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Acinetobacter baumannii is a multidrug-resistant (MDR) pathogen associated
with nosocomial infections, sporadically detected in cystic fibrosis (CF) patients.
Treatment of A. baumannii may be hindered by polysaccharide capsule production
of some isolates and extended resistance to most antibiotics. In these fearsome
cases, colistin (COL) and cefiderocol (FDC) are considered last resort antibiotics.
Unfortunately, resistance to these molecules is increasing. Indeed, we observed
a hypermucoid (HM) A. baumannii strain producing OXA-23, isolated from a CF
patient, rapidly evolving concomitant resistance to COL and FDC. At her first visit
to our hospital, the 24-year-old female with a delayed CF diagnosis and advanced
lung disease presented with one HM and one low mucoid (LM) A. baumannii
phenotypes. Due to Pseudomonas aeruginosa infection, she received inhaled
tobramycin and COL treatment. Five months later, two HM strains were isolated,
with different susceptibility profiles to COL and FDC, one being completely resistant.
Whole genome sequencing revealed that all four isolates, the initial HM and LM
strains and the two subsequent HM strains, belonged to Sequence Type 2 and
carried OXA-23 gene. Genetic distance revealed evolution from the same strain.
HM strains carried mutations in genes involved in polysaccharide production
while the resistant strain also harboured mutations conferring COL and FDC
resistance. Biofilm production and motility of the four strains were evaluated
to establish possible links between multiresistance, mucoidity and virulence.
Phenotypic characterisation showed that HM strains lost some virulence traits during
chronicisation and resistance development but likely persisted by exploiting the
biofilm-mediated protection, maintaining both virulent and resistant subpopulations.
We speculate that COL treatment forced A. baumannii resistance occurrence in
a bacterial population already heteroresistant to FDC, resulting in a pan-resistant
strain in this CF patient. Considering that lung transplantation still represents a
life-saving option for CF patient with advanced lung disease, this study highlights
the critical need for careful administration of last-resort molecules in patients
that may face immunosuppression. Indeed, given the possibility of simultaneous
emergence of resistance and the limited treatment options available to patients
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infected with MDR A. baumannii, last-resort antibiotics should be spared to avoid
selection of pan-resistant microorganisms.
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resistance

1 Introduction

Acinetobacter baumannii (A. baumannii) is universally recognised
as one of the multidrug-resistant (MDR) pathogens most associated
with nosocomial infections (Nowak et al., 2017). Due to its ability to
rapidly develop resistance, by acquiring or upregulating various
resistance determinants, A. baumannii poses a potential threat to
human health and it is considered a top priority pathogen for which a
comprehensive assessment of pathogenic mechanisms is urgently
needed (Kurihara et al, 2020). Furthermore, the propensity of
A. baumannii to adhere and persist on surfaces in biofilm phenotype
has contributed to its pathogenicity and drug resistance, facilitating its
survival in hospital environment (Nowak et al., 2017; Artini et al,,
2025). Several nosocomial infections are increasingly being caused by
extensively drug-resistant (XDR) and pandrug-resistant (PDR)
isolates of A. baumannii, particularly in southern Europe, affecting
primarily vulnerable patient groups such as intensive care unit (ICU)
patients (Nowak et al, 2017). Mortality rates for patients with
A. baumannii healthcare-associated infections vary according to local
epidemiology and diffusion of resistant phenotypes and carbapenem-
resistant A. baumannii (CRAB), ranging from 29% to more than 90%
in ICU patients (Corcione et al., 2024). Indeed, several mechanisms
can drive A. baumannii multi-drug resistance: antibiotics sensitivity
can be affected by non-enzymatic mechanisms such as efflux pumps
(e.g., aminoglycosides, chloramphenicol, glycopeptides), reduced
membrane permeability (e.g., carbapenem or aztreonam) and target
site modifications (e.g., fluoroquinolones, rifampicin or colistin)
(Vrancianu et al, 2020). Furthermore, enzymatic mechanisms,
particularly the production of f-lactamase, are often involved in
antibiotic resistance, especially against carbapenems: indeed
A. baumannii can harbour all the four Ambler p-lactamase classes,
with class D oxacillinases (OXA) such as OXA-23, either plasmid-
borne or chromosomally encoded, being the most widespread
worldwide (Vrancianu et al., 2020; Hamidian and Nigro, 2019).
Carbapenems have long been used as last-resort antibiotics for the
treatment of infections caused by MDR A. baumannii, however CRAB
nosocomial outbreaks have reached worldwide diffusion, causing
widespread clinical concerns (Hamidian and Nigro, 2019). Therefore,
for difficult-to-treat infections, alternative molecules are under
evaluation (e.g., rifabutin and zosurabalpin) while others are employed
as last-resort therapies, such as sulbactam/durlobactam, colistin
(COL) and cefiderocol (FDC); however, resistance to these drugs is
increasingly being reported (Bostanghadiri et al., 2024; Zhan et al.,
2024; Dubey et al, 2025). In addition, complicating antibiotic

