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During prolonged storage of garlic scapes (Allium sativum L.), the proliferation
of microorganisms, particularly fungi, frequently causes postharvest rot, leading
to moss-covered stem spots, tissue softening, depression, and even structural
breakage. Carvacrol, a promising natural food preservative, exhibits various biological
activities against different microorganisms. To investigate the inhibitory effects
and mechanism of action of carvacrol against specific pathogens responsible for
postharvest rot in garlic scapes, in this study, a specific pathogenic fungal strain
responsible for postharvest rot in garlic scapes, designated as strain F, was initially
isolated from symptomatic garlic scapes and identified as Fusarium acuminatum
through a combination of morphological, physiological, and molecular biological
analyses. Meanwhile, our findings revealed that carvacrol can significantly delay
the onset of postharvest rot symptoms in garlic scapes and exhibit potent in
vito inhibitory activity against Fusarium acuminatum, with a median effective
concentration (ECs,) of 36.17 pg/L. In addition, scanning electron microscope
(SEM) observations indicated that carvacrol could induce irreversible alterations in
the morphology and structure of the hyphae, leading to deformation and rupture.
Furthermore, the combined transcriptome and proteome analysis results indicated
that carvacrol primarily affects the steroid biosynthesis and MAPK signaling pathway
cell signaling pathways in Fusarium acuminatum to interference compromises
the integrity and stability of the cell membrane, consequently suppressing the
growth and proliferation of Fusarium acuminatum.
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1 Introduction

Fungi can contaminate a wide range of agricultural commodities
both pre- and post-harvest, making them the most prevalent food
spoilers (Pouris et al., 2024; Bento de Carvalho et al., 2024). Notably,
certain species, such as Fusarium sp., Penicillium sp., and Aspergillus
sp., are capable of producing mycotoxins (Rahman et al., 2020). Due
to their diverse toxic effects and high thermal stability, these
mycotoxins pose significant health risks to both humans and animals
(Janik et al., 2020). Factors contributing to fungal growth and
mycotoxin production include poor harvesting practices, inadequate
storage, suboptimal transportation, marketing, and processing
conditions (Wagacha and Muthomi, 2008; Osei-Kwarteng et al., 2024).
Despite advancements in food production techniques, food safety
remains a critical public health concern (King et al., 2017; Li S. B. et al.,
2021). It is estimated that up to 30% of individuals in industrialized
countries experience a foodborne illness annually.

Garlic scapes (Allium sativum L.), the flower stalks from the
seed heads of garlic bulbs, are native to West Asia or Europe and
have gained global cultivation (Kovarovi¢ et al., 2019; Shemesh-
Mayer et al., 2023). The garlic scapes are distinguished by their crisp
texture along with tender juiciness while being rich in cellulose,
vitamin C (Vc), allicin, polysaccharides, minerals, and other vital
nutrients (Li G. Q. et al., 2021). The consumption of garlic scapes
has recently increased as it has gained popularity because of its
excellent nutrient profile (Borlinghaus et al., 2014; Deng et al,
2023). As more consumers demand convenient, fresh, and healthy
foods, fresh-cut garlic scapes can be expected to become a profitable
agricultural commodity. However, during extended storage periods
of garlic scapes, the proliferation of microorganisms, especially
fungi, often leads to postharvest rot, resulting in stem spots covered
with mosses, tissue soft rot, depression and even breakage (Chen
etal., 2019).

