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Water-sediment regulation drives
stage-specific microbial shifts and
network complexity in the Yellow
River reservoir-river continuum
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Hongchen Jiang?*

!College of Fisheries, Henan Normal University, Xinxiang, China, 2School of Life Sciences, Henan
University, Kaifeng, China

High-turbidity rivers, exemplified by the Yellow River, face significant ecological risks
due to anthropogenic water-sediment regulation (WSR), which disrupts sedimentary
habitats and biogeochemical cycles. However, the stage-specific impacts of WSR
on microbial community structure, network complexity, and biogeochemical
functions in reservoir-river continua remain poorly understood. In this study,
we investigated microbial responses across different WSR stages in the Xiaolangdi
Dam reservoir-river continuum using an integrated approach, including 16S rRNA
gene sequencing, molecular ecological network analysis (MENs), and hierarchical
partitioning. The results showed that WSR induced transient but profound shifts in
microbial communities. The sediment-regulation stage (Inter_WSR3) exerted the
strongest disturbance, characterized by peak turbidity (77.80 NTU), nutrient fluxes
(NO5™ = 3.10 mg/L), and sediment resuspension, which restructured surface sediment
(SS) communities dominated by copiotrophic Gammaproteobacteria (35.69%) and
Bacteroidia (14.82%). Microbial a-diversity transiently increased during WSR but
recovered to baseline levels post-disturbance, masking p-diversity divergence
driven by niche differentiation. Molecular ecological networks exhibited peak
complexity (nodes = 1,318; modularity = 0.73) during Inter_WSR3 but failed to
recover Post_WSR, reflecting weakened functional redundancy and ecosystem
resilience. Hierarchical partitioning identified stage-specific drivers: chlorophyll a
(Chla) dominated SS assembly during Inter_WSR3, while nitrate (NOs~) and turbidity
governed particle-attached (PA) and free-living (FL) communities. Light limitation
and sediment-water interactions overrode dissolved oxygen and temperature as
primary drivers in the Yellow River. These findings reveal that WSR disrupts microbial
co-occurrence patterns and functional redundancy, with lasting consequences
for ecosystem services. To reconcile sediment management with ecological
sustainability, we advocate phased WSR implementation, targeted monitoring
of FL/PA communities, and habitat restoration to enhance connectivity. This
study advances the mechanistic understanding of high-turbidity river ecology
and provides actionable insights for global river management.
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Introduction

The Yellow River, often lauded as the “cradle of Chinese
civilization,” presents a study in biogeochemical complexity, owing to
its status as one of the world’s most sediment-laden waterways,
annually transporting in excess of 1.6 billion tons of suspended
sediment (Chen et al., 2021). This characteristic high turbidity, a
consequence of pronounced erosion within the Loess Plateau, imposes
significant ecological constraints upon the riverine ecosystem,
particularly amidst anthropogenic pressures such as dam construction
and water-sediment regulation (WSR). Since the 1960s, the
implementation of large-scale reservoirs along the rivers course,
including the Xiaolangdi Dam (XLD), has profoundly altered the
hydrological regime and biogeochemical cycles of the Yellow River
(Shi et al., 2017). WSR, an operational strategy undertaken annually
by the Yellow River Conservancy Commission (YRCC), involves the
strategic release of sediment-rich water to mitigate downstream
sedimentation and facilitate navigation (Zhao et al., 2022). However,
this practice creates extreme hydrological and biogeochemical
gradients. These include episodic nutrient flows, sediment
suspensions, and light-emitting factors that may impair the integrity
of microbial communities, which are key drivers of biogeochemical
processes in rivers (Maavara et al., 2020; Wang et al., 2022).

Despite the pivotal role of microbial communities in mediating
carbon, nitrogen, and phosphorus cycles, knowledge of their response
to WSR within highly turbid river systems remains limited. Previous
research has mainly focused on less turbid systems, such as the
Yangtze River, where microbial communities and functions differ
markedly from those in more turbid environments (Liu Q. et al., 2018;
Wang et al., 2021b; She et al., 2022). For instance, chlorophyll a (Chla)
and dissolved oxygen (DO) are established determinants of bacterial
community assembly in relatively clear-water rivers (Green et al.,
2012; Peiffer et al., 2021). In stark contrast, highly turbid systems such
as the Yellow River are characterized by light limitation, elevated
concentrations of suspended particulate matter, and pronounced
sediment-water interactions, thus fostering distinct microbial
assemblages adapted to these conditions (Xia et al., 2013; Pan et al.,
2022a, 2022b). Recent investigations have highlighted the prevalence
of phyla such as Proteobacteria, Bacteroidetes, and Actinobacteria
within Yellow River sediments (Song et al., 2012; Xia et al., 2014), with
particle-attached (PA) and free-living (FL) microbial communities
demonstrating seasonal fluctuations contingent upon hydrological
variability (Pan et al, 2022a, 2022b). Nevertheless, the precise
between WSR-induced
perturbations and subsequent microbial community restructuring

mechanistic linkages environmental
within reservoir-river continua remain elusive.

A critical knowledge gap exists concerning the differential
responses of surface sediment (SS), PA, and FL microbial communities
to WSR operations. Sediments function as hubs of microbial activity
and nutrient cycling, while PA microorganisms contribute to particle
aggregation and organic matter degradation (Crespo et al., 2013; Yeh
and Fuhrman, 2022). Conversely, FL microorganisms are more
directly influenced by hydrodynamic conditions and the availability
of dissolved substrates (Palmer and Ruhi, 2019). The interdependent
impacts of WSR on these three compartments and their respective
contributions to biogeochemical cycling remain largely unexplored.
Furthermore, while some studies have documented short-term shifts
in microbial diversity in response to WSR (Song et al., 2022), the
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long-term resilience of microbial networks and their feedback
mechanisms to sediment pulses remains poorly understood.
Addressing these knowledge gaps is crucial to optimizing WSR
strategies, thereby striking a balance between sediment management
objectives and ecological sustainability within high-turbidity
river systems.

We hypothesize that WSR precipitates stage-specific alterations in
microbial community structure and network complexity across the SS,
PA, and FL compartments within the Yellow River reservoir-river
continuum. Furthermore, we posit that the sediment-regulation stage
(Inter_WSR3) will exert the most pronounced disturbance,
attributable to the pulsed discharge of sediment, thereby inducing
transient increases in microbial richness and alterations in network
topology. We additionally hypothesize that stage-specific
physicochemical gradients [e.g., Chla, NOs~, dissolved inorganic
carbon (DIC)] will drive compositional divergence among SS, PA, and
FL communities. This study aims to test these hypotheses using a
spatiotemporal survey that encompasses different WSR stages in the
Xiaolangdi Dam reservoir-river continuum. The investigation
employed 16S rRNA gene sequencing, molecular ecological network
analysis (MENs), and hierarchical partitioning to evaluate these
dynamics. The objectives of this study are to (1) quantify the temporal
dynamics of a-diversity, f-diversity, and microbial interactions in SS,
PA, and FL compartments; (2) identify stage-specific environmental
drivers shaping microbial community structure; and (3) elucidate the
legacy effects of WSR on microbial network complexity and
ecosystem functioning.

Materials and methods

Study area, field measurements, and
sampling

To explore the response of the microbial community structure to
the environmental factors within the reservoir-river continuum
ecosystem of XLD during the WSR process, five representative periods
from June to August in 2023 were selected as the sampling times,
including Pre_WSR (June 18th, before WSR), Inter_WSR, which
includes Inter_ WSR1 (June 21st, the start of water regulation, the peak
water-release stage of WSR), Inter_ WSR2 (June 29th, when water
regulation lasted 1 week), Inter_ WSR3 (July 8th, the start of sediment
regulation, the peak sediment-release stage of WSR), and Post_WSR
(August 17th, post-WSR). Eight sampling sites (S1-S8) were selected,
four of which were in the XLD reservoir and four of which were
downstream of it. The final sampling site was located upstream from
the confluence of the Yiluo River to minimize the influence of
tributaries (Figure 1). No extreme weather was observed during the
sampling period.

Water temperature (T), pH, dissolved oxygen (DO), ammonium
(NH,*"), chlorophyll a (Chla), chemical oxygen demand (COD),
turbidity, and oxidation-reduction potential (ORP) were measured at
the site at 0.5 m intervals using a multi-parameter water quality
analyzer (Hach Company). For the analysis of total nitrogen (TN) and
total phosphorus (TP), water samples (approximately 40 mL) were
collected into brown glass vials and acidified to pH <2 with
concentrated sulfuric acid. Water samples for physicochemical
analysis of total suspended particles (TSP), TN, TP, NO;~, NO,,
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FIGURE 1

Setting of sampling times and sampling sites in this study. Five typical sampling stages of WSR (Pre_WSR, Inter_WSR1, Inter_WSR2, Inter_WSR3, and
Post_WSR), from June to August, along with eight sampling sites along the reservoir-river continuum of the main stem of the Yellow River, were
included in this study. S1-S4 represent sites within the XLD reservoir, while S5-S6 represent sites located downstream of the XLD reservoir.

dissolved organic carbon (DOC), and DIC were collected, transported,
and analyzed according to previously established procedures (Zhang
etal., 2018).