Abbreviations: CF, cystic fibrosis; COL, colistin; FDC, cefiderocol; HM, hypermucoid;
LM, low mucoid; MIC, Minimum Inhibitory Concentration; MDR, multidrug-
resistant; SNP, Single Nucleotide Polymorphisms; ST, Sequence Type; WGS, Whole

Genome Sequencing
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treatment and contributing to chronicity and colonisation, mucoid-
type isolates of A. baumannii have recently been identified, with a
polysaccharide capsule involved in biofilm formation, that hampers
eradication possibility (Shan et al, 2021). While the mucoid
phenotype is a factor in hypervirulence in other Gram-negative and
Gram-positive bacteria, links between the ability to produce biofilms,
multi-resistance, motility and mucoidy in A. baumannii are still
unclear (Shan et al., 2021).

We recently described the first isolation of a mucoid strain of
A. baumannii producing OXA-23 in a patient with cystic fibrosis (CF)
(Rossitto et al., 2023), a genetic disease that involves chronic bacterial
colonization of the lungs, causing lung deterioration, and eventually
requiring lung transplantation as a last-resort, life-saving option.
Except for occasional findings, A. baumannii producing OXA-23 is
not a common coloniser of CF patients’ lung; however, since the
patient had been previously admitted to ICU, a well-known niche for
A. baumannii, we hypothesised that this rare infection became
established on that occasion (Rossitto et al., 2023). Notably, the
patient appeared to be colonised by two different phenotypes, one
being characterised by an exceptionally long viscous strings of
150 mm, classifying as an hypermucoid morphotype (Gong
etal., 2022).

Probably, as suggested by the preexisting colonisation from a
mucoid phenotype of P. aeruginosa, patient’s compromised lung
capacity, together with the stressful environment typical of CF lung,
may have driven evolution toward such hypermucoid phenotype. In
the follow-up of this same patient, colonizing A. baumannii showed
unexpected and undesirable adaptation to the antibiotic regimen to
which the patient had been subjected, showing rapid emergence of
concomitant resistance to COL and FDC.

Here we report the genomic and phenotypic characterisation of
the A. baumannii strains isolated before and after resistance evolution,
investigating the causes of modifications in antimicrobial susceptibility
and virulence traits.

2 Materials and methods
2.1 Bacterial isolates

During the patient’s first visit to our hospital, 3 months after an
ICU hospitalization for a right upper lobe segmentectomy, two
phenotypes of A. baumannii were isolated from a bronchoalveolar
lavage along with mucoid Pseudomonas aeruginosa: a hypermucoid
(HM) phenotype named AM3, with an opaque appearance, and a low
mucoid (LM) phenotype named AM4, with a translucent appearance.

Two additional HM A. baumannii strains, AM61 and AM62, were
isolated at a follow-up visit five months later, after continuous and
alternating inhaled antibiotic therapy with tobramycin and COL for
maintenance therapy of the P. aeruginosa infection.
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The patient provided consent to use personal data for diagnosis,
treatment and related future research purposes at the time
of hospitalization.

