct biological associations: PTL rootstocks exhibited 
positive correlations between eight metabolites (predominantly lipids, 
carbohydrates, and organic acids) and seven rhizosphere microbial 
taxa (Table  1), while CJL rootstocks demonstrated synergistic 
relationships involving three metabolites (hydroxybutyrate, L-alanine, 
and hydroxylamine) and seven rhizospheric microbes (Table  2). 
Elevated root secretion of amino acids, nucleotides, and long-chain 
organic acids (LCOAs) has been shown to recruit beneficial 
Proteobacteria, Streptomyces, and Firmicutes, reshaping rhizosphere 
microbiomes into a “defense biome” that enhances host stress 
resilience (Yuan et al., 2018; Bakker et al., 2018; Liu and Brettell, 2019; 
Liu et al., 2020; Williams and de Vries, 2020). Similar mechanisms are 
documented in Zea mays (Ahmad et al., 2011; Cotton et al., 2019), 
Cirsium (Verbeek and Kotanen, 2019), and Spartina alterniflora (Yang 
et  al., 2019). Conversely, root-derived secondary metabolites can 
selectively promote or inhibit specific microbial taxa (Holmer et al., 
2017; Hu et al., 2018; Voges et al., 2019).

4.4 Interaction patterns among root 
systems, metabolites, and microbiota 
across rootstock genotypes

To further investigate biological trends in the soil microbe-root 
exudate system, enrichment analysis was performed on all features 
from both omics datasets, identifying 10 significantly differentially 
expressed pathways (p < 0.05). Concurrently, key rhizosphere soil 
physicochemical properties were quantified: total nitrogen, alkali-
hydrolyzable nitrogen, organic matter, and organic carbon content 
(Figure  9); critical enzyme activities including cellulase, sucrase, 
catalase, and urease (Figure  10); and experimental tree height 
(Figure 11).

Three pathways related to soil microorganism-root exudate 
interactions were enriched in PTL: Glycerolipid metabolism, Amino 
sugar and nucleotide sugar metabolism, and Biosynthesis of nucleotide 
sugars, primarily associated with energy metabolism, carbohydrate 
metabolism, and secretion regulation. Glycerolipid metabolism serves as 
a core pathway in lipid metabolism, involving triglyceride (TG) 
breakdown and synthesis to provide energy reserves and biomembrane 
construction. Pseudomonas mediterranea, significantly enriched in this 
study, is a keystone taxon in glycerolipid metabolism (Solaiman et al., 
2005). Studies indicate Pseudomonas promotes rhizosheath formation 
under drought stress while its metabolites (e.g., IAA) directly stimulate 
lateral root meristem proliferation, increasing root surface area and 
enhancing water/nutrient uptake efficiency (Xu et  al., 2025). The 
metabolite 1-Monostearin, an intermediate in glycerolipid metabolism, 
is primarily synthesized and secreted by plant roots as a precursor for 
triacylglycerol (TAG) synthesis (Liu et al., 2007). Here, 1-Monostearin 
showed significant positive correlation with P. mediterranea abundance, 
suggesting PTL may recruit P. mediterranea by secreting 1-Monostearin 
to activate glycerolipid metabolism, thereby enhancing root functionality 
and adaptation to arid/oligotrophic environments. Amino sugar and 
nucleotide sugar metabolism regulates microbial necromass formation 
and soil organic carbon sequestration. Associated metabolites included 
Lactitol, Lactobionic acid, and D-(+)-Cellobiose (microbially derived), 
with key microbes Ensifer adhaerens and Sphingobium sp. 
TKS. E. adhaerens utilizes rhizospheric cellobiose (D-(+)-Cellobiose) as 
a carbon source to activate nucleotide sugar metabolism (e.g., 
UDP-glucose synthesis), secreting exopolysaccharides (EPS), 
siderophores, salicylic acid (SA), and IAA to enhance root defense and 
stimulate lateral root proliferation (Zheng T. et al., 2021; Hu et al., 2024). 
Sphingobium sp. TKS degrades γ-HCH as its sole carbon source for 
organic pollutant decomposition (Tabata et  al., 2016). It catabolizes 
lactobionic acid to mannose-6-phosphate, entering nucleotide sugar 
metabolism (GDP-mannose pathway). Resultant EPS enhances soil 
aggregation, improving root oxygenation, while mannosylated signaling 
molecules induce plant disease resistance genes (Zheng T. et al., 2021). 
Notably, root-secreted caffeate and salicyl alcohol-β-glucoside showed 
extremely significant positive correlations with both E. adhaerens and 
Sphingobium sp. TKS (Table 1), indicating PTL recruits these taxa via 
exudation to activate amino/nucleotide sugar metabolism, thereby 
modulating SOC sequestration, root defense, and lateral root 
development. Biosynthesis of nucleotide sugars operates inversely to 
nucleotide sugar metabolism. This pathway was present in E. adhaerens, 
P. mediterranea, Mycolicibacterium phocaicum, Pseudonocardia 
dioxanivorans, and Sphingobium sp. TKS, all exhibiting extremely 
significant correlations with caffeate and salicyl alcohol-β-glucoside 
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(Table 1). This implies PTL recruits these microbes to activate nucleotide 
sugar biosynthesis, providing biosynthetic precursors for beneficial 
microbiota proliferation while balancing metabolic flux. Soil enzyme 
assays (Figure 10) revealed significantly upregulated cellulase, sucrase, 
and urease activities in PTL, corresponding to the enrichment of 
glycerolipid metabolism, amino/nucleotide sugar metabolism, and 
nucleotide sugar biosynthesis pathways.

