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Poncirus trifoliata vs. Citrus junos
rootstocks: reshaping lemon
rhizosphere microecology
through microbial and metabolic
reprogramming
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Introduction: Trifoliate orange (Poncirus trifoliatal. Raf) and “"Ziyang Xiangcheng”
(Citrus junos Sieb. ex Tanaka) are the predominant rootstocks for lemon
production in China, exhibiting distinct adaptations to soil pH and differential
impacts on plant resilience. As pivotal mediators of scion-soil interactions,
rootstocks have emerged as key research targets for their regulatory potential in
rhizosphere microbial communities and metabolites.

Methods: Pot-cultured systems were established with lemon (Citrus X limon
“Eureka”) saplings grafted onto trifoliate orange (PTL) and “Ziyang Xiangcheng”
(CJL) rootstocks. Integrated metagenomic and GC-MS metabolomic approaches
were employed to analyze rhizosphere microbial communities and metabolites.
Results: The results demonstrated no significant difference in rhizospheric
microbial a-diversity (richness) between PTL and CJL, although PTL exhibited
higher evenness. f-Diversity and LEfSe analysis revealed significant structural
divergence in communities. A total of 15 differentially enriched genera across
three phyla were identified, among which Pseudomonas, Cupriavidus, and
Burkholderia in CJL, along with Sphingobium in PTL, exhibited strong effects.
Random forest modeling identified 15 key differential metabolites, with 4
significantly upregulated in CJL and 11 in PTL. Microbial-metabolite correlation
and GSEA analysis uncovered 10 core pathways involving genetic information
processing, energy metabolism, environmental adaptation, and disease
resistance mechanisms. Soil analysis showed CJL significantly surpassed PTL in
organic matter content, catalase activity and plant height, whereas PTL exhibited
superior cellulase, sucrase and urease activities. Mechanistically, PTL appears
to recruit Pseudomonas mediterranea via 1-Monostearin secretion to activate
glycerolipid metabolism, enhancing drought tolerance. Its caffeate and salicyl
alcohol-g-glucoside secretions potentially mobilize Sphingobium and Ensifer
adhaerens to regulate amino sugar metabolism, promoting carbon sequestration
and root defense. Conversely, CJIL likely employs L-alanine exudation to recruit
Pseudomonas putida, triggering exopolysaccharide biosynthesis through
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arginine-proline metabolism as a key tolerance mechanism (such as drought
tolerance and alkali tolerance)

Discussion: The findings elucidate rootstock-specific modulation of rhizosphere
microecosystems, highlighting distinct microbial-metabolite interactions and
tolerance mechanisms. These results provide theoretical support for precision
rootstock selection and microbiome engineering to advance sustainable citrus
production.
KEYWORDS
lemon rootstocks, rhizosphere microbiota, metabolomic profiling, rootstock-microbe
interactions, soil microecology
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GRAPHICAL ABSTRACT
Rootstock-mediated shaping of lemon rhizosphere microecology: microbial and metabolic reprogramming strategies.

1 Introduction

Lemon (Citrus limon) is a globally important economic fruit tree
whose fruits contain abundant bioactive compounds including
vitamin C, organic acids and flavonoids, with wide applications in
food, pharmaceutical and cosmetic industries. In commercial
production, grafted lemon trees predominate, with rootstocks
significantly influencing fruit quality, yield, as well as tree adaptability
and stress resistance (Goldschmidt, 2014). However, sustainable
lemon production faces major challenges including soil sickness, soil-
borne diseases and inefficient nutrient utilization. Conventional
cultivation relying on chemical fertilizers and pesticides not only
increases costs but also exacerbates soil acidification, reduces
microbial diversity and degrades ecosystem services (Nair and
Ngouajio, 2012). Consequently, green production models based on
rhizosphere microecological regulation have emerged as a research
focus. As the critical interface mediating interactions between the
scion and the soil environment, the regulatory potential of rootstocks
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over rhizosphere microbial communities and metabolites is garnering
increasing attention (Liu et al., 2018; Wang et al., 2014; Ruan et al,,
2020). Grafting creates a novel rootstock-scion composite whose root
characteristics are rootstock-determined (Goldschmidt, 2014). Plants
reshape their rhizosphere through root architecture (RellinAlvarez
et al., 2016; Ragland et al., 2024), exudate composition (Mommer
et al., 2016) and stress signaling (Tan et al., 2024), influencing
microbial colonization and functionality (Shi et al., 2025; Ragland
etal., 2024), thereby regulating nutrient uptake, disease resistance and
stress tolerance (Hodge et al., 2009). For instance, studies demonstrate
that wild soybean under salt stress recruits Pseudomonas bacteria via
root-secreted purine metabolites like xanthine, mitigating salt-
induced growth inhibition (Zheng et al., 2024). Similarly, maize root
exudates attract Bacillus amyloliquefaciens OR2-30, which inhibits
conidial formation and germination in Fusarium graminearum,
induces reactive oxygen species (ROS) production, and triggers
hyphal cell death (Xie et al., 2022). In potato monoculture systems,
root secretion of nobiletin recruits Pantoea sp. MCCI16, a high auxin
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(TAA)-producing strain, restoring root functional traits and alleviating
replant disease to enhance yield (Ma et al., 2025). Furthermore, ginger
(Zingiber officinale) root exudates, including compounds like sinapyl
alcohol and 6-gingerol, significantly enhance the colonization and
proliferation of Burkholderia species in the chrysanthemum
(Chrysanthemum morifolium) rhizosphere, strengthening suppression
against Fusarium wilt (Zhu et al., 2025).

Rootstocks modify and adapt to soil environments by actively
recruiting or suppressing specific microorganisms, yet current research
predominantly focuses on single rootstock varieties or single-omics
approaches. For instance, a study comparing four citrus rootstocks
under varying phosphorus levels revealed that low-P-tolerant
genotypes significantly increased rhizospheric organic acid secretion
and enhanced soil biological activity under phosphorus starvation (Luo
and Fan, 2014). Similarly, Sun et al. (2017) demonstrated higher genus-
level microbial abundance in Citrus willsonii rootstock compared to
Poncirus trifoliata when grafted with Satsuma mandarin, primarily
enriching iron-uptake-associated microbiota. Further evidence from
Raiesi et al. (2022) indicates that rootstock identity governs rhizosphere
phosphorus fraction dynamics and biochemical properties induced by
root activity. Conversely, rhizosphere microorganisms reciprocally
influence rootstocks—while AMF (Arbuscular Mycorrhizal Fungi)
effects on citrus drought resilience (Zou et al., 2013a; Wu et al., 2017),
salt tolerance (Zou et al., 2013b), growth promotion (Chen et al., 2017),
and disease resistance (Zhang, 2019; Watanarojanaporn etal., 2011) are
documented, impacts of other microbiota (e.g., Actinobacteria,
Pseudomonadota) remain understudied. Critically, the molecular
mechanisms through which diverse rootstocks shape citrus rhizosphere
microbiomes and metabolomes remain elusive, particularly at multi-
omics integration levels, hindering theoretical advances in rootstock-
microbe interactions and precision management development.
Moreover, prevailing rootstock evaluation systems rely excessively on
phenotypic parameters (e.g., grafting success rate, yield), failing to
incorporate rhizospheric microbial functional traits into selection
criteria, which compromises breeding precision.