2.2 Susceptibility test and whole genome
sequencing (WGS)

Frozen bacterial stocks were plated on Columbia agar + 5% sheep
blood (bioMérieux, Marcy I'Etoile, France) incubated overnight at
37 °C. Susceptibility testing was performed by the broth microdilution
method using the MicroScan panel NMDR2 (Beckman Coulter,
Indianapolis, IN, United States) and were interpreted according to
clinical breakpoints based on the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) tables. The
manufacturer’s procedures were followed for testing ComASP
Cefiderocol (Liofilchem, Roseto degli Abruzzi, Italy). MIC reference
values were determined using iron-depleted CA-MHB, prepared
following EUCAST guidelines, with FDC concentrations ranging
from 0.016 to 16 mg/L. The readings were conducted by two operators,
with a third operator verifying results for plates that were difficult to
interpret. Panels were inoculated using a single- or multichannel
pipette, sealed with the provided seal, and incubated at 36 + 2 °C for
16-20 h in ambient air. The panels were read manually, using bright
indirect lighting against a dark background to enhance readability
if needed.

Bacterial DNA was extracted using the EZ1 extractor (Qiagen
BioRobot EZ1, Qiagen, Hilden, Germany) using the proper extraction
kit (EZ1&2 DNA tissue kit, Qiagen, Hilden, Germany), following the
manufacturer’s instructions. Next Generation Sequencing library
preparation was performed according to the manufacturer’s protocol
with the DNAprep kit (Illumina, San Diego, CA, United States).
Prepared libraries were sequenced using MiSeq Reagent Kit v3 to
obtain 2x150 bp paired-end reads, and sequenced on a MiSeq
instrument (Illumina, San Diego, CA, United States). Bioinformatic
analysis was performed to identify bacterial Sequence Type (ST),
Single Nucleotide Polymorphisms (SNPs), virulence and resistance
genes. The raw reads were pre-processed with Fastp (v0.23.4) (Chen
et al., 2018), filtering for adapters and quality (Phred score > 28) and
then quality checked with FastQC (v0.11.9) (Andrews, 2010).
Taxonomic classification was performed with Kraken2 (v2.1.3) (Wood
etal, 2019) to screen for potential contaminations. Genome assembly
was performed de novo with Shovill (v1.1.0) (Seemann, 2017),
checking the assembly quality with Quast (v5.1) (Gurevich et al,
2013) and subsequently annotating with Prokka (v1.14.6) (Seemann,
2014). Multilocus Sequence Type (MLST) was assessed with MLST
tool (v2.11) (Seemann, 2024a) using the Pasteur and Oxford schemes.
Investigation of antibiotic resistance and virulence determinants was
performed using ABRicate (v0.4) (Seemann, 2024b) using the
Comprehensive Antibiotic Resistance Database (CARD) (Jia et al.,
2017) and Virulence Factor Database (VFDB) (Chen et al., 2016),
respectively, with 90% coverage (—mincov) and 90% identity (—
minid) parameters. Mutations in genes involved in different virulence
mechanisms (Biofilm, Type IV pili, Inmune modulation, and Effector
delivery systems) were assessed by mapping reads with bwa mem (Li,
2013) against the A. baumannii ACICU reference strain (GenBank
accession number CP000863.1). Phylogenetic analysis was performed
by performing Single Nucleotide Polymorphism (SNP) calling with
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Snippy (v4.6.0) (Seemann, 2015), using the AB36-VUB strain
(GenBank accession n° CP091371) as reference, and incorporating
other A. baumannii genomes belonging to the same ST
(Supplementary Table 1). Maximum Likelihood phylogenetic analysis
was performed on a coreSNP of 9,094 bp with IqTree (v1.6.12)
(Nguyen et al, 2015) using the best-fit model of nucleotide
substitution TVMe+ASC + R2 with 1,000 replicates fast bootstrapping.
Mobile genetic element (MGE) identification and plasmid
reconstruction were carried out using the MOB-suite tool (v3.1.8)
(Robertson and Nash, 2018). Differences in the core genome among
the 4 strains were assessed by performing SNP calling with Snippy
(v4.6.0) (Seemann, 2015), using the LM AM4 strain as reference.