For each site, two filter pore sizes (0.22 pm and 3 pm) were used
to collect microbial samples. Each sample (1.5 L) was filtered through
a 3um polycarbonate membrane to separate particle-attached
microorganisms (PA) from free-living microorganisms (FL, 0.22 pm)
(Pan et al., 2022a,b). The surface sediment (0-5 cm) for microbial
DNA extraction was collected from each sampling site and stored on
dry ice in the field. At each site and during five different sampling
stages, three microbial samples were collected simultaneously,
representing particle-attached (PA), free-living (FL), and surface
sediment (SS) fractions. All samples for microbial analysis were stored
at —80 °C until further analysis.

DNA extraction, high-throughput
sequencing, and data processing

Total DNA from three replicates of 0.5 g sediment, PA, and FL
microbial samples was extracted using a FastDNA SPIN Kit for Soil
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(MP Biomedicals, United States) according to the manufacturer’s
instructions. Extracted DNA from SS, PA, and FL samples was
amplified by PCR with barcoded primers targeting the 16S rRNA gene
of bacteria and archaea: 338F (5'-ACTCCTACGGGAGGCAGCAG-
3")/806R (5'-GGACTACVSGGGTATCTAAT-3’). PCR reactions for
each sample were performed in triplicate, and PCR amplification and
purification of the product were conducted as described previously
(Zhang et al., 2018).

The purified PCR amplicons (~400 bp) from each sample were
sequenced using an Illumina HiSeq2500 platform with a PE250
model. Raw sequences of microbial 16S rRNA datasets were processed
in QIIME2 (version 2021.2) (Bolyen et al., 2019). The DADA2 method
was used to conduct sequence quality control, chimera removal, and
feature table construction (Callahan et al., 2016).

Briefly, the dada2 denoise-paired plugin was applied with the
following parameters: —p-trim-left-f 19, —p-trim-left-r 20, —p-trunc-
len-f 210, and —p-trunc-len-r 210. The frequency of ASVs (amplicon
sequence variants) was reported in the feature tables. The taxonomy
of the representative prokaryotes was classified using the function
usearch-sintax in USEARCH (v11.0.667) with an 80% confidence
threshold against the SILVA v138 database (Edgar, 2016).
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Non-prokaryotic singletons and the ASVs with a frequency of <10
were removed from the feature tables. Alpha diversity indices
(including observed richness, ASVs, Shannon, Simpson, Pielou, and
Goods_coverage) were calculated using the R package “vegan.” All the
16S rRNA gene sequences obtained from this study have been
deposited at the National Omics Data Encyclopedia (NODE, https://
www.biosino.org/node/) under project OEP00006114.

Microbial metabolic potentials were predicted with PICRUSt2
based on 16S rRNA gene amplicon sequencing data (Douglas et al.,
2020). The abundance table of the resulting KEGG Orthologs (KOs)
was mapped to the KEGG pathway database (Ogata et al., 1999). The
main metabolic pathways involved in the cycling of carbon (C),
nitrogen (N), phosphorus (P), and sulfur (S) were selected for further
analysis. The potential of each pathway was quantified by summing
the relative abundances of all the KOs annotated with that specific
pathway in each sample (Liu et al., 2020).

Statistical analyses

Subsequent analyses were performed using R (V4.0.3) with
appropriate packages. Differences in microbial diversity indices (SS,
PA, and FL) in relation to environmental parameters across different
stages of WSR were analyzed by one-way ANOVA, with a significance
threshold set at a p-value of <0.05. To evaluate correlations between
physiochemical factors and microbial o-diversity, as well as
correlations among physiochemical factors, Pearson’s correlations
were assessed, and Mantel tests were performed using the R package
“vegan”

A two-factor permutational multivariate analysis of variance
(PERMANOVA) was employed to delineate the independent and
interactive influences of temporal variation (WSR period) and spatial
heterogeneity (sampling site) on microbial community structure. This
analysis aimed to ascertain whether the WSR period had a significant
effect on the microbial communities within the SS, PA, and FL
fractions. Dissimilarity in community composition was quantified
using Bray-Curtis distance matrices, and inferences were derived
through 999 permutations, a methodology implemented within the R
package “vegan” (Igbal et al., 2023). Further assessment of microbial
compositional disparities was conducted via principal coordinate
analysis (PCoA), with PERMANOVA serving as the statistical
framework to validate observed patterns, also executed using the
“vegan” package. The distribution and overlap of microbial operational
taxonomic units (OTUs) across the SS, PA, and FL sites at various
stages of the WSR were visualized using Venn diagrams, generated
with the “Venn Diagram” R package. Predictive functional profiling of
the microbial communities in SS, PA, and FL across the WSR stages
was achieved using PICRUSt, leveraging 16S rRNA gene amplicon
sequencing data. Inter-stage functional differences were subsequently
evaluated through one-way analysis of variance (ANOVA).

Molecular ecological networks (MENs) were constructed using
the Random Matrix Theory (RMT) method (Yuan et al., 2021) to
evaluate the differences in microbial interspecific interactions among
SS, PA, and FL across four WSR stages in the study. Briefly, abundant
OTUs (with a relative abundance of >0.05%) were used in the
calculation to ensure reliable correlation networks, and only OTUs
present in at least 50% of the samples were retained for network
construction. All MENs were constructed based on Pearson
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correlations of log-transformed OTU abundances using the Molecular
Ecology Network Analyses Pipeline (MENAP)' (Deng et al., 2012).
Pearson’s correlation coeflicient |R| > 0.9 with p < 0.01 was used to
construct the networks, where nodes represented microbial OTUs and
edges indicated strong and significant correlations between nodes.
Various network topological indices, such as the total number of
nodes (N), total number of links (L), average degree, modularity,
average path distance (PD), and average clustering coeflicient (CC),
were calculated to characterize the topological structure of the MENs
(Wang S. et al,, 2021; Liu et al., 2023). The constructed network
visualization was conducted using Gephi 0.9.2 software (Bastian et al.,
2009). To ascertain whether variations in network complexity were
systematically influenced by differential diversity or sequencing depth,
we conducted Pearson correlation analyses. These analyses examined
the relationships between salient network metrics—specifically, the
number of edges, modularity, and clustering coefficient—and both
mean Shannon diversity and sequencing depth across all samples
(Faust et al., 2015).

The relative importance of individual environmental factors on
microbial community structure was evaluated by hierarchical
partitioning analysis using the “rdacca.hp” package (Lai et al., 2022).
Specifically, variance inflation factors (VIFs) were computed to check
for collinearities among environmental variables. Variables with VIFs
>10 were removed from subsequent hierarchical partitioning analysis
until all VIFs were <10. The significance (p < 0.05) of the explanatory
role of each environmental factor on microbial community structure
was obtained through 999 permutation tests.

While hierarchical partitioning identified key environmental
drivers, this correlation-based inference could not directly disentangle
the underlying ecological processes governing community assembly.
To explicitly quantify the relative contributions of deterministic and
stochastic processes across different WSR stages, we conducted a null
model-based framework. The analysis was performed independently
for each of the five WSR periods to assess temporal dynamics. For
each period, the B-nearest taxon index (BNTI) was computed for all
pairwise sample comparisons. Deterministic processes were identified
using a |BNTI| >2 threshold, where PNTI >+2 indicated variable
selection and PNTI <—2 denoted homogeneous selection. For pairwise
comparisons with |BNTI| <2, the subsequent metric employed was the
Bray-Curtis-based Raup-Crick (RC) metric. Within this subset,
|BNTI]| <2 coupled with RC <—0.95 was interpreted as homogenizing
dispersal, RC >+0.95 as dispersal limitation, and |RC| <0.95 as
undominated processes. The relative dominance of each assembly
process was quantified as the percentage of pairwise comparisons
assigned to each category. All computations were performed using the
“ape,” “iICAMP;” and “dplyr” R packages (Stegen et al., 2013).

LEfSe analysis (LDA score >2, p < 0.05) was performed to estimate
significant variations, aiming to identify characteristic flora of SS, PA,
and FL at different stages of WSR (Gao et al., 2024).

Moreover, the Pearson correlation was calculated between the
dominant taxa (class level, relative abundance >0.05%) and the
environmental factors measured, using the “vegan” and “ggplot”
packages in R.