Trifoliate orange (Poncirus trifoliata L. Raf) and Ziyang
Xiangcheng (Citrus junos Sieb. ex Tanaka) are the most widely
employed superior rootstocks in lemon production. Poncirus trifoliata
rootstock offers advantages including strong graft compatibility, early
high yield, drought tolerance, cold hardiness, and resistance to foot
rot; it tolerates strongly acidic soils but exhibits poor alkaline tolerance.
Conversely, Citrus junos rootstock is characterized by a vigorous root
system, robust tree growth, high productivity, and cold tolerance,
displaying exceptional alkaline tolerance but sensitivity to strongly
acidic conditions (Zheng N. et al., 2021). To elucidate the mechanisms
by which these distinct rootstocks influence rhizosphere microbes and
metabolites, we conducted a two-year pot experiment. This study
utilized lemon grafted seedlings on these two rootstocks, employing
integrated rhizosphere soil metagenomics and metabolomics to
characterize differences in microbial community structure and
metabolic profiles, thereby investigating rootstock-mediated
functional regulation of the rhizosphere microecology. Key scientific
questions addressed include: (1) What microbial signatures are
enriched in the rhizosphere of each rootstock type? (2) How do
rootstock-specific rhizosphere metabolite enrichment patterns differ?
(3) Do key microbial taxa and metabolite modules synergistically
contribute to the stress resistance (or tolerance) traits of lemon
rootstocks? Through integrated omics analysis, core functional
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rhizosphere metabolites and microbial biomarkers will be identified.
On the one hand, it provides reference for screening rootstocks with
desirable root traits for lemon cultivation, and on the other hand, it
offers theoretical support for developing soil-applied biological agents
and biopesticides, thereby promoting the shift of the lemon industry
toward resource-efficient and environmentally friendly practices.

2 Materials and methods

2.1 Experimental site and experimental
design

The experiment was conducted in 2022 at the Institute of Tropical
and Subtropical Cash Crops, Yunnan Academy of Agricultural
Sciences (25°8'10”N, 99°10'53”E; Baoshan, China), a subtropical
dry-hot valley climate zone at 700 m altitude with mean annual
temperature of 21.5 °C and ~750 mm precipitation, using sandy loam
soil (pH 6.5-7.0) containing 40.04 g-kg™" organic carbon, 69.02 g-kg™
organic matter, 2.60 g-kg™' total N, 182.30 mg-kg™" alkali-hydrolyzable
N, 20.67 gkg™ total K, 366.29 mg-kg™" available K, 1.14 g-kg™" total P,
and 118.34 mg-kg™" available P.

This study implemented two treatments: (1) Eureka lemon (Citrus
limon “Eureka”) grafted onto Citrus junos rootstock (CJL) and (2) Eureka
lemon grafted onto Poncirus trifoliata rootstock (PTL), with 18 potted
replicates per treatment (pot dimensions: 25 cm diameter x 40 cm
height; 5-gallon capacity) using uniformly vigorous rootstocks (height:
10-15 cm) that were root-washed and transplanted; grafting with
healthy Eureka lemon scions commenced when rootstock stem diameter
reached 0.5-0.8 cm, followed by training to retain a single main stem
pruned at 30 cm height with lateral shoots pinched to 10-15 cm length,
under consistent cultivation conditions featuring monthly compound
fertilizer application (N-P,05-K,0 = 17:17:17; 5 g per plant), quarterly
foliar micronutrient-enriched water-soluble fertilizers, and standardized
pest/disease control, culminating in rhizosphere soil collection from all
36 biological replicates (18 per treatment) after 24 months of cultivation.

2.2 Soil sampling collection

Rhizosphere soils were carefully collected by brushing adherent
soil from root systems, followed by removal of gravel and residual
roots. The soil sample was divided into two parts after being screened
by 2 mm. One part of the soil was stored at —80 °C for metagenome
sequencing, and the other part was stored at —80 °C for GC-MS
non-target metabolomics detection after vacuum freeze-drying.

2.3 Metagenomic sequencing and analysis

Total microbial genomic DNA was extracted from rhizosphere
soils using the CTAB method and quantified using an Agilent 5,400
Fragment Analyzer for concentration, integrity (DV50 > 20 kb), and
purity (A260/280 ratio 1.8~2.0). Qualified DNA was fragmented into
350 bp inserts using a Covaris M220 Focused-ultrasonicator (Woburn,
MA, United States) for library construction. Libraries were diluted to
1.5 nM using Qubit 2.0 Fluorometric Quantitation (Thermo Fisher
Scientific), validated for insert size distribution via Agilent 2100

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1650631
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Long et al.

Bioanalyzer, and quantified by qPCR (Kapa Biosystems). Paired-end
sequencing (2 x 150 bp) was performed on the Illumina NovaSeq 6000
platform (San Diego, CA, United States) by Wekemo Tech Group Co.,
Ltd. (Shenzhen, China).

Raw reads underwent quality control using FastQC (v0.12.0), with
subsequent removal of adapter sequences and host-derived reads using
KneadData (v0.12.0) (minimum Phred score: 20). Taxonomic profiling
was performed using Kraken2 with the Standard Plus Protozoa/RefSeq
database, followed by abundance estimation via Bracken (v2.8).
Functional annotation employed HUMANN3 (v3.6.0) with DIAMOND
alignment against UniRef90 and EggNOG v5.0 databases to quantify
orthologous gene families (KEGG pathways) and metabolic modules.
All analyses used default parameters unless specified.

