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Water-sediment regulation drives 
stage-specific microbial shifts and 
network complexity in the Yellow 
River reservoir-river continuum
Yanmin Zhang 1, Bo Zhao 1, Zewei Gui 1, Man Zhang 1, 
Xiaofei Gao 1, Xulu Chang 1, Guokun Yang 1, Xiaolin Meng 1* and 
Hongchen Jiang 2*
1 College of Fisheries, Henan Normal University, Xinxiang, China, 2 School of Life Sciences, Henan 
University, Kaifeng, China

High-turbidity rivers, exemplified by the Yellow River, face significant ecological risks 
due to anthropogenic water-sediment regulation (WSR), which disrupts sedimentary 
habitats and biogeochemical cycles. However, the stage-specific impacts of WSR 
on microbial community structure, network complexity, and biogeochemical 
functions in reservoir-river continua remain poorly understood. In this study, 
we investigated microbial responses across different WSR stages in the Xiaolangdi 
Dam reservoir-river continuum using an integrated approach, including 16S rRNA 
gene sequencing, molecular ecological network analysis (MENs), and hierarchical 
partitioning. The results showed that WSR induced transient but profound shifts in 
microbial communities. The sediment-regulation stage (Inter_WSR3) exerted the 
strongest disturbance, characterized by peak turbidity (77.80 NTU), nutrient fluxes 
(NO3

− = 3.10 mg/L), and sediment resuspension, which restructured surface sediment 
(SS) communities dominated by copiotrophic Gammaproteobacteria (35.69%) and 
Bacteroidia (14.82%). Microbial α-diversity transiently increased during WSR but 
recovered to baseline levels post-disturbance, masking β-diversity divergence 
driven by niche differentiation. Molecular ecological networks exhibited peak 
complexity (nodes = 1,318; modularity = 0.73) during Inter_WSR3 but failed to 
recover Post_WSR, reflecting weakened functional redundancy and ecosystem 
resilience. Hierarchical partitioning identified stage-specific drivers: chlorophyll a 
(Chla) dominated SS assembly during Inter_WSR3, while nitrate (NO₃−) and turbidity 
governed particle-attached (PA) and free-living (FL) communities. Light limitation 
and sediment-water interactions overrode dissolved oxygen and temperature as 
primary drivers in the Yellow River. These findings reveal that WSR disrupts microbial 
co-occurrence patterns and functional redundancy, with lasting consequences 
for ecosystem services. To reconcile sediment management with ecological 
sustainability, we advocate phased WSR implementation, targeted monitoring 
of FL/PA communities, and habitat restoration to enhance connectivity. This 
study advances the mechanistic understanding of high-turbidity river ecology 
and provides actionable insights for global river management.
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Introduction

The Yellow River, often lauded as the “cradle of Chinese 
civilization,” presents a study in biogeochemical complexity, owing to 
its status as one of the world’s most sediment-laden waterways, 
annually transporting in excess of 1.6 billion tons of suspended 
sediment (Chen et  al., 2021). This characteristic high turbidity, a 
consequence of pronounced erosion within the Loess Plateau, imposes 
significant ecological constraints upon the riverine ecosystem, 
particularly amidst anthropogenic pressures such as dam construction 
and water-sediment regulation (WSR). Since the 1960s, the 
implementation of large-scale reservoirs along the river’s course, 
including the Xiaolangdi Dam (XLD), has profoundly altered the 
hydrological regime and biogeochemical cycles of the Yellow River 
(Shi et al., 2017). WSR, an operational strategy undertaken annually 
by the Yellow River Conservancy Commission (YRCC), involves the 
strategic release of sediment-rich water to mitigate downstream 
sedimentation and facilitate navigation (Zhao et al., 2022). However, 
this practice creates extreme hydrological and biogeochemical 
gradients. These include episodic nutrient flows, sediment 
suspensions, and light-emitting factors that may impair the integrity 
of microbial communities, which are key drivers of biogeochemical 
processes in rivers (Maavara et al., 2020; Wang et al., 2022).

Despite the pivotal role of microbial communities in mediating 
carbon, nitrogen, and phosphorus cycles, knowledge of their response 
to WSR within highly turbid river systems remains limited. Previous 
research has mainly focused on less turbid systems, such as the 
Yangtze River, where microbial communities and functions differ 
markedly from those in more turbid environments (Liu Q. et al., 2018; 
Wang et al., 2021b; She et al., 2022). For instance, chlorophyll a (Chla) 
and dissolved oxygen (DO) are established determinants of bacterial 
community assembly in relatively clear-water rivers (Green et  al., 
2012; Peiffer et al., 2021). In stark contrast, highly turbid systems such 
as the Yellow River are characterized by light limitation, elevated 
concentrations of suspended particulate matter, and pronounced 
sediment-water interactions, thus fostering distinct microbial 
assemblages adapted to these conditions (Xia et al., 2013; Pan et al., 
2022a, 2022b). Recent investigations have highlighted the prevalence 
of phyla such as Proteobacteria, Bacteroidetes, and Actinobacteria 
within Yellow River sediments (Song et al., 2012; Xia et al., 2014), with 
particle-attached (PA) and free-living (FL) microbial communities 
demonstrating seasonal fluctuations contingent upon hydrological 
variability (Pan et  al., 2022a, 2022b). Nevertheless, the precise 
mechanistic linkages between WSR-induced environmental 
perturbations and subsequent microbial community restructuring 
within reservoir-river continua remain elusive.

A critical knowledge gap exists concerning the differential 
responses of surface sediment (SS), PA, and FL microbial communities 
to WSR operations. Sediments function as hubs of microbial activity 
and nutrient cycling, while PA microorganisms contribute to particle 
aggregation and organic matter degradation (Crespo et al., 2013; Yeh 
and Fuhrman, 2022). Conversely, FL microorganisms are more 
directly influenced by hydrodynamic conditions and the availability 
of dissolved substrates (Palmer and Ruhi, 2019). The interdependent 
impacts of WSR on these three compartments and their respective 
contributions to biogeochemical cycling remain largely unexplored. 
Furthermore, while some studies have documented short-term shifts 
in microbial diversity in response to WSR (Song et al., 2022), the 

long-term resilience of microbial networks and their feedback 
mechanisms to sediment pulses remains poorly understood. 
Addressing these knowledge gaps is crucial to optimizing WSR 
strategies, thereby striking a balance between sediment management 
objectives and ecological sustainability within high-turbidity 
river systems.

We hypothesize that WSR precipitates stage-specific alterations in 
microbial community structure and network complexity across the SS, 
PA, and FL compartments within the Yellow River reservoir-river 
continuum. Furthermore, we posit that the sediment-regulation stage 
(Inter_WSR3) will exert the most pronounced disturbance, 
attributable to the pulsed discharge of sediment, thereby inducing 
transient increases in microbial richness and alterations in network 
topology. We  additionally hypothesize that stage-specific 
physicochemical gradients [e.g., Chla, NO₃−, dissolved inorganic 
carbon (DIC)] will drive compositional divergence among SS, PA, and 
FL communities. This study aims to test these hypotheses using a 
spatiotemporal survey that encompasses different WSR stages in the 
Xiaolangdi Dam reservoir-river continuum. The investigation 
employed 16S rRNA gene sequencing, molecular ecological network 
analysis (MENs), and hierarchical partitioning to evaluate these 
dynamics. The objectives of this study are to (1) quantify the temporal 
dynamics of α-diversity, β-diversity, and microbial interactions in SS, 
PA, and FL compartments; (2) identify stage-specific environmental 
drivers shaping microbial community structure; and (3) elucidate the 
legacy effects of WSR on microbial network complexity and 
ecosystem functioning.

Materials and methods

Study area, field measurements, and 
sampling

To explore the response of the microbial community structure to 
the environmental factors within the reservoir-river continuum 
ecosystem of XLD during the WSR process, five representative periods 
from June to August in 2023 were selected as the sampling times, 
including Pre_WSR (June 18th, before WSR), Inter_WSR, which 
includes Inter_WSR1 (June 21st, the start of water regulation, the peak 
water-release stage of WSR), Inter_WSR2 (June 29th, when water 
regulation lasted 1 week), Inter_WSR3 (July 8th, the start of sediment 
regulation, the peak sediment-release stage of WSR), and Post_WSR 
(August 17th, post-WSR). Eight sampling sites (S1–S8) were selected, 
four of which were in the XLD reservoir and four of which were 
downstream of it. The final sampling site was located upstream from 
the confluence of the Yiluo River to minimize the influence of 
tributaries (Figure 1). No extreme weather was observed during the 
sampling period.

Water temperature (T), pH, dissolved oxygen (DO), ammonium 
(NH4

+), chlorophyll a (Chla), chemical oxygen demand (COD), 
turbidity, and oxidation–reduction potential (ORP) were measured at 
the site at 0.5 m intervals using a multi-parameter water quality 
analyzer (Hach Company). For the analysis of total nitrogen (TN) and 
total phosphorus (TP), water samples (approximately 40 mL) were 
collected into brown glass vials and acidified to pH < 2 with 
concentrated sulfuric acid. Water samples for physicochemical 
analysis of total suspended particles (TSP), TN, TP, NO3

−, NO2
−, 
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dissolved organic carbon (DOC), and DIC were collected, transported, 
and analyzed according to previously established procedures (Zhang 
et al., 2018).