1 http://ieg2.ou.edu/MENA/

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1640934
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.biosino.org/node/
https://www.biosino.org/node/
http://ieg2.ou.edu/MENA/

Zhang et al.

Results

Physicochemical variations among five
different stages of WSR in the
reservoir-river continuum of the Yellow
River

The physicochemical characteristics exhibited distinct variations
across the five designated stages of the water-sediment regulation
(WSR) process within the reservoir-river continuum of the Yellow
River, as detailed in Supplementary Figure S1. Water temperature
fluctuated from 24.45 °C to 32.01 °C, with significantly elevated
temperatures observed during the Post_ WSR stage compared to both
the Pre_WSR Inter WSR (p < 0.05)
(Supplementary Figure SIA). pH levels ranged from 7.52 to 8.42,
while turbidity varied from 17.05 to 77.80 NTU, reaching its
maximum concentration in the Inter_ WSR3 stage (77.80 NTU)
(Supplementary Figures S1B,D).

Dissolved oxygen (DO), chlorophyll a (Chla), nitrate (NO;),
and total nitrogen (TN) concentrations exhibited a similar

and stages

fluctuating pattern, ranging from 3.97 to 11.82mg/L, 0.56 to
14.95 mg/L, 2.04 to 3.10 mg/L, and 0.06 to 1.88 mg/L, respectively.
A significant decline in these parameters was noted during the Inter_
WSR3 stage, followed by a statistically significant increase in the
Post_WSR stage (p <0.05) (Supplementary Figures S1C,E,H).
Conversely, nitrite (NO,”) concentrations rose significantly to
0.17 mg/L during Inter_ WSR3 and subsequently decreased to
0.02 mg/L in Post_WSR (p < 0.05). Likewise, dissolved inorganic
carbon (DIC) showed a pronounced peak in Inter_ WSR3
(40.61 mg/L), followed by a decline in Post_ WSR (29.51 mg/L)
(p < 0.05) (Supplementary Figures SII,N).

TP concentrations exhibited a significant increase, rising from
0.06 mg/L during the Pre_WSR stage. This concentration peaked at
1.88 mg/L in the Inter_ WSR2 stage, subsequently returning to levels
comparable to those in the Pre_WSR stage (0.06-0.08 mg/L).
Ammonium (NH,") concentration increased initially to 0.67 mg/L
and then decreased significantly to 0.12 mg/L (p < 0.05) compared to
the Pre_ WSR stage (Supplementary Figure SI1F). The concentration of
dissolved organic carbon (DOC) ranged from 8.76 mg/L to
11.39 mg/L, with no significant changes observed throughout the
WSR process (p < 0.05) (Supplementary Figure STM).

Microbial alpha and beta diversity
dynamics across WSR stages

A total of 12,498,869 high-quality sequence reads were generated
from 120 samples collected across eight sampling sites, representing
five distinct WSR stages. The average number of reads per sample was
104157.20 (+27703.71), with an average read length of 419 bp.
Sequencing read counts varied slightly by sample location, with
averages of 106,836,108,907, and 96,876 reads for microbial samples
from the surface sediment (SS), particle-attached (PA), and free-living
(FL) microorganisms, respectively.

Good’s coverage values were 1.0 for all samples, indicating that the
sequence depth captured the majority of microbial taxa present. Alpha
diversity metrics were calculated for all samples, and the results are
summarized in Supplementary Table S1.
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Overall, alpha diversity metrics demonstrated significant
differences among sampling locations. The SS samples exhibited
significantly higher average richness (2326.25 vs. 763.03; 2326.25 vs.
540.18), Shannon diversity (9.65 vs. 6.66; 9.65 vs. 6.39), and Pielou’s
evenness (0.8632 vs. 0.6982; 0.8632 vs. 0.7071) indices compared to
both the PA and FL locations (p < 0.05), with the exception of the
Simpson index. However, no significant differences were observed
between PA and FL for any alpha diversity index (p > 0.05), despite a
trend showing higher richness and Shannon diversity values in PA
compared to FL (763.03 vs. 540.18) (Supplementary Table S1).

Detailed analysis revealed similar temporal trends in richness and
Shannon diversity indices across SS, PA, and FL samples during the
WSR process (Figures 2A-F). Compared to the Pre_WSR samples,
both richness and Shannon diversity increased in the Post_WSR stage
for SS (2175.75 vs. 2884.75; 9.41 vs. 10.17), PA (729.88 vs. 801.38; 6.69
vs. 6.88), and FL (491.13 vs. 560.50; 6.13 vs. 6.69). Interestingly, both
PA (1009.63; 7.17) (Figures 2C,D) and FL (725.13; 6.97) (Figures 2E,F)
showed statistically significant increases (p < 0.05) in richness and
Shannon diversity to maximal values during the Inter_ WSR3 stage,
while SS did not. There was no significant difference in those indices
compared to the Post_ WSR samples (p > 0.05).

Two-factor PERMANOVA showed that, after controlling for
variation across sampling sites, the WSR period significantly shaped
microbial communities in all three compartments (PA: p = 0.001; FL:
p =0.001; SS: p = 0.001). Notably, the WSR stage exerted the most
substantial influence on sediment microbial communities, explaining
the highest proportion of variance (SS, R* = 38.5%). The sampling site
effect was also significant (p = 0.003; Table 1). Crucially, the WSR stage
effect remained significant even after controlling for spatial variation,
underscoring its independent impact.

Beta diversity analyses, performed using principal coordinates
analysis (PCoA) in combination with PERMANOVA, confirmed
significant differences (p < 0.001) in microbial community structure
among SS, PA, and FL throughout the WSR process (Figure 3A).
Specifically, the microbial community composition of SS samples
exhibited significant divergence from PA and FL, while the
communities of PA and FL showed greater structural similarity. This
differentiation was particularly pronounced during the Inter_ WSR2
and Inter_ WSR3 stages (Figure 3A).

Furthermore, Venn diagram analysis of operational taxonomic
units (OTUs) showed that the number of shared OTUs among SS, PA,
and FL gradually increased from the Inter_ WSR1 stage (201) to the
Inter WSR3 stage (208), compared to the Pre_ WSR stage (64),
followed by a slight decrease in the Post_WSR stage (Figure 3B). The
number of unique OTUs for SS, PA, and FL showed different patterns
over the WSR process. Compared to the Pre_ WSR stage, the number
of SS-specific OTUs (301 vs. 309) increased overall. The number of
PA-specific OTUs (252 vs. 212) decreased slightly, whereas FL-specific
OTUs (308 vs. 162) decreased most notably during the Post. WSR
stage (Figure 3B).

Microbial community structure variation
during WSR

Across all samples collected throughout the WSR process, the
dominant microbial classes (with an average relative abundance of
>0.5%) exhibited a high degree of similarity among the sedimentation
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FIGURE 2
Microbial alpha-diversity indices and their correlations with environmental factors across different WSR stages in the study. (A—F) Comparison of
richness and Shannon indices for surface sediment (SS), particle-attached (PA), and free-living (FL) microorganisms. Different superscript letters
indicate significant differences (p < 0.05), while identical or unmarked letters indicate no significant differences (p > 0.05) (one-way ANOVA). (G-K)
Pearson correlations between richness and Shannon indices of SS, PA, and FL and environmental factors, determined using the Mantel test analysis.
G-K display the results of Mantel tests, illustrating the correlations between the Shannon and Richness indices of the SS, PA, and FL microbial
communities and environmental factors across five periods: Pre_WSR, Inter_WSR1, Inter_WSR2, Inter _WSR3, and Post_WSR. The thickness of the
connecting lines represents the magnitude of the Mantel correlation coefficient, while the color indicates the level of statistical significance: orange
denotes P < 0.01, green indicates 0.01 < P < 0.05, and gray represents non-significant correlationsn (P > 0.05). Additionally, the correlations among the
environmental factors within each period are presented in the same subfigures. Positive and negative Pearson correlations are distinguished by red and
blue colors, respectively, with significance levels marked as follows: "***", P < 0.001; "**", P < 0.01; and "*", P < 0.05.

site (SS), plunge area (PA), and flowing reach (FL). These core classes ~ Cyanobacteriia  (0.13-20.27%), Acidimicrobiia  (1.88-14.18%),
included Gammaproteobacteria (17.09-35.69%), followed by  Verrucomicrobiae  (0.77-9.49%),  Nitrososphaeria  (0-9.62%),
Alphaproteobacteria (3.17-25.85%), Actinobacteria (4.01-16.72%),  Anaerolineae (0-7.26%), and Thermodesulfovibrionia (0-3.74%)
Bacteroidia  (0.98-29.42%),  Planctomycetes  (1.88-14.18%),  (Figures 3B,C and Supplementary Tables S2-54).
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TABLE 1 Two-factor PERMANOVA analysis revealed the effects of
temporal (five WSR stages) and spatial (eight sampling sites within each
WSR stage) variations on microbial community structure.