2.4 Untargeted GC-MS metabolomics

Frozen lyophilized soil samples (50 + 2.5 mg) were homogenized
in 2mL microtubes with 0.5mL of pre-chilled (-20 °C)
acetonitrile:isopropanol (3:3:2, v/v/v) and 3-4 zirconium beads
(2 mm). Tissues were disrupted using a high-throughput grinder
(30 Hz, 20 s grinding/10 s pause, 8 cycles) followed by ice-water bath
ultrasonication (5 min). After adding an additional 0.5 mL of
extraction solvent, samples were re-sonicated (5 min) and centrifuged
(12,000 x g, 2 min, 4 °C). Supernatants (500 pL) were concentrated to
dryness via vacuum centrifugation (Christ RVC 2-25, 8~10 h) and
reconstituted in 80 pL methoxyamine hydrochloride (20 mg/mL in
pyridine) for 60 min derivatization at 60 °C. Subsequently, 100 pL
BSTFA-TMCS (99:1) was added, vortex-mixed (30 s), and incubated
at 70 °C for 90 min. Derivatized extracts were centrifuged (14,000 x g,
3 min), and supernatants (90~100 pL) were transferred to autosampler
vials for GC-TOF MS analysis within 24 h.

Chromatographic separation was performed on an Agilent 7890B
system equipped with a DB-5MS capillary column (30 m x 250 pm,
0.25 pm film; Agilent J&W Scientific) under helium carrier gas (1 mL/
min constant flow). Injection volume was 1 pL in split mode (1:10
ratio) with inlet temperature at 280 °C. Oven temperature program:
initial 50 °C (0.5 min hold), ramped at 15 °C/min to 320 °C (9 min
hold). Mass spectrometry utilized an Agilent 7200 Q-TOF with
electron ionization (—70 eV) in full-scan mode (m/z 50-600, 10
spectra/s). Interface and ion source temperatures were maintained at
320 °C and 230 °C, respectively, with 3 min solvent delay. All
metabolomic profiling was conducted by Wekemo Tech Group Co.,
Ltd. (Shenzhen, China).

2.5 Determination of soil physicochemical
properties and enzyme activities

Total nitrogen (TN) was quantified by the Kjeldahl method: Soil
samples were digested with concentrated H,SO, and catalyst to
convert organic nitrogen to ammonium-N, followed by steam
distillation, boric acid absorption, and titration with HCI standard
solution. Alkali-hydrolyzable nitrogen (AN) was measured via alkali
diffusion: Samples were hydrolyzed with 1.8 mol-L™' NaOH at 40 °C
for 24 h, with liberated NH; absorbed in boric acid for titration.
Organic carbon (OC) was determined by K,Cr,0O; oxidation-external
heating: Organic matter was oxidized with 0.8 mol-L™" K,Cr,0,-H,SO,
at 170-180 °C, and residual K,Cr,0, titrated with FeSO, standard
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solution. Organic matter (OM) content was calculated as OC x 1.724.
All analyses included triplicate measurements with certified reference
materials for quality control.

Cellulase activity was assayed by DNS method: 5.0 g fresh soil
reacted with 1% carboxymethylcellulose sodium (CMC-Na) in acetate
buffer (pH 5.0) at 50°C for 24 h; reactions were terminated with
3,5-dinitrosalicylic acid, and reducing sugars quantified at 540 nm (units:
pmol glucose g™' 24 h™"). Invertase activity followed Hoffmann: 2.0 g soil
incubated with 8% sucrose in phosphate buffer (pH 6.5) at 37 °C for 24 h,
with glucose yield measured (units as above). Catalase activity used
KMnO, titration: 5.0 g soil reacted with 0.3% H,O, at 25 °C for 20 min,
and residual H,0, titrated with 0.1 mol-L~! KMnO, (units: mL KMnO,
consumed g™' 20 min™'). Urease activity employed indophenol blue
colorimetry: 5.0 g soil incubated with 10% urea in citrate buffer (pH 6.7)
at 37 °C for 24 h, with NH,"-N production quantified (units: pg
NH,*-N g™' 24 h™"). All enzymatic assays were performed in triplicate
with substrate-free controls and standard curve calibration.

2.6 Plant height measurement

Plant height was measured using a ruler with 1 mm precision,
recording the vertical distance from the soil surface at the root collar
to the apical meristem. Three replicate measurements were taken
per plant.

2.7 Statistical analyses

Soil physicochemical properties and enzyme activities were analyzed
using one-way ANOVA, with significant differences (p < 0.05)
determined by Duncan’s multiple range test for post-hoc comparisons.
Plant height data underwent multiple comparisons through the Kruskal-
Wallis test (non-parametric method) for single-factor designs.

Integrated multi-omics analyses were performed following
standardized workflows to ensure reproducibility and biological
relevance. Metagenomic raw sequences underwent quality control
using KneadData (Trimmomatic for adapter removal; Bowtie2 for
host DNA depletion) with FastQC validation of pre- and post-
processing data quality (Bolger et al., 2014; Langmead and
Salzberg, 2012). Taxonomic profiling was conducted via Kraken2
with a customized microbial database (incorporating bacterial,
fungal, archaeal, and viral genomes from NCBI and RefSeq),
refined through Bracken for species-level abundance
quantification (Wood and Salzberg, 2014; Lu et al., 2017; Mandal
et al,, 2015; Brum et al., 2015). Functional annotation was
implemented in HUMANNS3 using the UniRef90 database, with
metabolic pathway abundance profiles generated via DIAMOND
alignment (e-value < le — 5) (Segata et al., 2011; Zhu et al., 2010;
Kim et al., 2016; Franzosa et al., 2018). Antibiotic resistance genes
were identified through DIAMOND alignment against the CARD
database (bit-score > 60).

Microbial community analyses included beta-diversity assessment
(Bray-Curtis dissimilarity), ordination analyses (PCoA/NMDS), and
LEfSe biomarker detection (LDA score > 2) (Franzosa et al., 2018;
Villar et al., 2015). Metabolomics data were processed using the
MetaboAnalyst R package in R (Chong and Xia, 2018), encompassing
batch effect correction, OPLS-DA for biomarker selection (VIP > 1.5),
and mummichog-based pathway enrichment analysis (FDR < 0.1).
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Multi-omics integration involved data normalization (probabilistic
quotient normalization for metabolites; Hellinger transformation for
microbial features), followed by correlation analyses (sparse canonical
correlation analysis sSCCA, random forest) and joint pathway mapping
via mummichog2-based KEGG enrichment. All statistical inferences
were adjusted using the Benjamini-Hochberg FDR correction method.

3 Results

3.1 Analysis of rhizosphere soil microbial
diversity in lemon trees with two types of
rootstocks

Metagenomic sequencing of 36 samples generated a total of
843,080,544 raw sequences. After quality control, 778,709,052

10.3389/fmicb.2025.1650631

valid sequences were obtained. The Q30 values for both raw and
valid sequences in each sample exceeded 85%, indicating that the
data quality was satisfactory and the sequencing depth was
sufficient to reflect the microbial community structure in
each sample.

