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During prolonged storage of garlic scapes (Allium sativum L.), the proliferation 
of microorganisms, particularly fungi, frequently causes postharvest rot, leading 
to moss-covered stem spots, tissue softening, depression, and even structural 
breakage. Carvacrol, a promising natural food preservative, exhibits various biological 
activities against different microorganisms. To investigate the inhibitory effects 
and mechanism of action of carvacrol against specific pathogens responsible for 
postharvest rot in garlic scapes, in this study, a specific pathogenic fungal strain 
responsible for postharvest rot in garlic scapes, designated as strain F, was initially 
isolated from symptomatic garlic scapes and identified as Fusarium acuminatum 
through a combination of morphological, physiological, and molecular biological 
analyses. Meanwhile, our findings revealed that carvacrol can significantly delay 
the onset of postharvest rot symptoms in garlic scapes and exhibit potent in 
vito inhibitory activity against Fusarium acuminatum, with a median effective 
concentration (EC50) of 36.17 μg/L. In addition, scanning electron microscope 
(SEM) observations indicated that carvacrol could induce irreversible alterations in 
the morphology and structure of the hyphae, leading to deformation and rupture. 
Furthermore, the combined transcriptome and proteome analysis results indicated 
that carvacrol primarily affects the steroid biosynthesis and MAPK signaling pathway 
cell signaling pathways in Fusarium acuminatum to interference compromises 
the integrity and stability of the cell membrane, consequently suppressing the 
growth and proliferation of Fusarium acuminatum.
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1 Introduction

Fungi can contaminate a wide range of agricultural commodities 
both pre- and post-harvest, making them the most prevalent food 
spoilers (Pouris et al., 2024; Bento de Carvalho et al., 2024). Notably, 
certain species, such as Fusarium sp., Penicillium sp., and Aspergillus 
sp., are capable of producing mycotoxins (Rahman et al., 2020). Due 
to their diverse toxic effects and high thermal stability, these 
mycotoxins pose significant health risks to both humans and animals 
(Janik et  al., 2020). Factors contributing to fungal growth and 
mycotoxin production include poor harvesting practices, inadequate 
storage, suboptimal transportation, marketing, and processing 
conditions (Wagacha and Muthomi, 2008; Osei-Kwarteng et al., 2024). 
Despite advancements in food production techniques, food safety 
remains a critical public health concern (King et al., 2017; Li S. B. et al., 
2021). It is estimated that up to 30% of individuals in industrialized 
countries experience a foodborne illness annually.

Garlic scapes (Allium sativum L.), the flower stalks from the 
seed heads of garlic bulbs, are native to West Asia or Europe and 
have gained global cultivation (Kovarovič et al., 2019; Shemesh-
Mayer et al., 2023). The garlic scapes are distinguished by their crisp 
texture along with tender juiciness while being rich in cellulose, 
vitamin C (Vc), allicin, polysaccharides, minerals, and other vital 
nutrients (Li G. Q. et al., 2021). The consumption of garlic scapes 
has recently increased as it has gained popularity because of its 
excellent nutrient profile (Borlinghaus et  al., 2014; Deng et  al., 
2023). As more consumers demand convenient, fresh, and healthy 
foods, fresh-cut garlic scapes can be expected to become a profitable 
agricultural commodity. However, during extended storage periods 
of garlic scapes, the proliferation of microorganisms, especially 
fungi, often leads to postharvest rot, resulting in stem spots covered 
with mosses, tissue soft rot, depression and even breakage (Chen 
et al., 2019).

The use of natural products from inherently disease-resistant 
plants to combat pre- and post-harvest diseases represents an 
innovative strategy in sustainable agricultural development. This 
approach is safer than conventional chemical products because it 
exhibits lower toxicity to natural enemies, humans, and other 
mammals. Carvacrol (5-isopropyl-2-methylphenol, C10H14O), a 
phenolic monoterpene compound with a free hydroxyl group, is 
naturally found in the essential oils of oregano (Origanum vulgare), 
thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild 
bergamot (Citrus aurantium), and other plants (Mączka et al., 2023). 
Carvacrol has been produced by chemical and biotechnological 
synthesis via metabolic engineered microorganisms (More et  al., 
2007). Previous studies have shown that carvacrol exhibits diverse 
biological activities, such as antifungal, antibacterial, antioxidant, and 
anticancer properties (Veldhuizen et al., 2006; Mączka et al., 2023). 
Due to its flavoring (oregano-like smell and pizza-like flavor) and 
antifungal properties, it is most often used in in controlling fungal 
decay in postharvest agricultural products as a natural food 
preservative (Abbaszadeh et al., 2014). Moreover, it has been classified 
as generally recognized as safe by the U.S. Food and Drug 
Administration (FDA), and it is currently employed in the food 
industry as a Category B chemical flavoring agent that may be added 
to foodstuffs at a level of 2 ppm in beverages, 5 ppm in flakes, and 
25 ppm in candies (Yang et  al., 2024; Addo et  al., 2023; Imran 
et al., 2022).

