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The Uptake Signal Sequence (USS) receptor, which facilitates the acquisition of 
homologous DNA by natural transformation in Haemophilus influenzae and other 
members of the Pasteurellaceae, remains unknown. Through discriminating functional 
gene ontology assessment, cellular localization predictions, and deep-learning 
structural modeling of protein-DNA complexes, prepilin peptidase-dependent 
protein A (PpdA) was identified as the strongest USS receptor candidate in different 
Pasteurellaceae family members with divergent USS specificities. Pasteurellaceae 
PpdA (PpdAPast) was the only orthogroup modeled by AlphaFold3 (AF3) to form 
specific complexes with USS significantly better than complexes with sequence-
scrambled versions of USS. Further analyses of PpdA-USS complexes using geometric 
deep learning protein-DNA sequence specificity predictions and coevolution 
analyses were found to further support PpdA as the USS receptor candidate 
in 10 different Pasteurellaceae enriched with divergent USS dialects. PpdAPast 
was predicted to possess USS-binding specificity by DeepPBS and was found to 
strongly coevolve with USS relative to other orthogroups. PpdAPast was found to 
share both structural features and functionally involved electropositive residues 
with other DNA-binding minor pilins and the largely unexplored Escherichia coli/
Enterobacteriaceae PpdA ortholog. One robust DNA-binding mode was identified 
with two alternative and opposite USS orientations. Combining modeled PpdA-USS 
proximity and coevolved signals revealed how the C-terminal region of PpdAPast 
fitted one of two 180° alternative USS orientations. Root Mean Square Deviations 
(RMSDs) from molecular dynamics simulations of PpdAPast USS complexes found 
reliable structures under 3 Å in moderately stable trajectories. The ppdA gene, 
previously documented as essential for transformation and constituting part of 
the competence regulon in Haemophilus influenzae and E. coli, was found in a 
conserved genomic location with conserved operonic organization across the 
Pasteurellaceae. Together, the in silico results of this study and the documented 
knock out phenotype make a strong case for PpdAPast as the USS-receptor and 
provide future directions for recombinant PpdAPast assays and in vivo experiments 
with mutants. Here, we propose ComN for use with these PpdAPast orthologs in 
compliance with the previously assigned gene name and the predicted central 
role in competence as a DNA receptor with USS specificity.

KEYWORDS

Uptake Signal Sequence, USS, prepilin peptidase-dependent protein A, PpdA, 
DNA-binding protein, PulG/HofG, competence protein N, ComN

OPEN ACCESS

EDITED BY

Minu Chaudhuri,  
Meharry Medical College, United States

REVIEWED BY

Annegret Wilde,  
University of Freiburg, Germany
Edgar D. Páez-Pérez,  
Universidad Autonoma de San Luis Potosí, 
Mexico

*CORRESPONDENCE

Ole Herman Ambur  
 olam@oslomet.no

RECEIVED 15 June 2025
ACCEPTED 02 October 2025
PUBLISHED 31 October 2025

CITATION

Helsem SA, Alfsnes K, Frye SA, 
Løvestad AH and Ambur OH (2025) 
Type IV minor pilin ComN predicted the 
USS-receptor in Pasteurellaceae.
Front. Microbiol. 16:1647523.
doi: 10.3389/fmicb.2025.1647523

COPYRIGHT

© 2025 Helsem, Alfsnes, Frye, Løvestad and 
Ambur. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  31 October 2025
DOI  10.3389/fmicb.2025.1647523

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1647523&domain=pdf&date_stamp=2025-10-31
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1647523/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1647523/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1647523/full
mailto:olam@oslomet.no
https://doi.org/10.3389/fmicb.2025.1647523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1647523


Helsem et al.� 10.3389/fmicb.2025.1647523

Frontiers in Microbiology 02 frontiersin.org

Introduction

Deep-learning protein structure prediction has revolutionized 
biological research in recent years, an impact that earned the 2024 
Nobel Prize in Chemistry. The development of new tools and 
benchmarking studies involving crystallographic detail has allowed 
the field to obtain better functional understanding from predicted 3D 
structures, although models cannot represent ground truths (Varadi 
et al., 2025). Recently, tools that model interactions between proteins 
and ligands, such as DNA/RNA, have been developed and applied to 
address specific biological phenomena. Three such tools, AlphaFold3 
(AF3), RosettaFold2NA, and Chai-1, have been developed to model 
protein-DNA complexes (Abramson et al., 2024; Baek et al., 2024; 
Krishna et al., 2024). The input data consists of protein and DNA 
sequences, which are linear amino acid and nucleotide sequences, 
respectively, that are folded in learned statistical pattern recognition 
algorithms. In a previous study, these three AI tools were applied to 
study modeled complexes of DNA and the minor type IV pilin ComP, 
which is the DNA Uptake Sequence (DUS)-specific protein in the 
bacterial Neisseriaceae family (Helsem et al., 2025). Several deep-
learning algorithms have recently been developed to address a general 
need to go from protein-DNA complex structure modeling to 
DNA-binding specificity prediction. The Deep Predictor of Binding 
Specificity (DeepPBS) takes an approach that combines geometric 
convolution predictions of protein and DNA structures (Mitra et al., 
2024). DeepPBS input data can be either experimentally generated, 
simulated, or predicted structures. This approach was cross-validated 
and benchmarked for a range of protein families (Mitra et al., 2024).

Natural transformation is the uptake and homologous 
recombination of DNA from the extracellular environment, a feature 
of many bacterial species (Niu et  al., 2025). In contrast to other 
horizontal gene transfer mechanisms, such as conjugation and 
transduction, evolved to proliferate through the introduction of novel 
DNA and traits to bacterial cells, competence for transformation is an 
evolved trait of the recipient cell. Transformation is limited by different 
molecular mechanisms that bias DNA uptake to involve homologous 
DNA, which finally concludes the transformation process by 
homologous recombination and allelic replacement (Ambur et al., 
2016). Competence for transformation is also a tightly regulated 
physiological state in most characterized bacteria (Dubnau and 
Blokesch, 2019). A unifying feature of the DNA uptake step in the 
transformation process of most Gram-negative species involves type 
IV pili (T4P), which are used to capture extracellular DNA (Dubnau 
and Blokesch, 2019). Current models show how DNA binds to the 
protruding pilus and is pulled onto the plasma membrane together 
with the depolymerizing and retracting pilus. Passage of DNA through 
the plasma membrane occurs in a single-stranded form through the 
transmembrane ComEC pore, conserved in both Gram-positive and 
Gram-negative bacteria. Once in the cytoplasm, DNA is processed by 
DprA, and homologous recombination is facilitated by RecA, a 
ubiquitous protein found in both bacteria and eukaryotes involved in 
DNA repair and allelic reshuffling. Extracellular DNA-binding may 
be either specific or nonspecific. Neisseriaceae (ꞵ-proteobacteria) and 
Pasteurellaceae (γ-proteobacteria) are the only families known to 
discriminate homologous from heterologous DNA at this initial step 
in the transformation process by specific binding to short (ca. 9–12 nt) 
DNA motifs, which are highly enriched in respective genomes (Sisco 
and Smith, 1979; Deich and Smith, 1980; Danner et  al., 1980; 

Goodman and Scocca, 1988; Elkins et  al., 1991; Mell et  al., 2012; 
Treangen et al., 2008). Notable human pathogens in these families are 
Neisseria gonorrhoeae and Neisseria meningitidis of the Neisseriaceae, 
H. influenzae, and Pasteurella multocida of the Pasteurellaceae. The 
physiological state of competence for transformation is constitutive in 
Neisseria, whereas it is induced by cyclic AMP (cAMP) in a 
competence activator Sxy-dependent manner in H. influenzae and 
other bacteria (Dorocicz et al., 1993; Chandler, 1992). The induction 
of expression of 17 Sxy-dependent cyclic AMP receptor protein site-
regulated (CRP-S) genes in H. influenzae is required for transformation 
(Sinha et al., 2020). The CRP-S regulon in H. influenzae encompasses 
26 genes, many of which have well-characterized functions in the 
transformation process from DNA uptake to recombination. In the 
CRP-S regulon, the comNOPQ operon encoding four proteins of 
unknown functions, unknown cellular location(s), and without 
identified homologs, is required for DNA uptake and transformation 
in H. influenzae using in-frame gene deletions (Sinha et al., 2020). A 
prepilin peptidase signal was annotated to ComN and signal peptidase 
I signals in the ComOPQ proteins (Sinha et al., 2020).

The short DNA motifs recognized by Pasteurellaceae and 
Neisseriaceae are named Uptake Signal Sequence (USS) and DNA 
Uptake Sequences (DUS), respectively. USS and DUS are highly 
dissimilar in sequence motif and are therefore considered to have 
evolved independently and convergently to achieve the same means, 
i.e., to bias transformation to involve homologous DNA (Mell et al., 
2012). Characteristic USS/DUS containing genomes harbor hundreds 
or thousands of these motifs, which are often organized as inverted 
repeats with secondary functions to DNA uptake as rho-independent 
transcriptional terminators, yet the presence of a single motif is 
sufficient to increase transformation rates (Mell et al., 2012; Ambur 
et al., 2007). The DUS and USS motifs have both evolved into distinct 
dialects/variants or types within each bacterial family and may differ 
by a few nucleotides from each other, yet with their respective 
transformation and uptake-essential inner cores conserved (Frye 
et al., 2013; Mell et al., 2012). The inner consistent core sequences are 
5′-CTG-3′ in the Neisseriaceae DUS and 5′-GCGG-3′ in the 
Pasteurellaceae USS (Frye et al., 2013; Mell et al., 2012). A total of 
eight dialects have been described in the Neisseriaceae (AT-DUS, 
AG-DUS, AG-mucDUS, AG-eikDUS, AG-kingDUS, AA-king3 DUS, 
TG-wadDUS, and AG-simDUS) and two USS-types in the 
Pasteurellaceae classified as Haemophilus-type Hin-USS 
(5′-AAGTGCGGT-3′) and Actinobacillus pleuropneumoniae-type Apl-
USS (5′-ACAAGCGGT-3′) (dialect differences underlined and USS 
inner core in bold) (Frye et al., 2013; Mell et al., 2012). Both DUS and 
USS dialects adhere to whole-genome phylogenies with their 
respective genomic enrichments within defined subclades (Frye et al., 
2013; Mell et al., 2012; Redfield et al., 2006). DUS are confined to 
continuous motifs extending up to about 13 nucleotides in length, 
whereas the USS are discontinuous and are characterized by the 9 nt 
cores and two less conserved and discontinuous downstream AT-rich 
regions, making the USS motifs extend up to 32 nucleotides (Redfield 
et al., 2006). These AT-rich regions, spaced at approximately two full 
helical turns downstream of USS, are anticipated to contribute to DNA 
melting and facilitate kinking of the DNA helix in the USS inner core 
sequence to accommodate DNA entry through the outer membrane 
pore (Redfield et al., 2006).