The use of natural products from inherently disease-resistant
plants to combat pre- and post-harvest diseases represents an
innovative strategy in sustainable agricultural development. This
approach is safer than conventional chemical products because it
exhibits lower toxicity to natural enemies, humans, and other
mammals. Carvacrol (5-isopropyl-2-methylphenol, C,H,,0), a
phenolic monoterpene compound with a free hydroxyl group, is
naturally found in the essential oils of oregano (Origanum vulgare),
thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild
bergamot (Citrus aurantium), and other plants (Maczka et al., 2023).
Carvacrol has been produced by chemical and biotechnological
synthesis via metabolic engineered microorganisms (More et al.,
2007). Previous studies have shown that carvacrol exhibits diverse
biological activities, such as antifungal, antibacterial, antioxidant, and
anticancer properties (Veldhuizen et al., 2006; Maczka et al., 2023).
Due to its flavoring (oregano-like smell and pizza-like flavor) and
antifungal properties, it is most often used in in controlling fungal
decay in postharvest agricultural products as a natural food
preservative (Abbaszadeh et al., 2014). Moreover, it has been classified
as generally recognized as safe by the US. Food and Drug
Administration (FDA), and it is currently employed in the food
industry as a Category B chemical flavoring agent that may be added
to foodstuffs at a level of 2 ppm in beverages, 5 ppm in flakes, and
25 ppm in candies (Yang et al., 2024; Addo et al., 2023; Imran
etal., 2022).
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In this study, the preservative effect analysis of carvacrol against
postharvest rot of garlic scapes was performed. Meanwhile, a specific
pathogenic fungal strain was isolated from symptomatic garlic scapes
from Guizhou Province, China and identified using a combination of
conventional identification method and molecular analysis technique.
Additionally, the inhibitory effect and mechanism of action of
carvacrol against the specific pathogenic fungal strain was investigated
utilizing the combined transcriptome and proteome analysis.

2 Materials and methods
2.1 Sample collection

To evaluate the preservative effects of carvacrol and identify the
specific pathogens responsible for postharvest rot in garlic scapes in
China, a total of approximately 300 asymptomatic and symptomatic
garlic scapes (“Chaohua” cultivar), produced in Guizhou Province,
were collected from various vegetable markets in July 2023.

2.2 Determination of preservative effect

2.2.1 Determination of decay rate

The asymptomatic garlic scapes were surface-sterilized with 75%
ethanol followed by sterilized distilled water, and subsequently
air-dried on a clean bench. The sterilized garlic scapes were then
sprayed with carvacrol at concentration of 100 pg/L, and air-dried
again on a clean bench before being incubated at 28 °C with 95%
relative humidity. The decay rate analysis was performed in triplicates
with 30 randomly sampled for each replicate. The decay rates were
observed and recorded at 5, 10, 15, and 20 days post-treatment using
the following formula (Liu et al., 2022).

Number of rotten garlic scapes

Decay rate (%) = x100%

Number of garlic scapes

2.2.2 Determination of weight loss

The weight losses of the postharvest garlic scapes after 5, 10, 15,
and 20 days post-treatment were determined using a digital balance
and expressed in percentage using the following formula (Owolabi
etal., 2021).

Initial weight — Weight at sample time

Weight loss (%) = x100%

Initial weight

2.2.3 Determination of vitamin C (Vc) and soluble
protein (SP) contents

The Vc contents in postharvest garlic scapes were determined
using the molybdenum blue spectrophotometry (He et al., 2021).
Fresh garlic scape samples (0.5 g), collected at 5, 10, 15, and 20 days
post-treatment, were homogenized with 25 mL of oxalic acid-EDTA
solution (w/v). The homogenate was filtered, and 10 mL of the filtrate
was mixed with 1 mL of phosphate-acetic acid buffer, 2 mL of 5%
sulfuric acid, and 4 mL of ammonium molybdate solution. The Vc
contents were then measured using an UV-6000 ultraviolet-visible
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(UV)-spectrophotometer (Shimadzu, Japan) at a wavelength
of 705 nm.

The SP contents in postharvest garlic scapes were determined
using the Coomassie brilliant blue G-250 dye-binding method
(Murphey et al., 1989). Fresh garlic scape samples (0.5 g), collected at
5, 10, 15, and 20 days post-treatment, were homogenized in 8 mL of
distilled water. The homogenate was centrifuged at 3000xg for 10 min
at 4 °C. Subsequently, 0.2 mL of the supernatant was mixed with
0.8 mL distilled water and 5 mL of Coomassie brilliant blue G-250
solution. The absorbances were measured at 595 nm using an
UV-spectrophotometer (UV-6000, Shimadzu, Japan) after a 5 min
incubation period.

2.2.4 Determination of polyphenol oxidase (PPO)
and malonaldehyde (MDA) content

The contents of PPO and MDA of the postharvest garlic scapes
were detected using the commercially available enzyme assay reagent
kits produced by Suzhou Geruisi Biotechnology Co., Ltd. (Suzhou,
China) (Fan et al., 2022).