In this study, the preservative effect analysis of carvacrol against 
postharvest rot of garlic scapes was performed. Meanwhile, a specific 
pathogenic fungal strain was isolated from symptomatic garlic scapes 
from Guizhou Province, China and identified using a combination of 
conventional identification method and molecular analysis technique. 
Additionally, the inhibitory effect and mechanism of action of 
carvacrol against the specific pathogenic fungal strain was investigated 
utilizing the combined transcriptome and proteome analysis.

2 Materials and methods

2.1 Sample collection

To evaluate the preservative effects of carvacrol and identify the 
specific pathogens responsible for postharvest rot in garlic scapes in 
China, a total of approximately 300 asymptomatic and symptomatic 
garlic scapes (“Chaohua” cultivar), produced in Guizhou Province, 
were collected from various vegetable markets in July 2023.

2.2 Determination of preservative effect

2.2.1 Determination of decay rate
The asymptomatic garlic scapes were surface-sterilized with 75% 

ethanol followed by sterilized distilled water, and subsequently 
air-dried on a clean bench. The sterilized garlic scapes were then 
sprayed with carvacrol at concentration of 100 μg/L, and air-dried 
again on a clean bench before being incubated at 28 °C with 95% 
relative humidity. The decay rate analysis was performed in triplicates 
with 30 randomly sampled for each replicate. The decay rates were 
observed and recorded at 5, 10, 15, and 20 days post-treatment using 
the following formula (Liu et al., 2022).

	
( ) = ×

Number of rotten garlic scapes
Decay rate % 100%

Number of garlic scapes

2.2.2 Determination of weight loss
The weight losses of the postharvest garlic scapes after 5, 10, 15, 

and 20 days post-treatment were determined using a digital balance 
and expressed in percentage using the following formula (Owolabi 
et al., 2021).

	
( ) −

= ×
Initial weight Weight at sample time

Weight loss % 100%
Initial weight

2.2.3 Determination of vitamin C (Vc) and soluble 
protein (SP) contents

The Vc contents in postharvest garlic scapes were determined 
using the molybdenum blue spectrophotometry (He et  al., 2021). 
Fresh garlic scape samples (0.5 g), collected at 5, 10, 15, and 20 days 
post-treatment, were homogenized with 25 mL of oxalic acid-EDTA 
solution (w/v). The homogenate was filtered, and 10 mL of the filtrate 
was mixed with 1 mL of phosphate-acetic acid buffer, 2 mL of 5% 
sulfuric acid, and 4 mL of ammonium molybdate solution. The Vc 
contents were then measured using an UV-6000 ultraviolet–visible 
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(UV)-spectrophotometer (Shimadzu, Japan) at a wavelength 
of 705 nm.

The SP contents in postharvest garlic scapes were determined 
using the Coomassie brilliant blue G-250 dye-binding method 
(Murphey et al., 1989). Fresh garlic scape samples (0.5 g), collected at 
5, 10, 15, and 20 days post-treatment, were homogenized in 8 mL of 
distilled water. The homogenate was centrifuged at 3000×g for 10 min 
at 4 °C. Subsequently, 0.2 mL of the supernatant was mixed with 
0.8 mL distilled water and 5 mL of Coomassie brilliant blue G-250 
solution. The absorbances were measured at 595 nm using an 
UV-spectrophotometer (UV-6000, Shimadzu, Japan) after a 5 min 
incubation period.

2.2.4 Determination of polyphenol oxidase (PPO) 
and malonaldehyde (MDA) content

The contents of PPO and MDA of the postharvest garlic scapes 
were detected using the commercially available enzyme assay reagent 
kits produced by Suzhou Geruisi Biotechnology Co., Ltd. (Suzhou, 
China) (Fan et al., 2022).