2.3 Biofilm formation

The biofilm quantification was assessed by microtiter plate (MTP)
biofilm assay (Artini et al., 2022). An overnight bacterial culture was
1:100 diluted into Brain Heart Infusion broth (BHI, Oxoid,
Basingstoke, UK) medium and aliquoted in the wells of a sterile
96-well polystyrene flat base plate. The plates were incubated overnight
at 37 °C under static conditions in aerophilic and microaerophilic (5%
CO,) conditions for 24 h. Notably, microaerophilic conditions were
included to better reproduce the atmospheric environment of the
cystic fibrosis lung. After incubation, the supernatant containing
planktonic cells were gently removed from the multiwells, and the
plates were washed with double-distilled water. Then the microtiter
plates were patted dry in an inverted position. The staining was
performed with 0.5% crystal violet for 15 min at room temperature.
The excess of crystal violet was removed by washing the wells with
double-distilled water. The microtiter plates were thoroughly dried.
The remaining biofilm was dissolved with 20% (v/v) glacial acetic acid
and 80% (v/v) ethanol, for 20 min under agitation at room
temperature. The biofilm content was spectrophotometrically
measured at 590 nm. For the determination of biofilm formation at
48 h, after 24 h of growth, the supernatant containing planktonic cells
was sterile removed and replaced with 100 pL of fresh BHI medium.
These multiwells were incubated at 37 °C for an additional 24 h in
aerophilic and microaerophilic conditions. At the end of the
incubation, biofilm was quantified through crystal violet staining as
previously described.

Each experiment was performed in 6-replicates, and each data
point was composed of three independent experiments.

2.4 Motility assays: twitching and surface
motility

A single colony of A. baumannii was inoculated in 5 mL of
Nutrient Broth (Oxoid, Basingstoke, UK) in a sterile conical bottom
tube and incubated overnight at 37 °C under constant stirring at
180 rpm. The semisolid medium used for twitching and surface-
associated motilities was prepared with 0.5% Tryptone (Oxoid,
Basingstoke, UK), 0.25% sodium chloride (Sigma, Steinheim,
Germany), and 0.3% agarose (Invitrogen, Paisley, UK). After
autoclaving, the medium was deposited into 6-well polystyrene plates
and allowed to solidify. For the study of twitching motility, 2 pL of
overnight bacterial culture were inoculated on the bottom of the well
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(between the semisolid medium and the plastic) while, for
investigating surface motility, 2 uL of overnight inoculum were
inoculated on the surface of the semisolid medium. Subsequently,
multiwells were incubated at 37°C both in aerophilic and
microaerophilic conditions. Motility was analyzed at 24, 48 and 72 h.

The surface-associated motility was analysed on the surface of a
semi-solid medium (medium/air interface), while twitching motility
was analysed for bacteria moving between the bottom of the
polystyrene plate and the semi-solid medium. The study of the two
different motilities was conducted simultaneously using the same well
and medium. Furthermore, both motilities were observed after
incubating the plates at 37 °C for 24, 48 and 72 h in normoxia
(aerophilic condition) and in an atmosphere with 5% CO,
(microaerophilic condition).

Twitching motility was observed by placing the plates against the
light, it was possible to observe a halo produced by bacteria moved in
eccentric directions between the bottom of the wells of a sterile 6-well
plate and the semi-solid medium (Corral et al., 2021).

2.5 Statistical analysis of biological
evaluation

Data reported were statistically validated using Students t-test
comparing mean diameters of motility in the different experimental
conditions. The significance of differences was calculated using a
two-tailed Student’s t-test. A p value of <0.05 was considered significant.

3 Results

Both HM A. baumannii (AM3) and LM A. baumannii (AM4)
strains deriving from the first sample showed MDR profile, but low
Minimum Inhibitory Concentration (MIC) to COL and FDC
(Table 1). In the second sample, translucent A. baumannii was no
longer detectable, while HM A. baumannii had two different
susceptibility profiles to COL and FDC, one with a low MIC (AM61)
and the other one (AM62) with a MIC above the upper tested value
(Table 1). No other changes in MICs were detected compared to the
previous isolated strain (Supplementary Table 2). WGS analysis
revealed that all four A. baumannii isolates belonged to the Pasteur
Sequence Type (ST2) and Oxford ST208/1806 (Figure 1). At the
phylogenetic analysis, they resulted to be close to a clinical strain
isolated in Belgium in 2017 from endotracheal aspirates (Figure 1),
reported as extensively drug-resistant on Acinetobase (n.d.).