To assess the microbial community diversity, we utilized the
Chaol index, which reflects community richness, and the Shannon
index, which accounts for both richness and evenness. The results
showed that there was no significant difference in the Chaol index
between the rhizosphere soil microbial communities of the two
rootstock lemons (Figure 1A). However, the Shannon index was
significantly higher in PTL compared to CJL (Figure 1B; p < 0.01).
Beta diversity analysis of the rhizosphere soil microbial
communities of the two rootstocks was conducted using principal
coordinate analysis (PCoA). The results revealed that the first
principal component (Axis 1) explained 39.59% of the variation,
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while the second principal component (Axis 2) explained 10.87%
(Figure 1C). The microbial community compositions of the two
groups were significantly separated, indicating that the rootstock
types affects the structure and composition of the rhizosphere soil
microbial community. A Venn diagram further illustrated the
species overlap between the two groups. The results showed that
CJL and PTL shared 4,495 species, with 1,271 species unique to
CJL and 1,129 species unique to PTL (Figure 1D).

10.3389/fmicb.2025.1650631

3.2 Analysis of rhizosphere soil microbial
community composition in lemon trees
with two types of rootstocks

The metagenomic sequencing identified 96, 147, 298, 641,
1,798, and 6,895 taxonomic groups from phylum to species level,
respectively. To investigate the microbial composition, we plotted
the relative abundance of the top 10 microbial phyla in both
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treatments (Figure 2A). The results revealed that Pseudomonadota,
Actinomycetota, and Thermoproteota were highly abundant in
both rootstock rhizosphere soil microbial communities, with
Pseudomonadota accounting for over 40% and Actinomycetota
exceeding 20% average relative abundance in both treatments.
Together, these three phyla constituted more than 65% of the total
relative abundance, indicating their dominance. At the genus
level, the top 10 microbial genera in both treatments included
Afipia, Pseudomonas, Streptomyces, Cupriavidus, Sphingobium,
Micromonospora, Mycolicibacterium, Nocardioides, Aminobacter,
and unclassified genus (Figure 2B).

Building upon LEfSe analysis with a significance threshold (LDA
score > 3.5), differentially abundant microbes were predominantly
identified within three phyla: Actinomycetota, Pseudomonadota, and

Nitrososphaerota (Figure 2C). Specifically, CJL-associated microbiota
FIGURE 3 comprised seven enriched genera: Micromonospora, Rhodococcus,
Venn diagram of annotated metabolic pathways. The 16 unique Chelativorans,  Burkholderia, —Cupriavidus, Azoarcus, and

pathways in PTL were: (1) Metabolism; Glycan biosynthesis and

metabolism; Glycosphingolipid biosynthesis-ganglio series. (2) Pseudomonas. In contrast, PTL-associated microbiota revealed eight
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FIGURE 4
LEfSe analysis of metabolic pathways. Displaying the significantly different metabolic pathways between CJL and PTL, with LDA scores indicating the
magnitude of difference.
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pathway; (3) Cellular Processes > Transport and Catabolism >
Autophagy-other.

LEfSe analysis (LDA score > 2) identified 52 metabolic pathways
with statistically significant intergroup differences. Thirty pathways
were significantly enriched in the CJL, while 22 showed marked
enrichment in PTL. Among these, five characteristic pathways
achieved an LDA threshold > 2.5 (Figure 4). The PTL exhibited
enrichment in three pathways: Biosynthesis of terpenoids and steroids,
Ribosome, and Valine, leucine and isoleucine biosynthesis. Conversely,
the CJL demonstrated enrichment in Limonene and pinene
degradation and Geraniol degradation. Notably, CJL showed
preferential enrichment in catabolic pathways (e.g., terpenoid
degradation, benzoate degradation, and fatty acid degradation) and
amino acid metabolism (e.g., valine/leucine/isoleucine degradation
and histidine metabolism). In contrast, PTL exhibited dominance in
genetic information processing (e.g., transcription, DNA repair, and

10.3389/fmicb.2025.1650631

DNA replication), antibiotic biosynthesis (e.g., vancomycin resistance
and streptomycin biosynthesis), and cofactor/vitamin biosynthesis
(e.g., pantothenate and CoA biosynthesis).

3.4 Comparative analysis of rhizosphere
soil metabolites in lemon trees with two
types of rootstocks

Among all rhizosphere soil samples, a total of 184 compounds
were detected. By annotating all metabolites using the KEGG database
(br08001), 110 biologically functional compounds were identified,
primarily categorized into seven groups. Among these, organic acids
exhibited the highest relative abundance, followed by peptides and
lipids. The combined relative abundance of these three categories
accounted for over 95% in both treatments (Figure 5A).
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Orthogonal partial least squares discriminant analysis (OPLS-
DA) was conducted on the rhizosphere soil metabolite detection
results (Figure 5B). The results revealed that the point cloud
distributions of CJL and PTL treatment samples were in distinct
regions, indicating clear sample separation. Additionally, in the
permutation test of OPLS-DA, the actual observed Q2 indicated by
the arrow was on the right side of the random distribution (the
observed value was significantly greater than the random value),
with a p-value less than 0.01 (Figure 5C). This suggests that the
discriminant effect of the OPLS-DA model was good, and there
should be significantly different metabolites between the
two treatments.

Random forest analysis further identified 15 discriminative
metabolites (Figure 5D). Four metabolites were significantly enriched
in CJL: Hydroxybutyrate, Hydroxylamine, L-Alanine, and CD-
labeled Methionine. Elevations in PTL included 11 metabolites:
Caffeate, Terephthalic acid (Benzen-1,4-dicarboxylic acid), Alizarin,
Salicin (Salicyl alcohol-g-glucoside), 4-Hydroxycinnamic acid,
Lactobionic acid, D-(+)-Cellobiose, Lactitol, Ergocalciferol (Vitamin
D,), L-Sorbose, and 1-Monostearin.