2.3 Pathogen isolation and molecular 
characterization

2.3.1 Pathogen isolation
Small sections of the infected base, stem, and apical regions of 

symptomatic garlic scapes were surface sterilized using 75% (v/v) 
ethanol and subsequently rinsed three times with sterile distilled 
water. The sterilized tissue samples were then placed on potato 
dextrose agar (PDA, 6 g potato powder, 20 g glucose, 20 g agar, 1 L 
sterile distilled water) plates and incubated at 28 °C for 72 h. Hyphae 
emerging from the tissue samples were aseptically transferred using 
an inoculation loop to fresh PDA plates and incubated at 30 °C for 
48–72 h. Individual hyphal colonies were selected and sub-cultured 
on fresh PDA plates twice to ensure purity, and the purified cultures 
were stored at 4 °C for subsequent use.

2.3.2 Pathogenicity test
The pathogenicity tests of the isolated specific pathogen were 

conducted by inoculating a conidial suspension (1.0 × 106 conidia/L) 
onto the basal, stem, and apical regions of 20 fresh garlic scapes 
(“Chaohua” cultivar). After an incubation period of 7 days in an 
incubator set at 28 °C with 95% relative humidity, rot symptoms 
infected by the isolated pathogen resembling those observed in the 
collected samples were observed in the base, stem, and apical of garlic 
scapes. The isolated pathogen re-isolated from the symptomatic garlic 
scapes based on Koch’s postulates was subsequently selected for 
further characterization through morphological characterization 
and sequencing.

2.3.3 Morphological characterization
After 72 h of growth on the PDA plate, the morphological 

characterization of the specific pathogen was observed with the naked 
eye and under an optical microscope.

2.3.4 Molecular biological characterization
Approximately 25 mg of the specific pathogen were collected for 

genomic deoxyribonucleic acid (DNA) extraction using TIANamp 

fungal DNA distilling kit (Tiangen-Biotech Corporation Ltd., Beijing, 
China) and DNA concentration and quality were estimated using an 
ASP-3700 spectrophotometer (ACTGene, Piscataway, NJ, USA). 
Molecular identification was confirmed by sequencing the rDNA 
internal transcribed spacer (ITS) using primers ITS1/ITS4 (ITS1: 
5′-TCCGTAGGTGAACCTGCGG-3′, ITS4: 5′-TCCTCCGCTTA 
TTGATATGC-3′), translation elongation factor 1-alpha (TEF-1α) 
using primers EF1/EF2 (EF1: 5′-ATGGGTAAGGAGGACAAGAC-3′, 
EF2: 5′-GGAAGTACCAGTGATCATGTT-3′), and RNA polymerase 
II beta subunit (RPB2) using primers 5F2/7cR (5F2: 5′-GGGGWG 
AYCAGAAGAAGGC-3′, 7cR: 5′-CCCATRGCTTGYTTRCCCAT-3′) 
(Chen et al., 2020; Husna et al., 2020; Long et al., 2021). The amplicons 
were sequenced by Sangon Corporation (Shanghai, China) and 
deposited in the National Center for Biotechnology Information 
(NCBI, https://www.ncbi.nlm.nih.gov/) database under the accession 
numbers PP738014.1, PP780439.1, and PP780438.1, respectively. The 
DNA sequences of the isolates were analyzed for sequence similarity 
using the Basic Local Alignment Search Tool (BLAST) program 
against the NCBI database. A phylogenetic tree based on the ITS, 
TEF-1α, and RPB2 sequences was constructed using the neighbor-
joining method implemented in MEGA version 11.0 software.

2.4 Inhibition activity of carvacrol against 
the specific pathogen

2.4.1 In vitro antifungal activity test
The inhibition activities of carvacrol against the specific pathogen 

at different concentrations (25, 50, 75, 100, 125, and 150 μg/L) were 
determined using the mycelium growth rate method (Li et al., 2024). 
Different quality of carvacrol were dissolved in 1 mL of 
dimethylsulfoxide (DMSO) and then mixed with 9 mL of 0.1% Tween 
20 solution and 90 mL of PDA medium. Subsequently, the mixture 
was poured into 3 dishes and allowed to cool to room temperature for 
the preparation of PDA plates. Mycelia dishes of the pathogen with an 
approximate diameter of 0.4 cm were excised from the culture 
medium and aseptically transferred to the center of each PDA plate 
using a sterile inoculation needle. The inoculated PDA plates were 
incubated at 28 °C for a period of 4 days. DMSO was used as a 
negative control, while prochloraz was used as a positive control. The 
inhibition rates of carvacrol and prochloraz at different concentrations 
were calculated using the established method (Chattapadhyay and 
Dureja, 2006). The median effective concentration (EC50) values were 
also calculated via the GraphPad Prism Software (San Diego, USA). 
The experiment was conducted in triplicate.