For each site, two filter pore sizes (0.22 μm and 3 μm) were used 
to collect microbial samples. Each sample (1.5 L) was filtered through 
a 3 μm polycarbonate membrane to separate particle-attached 
microorganisms (PA) from free-living microorganisms (FL, 0.22 μm) 
(Pan et al., 2022a,b). The surface sediment (0–5 cm) for microbial 
DNA extraction was collected from each sampling site and stored on 
dry ice in the field. At each site and during five different sampling 
stages, three microbial samples were collected simultaneously, 
representing particle-attached (PA), free-living (FL), and surface 
sediment (SS) fractions. All samples for microbial analysis were stored 
at −80 °C until further analysis.

DNA extraction, high-throughput 
sequencing, and data processing

Total DNA from three replicates of 0.5 g sediment, PA, and FL 
microbial samples was extracted using a FastDNA SPIN Kit for Soil 

(MP Biomedicals, United  States) according to the manufacturer’s 
instructions. Extracted DNA from SS, PA, and FL samples was 
amplified by PCR with barcoded primers targeting the 16S rRNA gene 
of bacteria and archaea: 338F (5′-ACTCCTACGGGAGGCAGCAG-
3′)/806R (5′-GGACTACVSGGGTATCTAAT-3′). PCR reactions for 
each sample were performed in triplicate, and PCR amplification and 
purification of the product were conducted as described previously 
(Zhang et al., 2018).

The purified PCR amplicons (~400 bp) from each sample were 
sequenced using an Illumina HiSeq2500 platform with a PE250 
model. Raw sequences of microbial 16S rRNA datasets were processed 
in QIIME2 (version 2021.2) (Bolyen et al., 2019). The DADA2 method 
was used to conduct sequence quality control, chimera removal, and 
feature table construction (Callahan et al., 2016).

Briefly, the dada2 denoise-paired plugin was applied with the 
following parameters: –p-trim-left-f 19, –p-trim-left-r 20, –p-trunc-
len-f 210, and –p-trunc-len-r 210. The frequency of ASVs (amplicon 
sequence variants) was reported in the feature tables. The taxonomy 
of the representative prokaryotes was classified using the function 
usearch-sintax in USEARCH (v11.0.667) with an 80% confidence 
threshold against the SILVA v138 database (Edgar, 2016). 

FIGURE 1

Setting of sampling times and sampling sites in this study. Five typical sampling stages of WSR (Pre_WSR, Inter_WSR1, Inter_WSR2, Inter_WSR3, and 
Post_WSR), from June to August, along with eight sampling sites along the reservoir-river continuum of the main stem of the Yellow River, were 
included in this study. S1–S4 represent sites within the XLD reservoir, while S5–S6 represent sites located downstream of the XLD reservoir.
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Non-prokaryotic singletons and the ASVs with a frequency of <10 
were removed from the feature tables. Alpha diversity indices 
(including observed richness, ASVs, Shannon, Simpson, Pielou, and 
Goods_coverage) were calculated using the R package “vegan.” All the 
16S rRNA gene sequences obtained from this study have been 
deposited at the National Omics Data Encyclopedia (NODE, https://
www.biosino.org/node/) under project OEP00006114.

Microbial metabolic potentials were predicted with PICRUSt2 
based on 16S rRNA gene amplicon sequencing data (Douglas et al., 
2020). The abundance table of the resulting KEGG Orthologs (KOs) 
was mapped to the KEGG pathway database (Ogata et al., 1999). The 
main metabolic pathways involved in the cycling of carbon (C), 
nitrogen (N), phosphorus (P), and sulfur (S) were selected for further 
analysis. The potential of each pathway was quantified by summing 
the relative abundances of all the KOs annotated with that specific 
pathway in each sample (Liu et al., 2020).

Statistical analyses

Subsequent analyses were performed using R (V4.0.3) with 
appropriate packages. Differences in microbial diversity indices (SS, 
PA, and FL) in relation to environmental parameters across different 
stages of WSR were analyzed by one-way ANOVA, with a significance 
threshold set at a p-value of ≤0.05. To evaluate correlations between 
physiochemical factors and microbial α-diversity, as well as 
correlations among physiochemical factors, Pearson’s correlations 
were assessed, and Mantel tests were performed using the R package 
“vegan.”

A two-factor permutational multivariate analysis of variance 
(PERMANOVA) was employed to delineate the independent and 
interactive influences of temporal variation (WSR period) and spatial 
heterogeneity (sampling site) on microbial community structure. This 
analysis aimed to ascertain whether the WSR period had a significant 
effect on the microbial communities within the SS, PA, and FL 
fractions. Dissimilarity in community composition was quantified 
using Bray–Curtis distance matrices, and inferences were derived 
through 999 permutations, a methodology implemented within the R 
package “vegan” (Iqbal et al., 2023). Further assessment of microbial 
compositional disparities was conducted via principal coordinate 
analysis (PCoA), with PERMANOVA serving as the statistical 
framework to validate observed patterns, also executed using the 
“vegan” package. The distribution and overlap of microbial operational 
taxonomic units (OTUs) across the SS, PA, and FL sites at various 
stages of the WSR were visualized using Venn diagrams, generated 
with the “Venn Diagram” R package. Predictive functional profiling of 
the microbial communities in SS, PA, and FL across the WSR stages 
was achieved using PICRUSt, leveraging 16S rRNA gene amplicon 
sequencing data. Inter-stage functional differences were subsequently 
evaluated through one-way analysis of variance (ANOVA).

Molecular ecological networks (MENs) were constructed using 
the Random Matrix Theory (RMT) method (Yuan et al., 2021) to 
evaluate the differences in microbial interspecific interactions among 
SS, PA, and FL across four WSR stages in the study. Briefly, abundant 
OTUs (with a relative abundance of ≥0.05%) were used in the 
calculation to ensure reliable correlation networks, and only OTUs 
present in at least 50% of the samples were retained for network 
construction. All MENs were constructed based on Pearson 

correlations of log-transformed OTU abundances using the Molecular 
Ecology Network Analyses Pipeline (MENAP)1 (Deng et al., 2012). 
Pearson’s correlation coefficient |R| > 0.9 with p < 0.01 was used to 
construct the networks, where nodes represented microbial OTUs and 
edges indicated strong and significant correlations between nodes. 
Various network topological indices, such as the total number of 
nodes (N), total number of links (L), average degree, modularity, 
average path distance (PD), and average clustering coefficient (CC), 
were calculated to characterize the topological structure of the MENs 
(Wang S. et  al., 2021; Liu et  al., 2023). The constructed network 
visualization was conducted using Gephi 0.9.2 software (Bastian et al., 
2009). To ascertain whether variations in network complexity were 
systematically influenced by differential diversity or sequencing depth, 
we conducted Pearson correlation analyses. These analyses examined 
the relationships between salient network metrics—specifically, the 
number of edges, modularity, and clustering coefficient—and both 
mean Shannon diversity and sequencing depth across all samples 
(Faust et al., 2015).

The relative importance of individual environmental factors on 
microbial community structure was evaluated by hierarchical 
partitioning analysis using the “rdacca.hp” package (Lai et al., 2022). 
Specifically, variance inflation factors (VIFs) were computed to check 
for collinearities among environmental variables. Variables with VIFs 
>10 were removed from subsequent hierarchical partitioning analysis 
until all VIFs were <10. The significance (p < 0.05) of the explanatory 
role of each environmental factor on microbial community structure 
was obtained through 999 permutation tests.

While hierarchical partitioning identified key environmental 
drivers, this correlation-based inference could not directly disentangle 
the underlying ecological processes governing community assembly. 
To explicitly quantify the relative contributions of deterministic and 
stochastic processes across different WSR stages, we conducted a null 
model-based framework. The analysis was performed independently 
for each of the five WSR periods to assess temporal dynamics. For 
each period, the β-nearest taxon index (βNTI) was computed for all 
pairwise sample comparisons. Deterministic processes were identified 
using a |βNTI| >2 threshold, where βNTI >+2 indicated variable 
selection and βNTI <−2 denoted homogeneous selection. For pairwise 
comparisons with |βNTI| <2, the subsequent metric employed was the 
Bray–Curtis–based Raup–Crick (RC) metric. Within this subset, 
|βNTI| <2 coupled with RC <−0.95 was interpreted as homogenizing 
dispersal, RC >+0.95 as dispersal limitation, and |RC| <0.95 as 
undominated processes. The relative dominance of each assembly 
process was quantified as the percentage of pairwise comparisons 
assigned to each category. All computations were performed using the 
“ape,” “iCAMP,” and “dplyr” R packages (Stegen et al., 2013).

LEfSe analysis (LDA score >2, p < 0.05) was performed to estimate 
significant variations, aiming to identify characteristic flora of SS, PA, 
and FL at different stages of WSR (Gao et al., 2024).

Moreover, the Pearson correlation was calculated between the 
dominant taxa (class level, relative abundance ≥0.05%) and the 
environmental factors measured, using the “vegan” and “ggplot” 
packages in R.