Three pathways related to soil microorganism-root exudate 
interactions were enriched in CJL: Exopolysaccharide biosynthesis, 
Arginine and proline metabolism, and Biofilm formation—Pseudomonas 
aeruginosa, primarily associated with stress resistance, cellular membrane 
homeostasis, and signal transduction. Exopolysaccharide biosynthesis 
enhances stress tolerance through protective biofilm formation via 
extracellular polymeric substance (EPS) secretion, which isolates roots 
from external stresses while improving water retention and soil structural 
stability to sustain plant growth (Nadeem et al., 2021). Pseudomonas 
strains synthesize EPS (e.g., alginate) (Zhao et  al., 2017); notably, 
Pseudomonas putida identified in this study exhibited extremely 
significant positive correlations with key metabolites L-alanine, 
3-Hydroxybutyrate, and Hydroxylamine (Table  2). While 
3-Hydroxybutyrate (a critical energy/carbon source) and Hydroxylamine 
(regulating nitrogen metabolism) are primarily rhizosphere microbial 
products, L-alanine originates from roots and provides nitrogen/carbon 
skeletons for microbial metabolism. This suggests CJL may recruit 
P. putida via L-alanine exudation to activate exopolysaccharide 
biosynthesis, thereby enhancing root stress tolerance—a potential 
mechanism underlying the strong alkali resistance of Citrus junos (CJ). 
EPS also mitigates soil acidification while promoting organic matter 
decomposition and nutrient availability (Kumar et al., 2021; Chen et al., 
2023), consistent with CJL’s significantly higher organic matter and 
organic carbon content (Figures 9C,D). Amino acids serve as essential 
nitrogen sources and signaling factors. Proline (Pro) regulates stress 
metabolism by maintaining cytosolic homeostasis and reactive oxygen 
species scavenging (Singh et al., 2016), whereas L-arginine participates 
in cell division, DNA condensation, membrane stabilization, hormone 
signaling, and stress responses (Agudelo-Romero et  al., 2013). The 
significant activation of arginine and proline metabolism in CJL aligns 
with studies demonstrating that plant growth-promoting rhizobacteria 
elevate osmoprotectants including proline, soluble sugars, and free 
amino acids (Ilyas et al., 2020; Khan and Singh, 2021). P. putida enriched 
in CJL participates in amino acid metabolism in Zea mays (Sandhya 
et al., 2010) and Triticum aestivum (Khan and Singh, 2021) rhizospheres, 
potentially functioning via: (a) direct engagement in exopolysaccharide 
biosynthesis through arginine/proline metabolism to enhance root stress 
tolerance, and (b) modulation of other microbiota growth via secretion 
systems. CJL’s elevated catalase activity (Figure 10C) further corresponds 
with upregulated arginine/proline metabolism. Biofilm formation 
enables rhizospheric microbial colonization and community assembly 
on root surfaces (Haggag and Timmusk, 2010), with continuous biofilm 
cycling conferring environmental adaptability (Koerdt et  al., 2010). 
Although the Biofilm formation—P. aeruginosa pathway was activated 
in CJL, P. aeruginosa relative abundance remained unchanged, likely due 
to its c-di-GMP-mediated enhancement of existing biofilm formation 
through alginate and extracellular DNA secretion without triggering 
bacterial proliferation (Tsiry et al., 2015)—consistent with upregulated 
exopolysaccharide biosynthesis herein. Plant height analysis (Figure 11) 
revealed CJL significantly surpassed PTL, a difference primarily 
attributed to rootstock characteristics (Li et  al., 2019) rather than T
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rhizobacterial influences, for which effects on plant height remain 
poorly documented.