2.4.2 Effect of carvacrol on the hyphae 
morphology

The specific pathogen was cultured on a PDA plate supplemented 
with a median effective concentration (EC50) concentration of carvacrol, 
while the pathogen treated with DMSO served as the negative control. 
The experiment was conducted in triplicate. Following a 24 h incubation 
at 28 °C, the hyphae samples were fixed in 2.5% glutaraldehyde at room 
temperature for 24 h, then washed three times with 0.1 M phosphate 
buffer for 15 min each, followed by a 1 h fixation in 1% OsO4 solution. 
Then the specimens were dehydrated in a gradient ethanol series (20, 50, 
80, and 100%, respectively, 5 min for each alcohol dilution). After drying 
at critical point and gold coating, scanning electron microscope (SEM; 
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Hitachi Ltd., Tokyo, Japan) observations on the hyphae morphology of 
the specific pathogen were conducted (Suzuki et al., 2017).

2.5 Transcriptome and proteomics analysis

The specific pathogen was cultured on a PDA plate supplemented 
with an EC50 concentration of carvacrol (designated as FX), while the 
pathogen treated with DMSO served as the negative control 
(designated as FC). Following a 72 h incubation at 28 °C, the hyphae 
of FX and FC samples were collected for transcriptome and 
proteomics analysis.

Transcriptome sequencing of the hyphae was conducted by 
Hangzhou Lianchuan Biological Co., Ltd., using the Illumina HiSeq™ 
2000 platform (Illumina Inc., San Diego, CA, USA). The raw sequence 
data have been deposited in the National Center for Biotechnology 
Information (NCBI) database under the accession number 
PRJNA1195909. To ensure high-quality reads, cutadapt software 
(v1.9.3) was employed to filter out low-quality reads and hisat2 
software (v2.0.4) was utilized to align high quality clean reads against 
the reference genome (Kechin et al., 2017). Differentially expressed 
genes (DEGs) were identified using an R language package, with a 
significance threshold of p < 0.05 and a log2FC > 1 (Sui et al., 2023).

Proteomics sequencing of the hyphae were analyzed using a liquid 
chromatography tandem–mass spectrometry (LC–MS/MS) system 
(5,600 Triple TOFMS) coupled with a Nano-Liquid Chromatograph 
(Eksigent, Dublin, CA, USA) (Teng et al., 2021). The raw data were 
deposit to ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) with the accession number of PXD057043. The 
raw data were quantified by the MaxQuant software (version 1.5.8.3) 
(Cox et al., 2011). Differentially expressed proteins (DEPs; expression 
level > 2.0-fold, p < 0.01) were identified from the Uniprot database 
(http://www.uniprot.org/) (Gao et al., 2017).

Gene Ontology (GO) annotations, encompassing biological 
processes (BP), cellular components (CC), and molecular functions 
(MF), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichments for the DEGs and DEPs were performed at 
http://www.geneontology.org/ and https://www.kegg.jp/kegg/pathway.
html, respectively (Yu et al., 2018; Zhang et al., 2023).

3 Results

3.1 Preservative effects of carvacrol on the 
postharvest rot in garlic scapes

Figure 1A shows that, at 20 days post-treatment, the decay rate in 
the control group reached 57.78%, whereas it was only approximately 
31.11% in the carvacrol-treated group. These results suggest that 
carvacrol effectively inhibits postharvest decay, thereby extending the 
shelf life of garlic scapes. Figure 1B shows that during storage, weight 
loss increased in all groups; however, the carvacrol-treated group 
exhibited significantly lower weight loss compared to the control (CK) 
group. Figure 1C also demonstrates that carvacrol treatment significantly 
delayed the decrease in Vc content in garlic scapes relative to the CK 
group. Figure 1D shows that carvacrol treatment had no significant 
effect on SP content. Figure  1E indicates that carvacrol treatment 
significantly enhanced PPO activity, with the highest level (15.50 U/mg) 

observed at 10 days post-treatment. Additionally, Figure 1F shows that 
carvacrol treatment significantly inhibited the increase in MDA content, 
thus delaying spoilage of postharvest garlic scapes.

