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Chlamydia trachomatis is the most important infectious cause of tubal infertility and 
is frequently detected in the human gastrointestinal tract. Chlamydia muridarum, 
a murine pathogen, closely resembles the human pathogen C. trachomatis. Our 
previous studies showed that the pGP3-deficient C. muridarum mutant was restricted 
to the large intestine following intracolonic inoculation, suggesting that the pGP3-
deficient mutant was killed by the tissue beyond the large intestine. Here, we report 
that the intra-ilenum, but not the intra-jejunum, to bypass the gastric barrier rescued 
the colonization of pGP3-deficient C. muridarum, suggesting that pGP3 is required 
to overcome host factors of the jejunum to help C. muridarum reach the colon. 
Moreover, mice genetically deficient in IL-22 not only rescued the colonization of 
pGP3-deficient C. muridarum following intrajejunal inoculation but also rescued 
the colonization of pGP3-deficient C. muridarum in the whole gastrointestinal tract 
tissues following intracolonic inoculation on day 14, suggesting a critical role of 
IL-22 in regulating chlamydial spread. Importantly, IL-22RA1 flox/flox and Villin-cre 
mice rescued the colonization of pGP3-deficient C. muridarum following intrajejunal 
inoculation, suggesting that intestinal epithelial-specific IL-22RA1 signaling is important 
for the spread of pGP3-deficient C. muridarum from the small intestine to the large 
intestine. These observations provide a platform for further research on intestinal 
IL-22RA1 signaling in regulating bacterial spread in the intestine. Therefore, host 
factors identified in the gastrointestinal tract may also contribute to the female 
lower genital tract barrier during sexually transmitted diseases.
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Highlights

	•	 pGP3 is required for C. muridarum to spread large intestine following 
intrajejunal inoculation.

	•	 IL-22 is an important factor for blocking the spread of pGP3-deficient C. muridarum 
from the small intestine to the large intestine.

	•	 Intestinal epithelial IL-22RA1 signaling regulates Chlamydia organisms spreading from 
small intestine to large intestine.
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1 Introduction

Chlamydia trachomatis (C. trachomatis) is a prevalent bacterial 
pathogen responsible for sexually transmitted infections (STIs) in 
humans (Budrys et al., 2012). Recent studies have demonstrated that 
C. trachomatis and Chlamydia muridarum (C. muridarum) colonize 
the gastrointestinal (GI) tract of their respective hosts (humans and 
mice) (Yang et al., 2014; Pospischil et al., 2009; Zhang et al., 2015; 
Craig et al., 2015; Peters et al., 2014; Gratrix et al., 2015; Musil et al., 
2016; Gratrix et al., 2014). Notably, murine GI tract colonization by 
C. muridarum has been shown to influence both infection dynamics 
and pathogenicity in the genital tract, with these effects dependent on 
the sequence of exposure to the pathogen. However, the precise 
mechanisms underlying C. trachomatis colonization of the human gut 
remain poorly understood.

The murine model of C. muridarum infection has been used to 
study chlamydial pathogenesis and has revealed numerous chlamydial 
and host factors required for chlamydial induction or protection of 
hydrosalpinx (Tan et al., 2018; Wang et al., 2020; Wang et al., 2024; 
Wang et al., 2023). Chlamydial plasmid-encoded virulence factors 
essential for infection in the mouse genital tract have been shown to 
play equally critical roles in GI tract colonization (Zhong, 2018; Shao 
et al., 2017; Shao et al., 2017; Shao et al., 2017; Koprivsek et al., 2019). 
The absence of pGP3  in Chlamydia leads to two key deficiencies: 
attenuated genital tract infection and impaired gastrointestinal 
colonization (Liu et al., 2014; Lei et al., 2014; O'Connell et al., 2007; 
Chen et al., 2015). Our previous research revealed that pGP3, an outer 
membrane-associated protein, is crucial for C. muridarum to 
overcome the gastric barrier, thereby enabling persistent colonization 
in the colon (Zhang et al., 2019). Interestingly, when introduced via 
intracolonic inoculation, pGP3-deficient Chlamydia can still colonize 
the colon, suggesting that pGP3 triggers enhanced intestinal barrier 
defense, restricting bacterial dissemination.