1  http://ieg2.ou.edu/MENA/
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Results

Physicochemical variations among five 
different stages of WSR in the 
reservoir-river continuum of the Yellow 
River

The physicochemical characteristics exhibited distinct variations 
across the five designated stages of the water-sediment regulation 
(WSR) process within the reservoir-river continuum of the Yellow 
River, as detailed in Supplementary Figure S1. Water temperature 
fluctuated from 24.45 °C to 32.01 °C, with significantly elevated 
temperatures observed during the Post_WSR stage compared to both 
the Pre_WSR and Inter_WSR stages (p < 0.05) 
(Supplementary Figure S1A). pH levels ranged from 7.52 to 8.42, 
while turbidity varied from 17.05 to 77.80 NTU, reaching its 
maximum concentration in the Inter_WSR3 stage (77.80 NTU) 
(Supplementary Figures S1B,D).

Dissolved oxygen (DO), chlorophyll a (Chla), nitrate (NO3
−), 

and total nitrogen (TN) concentrations exhibited a similar 
fluctuating pattern, ranging from 3.97 to 11.82 mg/L, 0.56 to 
14.95 mg/L, 2.04 to 3.10 mg/L, and 0.06 to 1.88 mg/L, respectively. 
A significant decline in these parameters was noted during the Inter_
WSR3 stage, followed by a statistically significant increase in the 
Post_WSR stage (p < 0.05) (Supplementary Figures S1C,E,H). 
Conversely, nitrite (NO2

−) concentrations rose significantly to 
0.17 mg/L during Inter_WSR3 and subsequently decreased to 
0.02 mg/L in Post_WSR (p < 0.05). Likewise, dissolved inorganic 
carbon (DIC) showed a pronounced peak in Inter_WSR3 
(40.61 mg/L), followed by a decline in Post_WSR (29.51 mg/L) 
(p < 0.05) (Supplementary Figures S1I,N).

TP concentrations exhibited a significant increase, rising from 
0.06 mg/L during the Pre_WSR stage. This concentration peaked at 
1.88 mg/L in the Inter_WSR2 stage, subsequently returning to levels 
comparable to those in the Pre_WSR stage (0.06–0.08 mg/L). 
Ammonium (NH4

+) concentration increased initially to 0.67 mg/L 
and then decreased significantly to 0.12 mg/L (p < 0.05) compared to 
the Pre_WSR stage (Supplementary Figure S1F). The concentration of 
dissolved organic carbon (DOC) ranged from 8.76 mg/L to 
11.39 mg/L, with no significant changes observed throughout the 
WSR process (p < 0.05) (Supplementary Figure S1M).

Microbial alpha and beta diversity 
dynamics across WSR stages

A total of 12,498,869 high-quality sequence reads were generated 
from 120 samples collected across eight sampling sites, representing 
five distinct WSR stages. The average number of reads per sample was 
104157.20 (±27703.71), with an average read length of 419 bp. 
Sequencing read counts varied slightly by sample location, with 
averages of 106,836,108,907, and 96,876 reads for microbial samples 
from the surface sediment (SS), particle-attached (PA), and free-living 
(FL) microorganisms, respectively.

Good’s coverage values were 1.0 for all samples, indicating that the 
sequence depth captured the majority of microbial taxa present. Alpha 
diversity metrics were calculated for all samples, and the results are 
summarized in Supplementary Table S1.

Overall, alpha diversity metrics demonstrated significant 
differences among sampling locations. The SS samples exhibited 
significantly higher average richness (2326.25 vs. 763.03; 2326.25 vs. 
540.18), Shannon diversity (9.65 vs. 6.66; 9.65 vs. 6.39), and Pielou’s 
evenness (0.8632 vs. 0.6982; 0.8632 vs. 0.7071) indices compared to 
both the PA and FL locations (p < 0.05), with the exception of the 
Simpson index. However, no significant differences were observed 
between PA and FL for any alpha diversity index (p > 0.05), despite a 
trend showing higher richness and Shannon diversity values in PA 
compared to FL (763.03 vs. 540.18) (Supplementary Table S1).

Detailed analysis revealed similar temporal trends in richness and 
Shannon diversity indices across SS, PA, and FL samples during the 
WSR process (Figures 2A–F). Compared to the Pre_WSR samples, 
both richness and Shannon diversity increased in the Post_WSR stage 
for SS (2175.75 vs. 2884.75; 9.41 vs. 10.17), PA (729.88 vs. 801.38; 6.69 
vs. 6.88), and FL (491.13 vs. 560.50; 6.13 vs. 6.69). Interestingly, both 
PA (1009.63; 7.17) (Figures 2C,D) and FL (725.13; 6.97) (Figures 2E,F) 
showed statistically significant increases (p < 0.05) in richness and 
Shannon diversity to maximal values during the Inter_WSR3 stage, 
while SS did not. There was no significant difference in those indices 
compared to the Post_WSR samples (p > 0.05).

Two-factor PERMANOVA showed that, after controlling for 
variation across sampling sites, the WSR period significantly shaped 
microbial communities in all three compartments (PA: p = 0.001; FL: 
p = 0.001; SS: p = 0.001). Notably, the WSR stage exerted the most 
substantial influence on sediment microbial communities, explaining 
the highest proportion of variance (SS, R2 = 38.5%). The sampling site 
effect was also significant (p = 0.003; Table 1). Crucially, the WSR stage 
effect remained significant even after controlling for spatial variation, 
underscoring its independent impact.

Beta diversity analyses, performed using principal coordinates 
analysis (PCoA) in combination with PERMANOVA, confirmed 
significant differences (p < 0.001) in microbial community structure 
among SS, PA, and FL throughout the WSR process (Figure 3A). 
Specifically, the microbial community composition of SS samples 
exhibited significant divergence from PA and FL, while the 
communities of PA and FL showed greater structural similarity. This 
differentiation was particularly pronounced during the Inter_WSR2 
and Inter_WSR3 stages (Figure 3A).

Furthermore, Venn diagram analysis of operational taxonomic 
units (OTUs) showed that the number of shared OTUs among SS, PA, 
and FL gradually increased from the Inter_WSR1 stage (201) to the 
Inter_WSR3 stage (208), compared to the Pre_WSR stage (64), 
followed by a slight decrease in the Post_WSR stage (Figure 3B). The 
number of unique OTUs for SS, PA, and FL showed different patterns 
over the WSR process. Compared to the Pre_WSR stage, the number 
of SS-specific OTUs (301 vs. 309) increased overall. The number of 
PA-specific OTUs (252 vs. 212) decreased slightly, whereas FL-specific 
OTUs (308 vs. 162) decreased most notably during the Post_WSR 
stage (Figure 3B).

Microbial community structure variation 
during WSR

Across all samples collected throughout the WSR process, the 
dominant microbial classes (with an average relative abundance of 
≥0.5%) exhibited a high degree of similarity among the sedimentation 
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site (SS), plunge area (PA), and flowing reach (FL). These core classes 
included Gammaproteobacteria (17.09–35.69%), followed by 
Alphaproteobacteria (3.17–25.85%), Actinobacteria (4.01–16.72%), 
Bacteroidia (0.98–29.42%), Planctomycetes (1.88–14.18%), 

Cyanobacteriia (0.13–20.27%), Acidimicrobiia (1.88–14.18%), 
Verrucomicrobiae (0.77–9.49%), Nitrososphaeria (0–9.62%), 
Anaerolineae (0–7.26%), and Thermodesulfovibrionia (0–3.74%) 
(Figures 3B,C and Supplementary Tables S2–S4).

FIGURE 2

Microbial alpha-diversity indices and their correlations with environmental factors across different WSR stages in the study. (A–F) Comparison of 
richness and Shannon indices for surface sediment (SS), particle-attached (PA), and free-living (FL) microorganisms. Different superscript letters 
indicate significant differences (p < 0.05), while identical or unmarked letters indicate no significant differences (p > 0.05) (one-way ANOVA). (G–K) 
Pearson correlations between richness and Shannon indices of SS, PA, and FL and environmental factors, determined using the Mantel test analysis. 
G–K display the results of Mantel tests, illustrating the correlations between the Shannon and Richness indices of the SS, PA, and FL microbial 
communities and environmental factors across five periods: Pre_WSR, Inter_WSR1, Inter_WSR2, Inter_WSR3, and Post_WSR. The thickness of the 
connecting lines represents the magnitude of the Mantel correlation coefficient, while the color indicates the level of statistical significance: orange 
denotes P < 0.01, green indicates 0.01 < P < 0.05, and gray represents non-significant correlationsn (P ≥ 0.05). Additionally, the correlations among the 
environmental factors within each period are presented in the same subfigures. Positive and negative Pearson correlations are distinguished by red and 
blue colors, respectively, with significance levels marked as follows: “***”, P < 0.001; “**”, P < 0.01; and “*”, P < 0.05.
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Despite the overall similarity in community composition, the 
relative abundance of these dominant classes varied among SS, PA, 
and FL. For example, Gammaproteobacteria (24.92%) and Bacteroidia 
(14.29%) were most abundant in SS, followed by FL (23.74 and 
7.72%) and PA (23.66 and 11.02%). Conversely, Planctomycetes 
(10.62%) and Cyanobacteria (8.57%) exhibited the highest relative 
abundance in PA, followed by FL (5.51 and 4.91%) and SS (2.66 and 
3.76%). Alphaproteobacteria (20.28%) and Actinobacteria (22.06%) 
were most abundant in FL, followed by PA (15.85 and 10.24%) and 
SS (4.46 and 2.18%) (Figures  3B,C and Supplementary Tables 
S2–S4).