2.3 Pathogen isolation and molecular
characterization

2.3.1 Pathogen isolation

Small sections of the infected base, stem, and apical regions of
symptomatic garlic scapes were surface sterilized using 75% (v/v)
ethanol and subsequently rinsed three times with sterile distilled
water. The sterilized tissue samples were then placed on potato
dextrose agar (PDA, 6 g potato powder, 20 g glucose, 20 g agar, 1 L
sterile distilled water) plates and incubated at 28 °C for 72 h. Hyphae
emerging from the tissue samples were aseptically transferred using
an inoculation loop to fresh PDA plates and incubated at 30 °C for
48-72 h. Individual hyphal colonies were selected and sub-cultured
on fresh PDA plates twice to ensure purity, and the purified cultures
were stored at 4 °C for subsequent use.

2.3.2 Pathogenicity test

The pathogenicity tests of the isolated specific pathogen were
conducted by inoculating a conidial suspension (1.0 x 10° conidia/L)
onto the basal, stem, and apical regions of 20 fresh garlic scapes
(“Chaohua” cultivar). After an incubation period of 7 days in an
incubator set at 28 °C with 95% relative humidity, rot symptoms
infected by the isolated pathogen resembling those observed in the
collected samples were observed in the base, stem, and apical of garlic
scapes. The isolated pathogen re-isolated from the symptomatic garlic
scapes based on Kochs postulates was subsequently selected for
further characterization through morphological characterization
and sequencing.

2.3.3 Morphological characterization

After 72 h of growth on the PDA plate, the morphological
characterization of the specific pathogen was observed with the naked
eye and under an optical microscope.

2.3.4 Molecular biological characterization

Approximately 25 mg of the specific pathogen were collected for
genomic deoxyribonucleic acid (DNA) extraction using TIANamp
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fungal DNA distilling kit (Tiangen-Biotech Corporation Ltd., Beijing,
China) and DNA concentration and quality were estimated using an
ASP-3700 spectrophotometer (ACTGene, Piscataway, NJ, USA).
Molecular identification was confirmed by sequencing the rDNA
internal transcribed spacer (ITS) using primers ITS1/ITS4 (ITS1:
5-TCCGTAGGTGAACCTGCGG-3’, ITS4: 5-TCCTCCGCTTA
TTGATATGC-3’), translation elongation factor 1-alpha (TEF-1a)
using primers EF1/EF2 (EF1: 5-ATGGGTAAGGAGGACAAGAC-3/,
EF2: 5-GGAAGTACCAGTGATCATGTT-3’), and RNA polymerase
II beta subunit (RPB2) using primers 5F2/7cR (5F2: 5-GGGGWG
AYCAGAAGAAGGC-3',7cR: 5-CCCATRGCTTGYTTRCCCAT-3")
(Chen etal., 2020; Husna et al., 2020; Long et al., 2021). The amplicons
were sequenced by Sangon Corporation (Shanghai, China) and
deposited in the National Center for Biotechnology Information
(NCBL https://www.ncbi.nlm.nih.gov/) database under the accession
numbers PP738014.1, PP780439.1, and PP780438.1, respectively. The
DNA sequences of the isolates were analyzed for sequence similarity
using the Basic Local Alignment Search Tool (BLAST) program
against the NCBI database. A phylogenetic tree based on the ITS,
TEF-1a, and RPB2 sequences was constructed using the neighbor-
joining method implemented in MEGA version 11.0 software.

2.4 Inhibition activity of carvacrol against
the specific pathogen

2.4.1 In vitro antifungal activity test

The inhibition activities of carvacrol against the specific pathogen
at different concentrations (25, 50, 75, 100, 125, and 150 pg/L) were
determined using the mycelium growth rate method (Li et al., 2024).
Different quality of carvacrol were dissolved in 1mL of
dimethylsulfoxide (DMSO) and then mixed with 9 mL of 0.1% Tween
20 solution and 90 mL of PDA medium. Subsequently, the mixture
was poured into 3 dishes and allowed to cool to room temperature for
the preparation of PDA plates. Mycelia dishes of the pathogen with an
approximate diameter of 0.4 cm were excised from the culture
medium and aseptically transferred to the center of each PDA plate
using a sterile inoculation needle. The inoculated PDA plates were
incubated at 28 °C for a period of 4 days. DMSO was used as a
negative control, while prochloraz was used as a positive control. The
inhibition rates of carvacrol and prochloraz at different concentrations
were calculated using the established method (Chattapadhyay and
Dureja, 2006). The median effective concentration (ECs,) values were
also calculated via the GraphPad Prism Software (San Diego, USA).
The experiment was conducted in triplicate.