Thus, investigating the mechanisms of C. muridarum interaction 
with the GI tract may enhance our understanding of Chlamydia 
pathogenesis. In the current study, we  used a pGP3-deficient 
Chlamydia muridarum-spreading mouse model to determine the 
immunological basis of the intestinal barrier. We reported that mice 
genetically deficient in IL-22 rescued the colonization of pGP3-
deficient C. muridarum following intrajejunal inoculation. Moreover, 
these mice also rescued the colonization of pGP3-deficient 
C. muridarum in the whole gastrointestinal tract following intracolonic 
inoculation on day 14. This suggests that IL-22 is an important factor 
for pGP3-deficient C. muridarum spread from the small intestine to 
the large intestine. Interestingly, IL-22RA1 flox/flox and Villin-cre 
mice rescued the colonization of pGP3-deficient C. muridarum 
following intrajejunal inoculation, suggesting that pGP3 is important 
for chlamydial evasion of intestinal epithelial-specific IL-22 expression. 
Thus, we revealed a novel method for selecting host factors from the 
GI tract, which may also contribute to the mouse genital tract.

2 Materials and methods

2.1 Chlamydial organisms

All Chlamydia muridarum clones used in this study were derived 
from the strain Nigg3 (Genbank accession number CP009760.1). The 

plasmid-free clone CMUT3G5 (GenBank accession# CP006974.1) 
was initially derived from Nigg3 (Lei et al., 2014), which was used for 
transformation with the plasmid pCM: GFP to create CM-pGFP 
(designated as wild type in the current study) or pCM: GFP with a 
premature stop codon in the pgp3 gene to create CM-pGP3S 
(designated as mutant in the current study), as described previously 
(Liu et al., 2014; Liu et al., 2014). The genome and plasmid sequences 
of CM-pGFP and CM-pGP3S were nearly identical, except for a 
premature stop codon in pgp3 in CM-pGP3S. As both were 
transformants, the plasmid copy numbers were similar. Both 
organisms were propagated in HeLa cells and purified as elementary 
bodies (EBs), as described previously (Zhang et al., 2015; Fan et al., 
1998). Aliquots of the purified EBs were stored in SPG buffer 
(220 mM sucrose, 12.5 mM phosphate, and 4 mM L-glutamic acid, 
pH 7.5) at −80 °C until further use.

2.2 Mouse inoculation

Purified C. muridarum EBs were used to infect six-week-old 
C57BL/6 J mice (Shanghai Lingchang Biotechnology Co., Ltd) intra-
jejunum, intra-ileum or intracolon with different inclusion-forming 
units (IFUs) as indicated in individual experiments.

IL-22 knockout mice were purchased from Cyagen: IL-22 knockout 
(KO; C57BL/6JCya-Il22em1/Cya, S-KO-10256) and Il22ra1-flox 
(Il22ra1-flox, S-CKO-07390). Villin-Cre mice were also obtained from 
Cyagen. The mice were inoculated with CM-pGFP (WT) or CM-pGP3S, 
as described below in the text.

Intracolonic inoculation was used to deliver 2 × 105 live IFU 
organisms in 10 μL of SPG buffer to the mouse colon using an 
inoculation tube (NSET, catalog number 60010; ParaTechs Corp., 
Lexington, KY, United States).

Intrajejunal or intraileal inoculation: Mice were anesthetized using 
a mixture of isoflurane and oxygen. Once the mice were unconscious, 
their abdomens were shaved and sterilized with 70% ethanol. A small 
incision (approximately 0.25–0.5 in.) was made in the was created in the 
abdomen using a pair of scissors. The jejunum or ileum was partially 
pulled out of the body cavity using curved forceps. To the jejunum or 
ileum, 2 × 105 IFUs of CM-pGP3S in 50 μL of SPG were inoculated using 
a 1-mL syringe (KDL, Shanghai, China). Care was taken not to remove 
excess intestines from the animal, completely pierce the intestine, or 
inject air bubbles. After the injection, the jejunum was placed back into 
the cavity, and the wound was closed using three to four surgical staples 
(#ACS- KIT, Braintree Scientific, Inc., Braintree, MA). The mice were 
resuscitated by placing them on a warm heating pad and supplying them 
with fresh air.