Furthermore, the dominant groups and their abundance changed, 
showing distinct trends across the different WSR stages. For instance, 
from Pre_WSR to Post_WSR, the abundance of Gammaproteobacteria 
decreased in all three locations, but the temporal pattern varied 
among them. Specifically, SS-Gammaproteobacteria (35.69%) 
increased from the Pre_WSR to the Inter_WSR3, with its abundance 
declining to 26.31% in Post_WSR. PA-Gammaproteobacteria peaked 
in the Inter_WSR2 (28.67%), then decreased to 20.82% in Post_
WSR. The abundance of FL-Gammaproteobacteria fluctuated 
throughout WSR, reaching peaks in the Inter_WSR1 (28.07%) and 
Inter_WSR3 (31.65%) stages and returning to levels similar to Pre_
WSR in Post_WSR.

To elucidate the distribution of abundant taxa at different stages 
of WSR across SS, PA, and FL, LEfSe analysis (LDA score >2, p < 0.05) 
was conducted to identify significant variations. The results showed 
that the number of significantly different microbial classes was highest 
in FL (10 classes), followed by PA (five classes), and SS (two classes). 
The enriched classes varied among WSR stages (Figure 3D). In SS, 
itrososphaeria and Gammaproteobacteria were enriched in Pre_WSR 
and Inter_WSR3, respectively. In PA, Verrucomicrobiae were enriched 
in Pre_WSR; Acidimicrobiia and Nitrososphaeria were enriched in 
Inter_WSR3; and Cyanobacteriia and Anaerolineae were enriched in 
Post_WSR. In FL, Actinobacteria and Verrucomicrobiae were enriched 
in Pre_WSR; Alphaproteobacteria and Bacteroidia were enriched in 
Inter_WSR1; Acidimicrobiia were enriched in Inter_WSR2; 
Gammaproteobacteria, Thermodesulfovibrionia, and Nitrososphaeria 
were enriched in Inter_WSR3; and Cyanobacteriia and Anaerolineae 
were enriched in Post_WSR (Figure 3D).

In detail, Nitrososphaeria was significantly enriched in SS during 
Pre_WSR. Its abundance also increased in both PA and FL in Inter_
WSR2 (Figure  3C). Gammaproteobacteria in SS was significantly 
enriched in Inter_WSR3 compared to other WSR stages. Moreover, 
Cyanobacteriia and Anaerolineae were enriched in both PA and FL in 
Post_WSR (Figure 3C and Supplementary Table S3).

Microbial ecological function changes 
during WSR

PICRUSt-based functional prediction indicated that 
microorganisms in SS, PA, and FL communities contributed to 
carbon, nitrogen, phosphorus, and sulfur cycling in the turbid Yellow 
River ecosystem. Underwater sediment regulation (WSR) caused 
changes over time in the abundance of genes related to these ecological 
functions (Figure 4; Supplementary Figures S2–S4).

In the carbon cycle, the reductive tricarboxylic acid (rTCA) cycle 
was the most abundant (26.99–29.98%), highest in SS (29.98%), and 
slightly lower in PA (27.75%) and FL (27.69%) (Figure  4). rTCA 
remained stable in SS and PA but declined in FL (p < 0.05, 
Supplementary Figure S2B). The dicarboxylate/4-hydroxybutyrate 
(DC/4HB) cycle was lowest in SS (20.64%) and decreased significantly 
in PA and FL (p < 0.05, Supplementary Figure S2F). The Calvin–
Benson–Bassham (CBB) cycle (18.84–23.03%) was lower in SS 
(19.45%) than in PA (20.72%) and FL (20.22%), remaining stable in 
SS but increasing significantly in PA and FL (p < 0.05, 
Supplementary Figure S2A).

For nitrogen cycling, nitrate reduction dominated (46.32–67.71%), 
with the highest rate in PA (63.30%) compared to SS (49.93%) and FL 
(57.56%). Denitrification followed (21.44–32.66%), being more abundant 
in FL (32.66%) than in SS (24.23%) or PA (23.46%) (Figure 4). Across 
WSR, neither process differed significantly, but at Inter_WSR3, nitrate 
reduction decreased in PA and FL, while denitrification increased. 
Comammox (7.08–15.05%) was also abundant, highest in SS (13.05%), 
followed by FL (10.13%) and PA (8.66%). During WSR, comammox 
declined in SS (p < 0.05), but increased in PA and FL at Inter_WSR3. 
Other detected pathways included anammox, nitrification, and nitrogen 
fixation (Supplementary Figure S3).

For phosphorus cycling, phosphorus transport dominated (29.19–
38.41%), highest in SS (35.22%), then in PA (33.28%), and in FL 
(32.70%) (Figure 4). During WSR, transport in PA declined at Inter_
WSR3 (p < 0.05) before recovering, while in FL it increased steadily. 
Organic phosphorus mineralization (15.55–23.50%) was relatively 
abundant, higher in SS (12.92%) than in PA (9.18%) and in FL 
(10.59%) but declined significantly in PA and FL, with a temporary 
increase at Inter_WSR3 in FL (p < 0.05, Supplementary Figure S4A). 
Phosphorus regulation (10.27–13.17%) peaked at Inter_WSR2 before 
declining, while solubilization (7.23–11.72%) decreased steadily 
(Supplementary Figure S4).

In the sulfur cycle, sulfate reduction was predominant (19.36–
24.07%), highest in SS (23.75%), followed by PA (22.62%) and FL 
(21.13%). Sulfate oxidation was next, more abundant in FL (4.55%) 
than in SS (3.25%) or PA (3.13%), and it increased continuously in PA 
and FL during WSR (p < 0.05) (Figure 4).

Features of microbial molecular networks 
in SS, PA, and FL during WSR

Microbial molecular networks (MENs) were constructed based on 
OTUs from the Pre_WSR, Inter_WSR1, Inter_WSR3, and Post_WSR 
stages for SS, PA, and FL samples to evaluate potential interactions 
within the microbial communities (Figure 4 and Table 1). Overall, the 
MENs in SS exhibited the highest network complexity, as indicated by 
the greatest values across several metrics (nodes: 774–1,318; links: 

TABLE 1  Two-factor PERMANOVA analysis revealed the effects of 
temporal (five WSR stages) and spatial (eight sampling sites within each 
WSR stage) variations on microbial community structure.

Microbial-type Factor R2 p-value

PA Stages of WSR 0.158634 0.001

PA Sampling Site 0.244915 0.001

FL Stages of WSR 0.245445 0.001

FL Sampling Site 0.315308 0.001

SS Stages of WSR 0.384566 0.001

SS Sampling Site 0.179415 0.003
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FIGURE 3

SS, PA, and FL-related microbial community variations at different stages of WSR. (A) PCoA with PERMANOVA (based on Bray–Curtis distance) analysis 
indicated significant differences (p < 0.05) in SS-, PA-, and FL-related microbial communities during the process of WSR. (B) Venn analysis shows the 

(Continued)
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3,719–18,628; positive links/negative links (NL/PL): 0.86–2.24; 
average degree: 0.22–48.01; modularity: 0.11–0.73; average path 
distance (PD): 3.25–5.6; average clustering coefficient avgCC: 0.12–
0.25). PA displayed intermediate network complexity (nodes: 287–505; 
links: 1,048–10,623; NL/PL: 1.07–2.73; average degree: 7.11–42.07; 
modularity: 0.11–0.77; PD: 3.11–4.41; avgCC: 0.18–0.23), while FL 
had the lowest complexity (nodes: 153–220; links: 281–1,355; N/P: 
0.81–2.07; average degree: 2.94–10.95; modularity: 0.22–0.83; PD: 
2.12–5.01; avgCC: 0.12–0.21) (Figure 5 and Table 2).

Specifically, the modularity (0.32–0.73) and the number of nodes 
(774–1,318) in the SS networks increased from Pre_WSR to Inter_
WSR3, while the two metrics decreased to 0.49 and 1,248, respectively, 
in the Post_WSR. Similar trends were observed in PA, where the 
modularity (0.30–0.77) and the number of nodes (310–505) increased 
from Pre_WSR to Inter_WSR3 before decreasing to 0.17 and 389, 
respectively, in the Post_WSR. In contrast, FL exhibited relatively low 
values for modularity (0.20–0.22) and the number of nodes (191) in 
Inter_WSR1 and Inter_WSR2. These values increased in the 

unique and the shared OTUs among SS, PA, and FL microorganisms during the process of WSR. (C) Microbial community composition changes (in 
class level, relative abundance ≥1%) during the process of WSR. (D) Microbial groups (class level) with significant differences selected by the LEfSe 
analysis (LDA score ≥2) during the process of WSR.