2.4.2 Effect of carvacrol on the hyphae
morphology

The specific pathogen was cultured on a PDA plate supplemented
with a median effective concentration (EC,) concentration of carvacrol,
while the pathogen treated with DMSO served as the negative control.
The experiment was conducted in triplicate. Following a 24 h incubation
at 28 °C, the hyphae samples were fixed in 2.5% glutaraldehyde at room
temperature for 24 h, then washed three times with 0.1 M phosphate
buffer for 15 min each, followed by a 1 h fixation in 1% OsO, solution.
Then the specimens were dehydrated in a gradient ethanol series (20, 50,
80, and 100%, respectively, 5 min for each alcohol dilution). After drying
at critical point and gold coating, scanning electron microscope (SEM;
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Hitachi Ltd., Tokyo, Japan) observations on the hyphae morphology of
the specific pathogen were conducted (Suzuki et al., 2017).

2.5 Transcriptome and proteomics analysis

The specific pathogen was cultured on a PDA plate supplemented
with an ECs, concentration of carvacrol (designated as FX), while the
pathogen treated with DMSO served as the negative control
(designated as FC). Following a 72 h incubation at 28 °C, the hyphae
of FX and FC samples were collected for transcriptome and
proteomics analysis.

Transcriptome sequencing of the hyphae was conducted by
Hangzhou Lianchuan Biological Co., Ltd., using the Illumina HiSeq™
2000 platform (Illumina Inc., San Diego, CA, USA). The raw sequence
data have been deposited in the National Center for Biotechnology
Information (NCBI) database under the accession number
PRJNA1195909. To ensure high-quality reads, cutadapt software
(v1.9.3) was employed to filter out low-quality reads and hisat2
software (v2.0.4) was utilized to align high quality clean reads against
the reference genome (Kechin et al., 2017). Differentially expressed
genes (DEGs) were identified using an R language package, with a
significance threshold of p < 0.05 and a log,FC > 1 (Sui et al., 2023).

Proteomics sequencing of the hyphae were analyzed using a liquid
chromatography tandem-mass spectrometry (LC-MS/MS) system
(5,600 Triple TOFMS) coupled with a Nano-Liquid Chromatograph
(Eksigent, Dublin, CA, USA) (Teng et al.,, 2021). The raw data were
deposit to ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) with the accession number of PXD057043. The
raw data were quantified by the MaxQuant software (version 1.5.8.3)
(Coxetal, 2011). Differentially expressed proteins (DEPs; expression
level > 2.0-fold, p < 0.01) were identified from the Uniprot database
(http://www.uniprot.org/) (Gao et al., 2017).

Gene Ontology (GO) annotations, encompassing biological
processes (BP), cellular components (CC), and molecular functions
(MF), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichments for the DEGs and DEPs were performed at
http://www.geneontology.org/ and https://www.kegg.jp/kegg/pathway.
html, respectively (Yu et al., 2018; Zhang et al., 2023).

3 Results

3.1 Preservative effects of carvacrol on the
postharvest rot in garlic scapes

Figure 1A shows that, at 20 days post-treatment, the decay rate in
the control group reached 57.78%, whereas it was only approximately
31.11% in the carvacrol-treated group. These results suggest that
carvacrol effectively inhibits postharvest decay, thereby extending the
shelf life of garlic scapes. Figure 1B shows that during storage, weight
loss increased in all groups; however, the carvacrol-treated group
exhibited significantly lower weight loss compared to the control (CK)
group. Figure 1C also demonstrates that carvacrol treatment significantly
delayed the decrease in Vc content in garlic scapes relative to the CK
group. Figure 1D shows that carvacrol treatment had no significant
effect on SP content. Figure 1E indicates that carvacrol treatment
significantly enhanced PPO activity, with the highest level (15.50 U/mg)
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observed at 10 days post-treatment. Additionally, Figure 1F shows that
carvacrol treatment significantly inhibited the increase in MDA content,
thus delaying spoilage of postharvest garlic scapes.