Microbial-type ‘ Factor ‘ R? ‘ p-value
PA Stages of WSR 0.158634 0.001
PA Sampling Site 0.244915 0.001
FL Stages of WSR 0.245445 0.001
FL Sampling Site 0.315308 0.001
SS Stages of WSR 0.384566 0.001
SS Sampling Site 0.179415 0.003

Despite the overall similarity in community composition, the
relative abundance of these dominant classes varied among SS, PA,
and FL. For example, Gammaproteobacteria (24.92%) and Bacteroidia
(14.29%) were most abundant in SS, followed by FL (23.74 and
7.72%) and PA (23.66 and 11.02%). Conversely, Planctomycetes
(10.62%) and Cyanobacteria (8.57%) exhibited the highest relative
abundance in PA, followed by FL (5.51 and 4.91%) and SS (2.66 and
3.76%). Alphaproteobacteria (20.28%) and Actinobacteria (22.06%)
were most abundant in FL, followed by PA (15.85 and 10.24%) and
SS (4.46 and 2.18%) (Figures 3B,C and Supplementary Tables
$2-54).

Furthermore, the dominant groups and their abundance changed,
showing distinct trends across the different WSR stages. For instance,
from Pre_WSR to Post_WSR, the abundance of Gammaproteobacteria
decreased in all three locations, but the temporal pattern varied
among them. Specifically, SS-Gammaproteobacteria (35.69%)
increased from the Pre. WSR to the Inter WSR3, with its abundance
declining to 26.31% in Post_WSR. PA-Gammaproteobacteria peaked
in the Inter_ WSR2 (28.67%), then decreased to 20.82% in Post_
WSR. The abundance of FL-Gammaproteobacteria fluctuated
throughout WSR, reaching peaks in the Inter_ WSR1 (28.07%) and
Inter_ WSR3 (31.65%) stages and returning to levels similar to Pre_
‘WSR in Post_ WSR.

To elucidate the distribution of abundant taxa at different stages
of WSR across SS, PA, and FL, LEfSe analysis (LDA score >2, p < 0.05)
was conducted to identify significant variations. The results showed
that the number of significantly different microbial classes was highest
in FL (10 classes), followed by PA (five classes), and SS (two classes).
The enriched classes varied among WSR stages (Figure 3D). In SS,
itrososphaeria and Gammaproteobacteria were enriched in Pre_WSR
and Inter_ WSR3, respectively. In PA, Verrucomicrobiae were enriched
in Pre_WSR; Acidimicrobiia and Nitrososphaeria were enriched in
Inter_ WSR3; and Cyanobacteriia and Anaerolineae were enriched in
Post_WSR. In FL, Actinobacteria and Verrucomicrobiae were enriched
in Pre_WSR; Alphaproteobacteria and Bacteroidia were enriched in
Inter_ WSR1; in Inter_ WSR2;
Gammaproteobacteria, Thermodesulfovibrionia, and Nitrososphaeria

Acidimicrobiia were enriched

were enriched in Inter_WSR3; and Cyanobacteriia and Anaerolineae
were enriched in Post_WSR (Figure 3D).

In detail, Nitrososphaeria was significantly enriched in SS during
Pre_ WSR. Its abundance also increased in both PA and FL in Inter_
WSR2 (Figure 3C). Gammaproteobacteria in SS was significantly
enriched in Inter_ WSR3 compared to other WSR stages. Moreover,
Cyanobacteriia and Anaerolineae were enriched in both PA and FL in
Post_WSR (Figure 3C and Supplementary Table S3).
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Microbial ecological function changes
during WSR

PICRUSt-based indicated  that
microorganisms in SS, PA, and FL communities contributed to

functional  prediction
carbon, nitrogen, phosphorus, and sulfur cycling in the turbid Yellow
River ecosystem. Underwater sediment regulation (WSR) caused
changes over time in the abundance of genes related to these ecological
functions (Figure 4; Supplementary Figures S2-54).

In the carbon cycle, the reductive tricarboxylic acid (rTCA) cycle
was the most abundant (26.99-29.98%), highest in SS (29.98%), and
slightly lower in PA (27.75%) and FL (27.69%) (Figure 4). rTCA
remained stable in SS and PA but declined in FL (p <0.05,
Supplementary Figure S2B). The dicarboxylate/4-hydroxybutyrate
(DC/4HB) cycle was lowest in SS (20.64%) and decreased significantly
in PA and FL (p <0.05, Supplementary Figure S2F). The Calvin-
Benson-Bassham (CBB) cycle (18.84-23.03%) was lower in SS
(19.45%) than in PA (20.72%) and FL (20.22%), remaining stable in
SS but increasing significantly in PA and FL (p<0.05,
Supplementary Figure S2A).

For nitrogen cycling, nitrate reduction dominated (46.32-67.71%),
with the highest rate in PA (63.30%) compared to SS (49.93%) and FL
(57.56%). Denitrification followed (21.44-32.66%), being more abundant
in FL (32.66%) than in SS (24.23%) or PA (23.46%) (Figure 4). Across
WSR, neither process differed significantly, but at Inter_ WSR3, nitrate
reduction decreased in PA and FL, while denitrification increased.
Comammox (7.08-15.05%) was also abundant, highest in SS (13.05%),
followed by FL (10.13%) and PA (8.66%). During WSR, comammox
declined in SS (p < 0.05), but increased in PA and FL at Inter_WSR3.
Other detected pathways included anammox, nitrification, and nitrogen
fixation (Supplementary Figure S3).

For phosphorus cycling, phosphorus transport dominated (29.19-
38.41%), highest in SS (35.22%), then in PA (33.28%), and in FL
(32.70%) (Figure 4). During WSR, transport in PA declined at Inter_
WSR3 (p < 0.05) before recovering, while in FL it increased steadily.
Organic phosphorus mineralization (15.55-23.50%) was relatively
abundant, higher in SS (12.92%) than in PA (9.18%) and in FL
(10.59%) but declined significantly in PA and FL, with a temporary
increase at Inter_WSR3 in FL (p < 0.05, Supplementary Figure S4A).
Phosphorus regulation (10.27-13.17%) peaked at Inter_ WSR2 before
declining, while solubilization (7.23-11.72%) decreased steadily
(Supplementary Figure S4).

In the sulfur cycle, sulfate reduction was predominant (19.36—
24.07%), highest in SS (23.75%), followed by PA (22.62%) and FL
(21.13%). Sulfate oxidation was next, more abundant in FL (4.55%)
than in SS (3.25%) or PA (3.13%), and it increased continuously in PA
and FL during WSR (p < 0.05) (Figure 4).

Features of microbial molecular networks
in SS, PA, and FL during WSR

Microbial molecular networks (MENSs) were constructed based on
OTUs from the Pre. WSR, Inter WSR1, Inter_ WSR3, and Post. WSR
stages for SS, PA, and FL samples to evaluate potential interactions
within the microbial communities (Figure 4 and Table 1). Overall, the
MENSs in SS exhibited the highest network complexity, as indicated by
the greatest values across several metrics (nodes: 774-1,318; links:
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FIGURE 3
SS, PA, and FL-related microbial community variations at different stages of WSR. (A) PCoA with PERMANOVA (based on Bray—Curtis distance) analysis
indicated significant differences (p < 0.05) in SS-, PA-, and FL-related microbial communities during the process of WSR. (B) Venn analysis shows the
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Frontiers in Microbiology frontiersin.org


https://doi.org/10.3389/fmicb.2025.1640934
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

10.3389/fmicb.2025.1640934

FIGURE 3 (Continued)

analysis (LDA score >2) during the process of WSR.

unique and the shared OTUs among SS, PA, and FL microorganisms during the process of WSR. (C) Microbial community composition changes (in
class level, relative abundance >1%) during the process of WSR. (D) Microbial groups (class level) with significant differences selected by the LEfSe
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3,719-18,628; positive links/negative links (NL/PL): 0.86-2.24;
average degree: 0.22-48.01; modularity: 0.11-0.73; average path
distance (PD): 3.25-5.6; average clustering coefficient avgCC: 0.12—
0.25). PA displayed intermediate network complexity (nodes: 287-505;
links: 1,048-10,623; NL/PL: 1.07-2.73; average degree: 7.11-42.07;
modularity: 0.11-0.77; PD: 3.11-4.41; avgCC: 0.18-0.23), while FL
had the lowest complexity (nodes: 153-220; links: 281-1,355; N/P:
0.81-2.07; average degree: 2.94-10.95; modularity: 0.22-0.83; PD:
2.12-5.01; avgCC: 0.12-0.21) (Figure 5 and Table 2).
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Specifically, the modularity (0.32-0.73) and the number of nodes
(774-1,318) in the SS networks increased from Pre_WSR to Inter_
WSR3, while the two metrics decreased to 0.49 and 1,248, respectively,
in the Post_WSR. Similar trends were observed in PA, where the
modularity (0.30-0.77) and the number of nodes (310-505) increased
from Pre_WSR to Inter_WSR3 before decreasing to 0.17 and 389,
respectively, in the Post_WSR. In contrast, FL exhibited relatively low
values for modularity (0.20-0.22) and the number of nodes (191) in
Inter WSR1 and Inter WSR2. These values increased in the
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FIGURE 5
Molecular ecological networks (MENSs) of SS, PA, and FL-related microbial communities at different stages of WSR (N, nodes; L, links) based on the OTU
table from 16S rRNA sequencing data. (A—C) The microbial networks represent random matrix theory (RMT)-based correlation models derived from SS,
PA, and FL samples at each WSR stage in the study. Nodes represent ASVs, and links between nodes represent significant correlations (either positive or
negative). The node size is proportional to its degree, and colors indicate different modules.