FIGURE 3 (Continued)

FIGURE 4

Relative abundance of microbial function shifts across WSR stages (predicted by PICRUSt based on 16S rRNA high-throughput sequencing data). 
(A) Carbon cycles: CBB cycle, Calvin–Benson–Bassham cycle; rTCA cycle, reductive tricarboxylic acid cycle; 3HP cycle, 3-hydroxypropionic acid 
cycle; 3HP/4HB cycle, 3-hydroxypropionic acid/4-hydroxybutanoic acid cycle; DC/4HB cycle, dicarboxylic acid/4-hydroxybutyrate cycle; WL pathway, 
Wood–Ljungdahl pathway. (B) Nitrogen cycles. (C) Phosphorus and sulfur cycles.
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subsequent stages, reaching a maximum of 0.77–0.83 and 194–220, 
respectively, from Inter_WSR3 (Figure 5 and Table 2).

Compared to Pre_WSR, both the number of links and the average 
clustering coefficient (avgCC) of SS networks increased during Inter_
WSR1 (links: 18,628; avgCC: 0.22), decreased to a minimum during 
Inter_WSR3 (3,719), and subsequently rose to 10,553 links in Post-
WSR. The average clustering coefficient (avgCC) exhibited relatively 
stable values from Inter_WSR1 to Post_WSR (Figure 5 and Table 2). 

The number of links in PA also exhibited a fluctuating upward trend 
from Pre_WSR (1,656) to Inter_WSR3 (10,623), followed by a 
decrease to 3,912 in the Post_WSR. Conversely, the number of links 
in FL showed a downward fluctuating trend, decreasing from Pre_
WSR (1,355) to Inter_WSR3 (329) and then rising to 344  in the 
Post_WSR.

Moreover, compared to the Pre_WSR stage, the N/P (0.86) and 
average degree (0.22) values of SS networks consistently decreased, 

FIGURE 5

Molecular ecological networks (MENs) of SS, PA, and FL-related microbial communities at different stages of WSR (N, nodes; L, links) based on the OTU 
table from 16S rRNA sequencing data. (A–C) The microbial networks represent random matrix theory (RMT)-based correlation models derived from SS, 
PA, and FL samples at each WSR stage in the study. Nodes represent ASVs, and links between nodes represent significant correlations (either positive or 
negative). The node size is proportional to its degree, and colors indicate different modules.

TABLE 2  Topological properties of SS, PA, and FL at different stages of WSR (mean values from eight sampling sites, with three replicates for each of PA, 
FL, and SS at each stage; n = 24).

Topological 
properties

Pre_WSR Inter_WSR1 Inter_WSR2 Inter_WSR2 Post_WSR

SS PA FL SS PA FL SS PA FL SS PA FL SS PA FL

Numbers of nodes (N) 774 310 191 776 287 153 801 295 191 1,318 505 220 1,248 389 194

Numbers of links (L) 5,508 1,656 1,355 18,628 1,570 838 13,811 1,048 281 3,719 10,623 329 10,553 3,921 344

Positive links (PL) 1,700 444 468 8,826 553 295 6,245 361 128 2,002 4,261 107 3,103 1,893 190

Negative links (NL) 3,808 1,212 887 9,802 1,017 543 7,566 687 153 1,717 6,362 222 7,450 2,028 154

NL/PL 2.24 2.73 1.90 1.11 1.84 1.84 1.21 1.90 1.20 0.86 1.49 2.07 2.40 1.07 0.81

Average degree 14.23 10.68 14.19 48.01 10.94 10.95 34.48 7.11 2.94 0.22 42.07 2.99 16.91 20.16 3.55

Modularity 0.32 0.30 0.20 0.11 0.67 0.22 0.16 0.77 0.83 0.73 0.11 0.77 0.49 0.17 0.77

Average path distance (PD) 5.01 3.97 3.35 3.25 3.81 3.20 4.28 4.41 3.28 5.60 3.11 2.12 4.80 3.29 5.01

Average clustering 

coefficient (avgCC)
0.13 0.18 0.21 0.25 0.22 0.19 0.23 0.19 0.15 0.22 0.24 0.12 0.12 0.23 0.14

N, number of nodes; L, number of links; PL, positive links; NL, negative links; NL/PL, positive links/negative links; PD, average path distance; avgCC, average clustering coefficient.
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reaching their lowest values during Inter_WSR3. Both Post_WSR 
values (N/P: 2.40; average degree: 16.91) of SS returned to levels 
similar to those of Pre_WSR (N/P: 2.24; average degree: 14.23). In 
contrast, the path diameter (PD) of SS networks reached the highest 
value in Inter_WSR3, then decreased to a value of 4.80 in Post_WSR, 
which was similar to that of Pre_WSR (5.01). The N/P value of PA 
showed a fluctuating decrease from Pre_WSR (2.73) to Post_WSR 
(1.07), reaching its lowest level in Post_WSR, while the average degree 
of PA reached its highest value of 42.07 in Inter_WSR3. The N/P value 
of FL reached its maximum of 2.07 in Inter_WSR3 and then decreased 
to 0.81  in Post_WSR. In contrast, the path diameter (PD) of FL 
reached its lowest value (2.12) in Inter_WSR3 and then increased to 
5.01 in Post_WSR (Figure 5 and Table 2).

The correlation analyses revealed that, while the number of edges 
showed a significant positive correlation with Shannon diversity 
(R  = 0.766, p  = 0.001), the fundamental topological properties of 
modularity (R  = −0.232, p  = 0.405) and clustering coefficient 
(R = −0.022, p = 0.939) demonstrated no significant relationship with 
diversity. Importantly, none of the three-network metrics correlated 
significantly with sequencing depth (all p  > 0.5) 
(Supplementary Table S7).

Influence of physicochemical factors on 
the microbial distribution during WSR

The relationships between microbial communities and 
physicochemical factors were investigated across the WSR process. 
Changes in microbial richness and Shannon diversity in SS, PA, and 
FL exhibited varying correlations with physicochemical factors 
(Figures 2G–K). Additionally, the contribution of key physicochemical 
parameters (Chla, DIC, TN, TP, NH4

+, turbidity, and NO3
−) to the 

microbial community structure in SS, PA, and FL shifted throughout 
the WSR stages. Furthermore, even within the same WSR stage, these 
important physicochemical factors differed in their influence on the 
microbial community structure of SS, PA, and FL (Figure 6).

Mantel test results indicated that physicochemical factors showed 
stronger correlations with microbial richness and Shannon diversity 
in Pre_WSR, Inter_WSR2, and Inter_WSR3 compared to Inter_WSR1 
and Post_WSR (Figures 2G–K). Specifically, the richness of SS was 
correlated with TN, pH, NO3

−, and Chla (p < 0.01) in Pre_WSR, 
Inter_WSR1, Inter_WSR2, and Inter_WSR3, respectively 
(Figures 2G–K). Shannon diversity in SS correlated with pH (p < 0.01) 
and NH4

+ in Inter_WSR1 and correlated with pH, NH4
+, and NO2

− 
(p < 0.01) in Inter_WSR2. Regarding PA, richness was only correlated 
with oxidation–reduction potential (ORP), NO3

−, and dissolved 
organic carbon (DOC) in Pre_WSR, while Shannon diversity was 
correlated with ORP and DOC in Pre_WSR and with NH4

+, NO3
−, and 

TN in Inter_WSR1. From Inter_WSR2 to Post_WSR, Shannon 
diversity in PA was solely correlated with TP, DOC, and NO3

−, 
respectively (Figures 2G–K). FL richness was correlated with ORP and 
pH in Pre_WSR and Inter_WSR3, respectively. In Inter_WSR3, 
richness also correlated with Chla and TP (p < 0.01). Shannon 
diversity in FL was correlated with pH and NH4

+ in Pre_WSR, only 
NO2

− in Inter_WSR2, but correlated with T, DO, and turbidity in 
Post_WSR (Figures 2G–K).

Hierarchical partitioning analysis revealed that, in the Pre_WSR, 
Chla was the largest contributor to SS (0.20), followed by DIC (0.18) 

and TN (0.18). However, DIC was the primary contributor to PA 
(0.20) and FL (0.22) during this stage. In Inter_WSR1, NO3

− became 
the greatest contributor to SS, PA, and FL, with turbidity and DIC 
acting as the second major contributors (Figure 6A). Inter_WSR2 saw 
nitrate become the most significant physicochemical factor, 
contributing significantly (p < 0.05) to SS (0.26), PA (0.28), and FL 
(0.29). Furthermore, Chla and NH4

+ also exhibited high contributions 
to SS and PA. For FL, the second and third highest contributors were 
TP and TN during the Inter_WSR2 stage (Figure 6B). In Inter_WSR3, 
a period of sand regulation, Chla became the most significant 
contributor to SS (0.30, p < 0.05), while turbidity became the 
dominant contributor to both PA and FL. Conversely, TP and NO3

− 
were key contributors to SS, DIC, and Chla were important 
contributors to PA, and TP and NO3

− were also important contributors 
to FL (Figure 6C). At the end of WSR (Post_WSR), Chla remained the 
greatest contributor to SS (0.33, p < 0.05). However, NH4

+ became the 
dominant contributor to PA (0.23), and turbidity dominated FL (0.25, 
p < 0.05) (Figures 6D).