3.2 Preservative effects of carvacrol on the
postharvest rot in garlic scapes

A total of eight fungi [PQ (Penicillium spp.), LS (Trichoderma
spp.), F (Fusarium spp.), H] (Fusarium spp.), BS (Irpex spp.), BX
(Bjerkandera spp.), HB (Mucor spp.), and HQ (Aspergillus spp.)] with
different morphology were isolated from the infected base, stem, and
apical tissues of symptomatic garlic scapes. The pathogenicity tests of
the isolated eight fungi were conducted by inoculating a conidial
suspension (1.0 x 10° conidia/L) onto the basal, stem, and apical
regions of 20 fresh garlic scapes (“Chaohua” cultivar). After an
incubation period of 7 days in an incubator set at 28 °C with 95%
relative humidity, as shown in Figure 2, rot symptoms infected by F
strain (infection rate 60%) resembling those observed in the collected
samples were observed in the base, stem, and apical of garlic scapes.

The F strain re-isolated from the symptomatic garlic scapes based
on Koch’s postulates was subsequently selected for further
characterization through morphological and molecular biological
characterization. The mycelium exhibits a flocculent appearance, with
the front displaying a light pink hue and the back ranging from light
pink to reddish purple, occasionally exhibiting concentric ring growth
patterns (Figures 3A,B). Additionally, the optical microscope revealed
that the mycelium exhibits branching and septation; the conidial stalk
displays a branching structure resembling a slender bottle-shaped
stem, which bears large crescent-shaped conidia on 1-5 compartments,
with 1-3 being the most prevalent (Figures 3C,D). Utilizing MEGA
version 11.0 software with the neighbor-joining method, a phylogenetic
tree was generated which revealed a complete match of 99% homology
between F strain and Fusarium acuminatum NRRL54213 (Figure 3E).
through the
characterization and molecular biological identification, the F strain

Consequently, integration of morphological

was definitively identified as Fusarium acuminatum.

3.3 In vitro antifungal activity

As illustrated in Table 1, the inhibition rates of carvacrol against
Fusarium acuminatum exhibited a significant dose-dependent
increase, reaching 39.98, 52.48, 82.06, 88.80, 100.00, and 100.00% at
concentrations of 25, 50, 75, 100, 125, and 150 pg/L, respectively.
Meanwhile, the ECs, value for carvacrol against Fusarium acuminatum
was determined to be 36.17 pg/L, which was even better than that of
prochloraz, suggesting that carvacrol exhibits potent in vitro antifungal
activity against this pathogen.

3.4 Effect on the hyphae morphology

SEM was employed to investigate the impact of carvacrol on the
microstructure of Fusarium acuminatum. The findings, as illustrated
in Figures 4A,B, revealed that the hyphae surface in the control group
exhibited regular fullness and maintained a normal physiological
structure. In contrast, as illustrated in Figures 4C,D, the hyphae in the
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FIGURE 1
Effect of carvacrol on the decay rate (A), weight loss (B), Vc content (C), SP content (D), PPO activity (E), and MDA content (F) at 5, 10, 15 and 20 days
post-treatment, respectively. U, active unit. Vertical bars represent the standard errors of the means. Asterisk (*) means significantly different among
deferent treatment group at a significance level of p < 0.05.

il

Symptoms of the basal (A), stem (B), and apical (C) regions of garlic sprouts after inoculation with F strain.

FIGURE 2

treatment group displayed irregular contractions, pronounced folds,  carvacrol treatment induced irreversible alterations in the morphology
depressions, and shriveled areas on the hyphal surface, with some  and structure of the hyphae, leading to deformation and rupture, thus
hyphal fragments breaking off. These observations indicate that  demonstrating a certain inhibitory effect on Fusarium acuminatum.
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(A) Observe surface of F strain incubation on front side of PDA plate; (B) observe surface of F strain incubation on back side of PDA plate;
(C) morphology of hyphae of F strain; (D) morphology of conidia of F strain; (E) phylogenetic tree analysis based on the PCR sequence of F strain.

Fusarium tonkinense F126

005

TABLE 1 The in vitro antifungal activity of carvacrol against Fusarium
acuminatum.