Note: For example, if the stock titer was 1 × 107 IFU/μL, the stock 
was diluted 1:10 (10 μL + 90 μL SPG buffer) for a stock titer of 1 × 106 
IFU/μl. The stock was diluted 1:50 (20 μL + 980 μL SPG buffer) to a 
final stock titer of 2 × 104 IFU/μL (2 × 105 IFUs per 10 μL).

2.3 Titrating live chlamydial organisms 
recovered from swabs and tissue 
homogenates

To quantify live chlamydial organisms in rectal swabs, each 
swab was soaked in 0.5 mL of SPG, vortexed with glass beads, and 
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the chlamydial organisms released into the supernatants were 
titrated on HeLa cell monolayers in duplicates. Infected cultures 
were processed for immunofluorescence assays as described 
previously (Tang et  al., 2013). Inclusions were counted in five 
random fields per coverslip under a fluorescence microscope. 
Coverslips with fewer than one infectious unit (IFU) per field 
were counted. Coverslips exhibiting cytotoxicity in HeLa cells 
were excluded. The total number of IFUs per swab was calculated 
based on the mean number of IFUs per view, the ratio of the view 
area to that of the well, the dilution factor, and the inoculation 
volume. Where possible, the mean IFU/swab was derived from 
serially diluted duplicate samples for each swab. The total number 
of IFUs/swabs was converted to log10, which was used to calculate 
the mean and standard deviation across the mice in the same 
group at each time point.

To quantify live organisms in mouse organs and tissue 
segments, each organ or tissue segment was transferred to a tube 
containing 0.5–5 mL SPG, depending on the size of the organ. 
Each GI tract was cut into seven segments: stomach, duodenum, 
jejunum, ileum, cecum, colon, and anorectum (rectum). The 
organs and tissue segments were homogenized in cold SPG using 
a 2 mL tissue grinder (cat# K885300-0002, Fisher Scientific, 
Pittsburgh, PA, United  States) or an automatic homogenizer 
(Omni Tissue Homogenizer, TH115; Kennesaw, GA, 
United  States). The homogenates were briefly sonicated and 
centrifuged at 3,000 rpm for 5 min to pellet the remaining debris. 
The supernatants were titrated for live C. muridarum on HeLa 
cells, as described above. The results were expressed as log10 IFUs 
per organ or tissue segment weight.

2.4 Immunofluorescence assay

For immunofluorescence labeling of C. muridarum in HeLa 
cells, a rabbit antibody (R1604, raised with purified C. muridarum 
elementary bodies) was used as the primary antibody, which was 
visualized using goat anti-rabbit IgG conjugated to Cy2 (green, 
cat#111-225-144, Jackson ImmunoResearch Laboratories). The 
DNA dye Hoechst 3328 (blue, Sigma-Aldrich) was used to 
visualize the nuclei. Doubly labeled samples were used to count 
C. muridarum using a fluorescence microscope (MIX60, MshOt) 
with a CCD camera.

2.5 Counting inclusions and calculating 
IFUs

For each well, IFUs from five random views were counted under 
an objective lens using the appropriate magnification and were 
averaged. If one or fewer IFUs per view were found using a 10× 
objective lens, the entire well was considered. To determine the 
number of IFUs contained within the sample, the average number of 
IFUs per view derived from the five views was multiplied by the 
number of views possible in the total well per magnification, dilution, 
and factor reflecting the portion of the sample used for titration 
(Wang et al., 2025). After completing this procedure for each dilution 
in which IFUs were visible, the average number of IFUs was calculated 
and expressed as log10 transformed IFUs for statistical analyses.