To move beyond merely identifying key environmental drivers 
and to explicitly elucidate the ecological mechanisms through which 
these factors shape community structure, we performed a null model 
analysis of community assembly processes. The null model analyses 
revealed distinct ecological assembly processes governing SS, PA, and 
FL microbial communities across the five WSR stages 
(Supplementary Figure S5). In SS communities, most pairwise 
comparisons yielded |βNTI| <2 across all stages. However, a notable 
number of comparisons in Pre_WSR exhibited βNTI <−2 
(Supplementary Figure S5A). Consistent with this, the quantitative 
estimation of ecological processes identified homogeneous selection 
as the dominant assembly mechanism in Pre_WSR. In subsequent 
stages, community assembly shifted to being primarily governed by 
undominated processes (Supplementary Figure S5B). For PA 
communities, βNTI values also largely fell within the |βNTI| <2 range, 
though several comparisons in Pre_WSR showed βNTI >+2 
(Supplementary Figure S5C). Ecological process partitioning indicated 
substantial contributions of homogenizing dispersal during Inter_
WSR1 and Inter_WSR3. Throughout the WSR stages, the combined 
influence of undominated processes and homogenizing dispersal 
represented the principal assembly mechanisms in PA communities 
(Supplementary Figure S5D). In FL communities, nearly all βNTI 
values across the five stages were within the |βNTI| <2 threshold 
(Supplementary Figure S5E). Accordingly, undominated processes 
overwhelmingly dominated the assembly, accounting for the highest 
relative proportion among all three habitats in each stage. 
Deterministic processes, namely homogeneous and variable selection, 
had minimal influence (Supplementary Figure S5F).

Correlations between microbial 
community and physiochemical variables 
during WSR

Pearson correlation analysis was employed to assess the 
relationships between the relative abundance of dominant microbial 
taxa (at the class level, with a relative abundance of >1%) and various 
physicochemical factors throughout the WSR process. The results 
revealed that many taxa were significantly correlated with dissolved 
oxygen (DO), turbidity, total suspended particles (TSP), chlorophyll 
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a (Chla), NO3
−, NO2

−, total nitrogen (TN), and total phosphorus (TP) 
(Figure 7).

In the Pre_WSR stage, the dominant taxa in SS were most 
significantly (p < 0.05) influenced by TSP, Chla, NO3

−, and NO2
−, 

while PA and FL showed fewer correlations with these factors 
compared to SS (Figure  7A). During Inter_WSR1 and 

Inter_WSR2, a greater number of physicochemical factors 
exhibited significant (p < 0.05) correlations with the microbial 
communities in SS, PA, and FL. In contrast, during Inter_WSR3, 
the PA and FL communities exhibited stronger correlations with 
turbidity, TSP, Chla, TP, and DIC compared to the SS community 
(Figures 7A–C). As WSR concluded (Post_WSR), correlations 

FIGURE 6

HP (hierarchical partitioning) analysis showing the contribution of physicochemical factors to SS, PA, and FL-related microbial communities at different 
stages of WSR. (A–E) The variance inflation factor (VIF) was calculated to retain the physicochemical factors with low collinearity. *p < 0.05, which 
shows that this physicochemical factor contributes significantly to the microbial community structure (permutation test). “Turb” is the abbreviation of 
turbidity.
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were observed between certain dominant taxa and DO, 
oxidation–reduction potential (ORP), and Chla. Simultaneously, 
pH, DO, ORP, NH4

+, NO2
−, TP, and dissolved organic carbon 

(DOC) emerged as key physicochemical factors exhibiting 
significant correlations with the dominant taxa in PA and FL 
(Figure 7D).

Furthermore, the degree of influence of physicochemical factors on 
microbial communities varied among SS, PA, and FL throughout the 
WSR stages (Figure  7). During Pre_WSR, Alphaproteobacteria, 
Anaerolineae, and Thermodesulfovibrionia in SS were most sensitive to 
changes in the physicochemical environment. Specifically, 
Alphaproteobacteria displayed a positive correlation with TSP and DIC 
(p < 0.05) and a negative correlation with Chla and NO2

− (p < 0.01). 

Anaerolineae and Thermodesulfovibrionia displayed positive correlations 
with Chla and NO2

− (p < 0.05) and negative correlations with TSP 
(p < 0.05) (Figure 7A). Gammaproteobacteria were the most vulnerable 
taxa in PA and FL, showing positive correlations with temperature (T) 
(p < 0.05) and negative correlations with DO, Chla, and TN (p < 0.05). 
Furthermore, Actinobacteria in FL showed positive correlations with 
Chla, NO2

−, and PO4
3− and a negative correlation with DIC. Compared 

to Pre_WSR, the number of dominant classes in Inter_WSR1 that were 
sensitive to the physicochemical factors increased in SS (e.g., 
Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, 
Actinobacteria), PA (e.g., Planctomycetes, Cyanobacteria, Actinobacteria), 
and FL (e.g., Alphaproteobacteria, Gammaproteobacteria, Acidimicrobiota) 
(Figure 7B). In contrast, the number of significant correlations between 

FIGURE 7

Spearman correlation between the relative abundance of dominant taxa (at the class level, relative abundance >1%) and the measured physicochemical 
variables for the SS, PA, and FL-related microorganisms in different stages of WSR. (A) Pre_WSR. (B) Inter_WSR1. (C) Inter_WSR2. (D) Inter_WSR3. 
(E) Post_WSR. ***p < 0.001, **p < 0.01, and *p < 0.05.
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the dominant classes of SS (Cyanobacteria) and the physicochemical 
factors became limited in Inter_WSR3 (Figure 7D). However, as the WSR 
process concluded (Post_WSR), certain classes in SS regained correlations 
with physicochemical factors, such as the positive correlations between 
Anaerolineae and Chla and ORP (p < 0.05). Simultaneously, the responses 
of some taxa in PA and FL to the physicochemical factors became weaker. 
For example, Bacteroidia in PA during Inter_WSR3 exhibited positive 
correlations with DIC, turbidity, TSP, and TP, while showing negative 
correlations with NO3

−. In contrast, during the Pre_WSR, Bacteroidia in 
PA demonstrated a significant positive correlation with pH (p < 0.05) and 
a significant correlation with NO2

− (p < 0.05). A similar pattern was 
observed for Cyanobacteria in FL during Inter_WSR3, which correlated 
positively with Chla but negatively with turbidity, TP, TSP, and 
DIC. However, in the Post_WSR, Cyanobacteria only showed a negative 
correlation with DOC (Figures 7D,E).

Discussion

Microbial community responses to WSR: 
stage-specific shifts and legacy effects

Microbial communities in the Yellow River exhibited stage-specific 
successions in response to water-sediment regulation (WSR), with the 
most pronounced disruption occurring during the sediment-regulation 
stage (Inter_WSR3). This phase was characterized by extreme hydraulic 
turbulence, sediment resuspension, and pulsed nutrient fluxes (e.g., NO₃−, 
DIC), which collectively restructured microbial interactions and 
community composition (Figure  3A). Notably, microbial α-diversity 
(richness and evenness) initially increased during WSR but reverted to 
pre-disturbance levels in Post-WSR (Figures 2A–F), suggesting a transient 
resilience of taxonomic diversity. However, this recovery masked 
underlying shifts in β-diversity, as revealed by principal coordinate 
analysis (PCoA), which showed persistent divergence among surface 
sediment (SS), particle-attached (PA), and free-living (FL) microbial 
communities throughout WSR (Figure 3A). Such divergence reflects 
niche differentiation driven by stage-specific physicochemical gradients, 
such as light availability, nutrient concentrations, and sediment-water 
interactions (Xia et al., 2013; Pan et al., 2022a, 2022b).

Molecular ecological network analysis (MENs) further illuminated 
the destabilizing effects of WSR on microbial interactions. Network 
complexity (nodes, links, modularity) peaked during Inter_WSR3 but 
failed to fully recover post-disturbance (Table  1 and Figure  5). For 
instance, the modularity of SS microbial networks dropped from 0.73 
during Inter_WSR3 to 0.49 in Post-WSR, indicating a collapse of the 
modular community structure critical for functional redundancy 
(Barberán et al., 2012). This legacy effect implies that even short-term 
WSR disturbances can leave enduring imprints on microbial connectivity, 
potentially impairing ecosystem resilience (Wang S. et al., 2021; Yuan 
et al., 2021). In contrast, FL communities displayed the slowest recovery 
of network complexity, likely due to prolonged exposure to residual 
hydrological instability and nutrient pulses (Palmer and Ruhi, 2019; 
Shang et al., 2023).

The stage-specific shifts in microbial composition were 
exemplified by the contrasting dynamics of dominant taxa. During 
Inter_WSR3, Gammaproteobacteria (35.69% relative abundance in SS) 
and Bacteroidia (14.82% in SS) flourished in response to labile organic 
matter released from resuspended sediments (Song et al., 2012; Xia 

et al., 2018). Conversely, Cyanobacteria and Anaerolineae dominated 
FL and PA communities in Post-WSR, reflecting a shift toward 
photoautotrophic metabolisms as light availability and nutrient 
concentrations normalized (Xiao et al., 2017; Shi et al., 2020). These 
findings underscore the importance of linking microbial community 
structure to biogeochemical functions, such as organic matter 
degradation and nutrient cycling, which are tightly coupled to 
WSR-induced environmental gradients (Lu et  al., 2022; Mu 
et al., 2024).