Treatments Concentration Inhibition ECso
(nL/L) rate (%) (ng/L)
25 39.98 +2.35
50 52.48 + 1.63
75 82.06 + 2.65
Carvacrol 36.17 + 1.65
100 88.80 + 2.15
125 100.00
150 100.00
25 36.15 + 1.56
50 19.56 +2.21
75 76.54 +1.07
Prochloraz 39.37 £0.25
100 86.62 + 1.19
125 98.26 + 2.05
150 100.00

3.5 Quality check of transcriptome
sequencing data

Table 2 shows that, after cleaning and quality checking, 58.51,
54.48, 55.71 and 58.48, 56.16, 51.90 Mb clean reads, with Q30 bases

Frontiers in Microbiology

(base quality >30) contents ranging from 94.55 to 95.17% and GC
contents ranging from 53.61 to 53.94%, were generated from the
cDNA libraries of FX and FC samples, respectively. In general, the
sequencing results are of good quality and the data can be used for
subsequent bioinformatics analysis.

3.6 DEGs identification

Compared sample FX with FC, a total of 2,618 DEGs (including
1,122 up-regulated and 1,496 down-regulated genes) were detected
(Figure 5 and Supplementary Table S1), of which the up- and down-
regulated genes were 1857 and 2,114, respectively.

3.7 Bioinformatics analysis of DEGs

To further functional characterization of the DEGs of FX vs. FC,
GO analysis was classified and annotated into 3,167 known GO terms,
comprising 70.25% (2,225 GO terms) in BP, 10.58% (335 GO terms) in
CC, and 19.17% (607 GO terms) in MF (Supplementary Table S2). Go
term enrichment analysis of FX vs. FC (Figure 6) demonstrated that the
main BP involved immune system process, detoxification,
developmental process, response to stimulus, multi-organism process,
signaling, multicellular organismal process, establishment of

localization, localization, growth, locomotion, reproduction, cell
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FIGURE 4
SEM observations on the hyphae morphology of Fusarium acuminatum treated by DMSO (A,B) and carvacrol (C,D).

TABLE 2 Overview of transcriptome sequencing date.

Samples Raw Clean GC

reads reads content

(Mb) (Mb) (%)
FX-1 58.12 58.51 53.94 95.15
FX-2 56.85 54.48 53.74 94.60
FX-3 60.48 55.71 53.61 94.77
FC-1 60.71 58.48 53.82 94.55
FC-2 58.28 56.16 53.91 95.17
FC-3 54.19 51.90 53.83 95.02

aggregation, biological regulation, positive regulation of biological
process, regulation of biological process, reproductive process,
biological adhesion, metabolic process, cellular process, negative
regulation of biological process, cellular component organization or
biogenesis, cell killing, behavior, biological phase, and rhythmic process.
The main CC involved extracellular region, membrane, extracellular
matrix, extracellular region part, membrane part, nucleoid, organelle,
supramolecular fiber, cell, cell part, organelle part, membrane-enclosed
lumen, protein-containing complex, cell junction, synapse part,
synapse, and symplast. The main MF involved transporter activity,
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catalytic activity, antioxidant activity, molecular transducer activity,
signal transducer activity, electron transfer activity, molecular function
regulator, enzyme regulator activity, transcription factor activity, protein
binding, binding, structural molecule activity, channel regulator activity,
metallochaperone activity, protein tag, and translation regulator activity.

To further functional characterization of the DEGs of FX vs. FC,
pathway analysis based on the KEGG database was classified and
annotated into 235 known KEGG pathways (Supplementary Table S3).
KEGG pathways analysis of FX vs. FC (Figure 7) revealed that DEGs
were mainly annotated into MAPK signaling pathway, arginine and
proline metabolism, carbon metabolism, biosynthesis of amino acids,
and steroid biosynthesis.

3.8 DEPs identification

As shown in Figure 8 and Supplementary Table S4, a total of 1862
proteins were identified and the up- and down-regulated proteins in
FX vs. FC were 147 and 21, respectively.

3.9 Bioinformatics analysis of DEPs

The GO analysis of the DEPs was annotated into 10,212
known GO terms, comprising 64.43% (6,579 GO terms) in BP,
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FIGURE 5
Volcano plot diagram of DEGs of FX vs. FC. The red points are significant up-regulated genes, the green points are significant down-regulated genes,
while the black genes are not differential expressed genes.