3.5 Integrative metagenomic and
metabolomic analysis reveals
rootstock-driven microbial-metabolic
interactions

Procrustes analysis using Bray-Curtis distances was performed to
investigate relationships between rhizosphere microbial communities,
functional profiles, and soil metabolites in two rootstock lemon
cultivars. Overall, significant systematic concordance was observed
among variations in microbial taxa composition, functional traits, and
metabolite profiles (p <0.001). Notably, microbial community
structure exhibited stronger alignment with metabolite variations

10.3389/fmicb.2025.1650631

compared to functional profiles. Microbial community structure
explained 37.1% of metabolite variance (M?* = 0.629; 1 — M?* = 0.371),
with Dimension 1 coordinates reflecting primary associations between
dominant microbial taxa and key metabolites. Both CJL and PTL
samples clustered within the 0-0.2 range along this axis, indicating
synchronous variation patterns in both treatments. Dimension 2
coordinates captured secondary associations involving rare microbial
species and trace metabolites. CJL samples occupied the —0.1 to 0
range on this axis, suggesting antagonistic variation patterns
(Figure 6A). Microbial functional profiles explained 27.2% of
metabolite variance (M? = 0.728; 1 — M? = 0.272), with functional-
metabolite covariation trends mirroring community-metabolite
associations (Figure 6B).

To further investigate microbe-metabolite interactions, a
correlation heatmap was constructed using the top 20 most relevant
microbes and metabolites (Figure 7). Highly correlated microbes
predominantly belonged to the classes Actinomycetes (phylum
Actinomycetota) and Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria (phylum Pseudomonadota), while key
metabolites included amino acids, organic acids/derivatives, fatty
acids, and sugars. The relative abundance of the top 15 metabolites
showed positive correlations with EDTA-degrading bacterium BNC1
and Stutzerimonas stutzeri, but negative correlations with 18 soil
microbes—particularly Streptomyces sp. M2, Porphyrobacter sp. YT40,
Frateuria edaphi, Mycolicibacterium phocaicum, Streptomyces
phaeopurpureus, Acidovorax sp. KKS102, Azospira restricta,
inositola,

Micromonospora and Micromonospora aurantiaca.

Conversely, the last five metabolites exhibited a reverse
correlation pattern.

To elucidate broader biological trends and pathway alterations,
Gene Set Enrichment Analysis (GSEA) was applied to all features
across the two omics datasets (Figure 8). Ten significantly differentially
expressed pathways (adjusted p-value < 0.05) were identified.

Compared to PTL, the CJL treatment exhibited significant activation
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of: xylene degradation, exopolysaccharide biosynthesis, biofilm
formation (Pseudomonas aeruginosa), arginine and proline
metabolism, and steroid degradation. Conversely, pathways markedly
suppressed in CJL included: ribosome, glycerolipid metabolism,
amino sugar and nucleotide sugar metabolism, biosynthesis of

nucleotide sugars, and RNA polymerase.

4 Discussion

4.1 Structural divergences in rhizosphere
microbial communities across rootstock
genotypes

Rhizosphere soil microorganisms constitute an indispensable
factor in agricultural production, as plant growth, soil fertility,
material cycling, and energy transformation are profoundly influenced
by their activity (Deng et al., 2017). Crop species (Compant et al.,
2019), developmental stages (Schlechter et al., 2019), root exudates
(Sasse et al., 2018; Vives-Peris et al., 2020), and rhizodeposits (Tian
et al,, 2020) collectively shape the composition and functionality of
plant-associated rhizosphere microbial communities. In this study,
comparative analysis of rhizosphere microbial communities between
lemon rootstocks revealed no significant difference in microbial
richness, but Poncirus trifoliate Raf rootstock (PTL) exhibited
significantly higher community evenness than Citrus junos ex Tanaka
rootstock (CJL). This suggests that PTL-associated rhizosphere
microbes are less sensitive to singular environmental stressors (e.g.,
pH fluctuations, nutrient variations) and possess enhanced systemic
resilience (Zhang et al., 2014). Beta diversity analysis demonstrated
distinct separation in microbial composition between rootstocks,
indicating rootstock-specific modulation of rhizosphere microbiota,
consistent with findings in barley (Bulgarelli et al, 2015), rice
(Edwards et al., 2018), and common bean (Perez-Jaramillo et al.,
2019). Further taxonomic profiling identified Pseudomonadota,
Actinomycetota, and Thermoproteota as dominant phyla across both
rootstocks. Pseudomonadota members, particularly pseudomonads,
are renowned for their biocontrol potential against soil-borne
pathogens (Biessy and Filion, 2021; Carrion et al, 2019).
Actinomycetota contribute to plant defense by suppressing pathogens
and pests, decomposing soil organic matter, mobilizing mineral
nutrients, and enhancing soil enzyme activity, thereby improving
rhizosphere physicochemical properties. Thermoproteota, a group of
archaeal prokaryotes, serve as key contributors to carbon cycling (Xu
etal., 2021; Barns et al., 1996). We identified 15 enriched microbial
genera across three phyla (Actinomycetota, Pseudomonadota, and
Nitrososphaerota) in the two treatments. Notably, Pseudomonas (class
Gammaproteobacteria), Cupriavidus (class Betaproteobacteria), and
Burkholderia (class Betaproteobacteria) in the CJL group, along with
Sphingobium (class Alphaproteobacteria) in the PTL group, exhibited
significant differentiation with strong effects. This divergence may
reflect co-domestication processes, whereby crop cultivars selectively
recruit specialized microbiomes during domestication (Escudero-
Martinez and Bulgarelli, 2019). Functional annotation revealed five
differentially enriched metabolic pathways. PTL rhizosphere exhibited
upregulation of terpenoid and steroid biosynthesis, ribosome
biogenesis, and branched-chain amino acid biosynthesis, whereas CJL
microbiota specialized in limonene/pinene degradation and geraniol
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degradation. These microbial-derived metabolites mediate interplant
communication, disease resistance, and growth promotion (Ortiz-
Castro et al,, 2009), with functional specificity likely determined by
rootstock-dependent microbial recruitment.

4.2 Rootstock-specific variation in
rhizosphere metabolomic profiles

Plant secondary metabolites encompass volatile and non-volatile
compounds, including small molecules (phenolics, amino acids,
nucleotides, sugars, terpenoids, lipids) and macromolecules (nucleic
acids, polysaccharides, proteins). These metabolites regulate plant
development, innate immunity (Piasecka et al., 2015), defense signaling
(Isah, 2019), and environmental stress responses (Yang et al., 2018).
Roots actively or passively secrete secondary metabolites into the
rhizosphere, where most are rapidly metabolized by soil microbes, while
residual fractions mediate interspecies interactions (Sugiyama and
Yazaki, 2014). Rhizosphere metabolites originate from root exudation,
microbial metabolism, and decomposition of plant/microbial biomass
and soil organic matter (Cheng et al., 2018), with root exudates
constituting the primary source (Song et al., 2020). Exudate composition
dynamically responds to plant genotype, developmental stage, and
environmental stressors (Korenblum et al., 2020). Metabolomic analysis
identified 15 differentially abundant rhizosphere metabolites. CJL
rhizosphere accumulated four metabolites, primarily amino acids
(L-alanine, methionine) and organic acid derivatives, which enhance salt
tolerance in crops such as maize (Neto et al., 2009), cucumber (Wu et al.,,
2012), and rice (Ghasemi et al., 2014) while modulating rhizosphere
microbiota (Yuan et al.,, 2018; Pang et al., 2021). PTL rhizosphere showed
higher abundance of 11 metabolites, predominantly sugar derivatives
and organic acids. Sugar accumulation improves abiotic stress resilience
(Pramanik et al., 2017; Kusale et al., 2021), while organic acids mitigate
salt stress via cation chelation (Hossain et al., 2012; Adeleke et al., 2016)
and rhizosphere pH modulation (Yang et al., 2010; EI-Beltagi et al., 2017).