The DUS-binding protein is the type IV minor pilin ComP 
(Cehovin et al., 2013; Berry et al., 2016; Berry et al., 2019), whereas 
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the USS-specific protein remains unidentified. Since the 
components of the type IV pilus (T4P) machinery are conserved 
between Neisseriaceae and the Pasteurellaceae, it has been 
proposed that candidates for USS-specificity may be found at the 
T4P tip or in the many surface-exposed proteins (Mell et al., 2012). 
Only one targeted search for the USS-receptor has previously been 
undertaken, which excluded ComE1 as a candidate in H. influenzae 
(Molnar, 2004). Genome-wide sequencing maps of DNA uptake in 
H. influenzae demonstrated that USS biases the DNA uptake step, 
which is initiated by extracellular DNA-binding (Mora et al., 2020). 
Support for the general involvement of minor type IV pilins in 
transformation (specific and nonspecific) was found in the 
γ-Proteobacterium Legionella pneumophila (Braus et  al., 2022). 
Here, the minor type IV pilin FimT was shown to be important for 
DNA uptake in L. pneumophila, as well as for DNA-binding in 
Pseudomonas aeruginosa and Xanthomonas campestris (Braus et al., 
2022). FimT orthologs were also identified across a range of 
γ-proteobacteria, and particularly common FimT representatives 
were additionally identified in Xanthomonadales, Alteromonadales, 
and Pseudomonadales (Braus et al., 2022). Like ComP (Cehovin 
et al., 2013), the 3D structure of FimT displays an electropositive 
stripe, which was found to be associated with DNA-binding in 
electromobility shift (EMSA) and chemical shift perturbation 

(CSP) assays (Braus et al., 2022). The existence of a DNA-binding 
receptor on the H. influenzae surface was anticipated more than 
half a century ago (Scocca et  al., 1974). This study aimed to 
comprehensively explore USS-receptor candidates using a 
structural modeling approach involving the latest deep-
learning tools.

Materials and methods

The search for USS-receptor candidates was initiated by 
downloading all available Pasteurellaceae genomes from NCBI in 
FASTA/GFF3 format, as outlined in Figure 1. A list of confidence 
metrics in protein and protein-DNA modeling, along with the 
corresponding abbreviations used, is listed in Table 1.

eggNOG-mapper and STRING - 
discriminating unlikely USS receptor 
candidate proteins

eggNOG-mapper v2.1.12 (Cantalapiedra et al., 2021; Huerta-
Cepas et al., 2019) was used to assign all proteins in the H. influenzae 

FIGURE 1

Methodological pipeline in the study. Starting with the download of all Pasteurellaceae genomes, the study takes two connected routes, one leading to 
coevolution analysis and the other to protein-DNA structural modeling and DNA-binding specificity predictions. Outputs from the yellow boxes are 
preparatory outputs reported in the Supporting Information, whereas the gray boxes are results reported in the Results section. SP, Signal peptides; TM, 
Transmembrane helices. Red letters refer to analysis output/input.
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Rd. proteome to orthologous groups in the eggNOG database 
(Figure 1). Diamond v. 2.1.10 (Buchfink et al., 2021) was employed 
as the sequence search aligner, set to ultra-sensitive mode to 
maximize homolog retention. The option to annotate with 
experimental and non-electronic (--all) Gene Ontology (GO) 
evidence was used to ensure comprehensive functional classification. 
To save computational time and optimize the accuracy of annotations, 
the parameters tax_scope and tax_scope_mode were set to 
Gammaproteobacteria and Bacteria, respectively. The output was 
then screened and filtered, applying GO terms and functional 
descriptions considered relevant to USS receptor function, listed in 
Supplementary Table S1.

This annotated eggNOG output contained functional annotations 
for 296 H. influenzae Rd. proteins, which were then queried against 
the STRING database using an in-house script1 to retrieve further 
functional annotations and top-ranked interaction partners 
(Supplementary Table S2).

1  https://github.com/stianale/USS-receptor

fastANI and OrthoFinder

To identify orthologs of USS receptor candidate proteins, fastANI 
v. 1.34 (Jain et al., 2018) was used to calculate the average nucleotide 
identity (ANI) across all available (N = 756) Pasteurellaceae genomes 
as of December 4, 2024, using the many-to-many approach as per 
instructions in the fastANI GitHub repo.2 Using an in-house script, 
genomes were clustered together based on a minimum reciprocal ANI 
of 98%, and for each cluster, one representative genome for each 
species was retained, with 150 genomes remaining for downstream 
analysis. OrthoFinder v. 3.0.1b1 (Emms and Kelly, 2019) was then 
used to perform orthology detection for this dataset using Diamond 
v. 2.1.10 (Buchfink et al., 2021) as the sequence search engine and the 
option to infer gene trees from MAFFT v. 7.525 (Katoh, 2002; Katoh 
and Standley, 2013) sequence alignments. The resulting data was 
referred to as the OrthoFinder dataset (OD), comprising 293 
orthogroups. Accession numbers for the OD are listed in 

2  https://github.com/ParBLiSS/FastANI

TABLE 1  Confidence metrics in protein and protein-DNA modeling and abbreviations.

Metrics and abbreviations Explanations

ipTM

Predicted interface template modeling score

Confidence range 0–1, where the range >0.6 was used here to determine potential DNA-binding properties of 

different proteins/orthogroups. Significant differences between PpdAUSS and PpdAScr are also reported.

PAE

Predicted aligned error

Continuous variable with unit Ångstroms (Å); lower values indicate less error and higher confidence in 

structure. Significant differences between PpdAUSS and PpdAScr are reported.

pLDDT

Predicted local distance difference test

Continuous variable with range 0–100, disulfide bridge where values >70 generally are considered confident 

(protein backbone usually correct, local errors possible). Significant differences between PpdAUSS and PpdAScr 

are reported.

CPPM

Chain pair PAE minimum

A measure used to distinguish probable DNA binders from non-binders in interactions between protein and 

DNA chains. Significant differences between PpdAUSS and PpdAScr are reported.

DockQ Continuous quality measure of similarity with confidence range 0–1 for docking models contained in two 

different PDB/mmCIF files.

RMSD

Root mean square deviation of atomic positions

A structural difference measure in Å units used here to compare structural differences over time relative to 

input structure in GROMACS.

1-RMSD

One minus RMSD

A structural similarity measure in Å units used here to compare structural similarities of PpdAUSS complexes 

over time in GROMACS relative to input structure.

AF and AF3

AlphaFold and AlphaFold3

Protein structure modeling algorithm and Protein-ligand (here DNA) structure modeling algorithm

OD

OrthoFinder dataset

Comprising 293 orthogroups listed in Supplementary Table S2, identified by Orthofinder in 756 

Pasteurellaceae genomes

73O

73 orthogroups

Part of the OD modeled in AF3 comprises 73 orthogroups

Φc

Cramér’s Phi

Range 0–1. A measure of association between two categorical variables, which here were single pairwise 

positions in protein and eUSS alignments used in co-evolution assessment

ΦC factor

Cramérs Phi factor

Continuous variable denoting the total number of significant ΦC values divided by the length of the orthogroup 

sequence

MI

Mutual information

Continuous variable in miBIO scoring output with values for pairwise position associations used here across 

orthogroup alignments and eUSS

MI factor

Mutual information factor

Number of positive MI values divided by the length of the sequences in the orthogroup

eUSS

Extended USS

The two extended USS dialects with 9-mer core USS in bold and dialect differences underlined: eHin-USS 

5′-AAAGTGCGGTCAATTTT-3′ eApl-USS 5′-AACAAGCGGTCAAATTT-3′
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Supplementary Table S2. USS receptor candidacy was then assessed 
and filtered based on (i) functional relevance in eggNOG and STRING 
annotations and (ii) orthogroup coverage (number of OD genomes 
with ortholog present) of at least 90% in the OD. After applying these 
filters, the final number of USS receptor candidates was reduced to 73 
proteins (73O), as highlighted in Supplementary Table S2, while 218 
of the OD proteins were deemed unlikely to be the USS receptor.