2.6 Statistical analysis

The experimental data were analyzed using the Wilcoxon 
rank-sum test to compare the individual tissue types and overall large 
intestinal chlamydial burden. Fisher’s exact test was used to compare 
the frequencies of infection between the groups of mice.

3 Results

3.1 pGP3-deficient Chlamydia muridarum 
failed to spread to large intestine after 
direct delivery into jejunum

We previously showed that the plasmid-encoded genital tract 
virulence factor pGP3 is essential for C. muridarum survival in the 
stomach of the GI tract (Zhang et al., 2019). To further define the 
organisms from which tissue sites are located beyond the large 
intestine to prevent C. muridarum from colonizing the large intestine, 
the different inoculation sites in the mice are shown in Figure 1, and 
we compared live organisms recovered from rectal swabs following 
intrajejunal versus intraileal inoculations (Figure  2). Following 
intrajejunal inoculation, no live organisms were recovered from mice 
inoculated with pGP3-deficient C. muridarum, although wild-type 
C. muridarum colonized the GI tract for the two-month period. 
However, when chlamydial organisms were directly inoculated into 
the ileum, the pGP3-deficient mutant was rescued and colonized the 
GI tract. Mice inoculated with the mutant continued to shed live 
organisms in rectal swabs throughout the two-month period. These 

FIGURE 1

Photograph of the inoculation sites of the mice. Group of mice were 
inoculated with wild type C. muridarum (CM-pGFP) or pGP3-
deficient C. muridarum (CM- pGP3S) following different inoculation 
sites.
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results suggest that pGP3 is required for C. muridarum to spread in 
the large intestine following intrajejunal inoculation.

3.2 IL-22 is an important factor for blocking 
the spread of pGP3-deficient Chlamydia 
muridarum from the small intestine to the 
large intestine

Interleukin-22 (IL-22) is an important cytokine in the intestinal 
environment that is required to maintain intestinal homeostasis 
(Zenewicz et al., 2008; Gunasekera et al., 2020; Pavlidis et al., 2022; 
Huber et al., 2012; Ahlfors et al., 2014; Castleman et al., 2019; Mar 
et al., 2023). Intestinal tuft cells can also induce anti-Salmonella 
responses via NKp46 + ILC3 IL22 (Churchill et  al., 2025). More 
importantly, it activates IL-22 production in ILCs to enhance host 
tissue defense following C. difficile infection (Mears et al., 2025). It 
is important to determine whether the host factor IL-22 is a key 
factor in regulating the spread of pGP3-deficient mutants to the 
large intestine after their direct delivery into the small intestine. 
Therefore, we compared chlamydial colonization in the GI tract of 
mice deficient in IL-22.

Following intrajejunal inoculation, the C. muridarum mutant 
colonized the GI tract of mice deficient in IL-22 (Figure 3A). By day 
14 after inoculation, a significant number of live mutants were 
recovered from the rectal swabs of all IL-22 deficient mice. 
Overcoming host factor killing is necessary for the detection of 
intra-jejunum-inoculated chlamydial organisms in rectal swabs, and 
mice deficient in IL-22 can no longer produce the key host factor 

IL-22 in their small intestine. These observations suggest that IL-22 
regulates the spread of Chlamydia from the small intestine to the 
large intestine. This conclusion is consistent with the observation 
that chlamydial mutant organisms were detected in the large 
intestines of IL-22-deficient mice for at least 56 days post-infection 
(Figure 3B).

We previously demonstrated that pGP3-deficient C. muridarum 
failed to spread to extra-large intestinal tissues in wild-type mice 
after intracolonic inoculation (Zhang et al., 2019). By day 14 after 
intracolonic inoculation in IL-22 deficient mice, the C. muridarum 
mutant was able to spread to the whole GI tract of mice deficient in 
IL-22 (Figure 4). This is consistent with the observation that mice 
deficient in IL-22 rescued pGP3-deficient C. muridarum colonization 
in the large intestine after direct delivery into the small intestine 
(Figure  3). Thus, we  demonstrated that IL-22 is essential for 
preventing the spread of Chlamydia from the small intestine to the 
large intestine.