Integrated analysis revealed that CJL treatment exhibited 
significantly higher soil organic matter, organic carbon content, 
catalase activity, and plant height compared to PTL, while PTL 
demonstrated significantly elevated cellulase, sucrase, and urease 
activities. No significant differences were observed in total nitrogen or 
alkali-hydrolyzable nitrogen between treatments. The root-metabolite-
microbe interaction patterns in PTL emerged as follows: (1) Root-
secreted 1-Monostearin potentially activates glycerolipid metabolism 
in Pseudomonas mediterranea, recruiting this bacterium to enhance 
root functionality and adaptation to arid/oligotrophic environments; 
(2) Root-exuded caffeate and salicyl alcohol-β-glucoside may recruit 
Sphingobium sp. TKS and Ensifer adhaerens to stimulate amino sugar 
and nucleotide sugar metabolism, thereby regulating rhizosphere soil 

organic carbon sequestration, root defense, and lateral root 
proliferation; (3) These same exudates recruit Ensifer adhaerens, 
Pseudomonas mediterranea, Mycolicibacterium phocaicum, 
Pseudonocardia dioxanivorans, and Sphingobium sp. TKS to activate 
nucleotide sugar biosynthesis, providing biosynthetic precursors for 
beneficial microbiota while balancing metabolic flux. In CJL, the 
predominant pattern involves: (1) Root-secreted L-alanine recruits 
Pseudomonas putida to activate exopolysaccharide biosynthesis, 
enhancing root stress tolerance—a potential mechanism underlying 
Citrus junos’ alkali resistance; (2) L-alanine-recruited P. putida engages 
arginine and proline metabolism to participate directly in 
exopolysaccharide biosynthesis, further promoting root stress 
resilience. Although plant microbiome structures and dynamics are 
well-documented (Pang et al., 2021), microbial contributions to host 
rhizosphere metabolomes remain poorly understood. Rhizosphere 

TABLE 2  Correlations between relative abundance of root-enriched specific microorganisms and rhizosphere metabolites under CJL treatment.