DeepTMHMM, AlphaFold3, and DeepPBS

DeepTMHMM is a deep-learning protein language model-based 
tool that predicts the topology of transmembrane proteins (Hallgren 
et  al., 2022) and provides information that can educate the 
understanding of the cellular localization of proteins. An earlier 
version of DeepTMHMM (TMHMM v. 2.0) (Sonnhammer et al., 
1998; Krogh et  al., 2001) was also previously used to focus the 
USS-receptor search for cell surface-exposed proteins (Molnar, 2004). 
DeepTMHMM v. 1.0.24 was used here to predict the cellular 
localization of orthologs from 10 selected species represented in the 
OD for the USS candidates listed in Supplementary Table S2, each 
highly enriched in Hin-USS or Apl-USS. The 10 species were Hin-USS 
enriched species Haemophilus influenzae Rd., Aggregatibacter sp. oral 
taxon 513, Aggregatibacter actinomycetemcomitans strain 31S, 
Pasteurella multocida strain NCTC8282, Pasteurellaceae bacterium 
Orientalotternb1, and Apl-USS enriched species Mannheimia 
succiniciproducens strain MBEL55E, Mannheimia bovis strain 39324S-
11, Actinobacillus equuli subsp. haemolyticus strain 3524, 
Actinobacillus lignieresii strain NCTC4189, and Frederiksenia canicola 
strain HPA 2 (highlighted in Supplementary Table S2 with 
USS-counts). Since USS-binding takes place before passage of the 
outer membrane into a DNase-protected stage (Mora et al., 2020) and 
current natural transformation models show extracellular 
DNA-binding (Dubnau and Blokesch, 2019). We were interested in 
domains predicted to face the exterior environment. The 
DeepTMHMM predictions were thus used to guide modeling of 
orthologous protein domains with DNA in AF3. When DeepTMHMM 
predicted a single extracellular domain for an ortholog, this domain 
was selected for AF3 modeling. In cases where an ortholog was 
predicted with multiple extracellular domains, or the extracellular 
domain in single-domain proteins was shorter than 33 residues, well 
below the limit of known functional domains (Jones et al., 1998). The 
full-length protein sequences were used for AF3 modeling.

The 73 orthologous proteins and domains (73O) were then 
modeled in AF3 together with the species’ dominant 9-mer USS 
dialect (orthogroupUSS) and scrambled forms of the USS dialect 
(orthogroupscr), each running a minimum of 20 replicates with 
different seeds. The reasons for doing this were two-fold: 1. To 
discriminate on modeling robustness, expecting higher confidence 
metrics for the true USS receptor relative to other orthogroups. 2. To 
discriminate on modeled USS-binding specificity, expecting 
statistically significantly higher confidence metrics for orthogroupUSS 
predictions than orthogroupscr predictions for the true USS receptor 
compared to other orthogroups. For the AF3 output models, an 
interface predicted Template Modeling (ipTM) range of 0.6 < = 1 
(ipTMr) was used to determine potential DNA-binding properties of 
proteins. Furthermore, we ran ipTM, Predicted Aligned Error (PAE), 
Chain Pair PAE minimum (CPPM), and the predicted Local Distance 

Difference Test (pLDDT). Wilcoxon rank sum tests on orthogroupUSS 
vs. orthogroupscr results for predictions within ipTMr as previously 
described (Helsem et al., 2025). Based on the strength of interactions 
between the proteins and the DNA as measured by the lower cut-off 
ipTM value of 0.6 (Section 3: Interpreting results from AlphaFold 
server, n.d.), as well as a lower predicted aligned error (PAE) for 
orthogroupUSS compared to orthogroupscr, we identified the strongest 
USS-specific binding orthogroup candidate to be prepilin peptidase 
dependent protein A (PpdA). Different names assigned to PpdA in 
H. influenzae Rd. were Uncharacterized protein HI0938 (Swiss-Prot), 
pilus assembly FimT family protein (RefSeq), prepilin-type cleavage/
methylation domain-containing protein (RefSeq), type II secretion 
system protein (INSDC), type II secretion system GspH family protein 
(INSDC), PulG (VanWagoner et al., 2004), and Tfp pilus assembly 
protein FimT/FimU (INSDC). The H. influenzae Rd. gene HI0938 had 
previously been designated as comN (Molnar, 2004).

DockQ (Mirabello and Wallner, 2024), a measure of similarity 
quality, as calculated for pairwise orthogroupUSS top models (ipTM) 
for all 10 modeled Pasteurellaceae species. Previously, a graph-edge 
method was used to place models in clusters where all members have 
reciprocal DockQ values > = 0.490. Using 0.490 as a lower DockQ 
threshold instead of 0.8 was a good compromise for cluster size and 
number, which we wanted to increase and decrease, respectively. No 
models were permitted to be allocated in multiple clusters. For each 
species, the models were superimposed on the largest clusters to the 
α-carbons and visualized in overlays using PyMOL v. 3.0.0 (Mitra 
et  al., 2024) Open Source (Molecular Graphics System, 
Schrödinger, LLC).

We explored whether the geometric deep-learning algorithm, 
DeepPBS v. 1.0 (Mitra et al., 2024), could predict the DNA-binding 
specificity of the AF3-predicted USS receptor to match the USS motif 
across distinct Pasteurellaceae family orthologs. From a protein 
structure, DeepPBS aggregates the atom environment (type, charge, 
radius), which is laid upon a symmetrized DNA helix structure 
(sym-helix) to which a bipartite geometric convolution is made. This 
overall convolution is informed by DNA groove and DNA shape 
readouts consisting of major and minor groove convolutions (groove 
readout, i.e., not base readout) and DNA backbone sugar and 
phosphate convolutions (shape readout). We ran DeepPBS using the 
default module, which considers shape and groove properties of the 
DNA (“both readout”) without introducing any DNA-sequence bias. 
We reasoned that if this approach predicted binding specificity to 
match the two different USS sequences (Hin-USS and Apl-USS), it 
would provide additional support for the AF3 modeling. Assuming 
that the DNA-binding specificity of the USS-receptor would 
be reflected as an evolutionary trace in the genomic conservation of 
each nucleotide in the USS, DeepPBS predictions and sequence logos 
of genomic USS conservation were compared. The sequence logos 
were generated as devised by Redfield et  al. (2006), allowing one 
mismatch to the 9-mer USS. Finding correlations between USS 
conservation and DeepPBS predicted specificity could further 
establish a functional connection between predicted specificity and 
the existing genomic USS. Finally, in a series of negative control 
experiments, we  explored whether DeepPBS could predict any 
DNA-position relative nucleotide preference de novo using modeled 
PpdAScr to suggest nucleotide biases.

DeepPBS outputs probability distributions of the four nucleotides 
in each position of one DNA strand (Watson) of the input 
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protein-DNA complex, heavy-atom relative importance scores for the 
protein, and a nucleotide binding-specificity plot for an input 
protein-DNA complex. The mean predicted nucleotide probabilities 
at each USS position from 10 USS-receptor candidates were calculated 
separately, and the outputs were combined according to USS-dialect 
(Hin-USS and Apl-USS). One-sample t-tests were carried out to check 
for mean predicted nucleotide probabilities significantly deviating 
from 0.25 (random chance for any nucleotide) at each USS position. 
Ensembles of DeepPBS nucleotide binding-specificity plots were 
animated by first converting SVG to PNG using Inkscape v. 1.4-dev 
(Inkscape Project, version 1.4)3 and then concatenating PNGs to GIF 
format using ImageMagick v. 6.9.12–98 (ImageMagick ISLL) 
(Supplementary Videos S1, S2).

USS statistics, extended USS, and 
coevolution analysis

To inform the structural modeling, prediction of sequence-
specificity, and coevolution analyses, the per-genome numbers of Hin-
USS and Apl-USS of all genomes represented in OD were extracted 
using SeqKit v. 2.3.0 (Shen et al., 2016) and corrected for genome size 
(USS counts/Mb) (Supplementary Table S3). For structural modeling 
and coevolution analysis specifically, we widened the 9-mer USS to 
the 17-mer extended USS (eUSS), extending the USS one position 
upstream and seven positions downstream into less conserved, yet 
potentially evolutionarily informative regions (Table 1). Individual 
nucleotide positions in the eUSS were numbered 1–17. The genome-
specific eUSS were calculated from an alignment of all genomic 
occurrences of the dominant 9-mer USS (Hin-USS/Apl-USS). 
Regarding specific orthogroup-eUSS pairwise positions, only the 
eUSS positions in the alignment that were variable had the potential 
to detect coevolved pairs in the coevolution analyses (see below). eUSS 
positions 2, 5–9, and 15–16 are invariant in the two USS dialects and 
hence not informative.

Pasteurellaceae genomes statistically overrepresented in either 
USS dialect were considered informative for the orthogroup-USS 
coevolution analysis. Thus, enrichment statistics for the USS dialects 
were calculated for all 150 source genomes for the OD 
(Supplementary Table S3). A Markov model of order 4 was used, 
following the recommendations in Davidsen (2004), although we used 
9-mers instead of 10-mers. All 150 source genomes for OD were found 
to show an overrepresentation of either Hin-USS or Apl-USS to 
variable extents (from 31.34/Mb to 913.03/Mb, as shown in 
Supplementary Table S3) and were included in the coevolution 
analysis. Multiple sequence alignments (MSA) for the 73 AF3 modeled 
orthogroups (73O) were compared to MSAs of the calculated eUSS 
(Watson strand) systematically, using two different approaches 
as follows.

Cramér’s Φ (ΦC) was calculated for pairwise sites across 
orthogroup alignments and eUSS. Bonferroni correction of p-values 
was applied to account for multiple testing. Only the source genomes 
for OD having orthologs in each respective orthogroup were included 
in the calculation of ΦC. For orthogroups containing multiple copies 

3  https://inkscape.org/

for a species (paralogs), underscores were appended to the genome 
accession in both the orthogroup and eUSS MSAs to distinguish 
paralog 1, 2, etc. ΦC was calculated for all pairwise positions in the two 
alignments as a measure of coevolution between the orthogroups and 
eUSS. Values ranged from 0 for no correlation to 1 for perfect 
correlation. All correlations between eUSS and PpdA were recorded, 
and the three USS-dialect-specific positions (3–5 of eUSS) were 
traced specifically.

miBio (Camenares, 2020)4 was employed to calculate mutual 
information (MI) values across pairwise positions across orthogroup 
alignments (MSAs) and eUSS. The option to shuffle the identities of 
the residues and subtract shuffled MI values from the original ones was 
applied. As miBio allows for customization of grouping of residues, 
we used a custom grouping pairing amino acids D/E, K/R, and N/Q, 
because these have been shown to have comparable nucleotide-binding 
preferences in protein-DNA complexes (Luscombe, 2001; Hossain 
et al., 2024), as well as treating gaps as separate, valid states. Finally, the 
mean MI was calculated for the resulting positive MI values of each 
orthogroup. All MI correlations between eUSS and PpdA were 
recorded, and the three USS-dialect-specific positions (3–5 of eUSS) 
were compared to the corresponding Φc values.