FIGURE 3

Deficiency in IL-22 rescued the pGP3-deficient C. muridarum 
mutant to colonize the gastrointestinal tract following an intra-
jejunum inoculation. (A) Groups of mice deficient in Interleukin-22 (a 
key cytokine for regulating gut function, IL-22 KO) or without 
deficiency (wild-type C57BL/6J) were intra-jejunum inoculated with 
2 × 105 IFUs of pGP3-deficient C. muridarum. At different time 
points, as shown along the X-axis, mice were monitored for live 
chlamydial organisms in rectal swabs, and the results are expressed 
as Log10 IFUs per swab, as shown along the Y-axis. N = 5 mice in 
each group. Data were obtained from two independent experiments. 
(B) Parallel groups of mice with the same inoculation with pGP3-
deficient mutant C. muridarum were sacrificed on day 56 after 
inoculation, as shown on top of each panel, for monitoring live 
organism recoveries from different gastrointestinal tissues from the 
stomach, duodenum to rectum, as indicated along the X-axis. Live 
organisms are expressed as Log10 IFUs per tissue, as shown along 
the Y-axis. Each group consisted of 3–5 mice, and the data were 
obtained from two independent experiments.

FIGURE 2

The pGP3-deficient C. muridarum mutant is able to colonize the 
gastrointestinal tract following an intraileal but not intrajejunal 
inoculation. Groups of C57BL/6J mice were inoculated with 2 × 105 
inclusion forming units (IFUs) of wild-type C. muridarum (CM-pGFP) 
or pGP3-deficient C. muridarum (CM-pGP3S) either intra-jejunum 
(A) or intra-ileum (B). At different time points, as shown along the 
x-axis, mice were monitored for live chlamydial organism recovery 
from rectal swabs, and the results were expressed as Log10 IFUs per 
swab, as shown along the Y-axis. Each group consisted of 3–5 mice 
and data were obtained from 2 to 3 independent experiments.
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3.3 Intestinal epithelial specific IL-22RA1 
deficient mice is sufficient for rescuing the 
spread of pGP3-deficient C. muridarum 
from small intestine to large intestine

To further determine whether intestinal IL-22RA1 signaling is 
necessary for blocking chlamydial spread, we detected chlamydial 
colonization in the GI tracts of intestinal epithelial-specific IL-22 
knockout mice (IL-22ra1 flox/flox mice were bred with Villin-cre 
mice) (Figure 5). Mice inoculated with the mutant continued to 
shed live organisms in rectal swabs throughout the 1 month period 
(Figure 5A), and the pGP3-deficient mutant could spread to the 
large intestine (cecum and colon) (Figure 5B). These observations 
suggest that intestinal epithelial-specific IL-22RA1 signaling 
regulates the spread of Chlamydia from the small intestine to the 
large intestine.

4 Discussion

Although the obligate intracellular bacterium C. trachomatis is 
a human pathogen of the genital tract, it is frequently detected in 
the GI tract of mice. However, the significance and mechanisms of 
C. trachomatis colonization in the gut remain unknown. Since 
mouse-adapted C. muridarum colonizes the mouse GI tract (Rank 
and Yeruva, 2014; Dai et al., 2016; Perry and Hughes, 1999), when 
a naïve mouse is first exposed to C. muridarum in the GI tract, the 
mouse is orally immunized against subsequent chlamydial 
infections in the extra-gut tissues. Thus, investigating the 
mechanisms of C. muridarum interactions with the GI tract may 
promote our understanding of chlamydial pathogenic mechanisms 
and facilitate the development of oral vaccines against chlamydial 
infections in the genital tract. Therefore, murine models have been 
used to investigate the significance of Chlamydia in the GI tract of 
these animals.