12.11% (1,237 GO terms) in CC, and 23.46% (2,396 GO terms) in
MEF (Supplementary Table S5). Go term enrichment analysis of FX
vs. FC (Figure 9) demonstrated that the main BP involved
heterocycle metabolic process, organic cyclic compound metabolic
process, cellular protein metabolic process, organic substance
metabolic process, cellular component organization or biogenesis,
macromolecule metabolic process, organic substance biosynthetic
process, metabolic process, cellular process, and primary
metabolic process. The main CC involved mitochondrion,
membrane, non-membrane-bounded organelle, nucleus, protein-
containing complex, organelle part, cytoplasm, membrane-
bounded organelle, organelle, and cell part. The main MF involved
pyrophosphatase activity, binding, catalytic activity, acting on A
protein, nucleic acid binding, small molecule binding, anion
binding, transferase activity, protein binding, heterocyclic
compound binding, and catalytic activity.

To further functional characterization of the DEPs of FX vs. FC,
pathway analysis based on the KEGG database was classified and
annotated into 1865 known KEGG pathways (Supplementary Table S6).
KEGG pathways analysis of FX vs. FC (Figure 10) revealed that DEPs
were mainly annotated into steroid biosynthesis, oxidative
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phosphorylation, ribosome, DNA replication, and MAPK

signaling pathway.

4 Discussion

Carvacrol is a monoterpenic phenol produced by an abundant
number of aromatic plants, including thyme and oregano (Veldhuizen
et al., 2006; Maczka et al., 2023). Presently, carvacrol is used in low
concentrations as a food flavoring ingredient and preservative to
enhance the shelf life and safety of perishable foods, such as
fermented pepper, fruit juice, and fresh-cut fruits (Yang et al., 2024).
The weight loss in postharvest fruits and vegetables occurs during
storage primarily due to respiration, moisture loss, and oxidation
processes. Additionally, decay and mold can cause water loss, which
contributes to the overall weight reduction (Owolabi et al., 2021;
Singh et al., 2021). Vc, one of the most abundant water-soluble
antioxidants in plants and animals, is of vital importance to human
health and plays an important role in the defense of diseases related
to collagen synthesis and protection against oxidative stress
(Padayatty et al., 2003). As plant-based foods constitute the principal
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FIGURE 6
Go (p value <0.05 and the highest enrichment score calculated as the negative logarithm of the corresponding p value) term enrichment analysis of
DEGs of FX vs. FC. X-axis represents different functional groups (also named as different GO terms), while Y-axis indicates the percentage that each

functional group gene and accounts for the total genes, respectively.

In this study, we found that carvacrol exhibits potent in vitro
inhibitory activity against Fusarium acuminatum, with an ECs, value
of 36.17 pg/L, which is even lower than that of prochloraz. These
findings are supported by many previous studies. Zhang et al. (2019)
demonstrated that carvacrol may serve as a promising alternative to
conventional fungicides for controlling Botrytis cinerea-induced gray
mold in horticultural products. Similarly, Simovi¢ et al. (2014)
reported that carvacrol exhibited significant inhibitory effects against
foodborne pathogens such as Aspergillus carbonarius and Penicillium
roqueforti, thereby enhancing the safety of fresh-cut watermelon.
Meanwhile, in the present experiment, SEM observations indicate that
carvacrol treatment induced irreversible alterations in the morphology
and structure of the hyphae, leading to deformation and rupture, as
reported by damaging cell membrane of Botrytis cinerea and Rhizopus