TABLE 1 Susceptibility to colistin and cefiderocol of the four A.
baumannii strains.

Strain  A. baumannii  lsolation COL FDC
ID phenotype date MIC MIC
(mg/L) (mg/L)
AM3 HM 04/12/2022 <2 <2
AM4 LM 04/12/2022 <2 <2
AM61 HM 10/05/2023 <2 <2
AM62 HM 10/05/2023 >16 > 128

HM, hypermucoid; LM, low mucoid; COL, Colistin; MIC, Minimum Inhibitory
Concentration; FDC, Cefiderocol.
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Regarding genetic features related to virulence and antimicrobial
resistance, all four shared the same genes, with the exception of AM61
strain, which lacked the APH(3")-Ia gene (Figure 1). By plasmid
reconstruction, all four strains were found to carry the OXA-23 gene
located on a plasmid homologous to A. baumannii plasmid
PORABO1-2 (GenBank accession number CP015485). A list of all
plasmids and mobile genetic elements (MGEs) found is available in
the Supplementary Table 3.

In terms of genetic distance, it was observed that they can
be considered as an evolution of the same strain, as they differed for a
median (IQR) distance of 12 (Dubey et al., 2025; Shan et al., 2021;
Rossitto et al., 2023) Single Nucleotide Polymorphisms (SNPs). By
looking at the differences among the 4 strains, SNPs analysis also
revealed that HM A. baumannii strains had missense mutations in the
capsular locus wzc (ptk) gene, involved in polysaccharide production,
namely C1592T (resulting in A531V substitution) and G1957A
(resulting in M653V substitution) in AM3 strain, and only G1957A
(M653V) in AM61 and AM62 strains, respectively (the full list of
SNPs is available in Supplementary Table 3). The HM A. baumannii
strain with high MICs to COL and FDC in the second sample (AM62)
had missense mutations in pmrB (C425T, resulting in A412V
substitution) and piuA (A911G, resulting in D304G substitution)
genes, respectively. Both mutations were already found in literature to
be implicated in colistin (A142V in pmrB) and cefiderocol (A911G in
piuA) resistance in A. baumannii (Haeili et al., 2018; Karakonstantis
et al., 2022; Novovi¢ and Jov¢ié, 2023).

In order to establish possible links between multi-resistance,
mucoidy and virulence, we evaluated biofilm production and motility
for the four A. baumannii strains. Two different oxygen conditions
were evaluated to more accurately investigate potential phenotypic
differences between the lungs of CF patients, characterized by a
microaerophilic environment (5% CO2), and those of non-CF
individuals (aerophilic condition).

Biofilm formation was assessed in aerophilic and microaerophilic
conditions after 24 h and 48 h of incubation at 37 °C for all four
clinical strains, compared to two reference strains (Figure 2). The
reference strains ATCC 17978 and ATCC 19606, selected as low
biofilm producers and non-mucoid, differ in their resistance profiles,
with ATCC 17978 being antibiotic-sensitive and ATCC 19606
multidrug-resistant. As shown in Figure 2, both reference strains,
despite differing in resistance profiles, exhibited no changes in biofilm
production under the two oxygen conditions, consistent with the
behaviour of the clinical LM AM4 strain.

Overall, while the LM AM4 strain did not form biofilm under any
incubation conditions, mucoid strains from both samples did form
biofilm, with different capabilities depending by incubation
conditions. In particular, the first HM strain isolated, AM3, produced
biofilm only after 48 h of incubation, showing a slight increase under
aerobic conditions compared to microaerophilic conditions. Between
the strains isolated from the second sample, the “sensitive” HM strain
AMS61 showed highest total biofilm production, peaking after 48 h of
incubation under aerobic conditions. Conversely, the ‘resistant’ HM
strain AM62 produced significantly less biofilm than AMS61,
maintaining the levels of the ‘ancestral’ AM3 in all but one condition.
Indeed, AM62 seemed to be the only strain capable of producing
biomass after 24 h in aerobiosis. Finally, both AM3 and AM61
produced significantly more biofilm in microaerophilic conditions
compared to aerophilic conditions after 24 h. This observation was
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Estimated maximum likelihood phylogenetic analysis of A. baumannii isolates (n = 4) and reference genomes belonging to the same ST (n = 6). The
phylogeny was estimated on a coreSNP of 2,282 bp with IqTree using the best-fit model of nucleotide substitution TVMe + ASC with 1,000 replicates
fast bootstrapping. Leaves number represents the sample I1Ds, bootstraps values higher than 90 are shown on branches. Information regarding the
samples is shown: Sequence Type following the Pasteur and Oxford schemes (ST Pasteur and ST Oxford), presence of hyper/low mucoid phenotype
(Mucoid), presence (filled green square) or absence of antimicrobial resistance genes (AMR), presence (filled red square) or absence of virulence
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FIGURE 2