Microorganism names HydroxyButyrate L-alanine Hydroxylamine

Azoarcus sp. DD4 0.46 0.52* 0.43

Chelativorans oligotrophicus 0.50* 0.50* 0.45

Cupriavidus oxalaticus 0.58* 0.59** 0.55*

Metapseudomonas furukawaii 0.63** 0.70*** 0.63**

Metapseudomonas lalkuanensis 0.33 0.46 0.39

Pseudomonas putida 0.64** 0.68*** 0.63**

*p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 9

Contents of total nitrogen, alkali-hydrolyzable nitrogen, organic matter, and organic carbon in rhizosphere soils of lemon under two rootstock 
genotypes. (A) Total nitrogen content; (B) Alkali-hydrolyzable nitrogen content; (C) Organic matter content; (D) Organic carbon content. Asterisks 
denote significant differences (*p < 0.05; **p < 0.01).
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microbiomes critically regulate plant growth and health (Berendsen 
et al., 2012), with specific bacteria intimately interacting with roots to 
induce functional modifications in root exudate composition (Rolfe 

et al., 2019; Baetz and Martinoia, 2014; Huang et al., 2018). Plants may 
also perceive microbiome-derived molecules through chemical 
recognition systems, triggering signal transduction networks that alter 
gene activity and metabolite accumulation (Tidke et al., 2018). While 
these interaction patterns provide crucial insights for agricultural 
productivity enhancement, the extraordinary complexity of microbial 
diversity and rhizosphere metabolome composition necessitates 
further validation and mechanistic exploration of the proposed models.

5 Conclusion

The rhizosphere microbial community structures of lemon 
trees grafted onto two distinct rootstocks exhibited significant 
divergence, with three phyla (Actinomycetota, Pseudomonadota, 
and Nitrososphaerota) comprising 15 differentially enriched 
genera showing marked effects—particularly Pseudomonas, 
Cupriavidus, and Burkholderia in CJL, and Sphingobium in 
PTL. Correspondingly, rhizosphere metabolite profiles differed 
substantially between rootstocks: among 15 key differential 
metabolites identified, 4 were significantly more abundant in CJL, 
while the remaining 11 dominated in PTL. Strong correlations 
emerged between differential microbial abundance and metabolite 
levels, with 10 significantly altered pathways implicated in energy 
homeostasis and environmental adaptation. CJL soils demonstrated 
significantly higher organic matter/organic carbon content, 
catalase activity, and plant height, whereas PTL exhibited elevated 

FIGURE 10

Activities of cellulase, sucrase, catalase, and urease in rhizosphere soils of lemon grafted onto two rootstock genotypes. (A) Cellulase activity; 
(B) Sucrase activity; (C) Catalase activity; (D) Urease activity. *p < 0.05; **p < 0.01.

FIGURE 11

Plant height of lemon grafted onto two rootstock genotypes. **p < 
0.01.
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cellulase, sucrase, and urease activities—though total and alkali-
hydrolyzable nitrogen showed no inter-treatment differences. The 
root-metabolite-microbe interaction paradigm in PTL involved: 
(1) root-secreted 1-Monostearin activating Pseudomonas 
mediterranea’s glycerolipid metabolism to enhance drought/
oligotrophic adaptation; (2) caffeate and salicyl alcohol-β-glucoside 
recruiting Sphingobium sp. TKS and Ensifer adhaerens to stimulate 
amino/nucleotide sugar metabolism, thereby modulating carbon 
sequestration, root defense, and lateral root proliferation; (3) these 
exudates further assembling Ensifer adhaerens, Pseudomonas 
mediterranea, Mycolicibacterium phocaicum, Pseudonocardia 
dioxanivorans, and Sphingobium sp. TKS to orchestrate nucleotide 
sugar biosynthesis, supporting microbiota proliferation while 
balancing metabolic flux. In CJL, L-alanine secretion recruited 
Pseudomonas putida to activate exopolysaccharide biosynthesis—a 
plausible mechanism underlying Citrus junos’ alkali tolerance—
with P. putida concurrently engaging arginine/proline metabolism 
to reinforce this stress-resistance pathway. This study elucidates 
rootstock-driven modulation of lemon tree rhizosphere 
microbiomes and metabolomes, uncovering their interaction 
networks and affirming rootstocks’ pivotal role in shaping 
rhizosphere microecosystems. These findings provide actionable 
insights for rootstock selection and beneficial microbiota screening 
to enhance agricultural productivity.
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