TABLE 2 Topological properties of SS, PA, and FL at different stages of WSR (mean values from eight sampling sites, with three replicates for each of PA,

FL, and SS at each stage; n = 24).

Topological Inter_WSR1 Inter_WSR2 Inter_WSR2 Post_WSR
properties SS PA FL SS FL SS PA FL SS

Numbers of nodes (N) 774 310 191 776 287 153 801 295 | 191 1318 | 505 220 | 1,248 389 | 194
Numbers of links (L) 5508 1,656 1,355 | 18,628 |« 1,570 = 838 | 13,811 = 1,048 | 281 3719 10,623 @ 329 10,553 3921 344
Positive links (PL) 1,700 444 468 8826 553 295 6245 | 361 | 128 2,002 @ 4261 | 107 = 3,103 1,893 190
Negative links (NL) 3808 1,212 887 | 9802 | 1,017 543 | 7566 = 687 | 153 1,717 @ 6362 | 222 | 7450 2028 154
NL/PL 224 273 190 111 184 | 1.84 121 190 | 120 086 149 | 207 | 240 1.07 | 081
Average degree 1423 | 1068 1419 = 4801 | 10.94 1095 & 3448 | 711 = 294 | 022 4207 299 | 1691 | 2016 | 3.55
Modularity 032 030 020 0.11 067 022 0.16 077 083 073 011 | 077 | 049 017 | 077
Average path distance (PD) | 501 = 397 | 335 3.25 381 | 3.0 428 441 | 328 560 311 212 | 480 329 501
Average clustering

coeficient (avgCC) 013 018 021 0.25 022 019 0.23 019 015 022 024 012 | 012 023 | 0.14

N, number of nodes; L, number of links; PL, positive links; NL, negative links; NL/PL, positive links/negative links; PD, average path distance; avgCC, average clustering coefficient.

subsequent stages, reaching a maximum of 0.77-0.83 and 194-220,
respectively, from Inter_ WSR3 (Figure 5 and Table 2).

Compared to Pre_WSR, both the number of links and the average
clustering coefficient (avgCC) of SS networks increased during Inter_
WSRI (links: 18,628; avgCC: 0.22), decreased to a minimum during
Inter_ WSR3 (3,719), and subsequently rose to 10,553 links in Post-
WSR. The average clustering coefficient (avgCC) exhibited relatively
stable values from Inter_ WSR1 to Post_ WSR (Figure 5 and Table 2).
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The number of links in PA also exhibited a fluctuating upward trend
from Pre_WSR (1,656) to Inter_ WSR3 (10,623), followed by a
decrease to 3,912 in the Post_ WSR. Conversely, the number of links
in FL showed a downward fluctuating trend, decreasing from Pre_
WSR (1,355) to Inter_ WSR3 (329) and then rising to 344 in the
Post_WSR.

Moreover, compared to the Pre_WSR stage, the N/P (0.86) and
average degree (0.22) values of SS networks consistently decreased,
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reaching their lowest values during Inter_ WSR3. Both Post_ WSR
values (N/P: 2.40; average degree: 16.91) of SS returned to levels
similar to those of Pre_ WSR (N/P: 2.24; average degree: 14.23). In
contrast, the path diameter (PD) of SS networks reached the highest
value in Inter_ WSR3, then decreased to a value of 4.80 in Post. WSR,
which was similar to that of Pre_WSR (5.01). The N/P value of PA
showed a fluctuating decrease from Pre_WSR (2.73) to Post_ WSR
(1.07), reaching its lowest level in Post_WSR, while the average degree
of PA reached its highest value of 42.07 in Inter_ WSR3. The N/P value
of FL reached its maximum of 2.07 in Inter_ WSR3 and then decreased
to 0.81 in Post WSR. In contrast, the path diameter (PD) of FL
reached its lowest value (2.12) in Inter_ WSR3 and then increased to
5.01 in Post_WSR (Figure 5 and Table 2).

The correlation analyses revealed that, while the number of edges
showed a significant positive correlation with Shannon diversity
(R =0.766, p = 0.001), the fundamental topological properties of
modularity (R =-0.232, p =0.405) and clustering coefficient
(R=—0.022, p = 0.939) demonstrated no significant relationship with
diversity. Importantly, none of the three-network metrics correlated
with depth (all p >0.5)
(Supplementary Table S7).

significantly sequencing

Influence of physicochemical factors on
the microbial distribution during WSR

The relationships between microbial communities and
physicochemical factors were investigated across the WSR process.
Changes in microbial richness and Shannon diversity in SS, PA, and
FL exhibited varying correlations with physicochemical factors
(Figures 2G-K). Additionally, the contribution of key physicochemical
parameters (Chla, DIC, TN, TP, NH,*, turbidity, and NO;") to the
microbial community structure in SS, PA, and FL shifted throughout
the WSR stages. Furthermore, even within the same WSR stage, these
important physicochemical factors differed in their influence on the
microbial community structure of SS, PA, and FL (Figure 6).

Mantel test results indicated that physicochemical factors showed
stronger correlations with microbial richness and Shannon diversity
in Pre_WSR, Inter_ WSR2, and Inter_ WSR3 compared to Inter_WSR1
and Post_WSR (Figures 2G-K). Specifically, the richness of SS was
correlated with TN, pH, NO;~, and Chla (p <0.01) in Pre_WSR,
Inter_ WSR1, Inter_ WSR2, Inter_ WSR3, respectively
(Figures 2G-K). Shannon diversity in SS correlated with pH (p < 0.01)
and NH," in Inter_WSRI and correlated with pH, NH,*, and NO,~
(p <0.01) in Inter_ WSR2. Regarding PA, richness was only correlated
with oxidation-reduction potential (ORP), NO;™, and dissolved
organic carbon (DOC) in Pre_WSR, while Shannon diversity was
correlated with ORP and DOC in Pre_WSR and with NH,*, NO;™, and
TN in Inter WSR1. From Inter WSR2 to Post. WSR, Shannon
diversity in PA was solely correlated with TP, DOC, and NO;~,
respectively (Figures 2G-K). FL richness was correlated with ORP and
pH in Pre_ WSR and Inter_ WSR3, respectively. In Inter WSR3,
richness also correlated with Chla and TP (p <0.01). Shannon
diversity in FL was correlated with pH and NH," in Pre_WSR, only
NO,™ in Inter_WSR2, but correlated with T, DO, and turbidity in
Post_WSR (Figures 2G-K).

Hierarchical partitioning analysis revealed that, in the Pre_ WSR,
Chla was the largest contributor to SS (0.20), followed by DIC (0.18)

and
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and TN (0.18). However, DIC was the primary contributor to PA
(0.20) and FL (0.22) during this stage. In Inter_WSR1, NO;™ became
the greatest contributor to SS, PA, and FL, with turbidity and DIC
acting as the second major contributors (Figure 6A). Inter_ WSR2 saw
nitrate become the most significant physicochemical factor,
contributing significantly (p < 0.05) to SS (0.26), PA (0.28), and FL
(0.29). Furthermore, Chla and NH," also exhibited high contributions
to SS and PA. For FL, the second and third highest contributors were
TP and TN during the Inter_ WSR2 stage (Figure 6B). In Inter_ WSR3,
a period of sand regulation, Chla became the most significant
contributor to SS (0.30, p <0.05), while turbidity became the
dominant contributor to both PA and FL. Conversely, TP and NO,~
were key contributors to SS, DIC, and Chla were important
contributors to PA, and TP and NO,™ were also important contributors
to FL (Figure 6C). At the end of WSR (Post_WSR), Chla remained the
greatest contributor to SS (0.33, p < 0.05). However, NH," became the
dominant contributor to PA (0.23), and turbidity dominated FL (0.25,
P <0.05) (Figures 6D).