4.3 Functional linkages between
rhizosphere microbiota and metabolites
across rootstock genotypes

Elucidating how rhizosphere metabolites regulate soil-microbe-plant
interactions is critical for deciphering the feedback mechanisms
underlying rootstock-specific effects on plant health and crop
productivity. Microbiome variations between cultivars may arise from
differences in root exudates and secondary metabolites (lannucci et al.,
2017), which directly drive shifts in soil microbial composition and
functionality (Pang et al., 2021). Root exudates act as primary mediators
for recruiting beneficial rhizosphere microbes (Zhalnina et al., 2018),
with distinct exudate profiles exerting specific impacts on rhizosphere
microbiomes (Pascale et al., 2020). Studies demonstrate that roots release
diverse chemicals, including sugars, amino acids, organic acids, phenolics
(e.g., flavonoids), and terpenoids. These metabolites not only provide
carbon substrates for microbial growth but also function as signaling
molecules, attractants, or inhibitors to shape microbial communities,
serving as a central hub in plant-soil-microbe interactions (Bertin et al.,
2023; Baetz and Martinoia, 2014; Hu et al., 2018; De Vries et al., 2020;
Zhao etal., 2020). Therefore, we investigated functional linkages between
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soil metabolites and microbiota across rootstock cultivars. Samples from
distinct treatments exhibited highly consistent covariation patterns
(p <0.01) in metagenomic taxonomic composition, functional profiles,
and metabolomic expression. Significant correlations between soil
microbial community structure and metabolite signatures further
substantiate that microbe-rhizosphere metabolite interactions constitute
a key mechanism governing rhizosphere metabolic reprogramming.
This study analyzed correlated microbial taxa and metabolites,
focusing on the top 20 most strongly associated pairs. Dominant
microbial clades included Actinomycetes, Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria, while primary
metabolites comprised amino acids, organic acids/derivatives, fatty
acids, and sugars. Correlation analyses revealed that five metabolites—
salicyl alcohol-f-glucoside, 4-hydroxycinnamic acid, caffeate,
benzene-1,4-dicarboxylic acid (a microbial degradation intermediate
of anthropogenic pollutants), and alizarin (predominantly sugar/
organic acid derivatives originating from roots)—exhibited significant
11 affiliated  with
Actinomycetota, Pseudomonadota, and Thermoproteota. This aligns

synergism  with rhizobacterial ~species
with Bharti et al. (2016), demonstrating root-exuded sugars/organic
acids facilitate soil microbial carbon cycling and growth promotion.
Conversely, these five metabolites strongly antagonized the EDTA-
degrading bacterium BNCI, a Gram-negative strain utilizing EDTA
as its sole C/N source; competitive niche exclusion by sugar-stimulated
actinobacterial proliferation may drive this suppression (Trivedi et al.,
2020; Nortemann, 1992). In contrast, the remaining 15 metabolites—
primarily  microbial-derived, with minor root/exogenous
contributions (e.g., methionine-13CD3, a synthetic residue)—showed
inverted effects: antagonism toward the aforementioned 11
rhizobacteria, potentially mediated by bacterial interference (e.g.,
quorum sensing quenching; Trivedi et al., 2020) or dual-regulatory
compounds like benzoate derivatives (Meng et al., 2023), while
synergistically promoting BNC1. This BNC1-specific enhancement
may arise from its selective substrate utilization (e.g., vitamin
stimulation by biotin/folate; Nortemann, 1992), though its soil
metabolic traits remain poorly characterized.

Subsequent integration of the top 15 metabolite contributors
identified by Random Forest analysis with differentially abundant
microbial taxa from LEfSe (LDA > 3.5), followed by exclusion of
exogenous compounds and non-significant correlations (p > 0.05),
revealed distinct biological associations: PTL rootstocks exhibited
positive correlations between eight metabolites (predominantly lipids,
carbohydrates, and organic acids) and seven rhizosphere microbial
taxa (Table 1), while CJL rootstocks demonstrated synergistic
relationships involving three metabolites (hydroxybutyrate, L-alanine,
and hydroxylamine) and seven rhizospheric microbes (Table 2).
Elevated root secretion of amino acids, nucleotides, and long-chain
organic acids (LCOAs) has been shown to recruit beneficial
Proteobacteria, Streptomyces, and Firmicutes, reshaping rhizosphere
microbiomes into a “defense biome” that enhances host stress
resilience (Yuan et al., 2018; Bakker et al., 2018; Liu and Brettell, 2019;
Liu et al., 2020; Williams and de Vries, 2020). Similar mechanisms are
documented in Zea mays (Ahmad et al., 2011; Cotton et al,, 2019),
Cirsium (Verbeek and Kotanen, 2019), and Spartina alterniflora (Yang
et al., 2019). Conversely, root-derived secondary metabolites can
selectively promote or inhibit specific microbial taxa (Holmer et al.,
2017; Hu et al., 2018; Voges et al., 2019).
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4.4 Interaction patterns among root
systems, metabolites, and microbiota
across rootstock genotypes

To further investigate biological trends in the soil microbe-root
exudate system, enrichment analysis was performed on all features
from both omics datasets, identifying 10 significantly differentially
expressed pathways (p < 0.05). Concurrently, key rhizosphere soil
physicochemical properties were quantified: total nitrogen, alkali-
hydrolyzable nitrogen, organic matter, and organic carbon content
(Figure 9); critical enzyme activities including cellulase, sucrase,
catalase, and urease (Figure 10); and experimental tree height
(Figure 11).