These interesting models have motivated investigations of the 
mechanisms of C. muridarum-mouse gut interactions using various 
methods, such as C. muridarum mutants, knockout mice, or blockade. 
Using the failure of the CM-pGP3S mutant to spread from the small 
intestine to the large intestine, we determined that IL-22 and intestinal 
epithelial-specific IL-22RA1 signaling inhibited CM-pGP3S spread. 
First, IL-22 knockout mice showed significant spread of CMpGP3S 
from the small intestine to the large intestine following intrajejunal 
inoculation. Second, CM-pGP3S did not block the spread from the 
large intestine to the small intestine in IL-22 knockout mice following 
intracolonic inoculation. Thus, IL-22 may play a critical role in 
regulating the spread of bacteria into the large intestine. Finally, the 
intestinal epithelial-specific IL-22RA1 signaling regulation of 
chlamydial spreading correlated with intestinal epithelial-specific 
IL-22RA1 knockout mice rescued from CM-pGP3S spread following 
intrajejunal inoculation.

These observations led us to hypothesize that CM-pGP3S activates 
an immune response to block its spread to the large intestine. The 
current study revealed that intestinal epithelial IL-22RA1 signaling is 
a critical component of the CMpGP3S-activated barrier. However, the 
precise relationship between intestinal epithelial IL-22RA1 signaling 
and CM-pGP3S remains unclear. However, some questions remain 
unanswered. Which antimicrobial peptide production (CRAMP) by 

FIGURE 4

Intracolonically inoculated the pGP3-deficient C. muridarum is able to 
spread to extra-large intestine tissues in mice deficient in IL-22. 
Groups of mice deficient in Interleukin-22 or without deficiency (wild-
type C57BL/6J) were inoculated with 2 × 105 IFUs of pGP3-deficient 
C. muridarum intracolonically. Mice were sacrificed on day 14 after 
inoculation to monitor live organism recoveries from different 
gastrointestinal tissues from stomach, duodenum to rectum, as 
indicated along the X-axis. The live organisms were expressed as 
Log10 IFUs per tissue shown along the Y-axis. Each group has 3 to 5 
mice and the data was obtained from 2 independent experiments.

FIGURE 5

Intestinal epithelial-specific IL-22RA1 knockout mouse rescued the 
pGP3-deficient C. muridarum colonization following intra-jejunum 
inoculation. (A) Groups of Intestinal epithelial-specific IL-22RA1 
knockout mice (IL-22RA1 flox/flox mice were bred with Villin-cre 
mice) or control (IL-22 flox/flox mice) were intra-jejunum inoculated 
with 2 × 105 IFUs of pGP3-deficient C. muridarum. At different time 
points as shown along the X-axis, mice were monitored for live 
chlamydial organisms in rectal swabs and the results were expressed 
as Log10 IFUs per swab as shown along the Y-axis. N = 5 mice for 
each group. The data was obtained from 2 independent experiments. 
(B) Parallel groups of the same mice with the same inoculation with 
pGP3-deficient mutant C. muridarum were sacrificed on day 28 after 
inoculation, as shown on top of each panel, to monitor live organism 
recoveries from different gastrointestinal tissues from the stomach, 
duodenum to the rectum, as indicated along the X-axis. The live 
organisms were expressed as Log10 IFUs per tissue shown along the 
Y-axis. Each group has 3 to 5 mice and the data was obtained from 2 
independent experiments.

https://doi.org/10.3389/fmicb.2025.1647731
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tian et al.� 10.3389/fmicb.2025.1647731

Frontiers in Microbiology 06 frontiersin.org

IL-22 or IL-22RA1 signal-mediated immunity is induced by 
CM-pGP3S? Which microbiome-mediated immunity blocks 
CMpGP3S spread via IL-22 or IL-22RA1 signals?

Although, knowledge gained from mouse models may not 
be applicable to C. trachomatis infections in humans. Nevertheless, 
the mechanistic information obtained from C. muridarum 
interactions with mouse mucosal tissues may still be informative 
for understanding how C. trachomatis interacts with human 
mucosal tissues in the genital tract (Zhao et al., 2015). It is worth 
noting that the focus of the current study was on C. muridarum 
spread along the mouse gut. Clearly, more mechanisms are 
required to investigate the spread of chlamydial organisms from 
the small intestine to the large intestine.

5 Statistics analyses

The Wilcoxon rank-sum test was used to compare the number of 
live organisms in the IFUs between different samples.
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