To move beyond merely identifying key environmental drivers
and to explicitly elucidate the ecological mechanisms through which
these factors shape community structure, we performed a null model
analysis of community assembly processes. The null model analyses
revealed distinct ecological assembly processes governing SS, PA, and
the WSR
(Supplementary Figure S5). In SS communities, most pairwise

FL microbial communities across five stages
comparisons yielded |BNTI| <2 across all stages. However, a notable
number of comparisons in Pre_WSR exhibited BNTI <-2
(Supplementary Figure S5A). Consistent with this, the quantitative
estimation of ecological processes identified homogeneous selection
as the dominant assembly mechanism in Pre_WSR. In subsequent
stages, community assembly shifted to being primarily governed by
undominated processes (Supplementary Figure S5B). For PA
communities, BNTI values also largely fell within the |BNTI| <2 range,
though several comparisons in Pre_WSR showed PNTI >+2
(Supplementary Figure S5C). Ecological process partitioning indicated
substantial contributions of homogenizing dispersal during Inter_
WSR1 and Inter_ WSR3. Throughout the WSR stages, the combined
influence of undominated processes and homogenizing dispersal
represented the principal assembly mechanisms in PA communities
(Supplementary Figure S5D). In FL communities, nearly all NTI
values across the five stages were within the |pNTI| <2 threshold
(Supplementary Figure S5E). Accordingly, undominated processes
overwhelmingly dominated the assembly, accounting for the highest
relative proportion among all three habitats in each stage.
Deterministic processes, namely homogeneous and variable selection,
had minimal influence (Supplementary Figure S5F).

Correlations between microbial
community and physiochemical variables
during WSR

Pearson correlation analysis was employed to assess the
relationships between the relative abundance of dominant microbial
taxa (at the class level, with a relative abundance of >1%) and various
physicochemical factors throughout the WSR process. The results
revealed that many taxa were significantly correlated with dissolved
oxygen (DO), turbidity, total suspended particles (TSP), chlorophyll
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a (Chla), NO;~, NO,, total nitrogen (TN), and total phosphorus (TP)
(Figure 7).

In the Pre_WSR stage, the dominant taxa in SS were most
significantly (p < 0.05) influenced by TSP, Chla, NO;~, and NO,",
while PA and FL showed fewer correlations with these factors
compared to SS (Figure 7A). During Inter_ WSR1 and

Frontiers in Microbiology

Inter_ WSR2, a greater number of physicochemical factors
exhibited significant (p < 0.05) correlations with the microbial
communities in SS, PA, and FL. In contrast, during Inter_ WSR3,
the PA and FL communities exhibited stronger correlations with
turbidity, TSP, Chla, TP, and DIC compared to the SS community
(Figures 7A-C). As WSR concluded (Post_WSR), correlations
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were observed between certain dominant taxa and DO,
oxidation-reduction potential (ORP), and Chla. Simultaneously,
pH, DO, ORP, NH,*, NO,", TP, and dissolved organic carbon
(DOC) emerged as key physicochemical factors exhibiting
significant correlations with the dominant taxa in PA and FL
(Figure 7D).

Furthermore, the degree of influence of physicochemical factors on
microbial communities varied among SS, PA, and FL throughout the
WSR  stages (Figure 7). During Pre_WSR, Alphaproteobacteria,
Anaerolineae, and Thermodesulfovibrionia in SS were most sensitive to
the physicochemical Specifically,
Alphaproteobacteria displayed a positive correlation with TSP and DIC
(p <0.05) and a negative correlation with Chla and NO,™ (p <0.01).

changes in environment.

10.3389/fmicb.2025.1640934

Anaerolineae and Thermodesulfovibrionia displayed positive correlations
with Chla and NO,™ (p<0.05) and negative correlations with TSP
(p <0.05) (Figure 7A). Gammaproteobacteria were the most vulnerable
taxa in PA and FL, showing positive correlations with temperature (T)
(p <0.05) and negative correlations with DO, Chla, and TN (p < 0.05).
Furthermore, Actinobacteria in FL showed positive correlations with
Chla, NO,™, and PO,* and a negative correlation with DIC. Compared
to Pre_WSR, the number of dominant classes in Inter_ WSR1 that were
sensitive to the physicochemical factors increased in SS (e.g.,
Alphaproteobacteria, Cyanobacteria,
Actinobacteria), PA (e.g., Planctomycetes, Cyanobacteria, Actinobacteria),

Gummaproteobacteria,

and FL (e.g., Alphaproteobacteria, Gammaproteobacteria, Acidimicrobiota)
(Figure 7B). In contrast, the number of significant correlations between
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the dominant classes of SS (Cyanobacteria) and the physicochemical
factors became limited in Inter_ WSR3 (Figure 7D). However, as the WSR
process concluded (Post_WSR), certain classes in SS regained correlations
with physicochemical factors, such as the positive correlations between
Anaerolineae and Chla and ORP (p < 0.05). Simultaneously, the responses
of some taxa in PA and FL to the physicochemical factors became weaker.
For example, Bacteroidia in PA during Inter_ WSR3 exhibited positive
correlations with DIC, turbidity, TSP, and TP, while showing negative
correlations with NO;™. In contrast, during the Pre_WSR, Bacteroidia in
PA demonstrated a significant positive correlation with pH (p < 0.05) and
a significant correlation with NO,™ (p < 0.05). A similar pattern was
observed for Cyanobacteria in FL during Inter WSR3, which correlated
positively with Chla but negatively with turbidity, TP, TSP, and
DIC. However, in the Post_ WSR, Cyanobacteria only showed a negative
correlation with DOC (Figures 7D,E).

Discussion

Microbial community responses to WSR:
stage-specific shifts and legacy effects

Microbial communities in the Yellow River exhibited stage-specific
successions in response to water-sediment regulation (WSR), with the
most pronounced disruption occurring during the sediment-regulation
stage (Inter_WSR3). This phase was characterized by extreme hydraulic
turbulence, sediment resuspension, and pulsed nutrient fluxes (e.g., NO;™,
DIC), which collectively restructured microbial interactions and
community composition (Figure 3A). Notably, microbial a-diversity
(richness and evenness) initially increased during WSR but reverted to
pre-disturbance levels in Post-WSR (Figures 2A-F), suggesting a transient
resilience of taxonomic diversity. However, this recovery masked
underlying shifts in f-diversity, as revealed by principal coordinate
analysis (PCoA), which showed persistent divergence among surface
sediment (SS), particle-attached (PA), and free-living (FL) microbial
communities throughout WSR (Figure 3A). Such divergence reflects
niche differentiation driven by stage-specific physicochemical gradients,
such as light availability, nutrient concentrations, and sediment-water
interactions (Xia et al., 2013; Pan et al., 2022a, 2022b).

Molecular ecological network analysis (MENs) further illuminated
the destabilizing effects of WSR on microbial interactions. Network
complexity (nodes, links, modularity) peaked during Inter_ WSR3 but
failed to fully recover post-disturbance (Table 1 and Figure 5). For
instance, the modularity of SS microbial networks dropped from 0.73
during Inter_ WSR3 to 0.49 in Post-WSR, indicating a collapse of the
modular community structure critical for functional redundancy
(Barberan et al., 2012). This legacy effect implies that even short-term
WSR disturbances can leave enduring imprints on microbial connectivity,
potentially impairing ecosystem resilience (Wang S. et al., 2021; Yuan
etal, 2021). In contrast, FL communities displayed the slowest recovery
of network complexity, likely due to prolonged exposure to residual
hydrological instability and nutrient pulses (Palmer and Ruhi, 2019;
Shang et al., 2023).

The stage-specific shifts in microbial composition were
exemplified by the contrasting dynamics of dominant taxa. During
Inter_WSR3, Gammaproteobacteria (35.69% relative abundance in SS)
and Bacteroidia (14.82% in SS) flourished in response to labile organic
matter released from resuspended sediments (Song et al., 2012; Xia
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et al., 2018). Conversely, Cyanobacteria and Anaerolineae dominated
FL and PA communities in Post-WSR, reflecting a shift toward
photoautotrophic metabolisms as light availability and nutrient
concentrations normalized (Xiao et al., 2017; Shi et al., 2020). These
findings underscore the importance of linking microbial community
structure to biogeochemical functions, such as organic matter
degradation and nutrient cycling, which are tightly coupled to
WSR-induced environmental gradients (Lu et al, 2022; Mu
etal., 2024).