Biofilm formation of reference and clinical isolates of A. baumannii. Biofilm formation was evaluated after 24 and 48 h of bacterial growth in an
atmosphere with O, and with 5% CO,. Data are reported as OD at 590 nm after crystal violet staining. Each data point represents the mean + SD of 3
independent experiments, each performed in 6-replicates. Error bars indicate the standard deviations of all the measurements. Statistical difference
was determined by Student's t-test: * p < 0.05; ** p < 0.01; *** p < 0,001.

reversed for the “resistant” HM strain AM62, which reduced biomass
moving from aerophilia to microaerophilia after 24 h.
Surface-associated (Figure 3A) and twitching motilities
(Figure 3B) of A. baumannii strains were analysed at 24, 48 and 72 h,
in both aerophilic and microaerophilic conditions. Overall, surface-
associated motility appeared to be a characteristic of the HM strains,

Frontiers in Microbiology

except for the “resistant” HM, while twitching motility appeared to
be a characteristic of the only strains isolated from the first sample.
Although A. baumannii has long been defined as non-motile, it
has been demonstrated that it possesses two kinds of motilities defined
as surface-associated and twitching motility (Jeong et al., 2024).
Surface-associated motility was observed as a bacterial halo on the
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FIGURE 3
Motility of A. baumannii bacterial strains in different oxygen conditions. (A) Surface-associated motility of A. baumannii bacterial strains in aerophilic
(left panel) and microerophilic (right panel) conditions of bacterial growth. The motility halo was highlighted with a blue circle. The reference strain

(Continued)

Frontiers in Microbiology 06 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1650028
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Fox et al.

10.3389/fmicb.2025.1650028

FIGURE 3 (Continued)

ATCC 17978 was used as a positive control for this motility, producing a motility halo of 3.5 cm (covering the entire well) within just 24 h under aerobic
growth conditions. Instead, under microaerophilic conditions, this strain displayed a branched motility pattern, with the halo diameter gradually
increasing over time. Conversely, the ATCC 19606 strain, used as a negative control, did not exhibit this motility in either of the growth conditions
tested. (B) Twitching motility of A. baumannii bacterial strains in aerophilic (left panel) and microerophilic (right panel) conditions of bacterial growth.
Twitching motility was visualized by backlighting the multiwell plates and is highlighted with red circles. ATCC 17978 and ATCC 19606 reference strains
did not exhibit twitching motility under tested conditions. For ATCC 17978 strain, the halo highlighted with a red circle corresponded to the initial drop
placed on the bottom of the plate. The two different motilities were analyzed at 24, 48 and 72 h.

medium-air interface, whereas twitching motility was assessed by
bacterial movement between the bottom of the polystyrene plate and
the medium. Both motility assays were performed simultaneously in
the same well using soft agar medium.