3.2 Preservative effects of carvacrol on the 
postharvest rot in garlic scapes

A total of eight fungi [PQ (Penicillium spp.), LS (Trichoderma 
spp.), F (Fusarium spp.), HJ (Fusarium spp.), BS (Irpex spp.), BX 
(Bjerkandera spp.), HB (Mucor spp.), and HQ (Aspergillus spp.)] with 
different morphology were isolated from the infected base, stem, and 
apical tissues of symptomatic garlic scapes. The pathogenicity tests of 
the isolated eight fungi were conducted by inoculating a conidial 
suspension (1.0 × 106 conidia/L) onto the basal, stem, and apical 
regions of 20 fresh garlic scapes (“Chaohua” cultivar). After an 
incubation period of 7 days in an incubator set at 28 °C with 95% 
relative humidity, as shown in Figure 2, rot symptoms infected by F 
strain (infection rate 60%) resembling those observed in the collected 
samples were observed in the base, stem, and apical of garlic scapes.

The F strain re-isolated from the symptomatic garlic scapes based 
on Koch’s postulates was subsequently selected for further 
characterization through morphological and molecular biological 
characterization. The mycelium exhibits a flocculent appearance, with 
the front displaying a light pink hue and the back ranging from light 
pink to reddish purple, occasionally exhibiting concentric ring growth 
patterns (Figures 3A,B). Additionally, the optical microscope revealed 
that the mycelium exhibits branching and septation; the conidial stalk 
displays a branching structure resembling a slender bottle-shaped 
stem, which bears large crescent-shaped conidia on 1–5 compartments, 
with 1–3 being the most prevalent (Figures 3C,D). Utilizing MEGA 
version 11.0 software with the neighbor-joining method, a phylogenetic 
tree was generated which revealed a complete match of 99% homology 
between F strain and Fusarium acuminatum NRRL54213 (Figure 3E). 
Consequently, through the integration of morphological 
characterization and molecular biological identification, the F strain 
was definitively identified as Fusarium acuminatum.

3.3 In vitro antifungal activity

As illustrated in Table 1, the inhibition rates of carvacrol against 
Fusarium acuminatum exhibited a significant dose-dependent 
increase, reaching 39.98, 52.48, 82.06, 88.80, 100.00, and 100.00% at 
concentrations of 25, 50, 75, 100, 125, and 150 μg/L, respectively. 
Meanwhile, the EC50 value for carvacrol against Fusarium acuminatum 
was determined to be 36.17 μg/L, which was even better than that of 
prochloraz, suggesting that carvacrol exhibits potent in vitro antifungal 
activity against this pathogen.

3.4 Effect on the hyphae morphology

SEM was employed to investigate the impact of carvacrol on the 
microstructure of Fusarium acuminatum. The findings, as illustrated 
in Figures 4A,B, revealed that the hyphae surface in the control group 
exhibited regular fullness and maintained a normal physiological 
structure. In contrast, as illustrated in Figures 4C,D, the hyphae in the 
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treatment group displayed irregular contractions, pronounced folds, 
depressions, and shriveled areas on the hyphal surface, with some 
hyphal fragments breaking off. These observations indicate that 

carvacrol treatment induced irreversible alterations in the morphology 
and structure of the hyphae, leading to deformation and rupture, thus 
demonstrating a certain inhibitory effect on Fusarium acuminatum.

FIGURE 1

Effect of carvacrol on the decay rate (A), weight loss (B), Vc content (C), SP content (D), PPO activity (E), and MDA content (F) at 5, 10, 15 and 20 days 
post-treatment, respectively. U, active unit. Vertical bars represent the standard errors of the means. Asterisk (*) means significantly different among 
deferent treatment group at a significance level of p < 0.05.

FIGURE 2

Symptoms of the basal (A), stem (B), and apical (C) regions of garlic sprouts after inoculation with F strain.
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3.5 Quality check of transcriptome 
sequencing data

Table 2 shows that, after cleaning and quality checking, 58.51, 
54.48, 55.71 and 58.48, 56.16, 51.90 Mb clean reads, with Q30 bases 

(base quality >30) contents ranging from 94.55 to 95.17% and GC 
contents ranging from 53.61 to 53.94%, were generated from the 
cDNA libraries of FX and FC samples, respectively. In general, the 
sequencing results are of good quality and the data can be used for 
subsequent bioinformatics analysis.

3.6 DEGs identification

Compared sample FX with FC, a total of 2,618 DEGs (including 
1,122 up-regulated and 1,496 down-regulated genes) were detected 
(Figure 5 and Supplementary Table S1), of which the up- and down-
regulated genes were 1857 and 2,114, respectively.