Collectively, these results challenge the notion that microbial
communities in high-turbidity rivers rapidly rebound from
disturbance. Instead, WSR induces a legacy of altered network
topology and functional potential, with implications for long-term
ecosystem stability. Addressing these impacts requires adaptive
management strategies that account for stage-specific microbial
vulnerabilities, particularly during sediment-release phases (Jia et al.,
2023; Mu et al., 2024).

Driving mechanisms of microbial
community shifts: from environmental
gradients to biogeochemical functions

The stage-specific shifts in microbial community structure were
driven by dynamic physicochemical gradients imposed by WSR,
which created distinct ecological niches for SS, PA, and
FL microorganisms.

During the sediment-regulation stage (Inter_WSR3), extreme
hydraulic turbulence and sediment resuspension led to peak
concentrations of NO;™ (3.10 mg/L), DIC (40.61 mg/L), and turbidity
(7780  NTU), DO  (3.97 mg/L)
(Supplementary Figure S1). These conditions favored copiotrophic

alongside  reduced
taxa such as Gammaproteobacteria and Bacteroidia, which thrive in
labile  organic
Gammaproteobacteria in SS reached 35.69% relative abundance

matter-rich  environments. For instance,
during Inter_ WSR3, reflecting their role in degrading sediment-
released organic compounds (Song et al., 2012; Xia et al,, 2018).
Hierarchical partitioning further revealed that Chla (a proxy for
phytoplankton biomass) dominated the SS community assembly
during this phase, while NO;™ and turbidity were key drivers for PA
and FL communities (Figure 6).

In contrast, the pre-WSR stage (Pre_WSR) was characterized by
stable hydrological conditions and lower nutrient fluxes, allowing
Nitrososphaeria (AOA) and Anaerolineae to thrive in SS under anoxic
conditions (Xiao et al., 2017; Wang et al., 2024).

The post-WSR recovery phase (Post_WSR) exhibited rebounding
Chla levels (14.95 mg/L) and declining turbidity, shifting microbial
drivers toward light availability and regenerated nutrients. For
example, FL-Cyanobacteria and PA-Anaerolineae abundances
increased by 15-fold and 3-fold, respectively, during Post_WSR,
capitalizing on improved light penetration and residual nutrients
(Figure 3C) (Xia et al., 2013).

PA communities exhibited unique responses to WSR-driven
Inter_ WSR3,

Verrucomicrobia dominated PA assemblages, likely due to their

gradients.  During Planctomycetes  and
ability to break down complex organic matter within suspended
particles (Crespo et al., 2013; Hu et al., 2022). These taxa showed

positive correlations with turbidity and DIC (Figure 7D),
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suggesting their role in particle aggregation and inorganic carbon
FL
with
Alphaproteobacteria and Bacteroidia responding strongly to NO;~
and TN fluctuations (Figure 7C).
The contrasting responses of the SS, PA, and FL compartments

fixation under light-limited conditions. In contrast,

communities relied more on dissolved substrates,

highlight their specialized ecological niches. For instance, SS
microorganisms depend on sedimentary organic matter and nutrient
stocks, while PA and FL communities are more dynamic, adjusting to
hydrological and light-mediated resource availability (Palmer and
Ruhi, 2019; Pan et al., 2022a, 2022b). This compartmentalization
challenges the traditional view that FL communities dominate
biogeochemical cycling in turbid rivers, emphasizing instead the
critical role of particle-associated microbes in high-turbidity systems
(Liu T. et al., 2018; Wang et al., 2021b).

Null model analysis revealed that underlying these stage-specific
shifts in community structure was a fundamental change in ecological
assembly processes. The extreme conditions experienced during
Inter_ WSR3 not only acted as a strong filter for specific copiotrophic
lineages but also fundamentally reshaped the ecological forces
governing the entire microbial community. In SS communities, the
dominance of homogeneous selection during this stage provides a
mechanistic explanation for the observed community patterns. The
intense physical mixing effectively homogenized key environmental
factors, such as nitrate and particulate matter, across the sediment
habitat, creating a spatially uniform selective landscape. This powerful
environmental filtering compelled microbial communities to
converge, thereby overriding the influence of stochastic processes
(Chen et al., 2022). Thus, our results collectively suggest that the
extreme hydraulic disturbance enhanced deterministic assembly via
habitat homogenization, rather than increasing the influence of
stochastic processes.

Functionally, PICRUSt predictions of microbial gene content
corroborated these structural shifts, demonstrating that the WSR
process regulated microbial contributions to carbon, nitrogen,
phosphorus, and sulfur cycling. For instance, the rTCA cycle remained
stable in SS and PA but declined in FL, indicating that sediment-
associated communities maintained their carbon fixation potential
despite hydrological disturbance. This functional resilience in
sediments was consistent with the abundance of dominant microbial
taxa that rely on the rTCA pathway for carbon fixation, such as
Nitrososphaeria, Gammaproteobacteria, and Anaerolineae, which were
found to be abundant in SS (Garritano et al., 2022).

In the nitrogen cycle, while nitrate reduction dominated overall,
its abundance decreased in PA and FL during Inter WSR3,
concurrently with an increase in denitrification. This shift reflects
oxygen depletion and the subsequent transition toward anaerobic
pathways, mirroring findings from river floodplain studies where
hydrological fluctuations promote denitrification by creating anoxic
microzones (Zhou et al, 2024). Similarly, the enrichment of
comammox in SS highlights the resilience of sediment-based nitrifiers
to hydraulic stress, a trend observed in other disturbed river systems
(Pinto et al., 2015).

Phosphorus and sulfur cycles also responded significantly to
WSR. Phosphorus transport dominated in SS and declined in PA at
Inter_WSR3, consistent with increased phosphorus release under high
turbidity and sediment resuspension (Withers and Jarvie, 2008).
While sulfate reduction remained a dominant process across habitats,
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we observed a steady increase in sulfate oxidation in PA and FL during
WSR. This suggests that turbulent mixing enhanced redox cycling and
potentially microbial functional diversity in these compartments.
Such shifts collectively support the notion that hydrodynamic
regulation can accelerate coupled biogeochemical processes (Battin
etal., 2016).

Overall, WSR disrupts biogeochemical coupling by altering
environmental gradients, with legacy effects persisting in microbial
network structure and functional redundancy. Addressing these
impacts requires management strategies that account for stage-specific
microbial vulnerabilities, particularly during sediment-release phases
when network complexity is most disrupted (Wang et al., 2022; Mu
etal., 2024).

Microbial interactions and network
complexity: implications for ecosystem
functioning

The molecular ecological network analysis (MENs) revealed that
water-sediment regulation (WSR) profoundly disrupts microbial
interactions, with cascading effects on ecosystem functioning. During
the sediment-regulation stage (Inter_WSR3), network complexity
(nodes, links, modularity) peaked but failed to recover post-
disturbance, indicating lasting destabilization of microbial
communities. For example, the modularity of surface sediment (SS)
networks dropped from 0.73 during Inter_ WSR3 to 0.49 in Post-WSR,
reflecting a collapse of modular structures critical for maintaining
functional redundancy (Barberdn et al., 2012). This loss of modularity
suggests that WSR-induced disturbances weaken ecological resilience
by disrupting synergistic microbial partnerships, such as mutualism
and syntrophy, which underpin biogeochemical cycles (Xiao et al.,
2017; Li et al., 2021).

Positive interactions (e.g., resource sharing, cross-feeding)
among microbial taxa decreased significantly during Inter_ WSR3,
while negative interactions (e.g., competition) surged, particularly
in particle-attached (PA) and free-living (FL) communities
(Figure  5).  For  instance, and
FL-Alphaproteobacteria  exhibited
relationships during WSR, possibly driven by competition for light
and nutrients (Crespo et al., 2013; Yeh and Fuhrman, 2022). Such

shifts in interaction patterns could impair nutrient cycling

PA-Planctomycetes

stronger  antagonistic

efficiency, as syntrophic partnerships (e.g., methanogenesis,
denitrification) are disrupted (Wang S. et al., 2021; Yuan
etal., 2021).

Stage-specific environmental drivers further shaped network
topology. During Inter_ WSR3, high turbidity and nutrient fluxes (e.g.,
NO;~, DIC) favored generalist taxa with broad metabolic capabilities,
leading to dense but less cohesive networks (Palmer and Ruhi, 2019;
Shang et al., 2023). In contrast, post-WSR recovery was characterized
by the re-emergence of specialist taxa (e.g., Cyanobacteria in FL),
which formed tightly knit modules centered on light-driven processes
(Xiaetal., 2013; Pan et al., 2022a, 2022b). This dynamic highlights the
trade-off between network stability and functional flexibility in
response to disturbance.