Assessment of PpdA-(e)USS binding modes

To further investigate binding modes of PpdA(e)USS (both PpdAUSS 
and PpdAeUSS), we used AF3 to model (e)USS in complex with PpdA 
from the rest of the 150 genomes represented in OD, having at least 
300 USS per Mb genome size, to avoid giving weight to PpdAs from 
species that may have lost USS-specificity or impose very weak USS 
DNA-binding biases (Supplementary Table S3). At this point, since 
we had insight into the structure and pilin-associated function of 
PpdA, we N-terminally trimmed their sequences, as in the study of 
recombinantly expressed ComP (Berry et al., 2016), aligned on the 
DeepTMHMM prediction for H. influenzae Rd., as this also saved 
computational time. Subsequently, we  clustered the top-ranking 
models based on a maximum l-RMSD <10, using the graph-edge 
clustering method previously used for DockQ, mentioned above. 
We omitted the use of DockQ here and instead used l-RMSD, since 
the term “fraction of native/common contacts” used as part of the 
DockQ measure is meaningless across homologous proteins/DNAs 
with differing position-wise residues.

Molecular dynamics simulation—
GROMACS

Three of the models from the binding mode assessment step were 
used as input in GROMACS (Groningen Machine for Chemical 
Simulations) v. 2025.0, which includes CUDA-GPU support (Páll 
et al., 2015; Abraham et al., 2015) for molecular dynamics simulation 
(MD), to study the stability and development of the respective binding 
modes. All molecular dynamics simulations were performed using the 
same parameter values, running for a minimum of 300 ns in a 

4  https://bioinformatics.org/aces/miBio
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rhombic dodecahedron water box, using the AMBER 
ff14SB + parmbsc1 (Ivani et  al., 2016) force field, the tip3p water 
model for solvent, and adding necessary ions to neutralize the charge 
of the protein-DNA complexes, using a NaCl concentration of 
0.15 M. The temperature and reference pressure were set to 300 K and 
1 bar, respectively. The simulation trajectories were visually inspected 
using the IPython widget NGLview (Nguyen et al., 2018), and all 
frames (default interval of 5 ps) of the last ns of the MD simulation 
were concatenated into a single PDB file. Furthermore, we  used 
GROMACS’ in-built RMSD calculation to assess the structural 
similarity between all frames in the MD simulation relative to the 
input structure.

Electrostatic maps

We used the Adaptive Poisson-Boltzmann Solver (APBS) (Baker 
et  al., 2024) to calculate electrostatic maps for the PpdAs of the 
top-ranking AF3 model from the largest PpdAUSS cluster and the 
top-ranking models from the two largest clusters for PpdAeUSS, and to 
visualize the maps in PyMOL v. 3.0.0 (Molecular Graphics System, 
Schrödinger, LLC). This was also done for the last GROMACS frames 
for each of these three cases. Additionally, we  attach the APBS-
generated electrostatic maps for Escherichia coli PpdA (PpdAEcol) and 
L. pneumophila FimT (FimTLpne) (DNA not shown). For FimTLpne, 
we observed large differences between the local and AF3 web server5 
outputs and were able to reconcile these differences by locally running 
the jackhmmer, using v. 3.4 (Potter et al., 2018) and MSA search on 
the BFD database (Steinegger et  al., 2019; Steinegger and Söding, 
2018) using the parameter incdomE 0.01.

Results

The search for the USS-receptor proceeded through a series of initial 
steps as described in the Materials and Methods section, and the outputs 
are reported in the Supporting Data (Supplementary Tables S1–S3), 
which involved functional gene ontology assessment, cellular location 
predictions, USS-enrichment statistics, and orthogroup coverage across 
USS-enriched genomes/species. These outputs were used in consecutive 
deep-learning structural modeling of protein-DNA complexes (refer to 
Supplementary Table S2 for all orthogroups modeled in AF3), 
specificities of DNA-binding predictions, and coevolutionary analysis 
described in each section below.

Assessment of protein-DNA complexes 
modeled in AF3

Out of 73 modeled orthogroups, AF3 modeled only six potential 
candidate DNA-binding orthogroups across all 10 species, with at least 
one model within ipTMr. These were PpdA, DUF4198 domain-
containing protein, two hypothetical proteins, protein annotated 
“MULTISPECIES: hypothetical protein,” VirK/YbjX family protein, 

5  alphafoldserver.com

and YchJ family protein (Table  2). Figure  2 shows the ipTM 
distribution of all AF3 models generated within ipTMr for these six 
proteins. A total of 9,400 models were built for the six orthogroups 
together, each modeled with either USS (orthogroupUSS) or scrambled 
versions of USS (orthogroupscr). The rationale for comparing the USS 
and scrambled models was the expectation that AF3 would generate 
better quality models with USS than scrambled USS for the USS 
receptor. The statistical tests are reported in Code Output S1. The 
distributions of the three other modeling quality parameters, pLDDT, 
PAE, and CPPM, are plotted in Supplementary Figures S1–S3. Since 
all 10 modeled species had USS-enriched genomes and therefore were 
expected to have the USS receptor, the OrthoFinder orthogroup 
coverage was recorded for all six orthogroups in the 150 OD genomes 
(Supplementary Table S2), as shown in Table 2.

PpdAUSS DeepPBS DNA-binding specificity 
predictions

DeepPBS was run on 808 PpdAUSS and 797 PpdAscr AF3 models, 
which were within ipTMr. We present the DeepPBS results using the 
default module (“both readout”). The DeepPBS results for each PpdA 
from each of the 10 representative Hin-USS and Apl-USS species are 
detailed in Supplementary Figures S4, S5 and Supplementary Tables S4, S5. 
The average DeepPBS predictions of nucleotide representation from all 
five Hin-USS species revealed overrepresented nucleotides matching 
Hin-USS were found with strong significance (***) above random (25%) 
in all nine Hin-USS positions (Figure  3; Supplementary Table S4; 
Supplementary Video S1). The nucleotide probabilities for each USS 
position ranged from the highest 0.6448 for USS position 4(T) to the 
lowest 0.2917 for 3(G). Positions 1(A), 2(A), and 4(T) were predicted 
without any significant nucleotide ambiguities, whereas all other 
positions were predicted together with one other significant ambiguity: 
transversion permutations in positions 3(G/C) and 5(G/T) and transition 
permutations in positions 6(C/T), 7(G/A), 8(G/A), and 9(T/C). In 
descending order, the highest levels of overrepresentation were found in 
positions 4(T), 1(A), 6(C), 8(G), 7(G), 2(A), 9(T), 5(G), and 3(G). 
Furthermore, DeepPBS predicted the near-exact overrepresented 
nucleotides matching Apl-USS with variable significance 
(Supplementary Figure S6; Supplementary Table S4; 
Supplementary Video S2). DeepPBS runs with either the Hin-USS 
orthogroupscr or Apl-USS orthogroupscr models showed that all 
predictions failed to predict de novo a coherent signal different from 
random (Supplementary Table S5).

Orthogroup-eUSS coevolution analyses by 
Cramér’s Φ and miBIO

To further explore the PpdAPast candidacy as the USS-receptor, 
we looked for traces of reciprocal influence between orthogroups and 
eUSS in coevolution analyses. Φc and MI were calculated for all 
pairwise orthogroup-eUSS positions. The 17-mer eUSS was used in 
the coevolution analysis to widen the evolutionary signal with variable 
DNA positions beyond the 9-mer core USS. Of all orthogroups tested, 
PpdA had the highest Φc factor of 5.05 (Supplementary Figure S7; 
Supplementary Table S6), meaning the number of significantly 
correlated (α = 0.05) pairwise positions in the orthogroup and eUSS 
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alignments (total number of significant Φc values divided by the 
length of the sequences in the orthogroup). PpdA also ranked second 
in terms of total number of significant Φc correlations (996), only 
exceeded by the DUF2057 domain-containing protein (1006) 
(Supplementary Figure S7; Supplementary Table S6). The YfgM family 
protein (YfgM) also had many significant pairwise Φc correlations 
(961) with eUSS and a high (4.49) Φc factor (Supplementary Figure S7; 
Supplementary Table S6). Other proteins with a combination of high 
correlation factor and number of significant correlations were SecA 
translation cis-regulator SecM (SecM) and terminus macrodomain 

insulation protein YfbV (Supplementary Figure S7 and 
Supplementary Table S6). Furthermore, PpdA was the second-ranking 
orthogroup in the miBio coevolution analysis regarding mean MI for 
positive MI values, surpassed only by tRNA N6-threonylcarbamoyl-
adenosine(37)-N6-methyltransferase TrmO (Figure  4; Table  3), 
ranking ninth in terms of MI factor (number of positive MI values 
divided by length of the sequences in the orthogroup). We noted that 
the trmO gene (Hi_0510) has two intragenic Hin-USS in H. influenzae 
Rd., whereas ppdA (Hi_0938) has none (data not shown). Interestingly, 
PpdB, a protein predicted by STRING to be a functional partner of 

FIGURE 2

Distribution of model confidence ipTM values. All AF3 orthogroupUSS and orthogroupscr models for the six orthogroups with results within ipTMr are 
represented as box plots. 1,690 out of 2000 PpdA-DNA models (type II secretion system protein) in boxed frame, were within ipTM range and 
complexes with USS-DNA, PpdAUSS, were the only group of protein-DNA complexes significantly of higher confidence (higher ipTM) relative to PpdAscr 
complexes with scrambled DNA.