3.7 Bioinformatics analysis of DEGs

To further functional characterization of the DEGs of FX vs. FC, 
GO analysis was classified and annotated into 3,167 known GO terms, 
comprising 70.25% (2,225 GO terms) in BP, 10.58% (335 GO terms) in 
CC, and 19.17% (607 GO terms) in MF (Supplementary Table S2). Go 
term enrichment analysis of FX vs. FC (Figure 6) demonstrated that the 
main BP involved immune system process, detoxification, 
developmental process, response to stimulus, multi-organism process, 
signaling, multicellular organismal process, establishment of 
localization, localization, growth, locomotion, reproduction, cell 

FIGURE 3

(A) Observe surface of F strain incubation on front side of PDA plate; (B) observe surface of F strain incubation on back side of PDA plate; 
(C) morphology of hyphae of F strain; (D) morphology of conidia of F strain; (E) phylogenetic tree analysis based on the PCR sequence of F strain.

TABLE 1  The in vitro antifungal activity of carvacrol against Fusarium 
acuminatum.

Treatments Concentration 
(μL/L)

Inhibition 
rate (%)

EC50 
(μg/L)

Carvacrol

25 39.98 ± 2.35

36.17 ± 1.65

50 52.48 ± 1.63

75 82.06 ± 2.65

100 88.80 ± 2.15

125 100.00

150 100.00

Prochloraz

25 36.15 ± 1.56

39.37 ± 0.25

50 19.56 ± 2.21

75 76.54 ± 1.07

100 86.62 ± 1.19

125 98.26 ± 2.05

150 100.00
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aggregation, biological regulation, positive regulation of biological 
process, regulation of biological process, reproductive process, 
biological adhesion, metabolic process, cellular process, negative 
regulation of biological process, cellular component organization or 
biogenesis, cell killing, behavior, biological phase, and rhythmic process. 
The main CC involved extracellular region, membrane, extracellular 
matrix, extracellular region part, membrane part, nucleoid, organelle, 
supramolecular fiber, cell, cell part, organelle part, membrane-enclosed 
lumen, protein-containing complex, cell junction, synapse part, 
synapse, and symplast. The main MF involved transporter activity, 

catalytic activity, antioxidant activity, molecular transducer activity, 
signal transducer activity, electron transfer activity, molecular function 
regulator, enzyme regulator activity, transcription factor activity, protein 
binding, binding, structural molecule activity, channel regulator activity, 
metallochaperone activity, protein tag, and translation regulator activity.

To further functional characterization of the DEGs of FX vs. FC, 
pathway analysis based on the KEGG database was classified and 
annotated into 235 known KEGG pathways (Supplementary Table S3). 
KEGG pathways analysis of FX vs. FC (Figure 7) revealed that DEGs 
were mainly annotated into MAPK signaling pathway, arginine and 
proline metabolism, carbon metabolism, biosynthesis of amino acids, 
and steroid biosynthesis.

3.8 DEPs identification

As shown in Figure 8 and Supplementary Table S4, a total of 1862 
proteins were identified and the up- and down-regulated proteins in 
FX vs. FC were 147 and 21, respectively.

3.9 Bioinformatics analysis of DEPs

The GO analysis of the DEPs was annotated into 10,212 
known GO terms, comprising 64.43% (6,579 GO terms) in BP, 

FIGURE 4

SEM observations on the hyphae morphology of Fusarium acuminatum treated by DMSO (A,B) and carvacrol (C,D).

TABLE 2  Overview of transcriptome sequencing date.

Samples Raw 
reads 
(Mb)

Clean 
reads 
(Mb)

GC 
content 

(%)

Clean 
reads 
≥Q30 

(%)

FX-1 58.12 58.51 53.94 95.15

FX-2 56.85 54.48 53.74 94.60

FX-3 60.48 55.71 53.61 94.77

FC-1 60.71 58.48 53.82 94.55

FC-2 58.28 56.16 53.91 95.17

FC-3 54.19 51.90 53.83 95.02
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12.11% (1,237 GO terms) in CC, and 23.46% (2,396 GO terms) in 
MF (Supplementary Table S5). Go term enrichment analysis of FX 
vs. FC (Figure  9) demonstrated that the main BP involved 
heterocycle metabolic process, organic cyclic compound metabolic 
process, cellular protein metabolic process, organic substance 
metabolic process, cellular component organization or biogenesis, 
macromolecule metabolic process, organic substance biosynthetic 
process, metabolic process, cellular process, and primary 
metabolic process. The main CC involved mitochondrion, 
membrane, non-membrane-bounded organelle, nucleus, protein-
containing complex, organelle part, cytoplasm, membrane-
bounded organelle, organelle, and cell part. The main MF involved 
pyrophosphatase activity, binding, catalytic activity, acting on A 
protein, nucleic acid binding, small molecule binding, anion 
binding, transferase activity, protein binding, heterocyclic 
compound binding, and catalytic activity.