source of Vc in the human diet, the possibility of increasing the Vc
content of plants to improve their nutritional value has also received
considerable attention in recent years (Paciolla et al., 2019). Any
changes in the Vc content of plant cells can result in a diverse range
of effects on growth, development and stress tolerance, as Vc is
involved in redox signalling, cell cycle regulation, enzyme functioning
and the expression of defence and stress-related genes (Jiang et al.,
2022). Hence, adequate intake of Vc from foods is necessary for
normal physiological functioning, and fruits and vegetables are the
richest natural sources of Vc in the human diet. PPO-catalyzed
browning reactions, which occur in a wide range of plant-derived
foods, significantly contribute to quality degradation and loss of
nutritional value in the fruit and vegetable industry (Yourk and
Marshall, 2007). A deeper understanding of the factors influencing
PPO activity is crucial for effectively controlling and mitigating its
adverse effects on plant-based products. MDA is a major byproduct
of cellular membrane lipid peroxidation, which can induce cross-  acuminatum was then investigated utilizing the combined
linking reactions in proteins, polysaccharides, nucleic acids, and  transcriptome and proteome analysis. The results showed that
other macromolecules. This biomarker effectively reflects the extent ~ carvacrol mainly affected the steroid biosynthesis and MAPK
of potential damage to biological membranes (Mi et al., 2023).  signaling pathway cell signaling pathways in Fusarium acuminatum.
Herein, we observed that carvacrol treatment significantly delays the ~ In the steroid biosynthesis cell signaling pathway, ergosterol, a
onset of rot symptoms in the basal, stem, and apical regions of garlic ~ highly specific component of the fungal cell membrane, is
scapes compared to the control group. This suggests that carvacrol ~ synthesized (Beni et al., 2014). Ergosterol not only regulates
exerts a favorable postharvest preservative effect on garlic sproutsby =~ membrane fluidity but is also essential for the formation and
delaying the decline in Vc content, enhancing PPO activity, and  function of the plasma membrane, influencing the fluidity,
inhibiting the accumulation of MDA, thereby retarding the  permeability, and activity of cell membrane-associated proteins (Hu
etal., 2017; Sun et al., 2020). A reduction in ergosterol synthesis can

stolonifer (Zhang et al., 2019; Jiang et al., 2015).
The mechanism of action of carvacrol against Fusarium

Spoilage process.
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result in membrane dysfunction, thereby inhibiting fungal growth
and reproduction. Under the influence of carvacrol, both lanosterol
synthase (LSS) and sterol-4a-carboxylate 3-dehydrogenase
(NSDHL) showed a significant downregulation during this
regulatory process. The alterations in the expression levels of these
enzymes can result in reduced ergosterol synthesis, thereby
compromising the structural integrity and stability of cell
membranes and inhibiting microbial growth and reproduction
(Sayari et al., 2021). Meanwhile, the MAPK signaling pathway plays
a critical role in cell proliferation and apoptosis, regulating various
physiological processes including cell proliferation and apoptosis
(Patergnani et al., 2020; Yue and Lopez, 2020). Under the influence
of carvacrol, the expression of guanylate binding protein (GBP) is
downregulated, potentially impacting the cell cycle progression and
resulting in a deceleration or cessation of cell proliferation, thus
affecting the development of Fusarium oxysporum (Guo et al.,
2020). Similar results reported by Chavan and Tupe (2014)
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demonstrated that carvacrol exerted its antimicrobial action against
wine spoilage yeasts through membrane damage, leakage of
cytoplasmic content and ergosterol depletion.

This study only focused on the preliminary mechanism of action
of carvacrol against Fusarium acuminatum based on the integrated
transcriptomic and proteomic analyses. The observed downregulation
of key enzymes and signaling components suggests a potential link to
the antifungal activity of carvacrol will be conducted in our

future research.

5 Conclusion
In this study, we found that carvacrol can significantly delay

the onset of postharvest rot symptoms of garlic scapes by delaying
the decline in Vc content, enhancing PPO activity, and inhibiting
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the accumulation of MDA. Meanwhile, a specific pathogen causing
postharvest rot of garlic scapes, identified as Fusarium
acuminatum, was isolated from symptomatic garlic scapes. Our
findings revealed that carvacrol demonstrated significant
SEM
observations reveal that carvacrol treatment causes irreversible

inhibitory activity against Fusarium acuminatum.
changes in the morphology and structure of hyphae, resulting in
significant deformation and rupture. Moreover, the integrated
transcriptome and proteome analysis revealed that carvacrol
predominantly impacts the steroid biosynthesis and MAPK
signaling pathway cell signaling pathways in Fusarium acuminatum
to interference compromises the integrity and stability of the cell
membrane, consequently suppressing the growth and proliferation

of Fusarium acuminatum.

6 Future prospects

The incorporation of carvacrol as a food preservative can
effectively inhibit the growth and proliferation of microorganisms
responsible for postharvest decay, thereby enhancing preservation
efficacy and extending the shelf life of fruits and vegetables in the
postharvest food industry.
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