TABLE 2  AF3 modeling results for the six orthogroups with models within ipTMr.

Orthogroup Models

OD 150 
coverage

AF3 modeled 
prot-DNA 
complexes

Models in 
ipTMr

Modeled 
species (max. 

10) w/
complexes in 

ipTMr

ipTM 
USS vs. 
scr

pLDDT 
USS vs. 
scr

PAE 
USS vs. 
scr

CPPM 
USS vs. 
scr

PpdA 147 2,000 1,629 10 *** higher *** higher – *** lower

Hyp. prot. N0.

HOG0002116

44 400 51 2 – *** lower *** 

higher

–

DUF4198 domain-

prot.

77 1,600 128 2 *** lower *** lower *** 

higher

*** higher

Hyp. prot. N0.

HOG0001425

120 1,800 5 2 All scr All scr All scr All scr

VirK/YbjX family 

protein

142 1,600 8 4 All scr All scr All scr All scr

YchJ family protein 140 2,000 3 2 All scr All scr All scr All scr

Numbers refer to orthogroup coverage in the OD of 150 genomes, number of AF3 models outside and inside ipTMr and the species coverage of models within ipTMr in the 10 modeled 
species enriched in either Hin- or Apl-USS. – signify non-significant differences between USS and scr models, and *** signify significant differences with p < 0.0001. Better models have higher 
ipTM and pLDDT and lower PAE and CPPM.
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PpdA and also a minor pilin whose encoding gene is located adjacent 
to ppdA/comN in the comNOPQ operon (Supplementary Figure S6), 
ranked third in this analysis. YfgM family protein, which ranked 
second in the Φc analysis, ranked fifth in the MI factor.

PpdA-eUSS coevolution analysis

By targeting PpdA in the coevolution analysis against other 
orthogroups, we further explored the coevolutionary signal in the ΦC 

and MI analyses of PpdA-eUSS (Supplementary Tables S7, S8). All 
PpdA numbering in these analyses refers to the numbering in the 
full-length PpdAPast alignment in Supplementary data 1. This 
PpdAPast-alignment with per-position variable amino acids and indels 
paired with all eUSS positions in the 17-mer eUSS provided 996 
unique pairs with variable coevolutionary signals. The pairwise sites 
that yielded the strongest positive MI values for PpdA-eUSS in 
miBIO showed considerable overlap with those in Φc, and the overall 
distribution of positive MI values and significant Φc were highly 
similar. As shown in Figure  5 and Supplementary Figure S8, 

FIGURE 3

Consensus DeepPBS predictions of PpdA specificity against the reference Hin-USS. Distribution of consensus predicted nucleotide probabilities in each 
of the nine Hin-USS positions. Asterisks denote significant representation above random (0.25), ***p < 0.001, **p < 0.01, *p < 0.05.

FIGURE 4

Coevolution of all modeled orthogroups and eUSS by miBIO. Combined bar plots showing mean MI and MI factor, sorted by mean MI. Mean MI was 
multiplied by 100 to better scale with the MI factor. OrthoFinder hierarchical orthogroup numbers and gene names are listed. The relative positioning 
of PpdA = N0.HOG0001148 type II secretion system protein is indicated by the black arrow.
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particularly informative coevolved positions in the PpdAPast 
alignment were found relative to eUSS positions 1, 3–5, 11, 13, 14, 
and 17 in both analyses. The inner GCGGT core in eUSS positions 
6–10, which is well-conserved across the two USS dialects, showed, 
as expected, no significant coevolutionary signals alongside positions 
2, 12, 15, and 16 outside of the 9-mer USSs. Since eUSS positions 3–5 
distinguish the two USS dialects, we explored their coevolutionary 
signals in detail, observing a mix of conserved and coevolved 
positions across the whole PpdA. The two methods showed 
considerable overlap in their coevolutionary scores (Figure 6). 47 
PpdA alignment positions with strong coevolutionary signals using 
both methods were identified. These positions included two indels 
and 43 amino acid variations, which could influence USS binding 
and USS dialect specificity. The informative positions were 
distributed across all domains of PpdA, making the identification of 
a singular domain candidate for the USS dialect differences a task for 
future pursuits. The results emphasize the phylogenetic distances 
between PpdAs of the Apl-USS and Hin-USS clades and a very 

limited extent of horizontal gene transfer of the ppdA gene 
between them.

PpdA and PpdAUSS structural characteristics

Having found robust modeling support for Pasteurellaceae PpdA 
as the prime USS-receptor candidate above, we explored the amino 
acid sequence alignment of PpdA orthologs from Pasturellaceae 
highly enriched with Apl-USS (Frederiksenia, Mannheimia, and 
Actinobacillus) and Hin-USS (Haemophilus and Aggregatibacter) 
(Supplementary Figure S9), their common topology (Figure 7A), 3D 
structure, and AF3 modeled DNA-binding mode (Figures 8–11). All 
PpdAPast were found to contain six conserved Cys residues (Cys76, 
Cys87, Cys89, Cys95, Cys138, and Cys169  in PpdAHinf full-length 
numbering) (Supplementary Figure S9). PpdA clustered in distinct 
groups adhering to taxonomic genera divisions and notably also to 
USS-dialect (Apl- and Hin-) specificity. The PpdAs of the Apl-USS 

FIGURE 5

Graphical representation of the significant pairwise correlations for PpdA positions and eUSS by miBio. PpdA positions on the vertical axis (1–197) and 
eUSS positions (1–17) on the horizontal axis as a sequence logo with the 9-mer USS underlined. miBIO correlations according to the given scale (−0.5 
to 0.37), with negative and non-correlating MI values in blue, neutral in white, and positive in red. Non-informative eUSS positions are gray.

TABLE 3  The top 10 orthogroups in terms of mean MI in miBIO.

OrthoFinder 
HOG

OrthoFinder OG Gene name OrthoFinder 
coverage

Protein 
length

Mean non-
negative MI

N0.HOG0001134 OG0000950

tRNA (N6-

threonylcarbamoyladenosine(37)-N6)-

methyltransferase TrmO 147 272 0.1108185209

N0.HOG0001148 OG0000964 type II secretion system protein 147 198 0.0918067493

N0.HOG0000918 OG0000734 type II secretion system protein J 148 283 0.0818427395

N0.HOG0000844 OG0000660 YfgM family protein 149 215 0.0770323591

N0.HOG0001361 OG0001177 zinc transporter binding subunit ZevA 137 270 0.0727758382

N0.HOG0000467 OG0000283 type II secretion system F family protein 149 434 0.0708391123

N0.HOG0000621 OG0000437 YacL family protein 150 147 0.0690436857

N0.HOG0001350 OG0001166 secA translation cis-regulator SecM 141 164 0.0676582310

N0.HOG0000659 OG0000475 YqgE/AlgH family protein 149 204 0.0612235445

N0.HOG0000524 OG0000340 TIGR01620 family protein 146 422 0.0596713961

Coverage refers to the number of OD species with orthologs in the orthogroup.
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group were locally found to be 3–5 amino acids longer than the two 
Hin-USS groups, with mostly polar residues in the long β2-β3 loop 
(Supplementary Figure S9). The Haemophilus group contained a 
unique Lys111 in the β3-β4 loop. The secondary and tertiary structure 
of PpdAHinf in Figure 7A shows how the protein adopts a classic minor 
pilin structure consisting of an N-terminal α-helix and a large globular 
domain consisting of two distinct β-sheets, one N-terminal and one 
C-terminal. The β1-strand is located across the center of the globular 
domain of the N-terminal β-sheet, and the β2-β3 loop forms a 
relatively large and complex domain. The β4 and β5 strands are short 
and unidirectional, completing the two β-sheets with the also 
unidirectional β6’ and β6 strands. The six Cys residues form three 
disulfide bridges, which fold the β2-β3 loop on itself and onto β2 and 
the C-terminal loop onto β6, notably transversing β8 and β7.

As an objective measure of structural similarity between different 
PpdAPast, the root mean square deviation of atomic positions (RMSD) 
was found to be <1.079 across PpdAs from phylogenetically distant 
species with different USS-dialects (Hin-USS reference H. influenzae 
Rd. PpdA vs. respective PpdAs in Apl-USS species Aggregatibacter sp. 
oral taxon 513, F. canicola HPA21, and Mannheimia bovis 39324S-11) 
and <0.440 between H. influenzae Rd. and Actinobacillus equuli subsp. 
haemolyticus strain 3,524, with the same Hin-USS specificity. The 
overall structure of PpdAPast resembles that of E. coli PpdA (PpdAEcol) 
(RMSD <3 Å) and L. pneumophila FimT (FimTLpne) (RMSD <1.3 Å) 

and shares features with Neisseriaceae ComP (ComPNeis) (RMSD 
8.308) (Figures 7A–D, 8; Supplementary Figure S10).

Like PpdAPast, PpdAEcol adopts a classic minor pilin structure 
consisting of the N-terminal α-helix and the large globular domain 
consisting of two distinct β-sheets. The amino acid coverage and 
sequence identity of PpdAHinf and PpdAEcol were 88 and 18.3%, 
respectively, with an RMSD of 2.974 Å, showing that they are closely 
homologous proteins (Reva et al., 1998; Supplementary Figure S15). 
Notable conserved residues were Cys79, Cys89, and Cys172 (PpdAHinf 
full-length numbering), a Leu-aromatic-Leu-Arg motif in the α-helix, 
Asn60 at the C-terminal end of the α-helix, a Trp-Cys-Leu motif in β2, 
a Gly-branched hydrophobic-Arg-Asn-Thr motif on the β5-β6 loop, 
and conserved Arg162 in β8. Prolines on both sides of β3 and β4 also 
align, of which there are two in the β3-β4 loop. The β1 is also located 
across the center of the globular domain, and the β2-β3 loop similarly 
forms a relatively large complex domain. PpdAEcol was modeled to share 
with PpdAHinf the disulfide bridge connecting the β2-β3 loop to β2, 
whereas the C-terminal part was bridged adjacently to β8 in PpdAEcol 
and not in a β-sheet transversing manner to β6 as in PpdAHinf. The β4, 
β5, β6’, and β6 of PpdAHinf were modeled as long continuous and twisted 
β-strands in PpdAEcol to dually complete the two β-sheets, similarly to 
how the short discontinuous β-strands of PpdAHinf were modeled.