In Figure 3A, the surface motility halo was highlighted with a
blue circle, while Figure 4A showed the measured halo diameters.
The maximum diameter was 3.5 cm (well size), while the
minimum diameter was 0.8 cm (initial drop). The reference strain
ATCC 17978 was used as a positive control for this motility,
producing a motility halo of 3.5 cm (covering the entire well)
within just 24 h under aerobic growth conditions. Instead, under
microaerophilic conditions, this strain displayed a branched
motility pattern, with the halo diameter gradually increasing over
time. Conversely, the ATCC 19606 strain, used as a negative
control, did not exhibit this motility in either of the growth
conditions tested, as evidenced in Figures 3A, 4A. Among the
clinical isolates, surface-associated motility was exhibited only by
HM AM3 and the “sensitive” HM AM61 strain. While AM3 from
the first sample seemed to prefer microaerophilic conditions over
aerobiosis, AM61 showed the opposite behaviour. In fact, AM3
showed consistent motility already after 24 h in microaerophilia
(right panel of Figure 3A) and only after 72 h in aerobiosis (left
panel of Figure 3A), whereas AM61 showed less surface-associated
motility moving from aerobiosis to microaerophilia. The
differences highlighted for each strain in the different oxygen
conditions resulted to be significative for ATCC17978 and AM3
and AM4.

Twitching motility, located below the semi-solid medium, was
visualized by backlighting the multiwell plates and is highlighted in
Figure 3B with red circles. Figure 4B showed the measured halo
diameters. Neither of the reference strains exhibited this motility
under any of the conditions tested. Indeed, for the ATCC 17978 strain,
the halo highlighted with a red circle corresponded to the initial drop
placed on the bottom of the plate.

Twitching motility was not observed in any of the strains analysed
under aerobic conditions (left panel of Figure 3B). However,
microaerophilia seemed to stimulate such motility in the strains from
the first sample, HM AM3 and LM AM4, after 48 h of incubation
(right panel of Figure 3B). Statical analysis reported showed that these
differences are significative (Figure 4B).

Opverall, we could not identify mutations in genes associated with
biofilm and motility that would account for these differences (see
Supplementary Table 3). It is likely that these differences might arise
from subtle and fine regulatory changes, rather than coding sequencies
alterations. Such changes could include modulation of gene expression
or post-transcriptional regulation, which might regulate multifactorial
processes like biofilm formation, motility, and surface adherence.
These mechanisms could also allow the strains to rapidly respond and
adapt to the complex environment of the CF lung, which is
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characterized by the presence of multiple stressors, such as immune
responses, nutrient limitation, as well as antibiotic pressure, all factors
that could influence bacterial behaviour without specifically requiring
the emergence of mutation in virulence factors.

4 Discussion

Infections caused by MDR A. baumannii are difficult to treat, and
resistance is emerging even for antibiotics that have long been
considered as a last resort. In our case, the airways of a CF patient were
initially colonised by two different phenotypes of MDR A. baumannii
producing OXA-23 carbapenemase, an opaque (mucoid or
hypermucoid-HM according to our definition) and a translucent
(non-mucoid or low mucoid-LM) variant. As part of a standard
protocol of maintenance therapy for P. aeruginosa colonisation, the
patient was prescribed an on/off regimen with inhaled tobramycin
and COL, the latter being one of the few susceptibilities conserved by
both A. baumannii phenotypes. When the patient returned five
months later, the LM A. baumannii phenotype had been lost under
antibiotic pressure, whereas the HM A. baumannii persisted and
adapted to COL through LPS modification by altering PmrB, part of
the two-component system mainly associated with resistance to
colistin in vivo (Marano et al., 2020). This observation is consistent
with previous experimental findings showing that the opaque
A. baumannii variant has a fitness advantage over its translucent
counterpart, as opaque colonies were found to be surrounded by
extracellular polysaccharide moieties rich in N-acetylglucosamine
residues that seem to protect individual cells from colistin-mediated
killing, and, together with mushroom-shaped biofilm structures,
further shield bacterial communities from drug, allowing higher
tolerance to subinhibitory concentrations of COL (Mushtaq et al.,
2024). Indeed, the extracellular polysaccharide moieties and unique
biofilm structures allowed the opaque A. baumannii to tolerate COL
exposure at both single cell and community levels (Mushtaq et al.,
2024). This protective effect at the community level may explain why,
in our case, the HM variant could persist in the host despite prolonged
colistin exposure and how a subpopulation of the HM phenotype
retained its sensitivity to COL.