Comparative analysis of low-turbidity systems (e.g., the Yangtze
River) revealed stark contrasts in network resilience. For instance, FL
communities in the Yellow River showed slower recovery of
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modularity compared to their clear-water counterparts, likely due to
prolonged light limitation and sediment resuspension stress (Liu
T. et al., 2018; Wang et al., 2021a). Moreover, the prominence of
Anaerolineae and Thermodesulfovibrionia in SS networks during
Inter_ WSR3 underscored the importance of anaerobic guilds in high-
turbidity systems, challenging assumptions derived from aerobic-
dominated riverine ecosystems (Song et al., 2012; Xia et al., 2014).
These findings emphasize that WSR disrupts microbial
co-occurrence patterns, with potential long-term consequences for
ecosystem services. Strengthening network resilience through
adaptive management—such as phased sediment release or habitat
restoration—could mitigate ecological risks by preserving functional
redundancy (Wang et al., 2022; Mu et al., 2024). Future studies
integrating metagenomics and network dynamics are needed to
unravel the mechanistic links between microbial interactions and
biogeochemical processes in disturbed river systems.

Contrasting patterns in high- vs.
low-turbidity rivers: revisiting established
paradigms

This study challenges the universality of paradigms established in
low-turbidity river ecosystems by revealing distinct microbial
responses in the high-turbidity Yellow River. In clear-water systems
like the Yangtze River, chlorophyll a (Chla) and dissolved oxygen
(DO) are widely recognized as primary drivers of bacterial community
assembly (Green et al., 2012; Peiffer et al., 2021). However, our
findings demonstrate that light limitation and sediment-water
interactions override these drivers in turbid systems. For instance,
Chla emerged as the dominant factor shaping surface sediment (SS)
microbial communities during the sediment regulation stage (Inter_
WSR3), whereas dissolved inorganic carbon (DIC) and turbidity
governed particle-attached (PA) and free-living (FL) communities
(Figure 6). This divergence reflects the unique niche partitioning in
high-turbidity rivers, where suspended particles and sediment
resuspension create microhabitats decoupled from surface water
conditions (Xia et al., 2013; Pan et al., 2022a, 2022b).

Moreover, the prominence of taxa such as Planctomycetes and
Verrucomicrobia in PA communities during Inter_ WSR3 highlights
functional adaptations specific to high-turbidity environments. These
groups are traditionally associated with anoxic sediments in
low-turbidity systems (Lage and Bondoso, 2014; Hu et al., 2022), yet
in the Yellow River, they thrived in particle-associated niches driven
by turbidity and DIC availability. Such observations contradict the
assumption that particle-attached microbes universally rely on anoxic
microenvironments, suggesting instead that physical transport and
organic matter loading play pivotal roles in structuring their
assemblages (Crespo et al., 2013; Yeh and Fuhrman, 2022).

The resilience of microbial networks also exhibited stark contrasts
between turbidity regimes. While FL communities in low-turbidity
rivers typically recover rapidly from disturbances (Palmer and Ruhi,
2019), those in the Yellow River displayed prolonged instability post-
WSR. This delay was linked to residual hydrological perturbations and
light limitation, which constrained the re-establishment of
phototrophic taxa such as Cyanobacteria (Xiao et al., 2017; Shi et al.,
2020). In contrast, SS communities rebounded more swiftly due to
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their reliance on physically stabilized sedimentary habitats,
underscoring the buffering capacity of benthic environments in high-
turbidity systems (Xia et al., 2013; Pan et al., 2022a, 2022b).

These findings demand a paradigm shift in how microbial ecology
is studied in turbid rivers. Traditional frameworks emphasizing light
and oxygen gradients must be revised to account for the complex
interplay between sediment dynamics, particle-associated processes,
and pulsed hydrological disturbances. For example, the unexpected
dominance of Anaerolineae in SS during Inter_ WSR3, despite oxic
conditions, points to metabolic flexibility in response to episodic
nutrient pulses rather than strict redox constraints (Song et al., 2012;
Xiaetal., 2014). Such insights highlight the limitations of extrapolating
low-turbidity models to high-turbidity systems, where unique
ecological rules govern microbial assembly and function.

Ultimately, this study underscores the need for context-specific
management strategies in turbid rivers. Adaptive interventions—such
as phased sediment release or artificial habitat enhancement—should
prioritize the preservation of particle-associated microbial processes,
which underpin critical biogeochemical functions such as organic
matter degradation and nutrient cycling (Lu et al., 2022; Mu et al,,
2024). By embracing the distinctiveness of high-turbidity ecosystems,
researchers and practitioners can better navigate the trade-offs
between  sediment microbial

management  goals and

ecological integrity.

Management implications and future
directions

The observed stage-specific microbial responses and network
disruptions carry critical implications for optimizing water-sediment
regulation (WSR) strategies in the Yellow River. Firstly, the pronounced
destabilization of microbial networks during the sediment-regulation
stage (Inter_WSR3) underscores the need to avoid pulsed sediment
discharge events that coincide with peak hydraulic turbulence. Such
disturbances not only disrupt nutrient cycling and carbon sequestration
processes but also compromise ecosystem resilience by fragmenting
microbial interactions. Implementing phased sediment release
protocols—such as prolonging the duration of WSR or adopting
variable discharge rates—could mitigate these risks by reducing the
magnitude of environmental shocks to microbial communities.

Moreover, the delayed recovery of free-living (FL) microbial
communities post-WSR highlights the importance of extending
monitoring efforts beyond the immediate post-disturbance phases. FL
microorganisms, which show the slowest rebound in network
complexity, may serve as sentinel indicators of lingering ecological
instability. Prioritizing the tracking of FL and particle-attached (PA)
taxa—particularly during the transition from Inter_ WSR3 to
Post-WSR—could provide early warnings of functional shifts in
biogeochemical ~ cycles. ~ For  instance,  declines in
FL-Alphaproteobacteria or PA-Planctomycetes abundance might signal
impaired nitrogen fixation or organic matter degradation capacities.

Enhancing habitat connectivity offers another promising avenue
for restoring microbial network integrity. Artificial reefs, submerged
vegetation, or sediment traps could help stabilize particle dynamics
and promote recolonization by keystone taxa following WSR. Such
interventions would complement existing efforts to manage light
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penetration and nutrient gradients, particularly in the sediment-water
interface where Gammaproteobacteria and Bacteroidia thrive.
Additionally, integrating microbial community metrics into ecological
assessments could refine the evaluation of WSR outcomes, moving
beyond traditional physicochemical parameters to encompass
functional redundancy and network robustness.

Long-term monitoring is essential to assess whether legacy
effects of repeated WSR cycles accumulate over time. Preliminary
data suggest that repeated disturbances may lead to shifts in
microbial community baselines, potentially favoring stress-tolerant
taxa at the expense of biodiversity. Future studies should adopt a
multi-year perspective to disentangle transient responses from
sustained alterations, leveraging metagenomics and metabolomics
to link community structure with functional gene expression. By
adopting a holistic approach that balances sediment management
goals with microbial ecological integrity, stakeholders can ensure the
sustainability of the Yellow River ecosystem in the face of ongoing
anthropogenic pressures.

Conclusion

This study elucidates stage-specific microbial responses to
water-sediment regulation (WSR) in the turbid Yellow River
reservoir-river continuum. The sediment-regulation stage (Inter_
WSR3) exerted the strongest disturbance due to pulsed hydraulic
and biogeochemical gradients, marked by peak turbidity (77.80
NTU), NO;™ (3.10 mg/L), and DIC (40.61 mg/L). These conditions
favored copiotrophic taxa (Gammaproteobacteria, 35.69% in SS)
while reconfiguring microbial networks, which exhibited peak
complexity (nodes = 1,318; modularity = 0.73) but failed to recover
Post WSR. Legacy effects included reduced modularity and
clustering coefficients, signaling weakened functional redundancy
(such as in the phosphorus cycle, nitrogen cycle, and carbon cycle).
Contrasting with low-turbidity systems, light limitation and
sediment-water interactions dominated community assembly in the
Yellow River. For example, Anaerolineae thrived in SS despite oxic
conditions, reflecting metabolic flexibility to pulsed nutrients.
Hierarchical partitioning identified Chla and turbidity as key drivers
for SS and PA/FL communities, respectively, challenging paradigms
that prioritize dissolved oxygen in clear-water rivers. To balance
sediment management with ecological sustainability, we reccommend
implementing phased WSR to reduce network fragmentation,
conducting targeted monitoring of FL/PA communities post-
disturbance, and pursuing habitat restoration to enhance
connectivity. Future studies should integrate metagenomics and
long-term observations to elucidate the mechanistic links between
microbial interactions and biogeochemical cycles in disturbed river
systems. These findings deepen our understanding of high-turbidity
river ecology and provide actionable insights for global
river management.
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