As previously shown by Braus et  al. (2022) and the modeled 
structure of locus tag LPG_RS07155 by AlphaFold, FimTLpne also adopts 

FIGURE 6

Overlap in the significant pairwise correlations for PpdA positions and USS dialect-specific eUSS positions 3–5 by Cramér’s Φ and miBio. Combined bar 
and line plot of Φ (blue bars) and MI (red line) values showing the variable degrees of coevolution across PpdAPast to the three eUSS positions 3–5. The 
X-axis shows all the PpdA positions in the alignment and the Φ (left) and MI (right) values on the Y-axes. The horizontal line at ΦC > 0.9 and MI > 0.29 
demarcates 42 particularly strong coevolved positions marked with *. Positions 94–96 and 122 represent indels distinguishing the PpdAs of Apl-USS 
and Hin-USS species, whereas the rest of the strongly coevolved positions represents informative amino acid variation. Positions 62 and 174 marked 
with † are positions where the Φ and MI have values at either end of their respective ranges.
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FIGURE 7

Topology diagrams and AlphaFold modeled structures of PpdAPast, PpdAEcol, FimTLpne, and ComPNeis. The common α-helix (truncated in the topology 
diagrams) at the N-terminal of the proteins is colored in blue, and β-sheets in yellow and purple. Short α-turns and β-strands are indicated. Disulfide 
bridges are shown with double red arrows. The topology diagrams and coloring are based on the FimTLpne described in Braus et al. (2022). The 3D 
ribbon diagrams are from AF with respective structure reference numbers. (A) PpdAPast from H. influenzae with one N-terminal α-helix, eight β-strands, 
and three disulfide bridges. (B) PpdA of E. coli with one N-terminal α-helix, eight β-strands, and two disulfide bridges. (C) FimT of L. pneumophila with 
one N-terminal α-helix, seven β-strands, and no disulfide bridges. The ribbon diagram was obtained by folding FimTLpne in AF. (D) ComP of N. subflava 
with one N-terminal α-helix, five β-strands, and three disulfide bridges.

FIGURE 8

3D ribbon representations of PpdAHinf, FimTLpne, PpdAEcol, and ComPNeis. Notably, positively charged and polar amino acids are encircled in red. R131/
R147 in PpdAHinf refers to the H. influenzae Rd. full-length primary sequence and the PpdAPast alignment position, respectively. Encircled R129 and 
N128 in FimTLpne shown to give the strongest chemical shift perturbations (CSPs) upon DNA-binding in Braus et al. (2022) are marked with *(CSP) and 
single amino acid substitutions (R/K to Q) shown to affect negatively DNA-binding/transformation in an additive manner are marked *. Residues in 
ComPNeis, which have been shown to produce significant CSPs upon DUS binding, and single amino acid substitutions (R/K to A), have been shown to 
affect DNA-binding/transformation negatively (Berry et al., 2016) are marked in the same way. Similarly located positively charged/polar amino acids in 
and above the C-terminal β-sheet are numbered and encircled in PpdAHinf, and PpdAEcol. C138 in PpdAHinf connecting the C-terminal loop to β6 located 
in the same position as K113* in FimTLpne is marked in yellow.
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a classic minor pilin structure consisting of the N-terminal α-helix and 
the PpdA-similar large globular domain consisting of two distinct 
β-sheets. The amino acid coverage and sequence identity of PpdAHinf 

and FimTLpne were 73.5 and 15.5%, respectively (data not shown), and 
an RMSD of 1.280 Å. Like PpdAHinf and PpdAEcol, the β1 strand is also 
located across the center of the FimTLpne globular domain, demarcating 

FIGURE 9

The PpdAPast-eUSS complex. Overlays of high confidence PpdAPast-eUSS complexes (N = 57) of the OD group as modeled by AF3. β-strands and β-β 
loops are assigned in addition to the grooves on DNA. USS-dialect-specific residues (AGT of Hin-USS and CAA of Apl-USS) are shown in blue coloring 
in the DNA, showing DNA-binding in two opposite orientations.

FIGURE 10

Electrostatic maps of representative PpdAPast-eUSS binding modes. Illustrative examples of the two main PpdA-eUSS binding modes displaying their 
opposite USS orientation. In cluster 1 (ex. H. seminalis SZY H68) the Watson strand enters C-terminal β-sheet surface delimited by the C-terminal loop 
and a special Arg whose atoms are colored in pink, interacts with the Crick strand in a manner opposite to cluster 2 (ex. Actinobacillus equuli subsp. 
haemolyticus strain 3524). USS-dialect-specific residues (AGT of Hin-USS and CAA of Apl-USS) are shown in blue coloring in the DNA. Hin-USS-dialect 
PpdAs were modeled in both clusters 1 and 2 and Apl-USS PpdAs exclusively in the cluster 2 USS orientation.
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the two β-sheets. The unstructured and long C-terminal domain is 
folded by AF3 into the β8 strand, unlike the previously published 
topology map and NMR structure (Braus et al., 2022). The β2-β3 loop 
is comparatively small and does not fold over β2 as in PpdAHinf and 
PpdAEcol. FimTLpne has no Cys residues and hence no disulfide bridges. 
The third last C-terminal amino acid of FimTLpne, a Gly, was modeled 
by AF to electrostatically connect β8 to β7. The combined loss of two 
(Arg146/Arg148) or three (Arg143/Arg146/Arg148) positively charged 
amino acids in the β7-β8 loop and in the β8 strand has been shown to 
reduce the DNA-binding affinity of FimTLpne 10-fold or more (Braus 
et al., 2022). Two Arg residues (Arg143 and Arg145) are conserved in 
similar positions in PpdAEcol, one in the β7-β8 loop and one in the β8 
strand (Figure  8; Supplementary Figure S10), suggesting that they 
could be involved in non-specific DNA-binding. PpdAHinf has one Arg 
and one Lys in β8 and could therefore also potentially function in 
DNA-binding. All USS-rich Pasturellaceae PpdAs explored in depth 
here (Haemophilus, Fredriksenia, Actinobacillus, Mannheimia, and 
Aggregatibacter) have several positively charged residues in or in 
conjunction with β8 on the C-terminal side of the last Cys in the 
C-terminal loop. The exact positioning of these positively charged 
residues follows the USS-dialect division of the Pasturellaceae PpdAs 
(Supplementary Figure S9), and their potential role in DNA-binding 
and DNA-binding specificity should be further explored experimentally 
using previously established in vivo and in vitro approaches (Cehovin 
et al., 2013; Berry et al., 2016; Berry et al., 2019). Furthermore, Braus 
and colleagues (Braus et al., 2022) showed that the highest chemical 
shift perturbations (CPSs) upon 12-mer dsDNA-binding were found 
for residues Asn118 and Arg119 in the β5-β6 loop of FimTLpne. These 
two amino acids are conserved as Arg-Asn in PpdAEcol, PpdAHinf and in 
genus Aggregatibacter PpdAs, as Gly-Arg-Leu in genera Frederiksenia 
and Actinobacillus PpdAs and as Ser-Gly-Gln in genus Mannheimia 
PpdAs (Supplementary Figure S9). The combined polar Ser and Gln in 
the latter lacks the long-range electrostatic pull of Arg/Lys, but may also 
potentially bind to DNA through H-bonds (Luscombe, 2001).

The only minor pilin with experimentally established DNA-binding 
specificity is ComP in the Neisseria (Cehovin et al., 2013; Berry et al., 
2016; Berry et al., 2019). ComP differs from PpdAHinf, PpdAEcol, and 

FimTLpne by having a single β-sheet of five strands interconnected with 
two disulfide bridges. The two disulfide bridges in ComP are essential 
for DUS-specific binding (Cehovin et al., 2013). One of these connects 
a long C-terminal loop (DD-loop) in a transversing manner across the 
β-sheet onto the β1 strand (Figure 7D). In the DUS-specific ComPNsub, 
the highest CPSs upon DUS binding were found to be in the β1-β2 loop 
containing its central Lys/Arg90 (Berry et al., 2016). Like Arg119 of 
FimTLpne is positioned above the N-terminal part of the C-terminal 
β-sheet, Arg90 of the Neisseria ComP is also positioned above the 
N-terminal part of its single β-sheet and could indicate similar and 
possibly initial roles in DNA-binding. We have recently described two 
differently modeled DUS binding modes of Neisseriaceae ComPs, and 
in both binding modes are the Lys/Arg90 and the DD-loop modeled to 
interact with grooves of the DNA (Helsem et  al., 2025). PpdAHinf 
similarly connects its C-terminal α-loop across the β-sheet to the β6 
strand. In the AF3 top-scoring PpdAHin-USS models and other PpdAUSS 
and PpdAeUSS models, this C-terminal loop and the Arg-Asn motif are 
modeled to interact with DNA (Figure 9; Supplementary Figures S10, S11).

AF3 modeled with the highest confidence PpdAeUSS complexes 
showing the first part of the β2-β3 loop and the C-terminal loop to 
interact with the minor groove one helical turn apart and the short β4 
and β5 strands to interact with the major groove (Figures 9, 10). In 
exploring the PpdA DNA-binding mode we observed the majority of 
all modeled complexes adopted the same DNA groove interactions in 
both USS and eUSS models. However, the 17-mer eUSS models were 
split into two clusters numbered 1 and 2, characterized by either of two 
180° opposite USS orientations (Figure 10). Mapping coevolved amino 
acids onto these different PpdA-eUSS clusters was explored to shed 
some light on which may be best supported (Supplementary Figure S11). 
Coevolved residues modeled in proximity to eUSS in cluster 1 showed 
how the USS-dialect differing positions 3–5 were positioned above the 
C-terminal β-sheet and the strongly coevolved C-terminal loop. The 
9-mer USS models were all as cluster 1 of the eUSS models showing 
USS-dialect-specific nucleotides buried into an electropositive patch 
in PpdA in the C-terminal β-sheet region.