To further functional characterization of the DEPs of FX vs. FC, 
pathway analysis based on the KEGG database was classified and 
annotated into 1865 known KEGG pathways (Supplementary Table S6). 
KEGG pathways analysis of FX vs. FC (Figure 10) revealed that DEPs 
were mainly annotated into steroid biosynthesis, oxidative 

phosphorylation, ribosome, DNA replication, and MAPK 
signaling pathway.

4 Discussion

Carvacrol is a monoterpenic phenol produced by an abundant 
number of aromatic plants, including thyme and oregano (Veldhuizen 
et al., 2006; Mączka et al., 2023). Presently, carvacrol is used in low 
concentrations as a food flavoring ingredient and preservative to 
enhance the shelf life and safety of perishable foods, such as 
fermented pepper, fruit juice, and fresh-cut fruits (Yang et al., 2024). 
The weight loss in postharvest fruits and vegetables occurs during 
storage primarily due to respiration, moisture loss, and oxidation 
processes. Additionally, decay and mold can cause water loss, which 
contributes to the overall weight reduction (Owolabi et al., 2021; 
Singh et  al., 2021). Vc, one of the most abundant water-soluble 
antioxidants in plants and animals, is of vital importance to human 
health and plays an important role in the defense of diseases related 
to collagen synthesis and protection against oxidative stress 
(Padayatty et al., 2003). As plant-based foods constitute the principal 

FIGURE 5

Volcano plot diagram of DEGs of FX vs. FC. The red points are significant up-regulated genes, the green points are significant down-regulated genes, 
while the black genes are not differential expressed genes.
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source of Vc in the human diet, the possibility of increasing the Vc 
content of plants to improve their nutritional value has also received 
considerable attention in recent years (Paciolla et  al., 2019). Any 
changes in the Vc content of plant cells can result in a diverse range 
of effects on growth, development and stress tolerance, as Vc is 
involved in redox signalling, cell cycle regulation, enzyme functioning 
and the expression of defence and stress-related genes (Jiang et al., 
2022). Hence, adequate intake of Vc from foods is necessary for 
normal physiological functioning, and fruits and vegetables are the 
richest natural sources of Vc in the human diet. PPO-catalyzed 
browning reactions, which occur in a wide range of plant-derived 
foods, significantly contribute to quality degradation and loss of 
nutritional value in the fruit and vegetable industry (Yourk and 
Marshall, 2007). A deeper understanding of the factors influencing 
PPO activity is crucial for effectively controlling and mitigating its 
adverse effects on plant-based products. MDA is a major byproduct 
of cellular membrane lipid peroxidation, which can induce cross-
linking reactions in proteins, polysaccharides, nucleic acids, and 
other macromolecules. This biomarker effectively reflects the extent 
of potential damage to biological membranes (Mi et  al., 2023). 
Herein, we observed that carvacrol treatment significantly delays the 
onset of rot symptoms in the basal, stem, and apical regions of garlic 
scapes compared to the control group. This suggests that carvacrol 
exerts a favorable postharvest preservative effect on garlic sprouts by 
delaying the decline in Vc content, enhancing PPO activity, and 
inhibiting the accumulation of MDA, thereby retarding the 
spoilage process.

In this study, we  found that carvacrol exhibits potent in  vitro 
inhibitory activity against Fusarium acuminatum, with an EC₅₀ value 
of 36.17 μg/L, which is even lower than that of prochloraz. These 
findings are supported by many previous studies. Zhang et al. (2019) 
demonstrated that carvacrol may serve as a promising alternative to 
conventional fungicides for controlling Botrytis cinerea-induced gray 
mold in horticultural products. Similarly, Šimović et  al. (2014) 
reported that carvacrol exhibited significant inhibitory effects against 
foodborne pathogens such as Aspergillus carbonarius and Penicillium 
roqueforti, thereby enhancing the safety of fresh-cut watermelon. 
Meanwhile, in the present experiment, SEM observations indicate that 
carvacrol treatment induced irreversible alterations in the morphology 
and structure of the hyphae, leading to deformation and rupture, as 
reported by damaging cell membrane of Botrytis cinerea and Rhizopus 
stolonifer (Zhang et al., 2019; Jiang et al., 2015).