Unfortunately, the COL-resistant HM subpopulation also
displayed FDC resistance caused by a mutation in a TonB-dependent
siderophore receptor. While this mutation does not directly confer
colistin resistance, its presence under colistin treatment likely
reflects selection of a pre-existing subpopulation already carrying
the TonB mutation. The emergence of this resistance during
treatment with FDC, as well as cross-resistance induced by
ceftazidime/avibactam and ceftolozane/tazobactam, has already
been described, whereas cross-resistance between COL and FDC
was only considered potential (Karakonstantis et al., 2022). Given
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FIGURE 4
Diameters of motility of A. baumannii bacterial strains in different oxygen conditions. (A) Surface-associated motility. Bar-graph showing the diameters
of the surface motility halos for the different strains tested under aerobic and microaerophilic growth conditions. The lowest (0.8 cm) and highest
(3.5 cm) diameters are indicated by black lines, corresponding to the initial drop and the well size, respectively. (B) Twitching motility. Bar-graph
showing the diameters of the twitching motility halos for the different strains tested under aerobic and microaerophilic growth conditions. The lowest
(0.8 cm) diameter is indicated by a black line, corresponding to the initial drop size. Statistical analysis was determined with Student's T-test (* p < 0.05;
**p < 0.01; *** p < 0.001).

the high prevalence of FDC heteroresistance (60%) in carbapenem-
resistant A. baumannii, it is plausible that colistin treatment
indirectly enriched for HM cells with pre-existing FDC resistance,
rather than selecting this mutation de novo. Indeed, the emergence
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of FDC resistance in A. baumannii without prior FDC treatment has
been reported, supporting the notion that resistant subpopulations
may pre-exist and be selected under other antibiotic pressures
(Kollef et al., 2023; Alteri et al., 2024). Further studies are required
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to determine the precise fitness effects of TonB mutations under
colistin exposure.

In addition to phenotypic changes and antibiotic resistance,
A. baumannii colony variation is also associated with differences
in surface motility and biofilm formation (Mushtaq et al., 2024),
characteristics highly variable in conditions mimicking the CF
lung environment (i.e., microaerophilia). A. baumannii virulence
is directly tied to motility, and previous studies have shown that
the ‘opaque variant, is characterised by improved surface-
associated motility. In our case, only the opaque strains exhibited
this kind of movement, likely driven by the release of additional
extracellular polymeric substances, such as polysaccharides,
which reduce surface friction and enable sliding motility (Jeong
et al., 2024), with the exception of the resistant HM AM62. This
suggests that the emergence of resistance leads to the loss of
virulence factors, given the associated fitness costs. Additionally,
contrary to previous findings suggesting correlation between
surface-motility and biofilm formation (Blaschke et al., 2021),
surface-motility did not seem to correlate strictly with biofilm
production. Indeed the ‘motile’ AM3 produced approximately the
same amount of biofilm as the ‘nonmotile’ AM62. Another
important component of overall motility in A. baumannii is
twitching motility, mediated by extension and retraction of type
IV pili (Clemmer et al., 2011). In our case, this type of motility
was only observed in the HM and LM strains from the first
sample, indicating that A. baumannii reduced, as expected,
motility during colonisation progression and chronicisation
process. Thus, in this particular case, the development of
resistance and progressive adaptation to CF forced A. baumannii
to lose some of its virulence factors. However, likely by taking
advantage of the protective effect exerted on a community level,
the particular A. baumannii clone that colonised the patient
persisted in both virulent and resistant forms.

The occurrence of armful persistence of such colonizing bacteria
should be actively avoided, especially when it concerns patients who
are at risk of becoming immunosuppressed and in need of a solid
organ transplant. In this case, a different strategy for patients
P, aeruginosa infection maintenance could have been implemented,
given its extensive antibiotic sensitivity, thus presumably preventing
the emergence of a difficult-to-treat strain of pan resistant
A. baumannii. Instead of colistin, levofloxacin or aztreonam could
have been prescribed, as these are common molecules adopted by our
Centre for maintenance therapy and the P aeruginosa strain was
completely sensitive to them. Taken all together and considering the
ominous event of simultaneous appearance of resistance to two
antibiotics used as last-resort therapy, this case highlights the critical
need for careful administration of such molecules, guided whenever
possible by diagnostic and antimicrobial stewardship, given the
limited treatment options available for patients infected with MDR
A. baumannii.
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