Collectively, these results challenge the notion that microbial 
communities in high-turbidity rivers rapidly rebound from 
disturbance. Instead, WSR induces a legacy of altered network 
topology and functional potential, with implications for long-term 
ecosystem stability. Addressing these impacts requires adaptive 
management strategies that account for stage-specific microbial 
vulnerabilities, particularly during sediment-release phases (Jia et al., 
2023; Mu et al., 2024).

Driving mechanisms of microbial 
community shifts: from environmental 
gradients to biogeochemical functions

The stage-specific shifts in microbial community structure were 
driven by dynamic physicochemical gradients imposed by WSR, 
which created distinct ecological niches for SS, PA, and 
FL microorganisms.

During the sediment-regulation stage (Inter_WSR3), extreme 
hydraulic turbulence and sediment resuspension led to peak 
concentrations of NO₃− (3.10 mg/L), DIC (40.61 mg/L), and turbidity 
(77.80 NTU), alongside reduced DO (3.97 mg/L) 
(Supplementary Figure S1). These conditions favored copiotrophic 
taxa such as Gammaproteobacteria and Bacteroidia, which thrive in 
labile organic matter-rich environments. For instance, 
Gammaproteobacteria in SS reached 35.69% relative abundance 
during Inter_WSR3, reflecting their role in degrading sediment-
released organic compounds (Song et  al., 2012; Xia et  al., 2018). 
Hierarchical partitioning further revealed that Chla (a proxy for 
phytoplankton biomass) dominated the SS community assembly 
during this phase, while NO₃− and turbidity were key drivers for PA 
and FL communities (Figure 6).

In contrast, the pre-WSR stage (Pre_WSR) was characterized by 
stable hydrological conditions and lower nutrient fluxes, allowing 
Nitrososphaeria (AOA) and Anaerolineae to thrive in SS under anoxic 
conditions (Xiao et al., 2017; Wang et al., 2024).

The post-WSR recovery phase (Post_WSR) exhibited rebounding 
Chla levels (14.95 mg/L) and declining turbidity, shifting microbial 
drivers toward light availability and regenerated nutrients. For 
example, FL-Cyanobacteria and PA-Anaerolineae abundances 
increased by 15-fold and 3-fold, respectively, during Post_WSR, 
capitalizing on improved light penetration and residual nutrients 
(Figure 3C) (Xia et al., 2013).

PA communities exhibited unique responses to WSR-driven 
gradients. During Inter_WSR3, Planctomycetes and 
Verrucomicrobia dominated PA assemblages, likely due to their 
ability to break down complex organic matter within suspended 
particles (Crespo et al., 2013; Hu et al., 2022). These taxa showed 
positive correlations with turbidity and DIC (Figure  7D), 
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suggesting their role in particle aggregation and inorganic carbon 
fixation under light-limited conditions. In contrast, FL 
communities relied more on dissolved substrates, with 
Alphaproteobacteria and Bacteroidia responding strongly to NO₃− 
and TN fluctuations (Figure 7C).

The contrasting responses of the SS, PA, and FL compartments 
highlight their specialized ecological niches. For instance, SS 
microorganisms depend on sedimentary organic matter and nutrient 
stocks, while PA and FL communities are more dynamic, adjusting to 
hydrological and light-mediated resource availability (Palmer and 
Ruhi, 2019; Pan et  al., 2022a, 2022b). This compartmentalization 
challenges the traditional view that FL communities dominate 
biogeochemical cycling in turbid rivers, emphasizing instead the 
critical role of particle-associated microbes in high-turbidity systems 
(Liu T. et al., 2018; Wang et al., 2021b).

Null model analysis revealed that underlying these stage-specific 
shifts in community structure was a fundamental change in ecological 
assembly processes. The extreme conditions experienced during 
Inter_WSR3 not only acted as a strong filter for specific copiotrophic 
lineages but also fundamentally reshaped the ecological forces 
governing the entire microbial community. In SS communities, the 
dominance of homogeneous selection during this stage provides a 
mechanistic explanation for the observed community patterns. The 
intense physical mixing effectively homogenized key environmental 
factors, such as nitrate and particulate matter, across the sediment 
habitat, creating a spatially uniform selective landscape. This powerful 
environmental filtering compelled microbial communities to 
converge, thereby overriding the influence of stochastic processes 
(Chen et  al., 2022). Thus, our results collectively suggest that the 
extreme hydraulic disturbance enhanced deterministic assembly via 
habitat homogenization, rather than increasing the influence of 
stochastic processes.

Functionally, PICRUSt predictions of microbial gene content 
corroborated these structural shifts, demonstrating that the WSR 
process regulated microbial contributions to carbon, nitrogen, 
phosphorus, and sulfur cycling. For instance, the rTCA cycle remained 
stable in SS and PA but declined in FL, indicating that sediment-
associated communities maintained their carbon fixation potential 
despite hydrological disturbance. This functional resilience in 
sediments was consistent with the abundance of dominant microbial 
taxa that rely on the rTCA pathway for carbon fixation, such as 
Nitrososphaeria, Gammaproteobacteria, and Anaerolineae, which were 
found to be abundant in SS (Garritano et al., 2022).

In the nitrogen cycle, while nitrate reduction dominated overall, 
its abundance decreased in PA and FL during Inter_WSR3, 
concurrently with an increase in denitrification. This shift reflects 
oxygen depletion and the subsequent transition toward anaerobic 
pathways, mirroring findings from river floodplain studies where 
hydrological fluctuations promote denitrification by creating anoxic 
microzones (Zhou et  al., 2024). Similarly, the enrichment of 
comammox in SS highlights the resilience of sediment-based nitrifiers 
to hydraulic stress, a trend observed in other disturbed river systems 
(Pinto et al., 2015).

Phosphorus and sulfur cycles also responded significantly to 
WSR. Phosphorus transport dominated in SS and declined in PA at 
Inter_WSR3, consistent with increased phosphorus release under high 
turbidity and sediment resuspension (Withers and Jarvie, 2008). 
While sulfate reduction remained a dominant process across habitats, 

we observed a steady increase in sulfate oxidation in PA and FL during 
WSR. This suggests that turbulent mixing enhanced redox cycling and 
potentially microbial functional diversity in these compartments. 
Such shifts collectively support the notion that hydrodynamic 
regulation can accelerate coupled biogeochemical processes (Battin 
et al., 2016).

Overall, WSR disrupts biogeochemical coupling by altering 
environmental gradients, with legacy effects persisting in microbial 
network structure and functional redundancy. Addressing these 
impacts requires management strategies that account for stage-specific 
microbial vulnerabilities, particularly during sediment-release phases 
when network complexity is most disrupted (Wang et al., 2022; Mu 
et al., 2024).

Microbial interactions and network 
complexity: implications for ecosystem 
functioning

The molecular ecological network analysis (MENs) revealed that 
water-sediment regulation (WSR) profoundly disrupts microbial 
interactions, with cascading effects on ecosystem functioning. During 
the sediment-regulation stage (Inter_WSR3), network complexity 
(nodes, links, modularity) peaked but failed to recover post-
disturbance, indicating lasting destabilization of microbial 
communities. For example, the modularity of surface sediment (SS) 
networks dropped from 0.73 during Inter_WSR3 to 0.49 in Post-WSR, 
reflecting a collapse of modular structures critical for maintaining 
functional redundancy (Barberán et al., 2012). This loss of modularity 
suggests that WSR-induced disturbances weaken ecological resilience 
by disrupting synergistic microbial partnerships, such as mutualism 
and syntrophy, which underpin biogeochemical cycles (Xiao et al., 
2017; Li et al., 2021).

Positive interactions (e.g., resource sharing, cross-feeding) 
among microbial taxa decreased significantly during Inter_WSR3, 
while negative interactions (e.g., competition) surged, particularly 
in particle-attached (PA) and free-living (FL) communities 
(Figure  5). For instance, PA-Planctomycetes and 
FL-Alphaproteobacteria exhibited stronger antagonistic 
relationships during WSR, possibly driven by competition for light 
and nutrients (Crespo et al., 2013; Yeh and Fuhrman, 2022). Such 
shifts in interaction patterns could impair nutrient cycling 
efficiency, as syntrophic partnerships (e.g., methanogenesis, 
denitrification) are disrupted (Wang S. et  al., 2021; Yuan 
et al., 2021).

Stage-specific environmental drivers further shaped network 
topology. During Inter_WSR3, high turbidity and nutrient fluxes (e.g., 
NO₃−, DIC) favored generalist taxa with broad metabolic capabilities, 
leading to dense but less cohesive networks (Palmer and Ruhi, 2019; 
Shang et al., 2023). In contrast, post-WSR recovery was characterized 
by the re-emergence of specialist taxa (e.g., Cyanobacteria in FL), 
which formed tightly knit modules centered on light-driven processes 
(Xia et al., 2013; Pan et al., 2022a, 2022b). This dynamic highlights the 
trade-off between network stability and functional flexibility in 
response to disturbance.