Molecular dynamics simulations of PpdAUSS and PpdAeUSS complexes 
using GROMACS (Figures  11, 12; Supplementary Figures S12, 13) 

FIGURE 11

Molecular dynamics simulation of the highest confidence representative in cluster 1. The dynamic interaction between PpdAHsem (Haemophilus 
seminalis SZY H68) and 17-mer Hin-eUSS. The input structure is shown to the left, and the resulting structure to the right. The penultimate 9 
C-terminal amino acids and R131 are highlighted in pink. Hin-USS-specific nucleotides are shown in blue. Both protein and DNA shapes have changed 
during the molecular simulation and seem to have brought the USS-dialect-specific nucleotides more tightly into the electropositive pocket over the 
C-terminal β-sheet. The less conserved AT-rich region beyond the 9-mer core USS is the DNA region, which is the least integrated part of the 
structure.
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showed that only models with the core 9-mer USS reached a stable state, 
where RMSD oscillated around the median 0.45 Å, indicating that the 
DNA-binding interaction was confidently preserved (Figure 12A). The 
eUSS PpdA simulations of cluster 1 (Figures 11, 12B) and cluster 2 
(Figures 12C and Supplementary Figure S13) showed moderately stable 
configurations oscillating RMSDs within 1 and 3 Å. The median RMSD 
of Cluster 1 was 1.46 Å and 2.29 Å for Cluster 2. Together, the simulations 
showed that cluster 1 and the 9-mer USS models were of lower median 
RMSD than cluster 2 PpdAeUSS models. Comparing the RMSD plots of 
clusters 1 and 2 indicated that cluster 1 was better at finding stable 
structures closer to the input structure below 2 Å for prolonged periods 
of time and that cluster 2 showed some plateauing behavior above 2 Å.

Discussion

Protein-DNA modeling support of 
PpdA-USS

In searching for the USS-receptor, 293 Pasteurellaceae 
orthogroups were identified (eggNOG) using the H. influenzae Rd. 
genome, as reference. H. influenzae Rd. was the first bacterial genome 
to be fully sequenced (Fleischmann et al., 1995). It was considered the 
most fitting reference since almost all experimental uptake and 
transformation data in Pasteurellaceae are from this species and strain. 
The wild-type phenotype of H. influenzae Rd. displays very high 
USS-specific transformation frequencies upon cAMP competence 
induction (Sinha et al., 2020), documenting the presence of both an 

expressed and highly specific USS-binding protein. The 293 
orthogroups were filtered based on functional annotations and 
orthogroup coverage in the Pasteurellaceae and reduced to 73 
orthogroups in the 73O dataset which were considered exhaustive in 
being based on rich GO annotations and functional terms known to 
be  relevant for DNA uptake, transformation and competence. 
We expected that Pasteurellaceae family members, at least those with 
genomes highly enriched with USS, would have USS-specificity 
encoded by a surface exposed protein constituting a part of current 
transformation models (Dubnau and Blokesch, 2019) including that 
of L. pneumophila (Braus et  al., 2022) which is also a 
γ-proteobacterium. It has also been firmly established in DNA-binding 
and uptake studies that USS-binding takes place on the extracellular 
side of the outer membrane (Mora et al., 2020), warranting the focus 
on proteins and protein domains facing this environment. PpdA was 
the only orthogroup that consistently yielded AF3 models of 
protein-DNA complexes of high quality (high ipTM and pLDDT; low 
PAE and CPPM). Furthermore, PpdA was the only protein that 
yielded high-quality models in all ten modeled Pasteurellaceae species. 
Moreover, this orthogroup was the only one for which orthogroupUSS 
models had significantly higher ipTM and pLDDT and significantly 
lower CPPM than orthogroupscr models. Since both PpdAUSS and 
PpdAscr complexes were of low PAE and non-significantly different, it 
suggests that one non-sequence specific DNA-binding mode(s) can 
be repeatedly and robustly modeled on the PpdA structure by AF3. 
The lower CPPM of PpdAUSS than PpdAscr complexes shows that AF3 
is better at modeling complexes with minimum PAE across all 
nucleotide-amino acid residue pairs between DNA and protein chains 

FIGURE 12

RMSD trajectories in GROMACS simulations of PpdA-USS complexes. (A) RMSD of the 9-mer USS-PpdA complex over a 300-ns molecular dynamics 
simulation. After an initial equilibration phase, the complex reached a stable plateau oscillating around a median of 0.44 Å, indicating a highly stable 
configuration throughout the trajectory. (B) RMSD of the 17-mer eUSS-PpdA complex of cluster 1 over a 300 ns molecular dynamics simulation. The 
RMSD fluctuates throughout the trajectory with amplitudes up to 2.5 Å, but remains consistently below 3 Å. The median RMSD of 1.46 Å suggests that 
the complex is stable overall, despite moderate dynamic conformational flexibility in the bound state. (C) RMSD of the 17-mer eUSS-PpdA complex of 
cluster 2 over a 300 ns molecular dynamics simulation. After initial equilibration with >2.5 Å amplitudes the trajectory shows a converging trend toward 
a plateau around 2.5 Å during the second half of the run, yet with downward fluctuations to 1 Å, indicating a stable bound configuration with moderate 
conformational flexibility.
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when USS is used. Together we  find that the AF3 results alone 
convincingly target PpdA as a DNA-binding protein and importantly 
the USS receptor in Pasteurellaceae. The only previous study to search 
for the USS-receptor (Molnar, 2004) characterized six other genes/
proteins as plausible USS-specific candidates in addition to ComN, 
which are included in our 73O dataset [HI0436 (comD); HI0438 
(comE); HI0299 (pilA), HI0939 (comO), HI0940 (hypothetical), 
HI0941 (hypothetical)], yet none of our AF3 models of these were 
found to be within ipTMr. Overall, the scarcity of high-quality AF3 
models for non-PpdA proteins, in contrast to the robust support for 
high-quality models for PpdA, supports PpdA as the USS receptor.

Predicted DNA-binding sequence 
specificity support for PpdA

The results from AF3 and DeepPBS were in agreement in that AF3 
consistently modeled PpdAUSS with high confidence, while DeepPBS 
predicted specifically the two Hin- and Apl-USS dialects as binding 
motifs. It is important to note that potential artifacts in the AF3 results 
are likely to have been echoed downstream by DeepPBS, as both are 
neural networks and have similarities in architecture (personal 
communication with DeepPBS developers). Yet, the convolutions in 
DeepPBS are applied to separate DNA (Sym-helix) and protein 
entities, which potentially make the DeepPBS results more 
independent from the robust AF3 models used. Although some 
overlap in models and predictions cannot fully be  excluded, 
we consider these convergent results to be strong lines of support for 
PpdA being the USS receptor. The DeepPBS results find additional 
support in the comparison of the DeepPBS predictions and the 
genome-wide Hin-USS conservation, as shown in the sequence logos 
for each species in Supplementary Figures S4, S5. We  found 
informative cases where the weakest DeepPBS predicted USS positions 
were also the least conserved in each PpdA’s respective genome. One 
example is the uniquely underrepresented USS position 9(T) in 
H. influenzae Rd. predictions that matches the uniquely less conserved 
9(T) in the H. influenzae sequence conservation logo. The other four 
species’ PpdAs had considerably stronger 9(T) predictions than 
H. influenzae Rd., and this was also reflected in their USS conservation. 
Other examples are described in Supporting Information. In the Apl-
USS group, however, no apparent matches between USS conservation 
and predictions were observed. We speculate that the reason for not 
being able to identify similar correlations in the Hin-USS group is that 
the Apl-USS is considerably less conserved overall, with weaker 
conserved USS positions 1(A) and 2(C), and that the magnitude of 
their genomic enrichment is significantly lower (ca. 200–500 Apl-USS/
Mb) than in the Hin-USS group (500–800 Hin-USS/Mb) 
(Supplementary Table S2). Also, specific uptake of Apl-USS in 
Actinobacillus pleuropneumoniae (an Apl-USS species) has previously 
been shown to increase only 17-fold relative to scrambled USS which 
is in stark contrast to the >1,500 fold increase in Hin-USS specific 
uptake in H. influenzae (Redfield et al., 2006). These observations 
could suggest that USS specificity is considerably less pronounced in 
the Apl-USS group of species than in the Hin-USS group and explain 
our difficulties with identifying matches between the PpdAApl-USS 
DeepPBS predictions and Apl-USS conservation. Further laboratory 
experiments on Apl-USS specificity are needed to explore Apl-USS 
specificity in more detail and in a wider group of Pasteurellaceae 
bacteria where Apl-USS is overrepresented.