Three pathways related to soil microorganism-root exudate
interactions were enriched in PTL: Glycerolipid metabolism, Amino
sugar and nucleotide sugar metabolism, and Biosynthesis of nucleotide
sugars, primarily associated with energy metabolism, carbohydrate
metabolism, and secretion regulation. Glycerolipid metabolism serves as
a core pathway in lipid metabolism, involving triglyceride (TG)
breakdown and synthesis to provide energy reserves and biomembrane
construction. Pseudomonas mediterranea, significantly enriched in this
study, is a keystone taxon in glycerolipid metabolism (Solaiman et al.,
2005). Studies indicate Pseudomonas promotes rhizosheath formation
under drought stress while its metabolites (e.g., IAA) directly stimulate
lateral root meristem proliferation, increasing root surface area and
enhancing water/nutrient uptake efficiency (Xu et al, 2025). The
metabolite 1-Monostearin, an intermediate in glycerolipid metabolism,
is primarily synthesized and secreted by plant roots as a precursor for
triacylglycerol (TAG) synthesis (Liu et al., 2007). Here, 1-Monostearin
showed significant positive correlation with P. mediterranea abundance,
suggesting PTL may recruit P. mediterranea by secreting 1-Monostearin
to activate glycerolipid metabolism, thereby enhancing root functionality
and adaptation to arid/oligotrophic environments. Amino sugar and
nucleotide sugar metabolism regulates microbial necromass formation
and soil organic carbon sequestration. Associated metabolites included
Lactitol, Lactobionic acid, and D-(+)-Cellobiose (microbially derived),
with key microbes Ensifer adhaerens and Sphingobium sp.
TKS. E. adhaerens utilizes rhizospheric cellobiose (D-(+)-Cellobiose) as
a carbon source to activate nucleotide sugar metabolism (e.g.,
UDP-glucose (EPS),
siderophores, salicylic acid (SA), and IAA to enhance root defense and

synthesis), secreting exopolysaccharides
stimulate lateral root proliferation (Zheng T. et al., 2021; Hu et al., 2024).
Sphingobium sp. TKS degrades y-HCH as its sole carbon source for
organic pollutant decomposition (Tabata et al., 2016). It catabolizes
lactobionic acid to mannose-6-phosphate, entering nucleotide sugar
metabolism (GDP-mannose pathway). Resultant EPS enhances soil
aggregation, improving root oxygenation, while mannosylated signaling
molecules induce plant disease resistance genes (Zheng T. et al., 2021).
Notably, root-secreted caffeate and salicyl alcohol-f-glucoside showed
extremely significant positive correlations with both E. adhaerens and
Sphingobium sp. TKS (Table 1), indicating PTL recruits these taxa via
exudation to activate amino/nucleotide sugar metabolism, thereby
modulating SOC sequestration, root defense, and lateral root
development. Biosynthesis of nucleotide sugars operates inversely to
nucleotide sugar metabolism. This pathway was present in E. adhaerens,
P mediterranea, Mycolicibacterium phocaicum, Pseudonocardia
dioxanivorans, and Sphingobium sp. TKS, all exhibiting extremely
significant correlations with caffeate and salicyl alcohol-p-glucoside
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TABLE 1 Correlations between relative abundance of root-enriched specific microorganisms and rhizosphere metabolites under PTL treatment.
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(Table 1). This implies PTL recruits these microbes to activate nucleotide
sugar biosynthesis, providing biosynthetic precursors for beneficial
microbiota proliferation while balancing metabolic flux. Soil enzyme
assays (Figure 10) revealed significantly upregulated cellulase, sucrase,
and urease activities in PTL, corresponding to the enrichment of
glycerolipid metabolism, amino/nucleotide sugar metabolism, and
nucleotide sugar biosynthesis pathways.

Three pathways related to soil microorganism-root exudate
interactions were enriched in CJL: Exopolysaccharide biosynthesis,
Arginine and proline metabolism, and Biofilm formation—Pseudomonas
aeruginosa, primarily associated with stress resistance, cellular membrane
homeostasis, and signal transduction. Exopolysaccharide biosynthesis
enhances stress tolerance through protective biofilm formation via
extracellular polymeric substance (EPS) secretion, which isolates roots
from external stresses while improving water retention and soil structural
stability to sustain plant growth (Nadeem et al., 2021). Pseudomonas
strains synthesize EPS (e.g., alginate) (Zhao et al, 2017); notably,
Pseudomonas putida identified in this study exhibited extremely
significant positive correlations with key metabolites L-alanine,
3-Hydroxybutyrate, and Hydroxylamine (Table 2). While
3-Hydroxybutyrate (a critical energy/carbon source) and Hydroxylamine
(regulating nitrogen metabolism) are primarily rhizosphere microbial
products, L-alanine originates from roots and provides nitrogen/carbon
skeletons for microbial metabolism. This suggests CJL may recruit
P putida via L-alanine exudation to activate exopolysaccharide
biosynthesis, thereby enhancing root stress tolerance—a potential
mechanism underlying the strong alkali resistance of Citrus junos (CJ).
EPS also mitigates soil acidification while promoting organic matter
decomposition and nutrient availability (Kumar et al., 2021; Chen et al.,,
2023), consistent with CJLs significantly higher organic matter and
organic carbon content (Figures 9C,D). Amino acids serve as essential
nitrogen sources and signaling factors. Proline (Pro) regulates stress
metabolism by maintaining cytosolic homeostasis and reactive oxygen
species scavenging (Singh et al,, 2016), whereas L-arginine participates
in cell division, DNA condensation, membrane stabilization, hormone
signaling, and stress responses (Agudelo-Romero et al,, 2013). The
significant activation of arginine and proline metabolism in CJL aligns
with studies demonstrating that plant growth-promoting rhizobacteria
elevate osmoprotectants including proline, soluble sugars, and free
amino acids (Ilyas et al., 2020; Khan and Singh, 2021). P putida enriched
in CJL participates in amino acid metabolism in Zea mays (Sandhya
etal,, 2010) and Triticum aestivum (Khan and Singh, 2021) rhizospheres,
potentially functioning via: (a) direct engagement in exopolysaccharide
biosynthesis through arginine/proline metabolism to enhance root stress
tolerance, and (b) modulation of other microbiota growth via secretion
systems. CJLs elevated catalase activity (Figure 10C) further corresponds
with upregulated arginine/proline metabolism. Biofilm formation
enables rhizospheric microbial colonization and community assembly
on root surfaces (Haggag and Timmusk, 2010), with continuous biofilm
cycling conferring environmental adaptability (Koerdt et al., 2010).
Although the Biofilm formation—P. aeruginosa pathway was activated
in CJL, P. aeruginosa relative abundance remained unchanged, likely due
to its c-di-GMP-mediated enhancement of existing biofilm formation
through alginate and extracellular DNA secretion without triggering
bacterial proliferation (Tsiry et al., 2015)—consistent with upregulated
exopolysaccharide biosynthesis herein. Plant height analysis (Figure 11)
revealed CJL significantly surpassed PTL, a difference primarily
attributed to rootstock characteristics (Li et al., 2019) rather than
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TABLE 2 Correlations between relative abundance of root-enriched specific microorganisms and rhizosphere metabolites under CJL treatment.