Comparative analysis of low-turbidity systems (e.g., the Yangtze 
River) revealed stark contrasts in network resilience. For instance, FL 
communities in the Yellow River showed slower recovery of 
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modularity compared to their clear-water counterparts, likely due to 
prolonged light limitation and sediment resuspension stress (Liu 
T. et  al., 2018; Wang et  al., 2021a). Moreover, the prominence of 
Anaerolineae and Thermodesulfovibrionia in SS networks during 
Inter_WSR3 underscored the importance of anaerobic guilds in high-
turbidity systems, challenging assumptions derived from aerobic-
dominated riverine ecosystems (Song et al., 2012; Xia et al., 2014).

These findings emphasize that WSR disrupts microbial 
co-occurrence patterns, with potential long-term consequences for 
ecosystem services. Strengthening network resilience through 
adaptive management—such as phased sediment release or habitat 
restoration—could mitigate ecological risks by preserving functional 
redundancy (Wang et  al., 2022; Mu et  al., 2024). Future studies 
integrating metagenomics and network dynamics are needed to 
unravel the mechanistic links between microbial interactions and 
biogeochemical processes in disturbed river systems.

Contrasting patterns in high- vs. 
low-turbidity rivers: revisiting established 
paradigms

This study challenges the universality of paradigms established in 
low-turbidity river ecosystems by revealing distinct microbial 
responses in the high-turbidity Yellow River. In clear-water systems 
like the Yangtze River, chlorophyll a (Chla) and dissolved oxygen 
(DO) are widely recognized as primary drivers of bacterial community 
assembly (Green et  al., 2012; Peiffer et  al., 2021). However, our 
findings demonstrate that light limitation and sediment-water 
interactions override these drivers in turbid systems. For instance, 
Chla emerged as the dominant factor shaping surface sediment (SS) 
microbial communities during the sediment regulation stage (Inter_
WSR3), whereas dissolved inorganic carbon (DIC) and turbidity 
governed particle-attached (PA) and free-living (FL) communities 
(Figure 6). This divergence reflects the unique niche partitioning in 
high-turbidity rivers, where suspended particles and sediment 
resuspension create microhabitats decoupled from surface water 
conditions (Xia et al., 2013; Pan et al., 2022a, 2022b).

Moreover, the prominence of taxa such as Planctomycetes and 
Verrucomicrobia in PA communities during Inter_WSR3 highlights 
functional adaptations specific to high-turbidity environments. These 
groups are traditionally associated with anoxic sediments in 
low-turbidity systems (Lage and Bondoso, 2014; Hu et al., 2022), yet 
in the Yellow River, they thrived in particle-associated niches driven 
by turbidity and DIC availability. Such observations contradict the 
assumption that particle-attached microbes universally rely on anoxic 
microenvironments, suggesting instead that physical transport and 
organic matter loading play pivotal roles in structuring their 
assemblages (Crespo et al., 2013; Yeh and Fuhrman, 2022).

The resilience of microbial networks also exhibited stark contrasts 
between turbidity regimes. While FL communities in low-turbidity 
rivers typically recover rapidly from disturbances (Palmer and Ruhi, 
2019), those in the Yellow River displayed prolonged instability post-
WSR. This delay was linked to residual hydrological perturbations and 
light limitation, which constrained the re-establishment of 
phototrophic taxa such as Cyanobacteria (Xiao et al., 2017; Shi et al., 
2020). In contrast, SS communities rebounded more swiftly due to 

their reliance on physically stabilized sedimentary habitats, 
underscoring the buffering capacity of benthic environments in high-
turbidity systems (Xia et al., 2013; Pan et al., 2022a, 2022b).

These findings demand a paradigm shift in how microbial ecology 
is studied in turbid rivers. Traditional frameworks emphasizing light 
and oxygen gradients must be revised to account for the complex 
interplay between sediment dynamics, particle-associated processes, 
and pulsed hydrological disturbances. For example, the unexpected 
dominance of Anaerolineae in SS during Inter_WSR3, despite oxic 
conditions, points to metabolic flexibility in response to episodic 
nutrient pulses rather than strict redox constraints (Song et al., 2012; 
Xia et al., 2014). Such insights highlight the limitations of extrapolating 
low-turbidity models to high-turbidity systems, where unique 
ecological rules govern microbial assembly and function.

Ultimately, this study underscores the need for context-specific 
management strategies in turbid rivers. Adaptive interventions—such 
as phased sediment release or artificial habitat enhancement—should 
prioritize the preservation of particle-associated microbial processes, 
which underpin critical biogeochemical functions such as organic 
matter degradation and nutrient cycling (Lu et al., 2022; Mu et al., 
2024). By embracing the distinctiveness of high-turbidity ecosystems, 
researchers and practitioners can better navigate the trade-offs 
between sediment management goals and microbial 
ecological integrity.

Management implications and future 
directions

The observed stage-specific microbial responses and network 
disruptions carry critical implications for optimizing water-sediment 
regulation (WSR) strategies in the Yellow River. Firstly, the pronounced 
destabilization of microbial networks during the sediment-regulation 
stage (Inter_WSR3) underscores the need to avoid pulsed sediment 
discharge events that coincide with peak hydraulic turbulence. Such 
disturbances not only disrupt nutrient cycling and carbon sequestration 
processes but also compromise ecosystem resilience by fragmenting 
microbial interactions. Implementing phased sediment release 
protocols—such as prolonging the duration of WSR or adopting 
variable discharge rates—could mitigate these risks by reducing the 
magnitude of environmental shocks to microbial communities.

Moreover, the delayed recovery of free-living (FL) microbial 
communities post-WSR highlights the importance of extending 
monitoring efforts beyond the immediate post-disturbance phases. FL 
microorganisms, which show the slowest rebound in network 
complexity, may serve as sentinel indicators of lingering ecological 
instability. Prioritizing the tracking of FL and particle-attached (PA) 
taxa—particularly during the transition from Inter_WSR3 to 
Post-WSR—could provide early warnings of functional shifts in 
biogeochemical cycles. For instance, declines in 
FL-Alphaproteobacteria or PA-Planctomycetes abundance might signal 
impaired nitrogen fixation or organic matter degradation capacities.

Enhancing habitat connectivity offers another promising avenue 
for restoring microbial network integrity. Artificial reefs, submerged 
vegetation, or sediment traps could help stabilize particle dynamics 
and promote recolonization by keystone taxa following WSR. Such 
interventions would complement existing efforts to manage light 
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penetration and nutrient gradients, particularly in the sediment–water 
interface where Gammaproteobacteria and Bacteroidia thrive. 
Additionally, integrating microbial community metrics into ecological 
assessments could refine the evaluation of WSR outcomes, moving 
beyond traditional physicochemical parameters to encompass 
functional redundancy and network robustness.

Long-term monitoring is essential to assess whether legacy 
effects of repeated WSR cycles accumulate over time. Preliminary 
data suggest that repeated disturbances may lead to shifts in 
microbial community baselines, potentially favoring stress-tolerant 
taxa at the expense of biodiversity. Future studies should adopt a 
multi-year perspective to disentangle transient responses from 
sustained alterations, leveraging metagenomics and metabolomics 
to link community structure with functional gene expression. By 
adopting a holistic approach that balances sediment management 
goals with microbial ecological integrity, stakeholders can ensure the 
sustainability of the Yellow River ecosystem in the face of ongoing 
anthropogenic pressures.

Conclusion

This study elucidates stage-specific microbial responses to 
water-sediment regulation (WSR) in the turbid Yellow River 
reservoir-river continuum. The sediment-regulation stage (Inter_
WSR3) exerted the strongest disturbance due to pulsed hydraulic 
and biogeochemical gradients, marked by peak turbidity (77.80 
NTU), NO₃− (3.10 mg/L), and DIC (40.61 mg/L). These conditions 
favored copiotrophic taxa (Gammaproteobacteria, 35.69% in SS) 
while reconfiguring microbial networks, which exhibited peak 
complexity (nodes = 1,318; modularity = 0.73) but failed to recover 
Post_WSR. Legacy effects included reduced modularity and 
clustering coefficients, signaling weakened functional redundancy 
(such as in the phosphorus cycle, nitrogen cycle, and carbon cycle). 
Contrasting with low-turbidity systems, light limitation and 
sediment-water interactions dominated community assembly in the 
Yellow River. For example, Anaerolineae thrived in SS despite oxic 
conditions, reflecting metabolic flexibility to pulsed nutrients. 
Hierarchical partitioning identified Chla and turbidity as key drivers 
for SS and PA/FL communities, respectively, challenging paradigms 
that prioritize dissolved oxygen in clear-water rivers. To balance 
sediment management with ecological sustainability, we recommend 
implementing phased WSR to reduce network fragmentation, 
conducting targeted monitoring of FL/PA communities post-
disturbance, and pursuing habitat restoration to enhance 
connectivity. Future studies should integrate metagenomics and 
long-term observations to elucidate the mechanistic links between 
microbial interactions and biogeochemical cycles in disturbed river 
systems. These findings deepen our understanding of high-turbidity 
river ecology and provide actionable insights for global 
river management.
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