Coevolutionary support of PpdA

Having found strong support for PpdA as the USS receptor from 
modeling and sequence specificity predictions, it did not seem 
coincidental that PpdA also had the highest correlation factor in the 
Cramér’s Φ coevolution analyses of proteins and eUSS. The 
coevolutionary signal was higher by a Φc correlation factor of 0.56 
compared to the YfgM family protein (SecYEG translocon-subunit), 
while PpdA came second to a methyltransferase in the miBIO analysis. 
These results show that PpdA, if not itself responsible for shaping 
USS-specificity and genomic USS enrichment, at least has coevolved 
alongside USS-specificity in deep time and importantly through the 
divergence of USS specificity into distinct dialects. A caveat with the 
coevolutionary analyses is that coevolutionary signals may be caused 
by genetic drift aligning with the phylogenetic relationships in the 
input sequences. While the shuffling method in miBIO corrects for 
much of the phylogenetic drift, it remains a challenge to assess impact 
on coevolution particularly since the two USS dialects adhere to 
phylogeny. It is also possible that other proteins than the USS receptor 
also involved in the uptake process are imbued with coevolutionary 
relationships with (e)USS. For example, several of the type IV pilus 
machinery components (PilM, PilP, PilQ, ComF, and other minor 
pilins than PpdA) among the coevolved orthogroups show these 
relationships, yet with weaker coevolutionary signals than 
PpdA. Furthermore, due to the dependency between the USS-receptor 
and genomic enrichment of USS, several proteins would be  in 
co-evolutionary relationships with the USS-receptor and hence also 
indirectly with (e)USS. The SecA translation cis-regulator SecM and 
YfgM (SecYEG translocon subunit), with high correlation values in 
our analyses, are such examples in that all pilins involved in 
USS-uptake specifically and non-specifically are dependent on Sec 
machinery for translocation (Kaushik et al., 2022). SecM has been 
shown to upregulate the functionality of SecA (Nakatogawa et al., 
2004), to which ppdA and other pilins have adapted their prepilin 
signal peptide. Both the Φc and miBIO results show co-evolution 
between eUSS and several of the other type IV pilus proteins, which 
are necessary for USS-mediated transformation. Since PpdA has the 
highest coevolutionary scores of these Type IV pilus machinery 
components, it supports its USS-receptor candidacy relative to the 
other type IV pilus proteins generally and to pilins specifically. An 
additional caveat is that regions of the genome with high eUSS content 
may disproportionately contribute to transformation, potentially 
generating spurious coevolutionary signals due to physical linkage 
between the eUSS and neighboring coding sequences or CDS rich in 
eUSS. The top-scoring miBIO TrmO may be  an example of this 
co-evolutionary process since the trmO CDS is enriched with two 
eUSSs in contrast to none in ppdA genes themselves. These signals 
may reflect transformation-driven linkage disequilibrium rather than 
true evolutionary coupling between residues or sites. In these cases, 
the partitioning of Hin-USS and Apl-USS will thus closely follow the 
phylogeny and cause an inflation of the coevolutionary signal between 
these proteins and USS. Further studies of functional genomic USS 
enrichment could shed further light on this mode of evolution 
(manuscript in prep.). All these problems could result in falsely high 
positive Φc and MI values in the coevolutionary analyses. However, 
we acknowledge that all proteins tested are faced with these challenges 
and thus the coevolution results are still helpful in pinpointing likely 
candidate USS receptor proteins. Perhaps even more so, the 
coevolution results tell us which proteins are likely not the USS 
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receptor, as a high coevolutionary signal would be expected for the 
true USS receptor having shaped USS-rich Pasteurellaceae genomes 
in deep time.

Gene regulatory and previously established 
phenotypic support of PpdA

The PpdAHinf (HI0938) is identical to the previously assigned 
ComN protein, whose encoding gene constitutes part of the 
competence regulon in H. influenzae, designated as comN (Sinha et al., 
2020; Molnar, 2004). This finding connected the modeled PpdAPast 
orthogroup directly to competence for transformation to further 
strengthen its USS-receptor candidacy. The first comN knock out was 
made in H. influenzae (Molnar, 2004) and the loss of competence in 
this knock out strain was documented. However, this study could not 
exclude that the competence loss in ΔcomN was due to a polar effect 
on the downstream genes in the same operon (comNOPQ). These 
limitations of the first ΔcomN strain were later amended by the same 
group using in-frame deletions of all Sxy-regulated genes in the 
competence regulon, including comN, and confirmed the loss of DNA 
uptake and transformation in the single comN mutant (Sinha et al., 
2020). ComN expression from the comNOPQ operon has therefore for 
many years been one of several USS-receptor candidates based on 
gene regulatory and null-mutant phenotypes, yet functional 
characterization of protein function and role has remained 
unexplored. We found further that the ppdA/comN gene ontology and 
chromosomal localization were conserved across most of the 
Pasteurellaceae, in the same gene order as comNOPQ 
(Supplementary Figure S14). The operon was generally found located 
upstream of and in the same orientation as the recC gene. The recC 
gene encoding the exoribonuclease V gamma subunit is involved in 
recombination-dependent DNA repair and in the final stages of 
transformation involving homologous recombination (Helm and 
Seifert, 2009). The co-localization of the comNOPQ operon and recC 
therefore seems functionally linked to transformation across 
Pasteurellaceae. Interestingly, this comNOPQ genomic location and 
operonic organization was also found to be the same as ppdAB-ygdB-
ppdC in E. coli and other Enterobacteriaceae genera 
(Supplementary Figure S14). The E. coli operon has equivalently been 
shown to be regulated by Sxy, and ppdA has also been shown to be the 
most strongly expressed gene upon induction, exactly like in 
H. influenzae (Sinha et al., 2009; Jaskólska and Gerdes, 2015). E. coli 
has low transformation rates (10−7–10−8) and is generally not 
considered a competent species, although the competence and type 
IV pilus proteins are encoded in the genome (Riva et  al., 2020; 
Claverys et al., 2009).

PpdAPast structural insights and future 
outlook

We reported the AlphaFold-predicted topology and 3D structure 
of PpdAPast, showing its similarity to other characterized minor pilins 
with established roles in DNA-binding in support of a USS receptor 
candidacy. The conserved gene regulatory organization and strong 
structural coherence of PpdA across phylogenetic distances within the 
Pasteurellaceae family support one conserved function in 

transformation. Although the aligned amino acid identity between 
FimTLpne and PpdAHinf was only 15.5%, the atomic Cα positions of full-
length PpdAHinf were, on average, less than 1.3 atomic radii away 
(RMSD 1.208) from the aligned atoms of the here modeled full-length 
FimTLpne. This single observation implies that PpdAPast belongs to the 
same functional class as FimTLpne of DNA-binding minor pilins. 
Identifying conserved electropositive/polar residues in PpdAPast is 
involved in DNA-binding in the non-sequence specific FimTLpne and 
the sequence specific ComPNeis corroborates this understanding. Based 
on these structural interpretations, we also deductively hypothesize 
that the homologous PpdA of E. coli and other Enterobacteriaceae 
have DNA-binding properties. Further experiments investigating the 
DNA-binding properties of PpdAEcol could perhaps help explain if low 
affinity for DNA could be impacting the relatively low transformation 
rates in this important model organism. Although FimTLpne and 
PpdAHinf are structural homologs, they differ in their C-terminal 
domains, which potentially could explain differences in DNA-binding 
preferences. PpdAPast was found to share with ComPNeis a β-sheet 
transversing loop anchored by a disulfide bridge, which in PpdAPast 
similarly may be involved in sequence specific DNA-binding. We and 
others have previously expected DUS and USS specificity to be an 
example of convergent evolution since the DUS/USS motifs are 
completely different, but identifying another minor pilin as the 
strongest USS-receptor candidate in Pasteurellaceae could rather 
suggest divergent evolution with deep roots in the Proteobacteria. 
Notably, a typical overall DNA-binding mode was found in top 
scoring PpdAUSS and PpdAeUSS models of both Hin-USS and Apl-USS 
species suggesting one conserved and coherent DNA-binding mode. 
Furthermore, structural modeling of PpdA-homologs and DNA from 
different bacteria should be undertaken to determine if there is one 
unified binding mode. Finding that PAE of the PpdAUSS and PpdAscr 
models on average were not significantly different from each other 
supports the existence of one robust binding mode. Since the USS is 
not palindromic, we could explore the orientation of the USS in the 
PpdAUSS models and find both in robust models. One of the USS 
orientations showed USS-dialect variable base pairs in proximity to 
PpdAPast. This modeled proximity was in the C-terminal region of 
PpdA with the β-sheet transversing loop resembling the DUS specific 
ComP as discussed above. It is therefore tempting to speculate that the 
two USS dialects, Apl- and Hin-USS, have diverged into their USS 
specificities from their common ancestry through mutations in the 
C-terminal part of PpdA. This evolutionary scenario aligns with the 
general phenomenon that the evolutionary rate is generally higher at 
protein termini (Bricout et al., 2023). An implication for this USS 
orientation model is that the inner core of USS, conserved in both 
dialects, would interact with domains closer to the N-terminal part of 
the protein toward the α-helix. The same USS orientation was 
supported in the molecular dynamics simulations in finding a lower 
median RMSD (1.46 Å) for this USS-oriented complex than the 
opposite (2.29 Å). The coevolution signals, however, are dispersed 
across PpdA and do not cluster in the C-terminal part, making this 
interpretation of USS-orientation warranting further investigation.

Conclusion

PpdA of the Pasteurellaceae (PpdAPast) was predicted to be the 
USS-receptor by protein-DNA complex modeling in AlphaFold3. 
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PpdAPast was the only Pasteurellaceae orthogroup out of 73 to form 
significantly better models with USS than scrambled DNA. In 
contrast to the few other orthogroups which formed robust 
protein-DNA complexes, PpdAPast was widely distributed across 
the Pasteurellaceae enriched in USS. Protein-DNA sequence 
specificity predictions using DeepPBS showed that USS was 
significantly predicted as a DNA-binding motif by PpdAPast. Of the 
73 explored orthogroups, PpdAPast had among the strongest 
coevolutionary signals with USS and particularly with 
USS-dialect-defining nucleotides. PpdA as minor pilin and 
USS-receptor was found to fit current models of transformation 
in sharing structural features with other minor pilin 
DNA-receptors and from existing knowledge on its gene 
regulation and null transformation phenotype of the H. influenzae 
knock out. Only one robust PpdAPast DNA-binding mode was 
identified, yet with two opposite USS orientations. Coevolutionary 
signals in the PpdAPast C-terminal β-sheet was identified which 
together with AF3 models and molecular dynamics simulations 
lent support to one of the two alternative USS orientations. 
We propose the name ComN to be used for PpdAPast.
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