Microorganism names HydroxyButyrate L-alanine Hydroxylamine
Azoarcus sp. DD4 0.46 0.52% 0.43
Chelativorans oligotrophicus 0.50%* 0.50%* 0.45
Cupriavidus oxalaticus 0.58%* 0.59%* 0.55%
Metapseudomonas furukawaii 0.63%* 0.70%%% 0.63%*
Metapseudomonas lalkuanensis 0.33 0.46 0.39
Pseudomonas putida 0.647** 0.68%#* 0.63%*
*p <0.05;**p < 0.01; **p < 0.001.
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FIGURE 9
Contents of total nitrogen, alkali-hydrolyzable nitrogen, organic matter, and organic carbon in rhizosphere soils of lemon under two rootstock
genotypes. (A) Total nitrogen content; (B) Alkali-hydrolyzable nitrogen content; (C) Organic matter content; (D) Organic carbon content. Asterisks
denote significant differences (*p < 0.05; **p < 0.01).

rhizobacterial influences, for which effects on plant height remain
poorly documented.

Integrated analysis revealed that CJL treatment exhibited
significantly higher soil organic matter, organic carbon content,
catalase activity, and plant height compared to PTL, while PTL
demonstrated significantly elevated cellulase, sucrase, and urease
activities. No significant differences were observed in total nitrogen or
alkali-hydrolyzable nitrogen between treatments. The root-metabolite-
microbe interaction patterns in PTL emerged as follows: (1) Root-
secreted 1-Monostearin potentially activates glycerolipid metabolism
in Pseudomonas mediterranea, recruiting this bacterium to enhance
root functionality and adaptation to arid/oligotrophic environments;
(2) Root-exuded caffeate and salicyl alcohol-f-glucoside may recruit
Sphingobium sp. TKS and Ensifer adhaerens to stimulate amino sugar
and nucleotide sugar metabolism, thereby regulating rhizosphere soil
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organic carbon sequestration, root defense, and lateral root
proliferation; (3) These same exudates recruit Ensifer adhaerens,
Mycolicibacterium

mediterranea, phocaicum,

Pseudonocardia dioxanivorans, and Sphingobium sp. TKS to activate

Pseudomonas

nucleotide sugar biosynthesis, providing biosynthetic precursors for
beneficial microbiota while balancing metabolic flux. In CJL, the
predominant pattern involves: (1) Root-secreted L-alanine recruits
Pseudomonas putida to activate exopolysaccharide biosynthesis,
enhancing root stress tolerance—a potential mechanism underlying
Citrus junos’ alkali resistance; (2) L-alanine-recruited P. putida engages
arginine and proline metabolism to participate directly in
exopolysaccharide biosynthesis, further promoting root stress
resilience. Although plant microbiome structures and dynamics are
well-documented (Pang et al., 2021), microbial contributions to host
rhizosphere metabolomes remain poorly understood. Rhizosphere
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Activities of cellulase, sucrase, catalase, and urease in rhizosphere soils of lemon grafted onto two rootstock genotypes. (A) Cellulase activity;
(B) Sucrase activity; (C) Catalase activity; (D) Urease activity. *p < 0.05; **p < 0.01.
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Plant height of lemon grafted onto two rootstock genotypes. **p <
0.01.

microbiomes critically regulate plant growth and health (Berendsen
etal,, 2012), with specific bacteria intimately interacting with roots to
induce functional modifications in root exudate composition (Rolfe

Frontiers in Microbiology

etal., 2019; Baetz and Martinoia, 2014; Huang et al., 2018). Plants may
also perceive microbiome-derived molecules through chemical
recognition systems, triggering signal transduction networks that alter
gene activity and metabolite accumulation (Tidke et al., 2018). While
these interaction patterns provide crucial insights for agricultural
productivity enhancement, the extraordinary complexity of microbial
diversity and rhizosphere metabolome composition necessitates
further validation and mechanistic exploration of the proposed models.

5 Conclusion

The rhizosphere microbial community structures of lemon
trees grafted onto two distinct rootstocks exhibited significant
divergence, with three phyla (Actinomycetota, Pseudomonadota,
and Nitrososphaerota) comprising 15 differentially enriched
genera showing marked effects—particularly Pseudomonas,
Cupriavidus, and Burkholderia in CJL, and Sphingobium in
PTL. Correspondingly, rhizosphere metabolite profiles differed
substantially between rootstocks: among 15 key differential
metabolites identified, 4 were significantly more abundant in CJL,
while the remaining 11 dominated in PTL. Strong correlations
emerged between differential microbial abundance and metabolite
levels, with 10 significantly altered pathways implicated in energy
homeostasis and environmental adaptation. CJL soils demonstrated
significantly higher organic matter/organic carbon content,
catalase activity, and plant height, whereas PTL exhibited elevated

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1650631
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Long et al.

cellulase, sucrase, and urease activities—though total and alkali-
hydrolyzable nitrogen showed no inter-treatment differences. The
root-metabolite-microbe interaction paradigm in PTL involved:
1)

mediterranea’s glycerolipid metabolism to enhance drought/

root-secreted 1-Monostearin activating Pseudomonas
oligotrophic adaptation; (2) caffeate and salicyl alcohol-p-glucoside
recruiting Sphingobium sp. TKS and Ensifer adhaerens to stimulate
amino/nucleotide sugar metabolism, thereby modulating carbon
sequestration, root defense, and lateral root proliferation; (3) these
exudates further assembling Ensifer adhaerens, Pseudomonas
mediterranea, Mpycolicibacterium phocaicum, Pseudonocardia
dioxanivorans, and Sphingobium sp. TKS to orchestrate nucleotide
sugar biosynthesis, supporting microbiota proliferation while
balancing metabolic flux. In CJL, L-alanine secretion recruited
Pseudomonas putida to activate exopolysaccharide biosynthesis—a
plausible mechanism underlying Citrus junos’ alkali tolerance—
with P, putida concurrently engaging arginine/proline metabolism
to reinforce this stress-resistance pathway. This study elucidates
rootstock-driven modulation of lemon tree rhizosphere
microbiomes and metabolomes, uncovering their interaction
networks and affirming rootstocks’ pivotal role in shaping
rhizosphere microecosystems. These findings provide actionable
insights for rootstock selection and beneficial microbiota screening

to enhance agricultural productivity.
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