The mechanism of action of carvacrol against Fusarium 
acuminatum was then investigated utilizing the combined 
transcriptome and proteome analysis. The results showed that 
carvacrol mainly affected the steroid biosynthesis and MAPK 
signaling pathway cell signaling pathways in Fusarium acuminatum. 
In the steroid biosynthesis cell signaling pathway, ergosterol, a 
highly specific component of the fungal cell membrane, is 
synthesized (Beni et  al., 2014). Ergosterol not only regulates 
membrane fluidity but is also essential for the formation and 
function of the plasma membrane, influencing the fluidity, 
permeability, and activity of cell membrane-associated proteins (Hu 
et al., 2017; Sun et al., 2020). A reduction in ergosterol synthesis can 

FIGURE 6

Go (p value <0.05 and the highest enrichment score calculated as the negative logarithm of the corresponding p value) term enrichment analysis of 
DEGs of FX vs. FC. X-axis represents different functional groups (also named as different GO terms), while Y-axis indicates the percentage that each 
functional group gene and accounts for the total genes, respectively.
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FIGURE 7

Top twenty KEGG pathways enrichment of DEGs of FX vs. FC. The depth of color reflects the level of significance, as indicated by the corresponding 
color legend on the side. The size of the bubbles represents the scale of enrichment, with larger bubbles indicating a greater number of DEGs enriched 
in the given pathway.

FIGURE 8

Volcano plot of DEPs of FX vs. FC. The red points are significant up-regulated genes, the blue points are significant down-regulated genes, while the 
black genes are not differential expressed genes.
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result in membrane dysfunction, thereby inhibiting fungal growth 
and reproduction. Under the influence of carvacrol, both lanosterol 
synthase (LSS) and sterol-4α-carboxylate 3-dehydrogenase 
(NSDHL) showed a significant downregulation during this 
regulatory process. The alterations in the expression levels of these 
enzymes can result in reduced ergosterol synthesis, thereby 
compromising the structural integrity and stability of cell 
membranes and inhibiting microbial growth and reproduction 
(Sayari et al., 2021). Meanwhile, the MAPK signaling pathway plays 
a critical role in cell proliferation and apoptosis, regulating various 
physiological processes including cell proliferation and apoptosis 
(Patergnani et al., 2020; Yue and López, 2020). Under the influence 
of carvacrol, the expression of guanylate binding protein (GBP) is 
downregulated, potentially impacting the cell cycle progression and 
resulting in a deceleration or cessation of cell proliferation, thus 
affecting the development of Fusarium oxysporum (Guo et  al., 
2020). Similar results reported by Chavan and Tupe (2014) 

demonstrated that carvacrol exerted its antimicrobial action against 
wine spoilage yeasts through membrane damage, leakage of 
cytoplasmic content and ergosterol depletion.

This study only focused on the preliminary mechanism of action 
of carvacrol against Fusarium acuminatum based on the integrated 
transcriptomic and proteomic analyses. The observed downregulation 
of key enzymes and signaling components suggests a potential link to 
the antifungal activity of carvacrol will be  conducted in our 
future research.

5 Conclusion

In this study, we found that carvacrol can significantly delay 
the onset of postharvest rot symptoms of garlic scapes by delaying 
the decline in Vc content, enhancing PPO activity, and inhibiting 

FIGURE 9

Go (p value <0.05 and the highest enrichment score calculated as the negative logarithm of the corresponding p value) term enrichment analysis of 
DEPs of FX vs. FC. X-axis represents different functional groups (also named as different GO terms), while Y-axis indicates enrichment score.
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the accumulation of MDA. Meanwhile, a specific pathogen causing 
postharvest rot of garlic scapes, identified as Fusarium 
acuminatum, was isolated from symptomatic garlic scapes. Our 
findings revealed that carvacrol demonstrated significant 
inhibitory activity against Fusarium acuminatum. SEM 
observations reveal that carvacrol treatment causes irreversible 
changes in the morphology and structure of hyphae, resulting in 
significant deformation and rupture. Moreover, the integrated 
transcriptome and proteome analysis revealed that carvacrol 
predominantly impacts the steroid biosynthesis and MAPK 
signaling pathway cell signaling pathways in Fusarium acuminatum 
to interference compromises the integrity and stability of the cell 
membrane, consequently suppressing the growth and proliferation 
of Fusarium acuminatum.

6 Future prospects

The incorporation of carvacrol as a food preservative can 
effectively inhibit the growth and proliferation of microorganisms 
responsible for postharvest decay, thereby enhancing preservation 
efficacy and extending the shelf life of fruits and vegetables in the 
postharvest food industry.
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