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Introduction: Fipronil, a broad-spectrum phenylpyrazole insecticide,
demonstrates high efficacy against Aphis gossypii (cotton aphid). However, its
potential effects on Binodoxys communis, a key natural enemy of A. gossypii,
remain largely unexplored. This study comprehensively assessed the safety
of fipronil for B. communis, with particular emphasis on sublethal effects and
associated microbiome alterations.

Methods: We evaluated the sublethal effects of fipronil on the development of
B. communis across parental (FO) and offspring (F1) generations. Furthermore,
the alterations in the microbial diversity and community structure of B.
communis were analyzed using 16S rRNA sequencing. Functional prediction of
the microbiota was performed via PICRUSt2.

Results: Indirect fipronil exposure significantly prolonged larval development in
the parental generation (FO, p = 0.017), while showing no statistically significant
impact on the offspring generation (F1). 16S rRNA sequencing revealed apparent
alterations in the microbial community. In adults, the dominant genus shifted
from Akkermansia to Muribaculum after 1 h exposure, while the dominant
phylum showed significantly reduced abundance after 3 d. In larvae, the major
phylum (Proteobacteria) remained unchanged, but the major genus shifted
from Brevitalea to Vicinamibacter. Functional prediction indicated that the
predicted genes were predominantly enriched in metabolic pathways (75% of
the functional repertoire).

Discussion: These results suggest that fipronil exposure induces previously
unrecognized sublethal effects on a key natural enemy insect, primarily by
disrupting its symbiotic microbiota, which may play a major role in host
metabolism. Our findings highlight the ecological risks of fipronil and emphasize
the need for pesticide risk assessments that consider sublethal effects on
beneficial insects and their microbiota.
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1 Introduction

Farmers and pest management programs in certain regions, such
as parts of the Americas and Asia, have historically incorporated
fipronil into their strategies due to its efficacy against a broad spectrum
of agricultural pests (Ascenzi et al, 2018; Guima et al., 2022),
particularly demonstrating high toxicity against Aphis gossypii Glover
(Hainzl and Casida, 1996). Among biological control agents, the
parasitoid wasp Binodoxys communis Gahan (Hymenoptera:
Braconidae) has proven particularly effective against aphid species
including A. gossypii and soybean aphids (Wyckhuys et al., 2008;
Ghising et al., 2012; Yang et al., 2017; Zhang et al., 2020). However, the
widespread application of fipronil for aphid control inevitably leads to
the exposure of this key parasitoid wasp in the field. This natural
enemy exerts control through parasitic behavior that ultimately leads
to host mummification, yet whilst some research has begun to
examine the sublethal effects of fipronil on B. communis (such as
developmental suppression), its impact on the parasitoids key
symbiotic microbiome remains unclear.

The systemic neurotoxicity of fipronil adversely affects beneficial
insects and non-target organisms across multiple ecosystems (Pino-
Otin et al., 2021; Wazir and Shad, 2022; Sotero et al., 2024). Soil
applications have been shown to significantly reduce populations of
non-target arthropods (Pisa et al., 2015), while aquatic organisms
experience lethal and sublethal effects, such as reduced survival,
inhibited growth, and behavioral abnormalities, from environmental
contamination (Tingle et al., 2003; Gibbons et al., 2015; Dourado
et al,, 2023). Studies have demonstrated that exposure to fipronil at
doses as low as 0.1 ng/bee (or the 24 h LCso) can induce adverse effects
in honeybees, including impaired individual development, aberrant
behavioral changes, and disruptions to gut microbiota homeostasis (EI
Hassani et al., 2005; Farder-Gomes et al., 2021). Furthermore, such
sublethal effects have been documented in a broad range of non-target
organisms, from essential pollinators and farmland butterflies to
laboratory model insects such as fruit flies (Teixeira et al., 2009). These
studies collectively demonstrate that the ecological risks associated
with fipronil are widespread, and its sublethal effects on non-target
insects represent a significant dimension that cannot be overlooked in
risk assessments.

Microbial communities, which play pivotal roles in insect
physiology and ecosystem functioning (Zhang et al., 2021; Hu et al,,
2024; Kelleher and Ramalho, 2025). Fipronil exposure has been
documented to alter microbial composition in both soil ecosystems
and beneficial insects, with studies demonstrating transient shifts in
bacterial, fungal, and ammonia-oxidizing microorganism
communities following field applications (Guima et al., 2022; Sim
et al., 2023). While recent evidence indicates that sublethal doses of
fipronil negatively affect B. communis development by altering
metabolic pathways leading to reduced parasitism and survival rates
(Du et al., 2024), the effects of such insecticides on parasitoid wasp
microbiomes remain largely unexplored.

This study evaluated the transgenerational developmental effects
of direct and indirect sublethal fipronil exposure (LC,, LC,5) on
B. communis, assessing larval duration, pupal duration, and total
survival time. In addition, 16S rRNA sequencing revealed shifts in the
B. communis microbial community structure at 1 h and 3 d post-
exposure compared to the control. Our findings provide critical
insights for developing sustainable integrated pest management
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strategies that balance chemical control with natural enemy
conservation. Furthermore, this work provides a scientific basis for the
safe application of pesticides in farmland.

2 Materials and methods
2.1 Plant and insect materials

The cotton variety CCRI 49 was obtained from the Institute of
Cotton Research, Chinese Academy of Agricultural Sciences (CAAS).
All experiments were conducted under controlled environmental
conditions (26 + 1 °C, 70 + 5% RH, 14 L, 10D photoperiod).

The Aphis gossypii population used in this study was maintained
as a laboratory colony under identical environmental conditions
(26 £1°C,70 £ 5% RH, 14 L, 10D photoperiod). Binodoxys communis
was originally collected from cotton fields at the CAAS experimental
station (36°5"34.8”N, 114°31’47.19”E) and subsequently reared in the
laboratory. The parasitoid colony was maintained by exposing adults
to second-instar A. gossypii nymphs under controlled conditions
(26 £1°C, 75+ 5% RH, 14 L, 10D photoperiod). For experiments,
we used newly emerged adult wasps (<24 h post-emergence) to ensure
age uniformity.

None of the aforementioned experimental materials had been
exposed to the pesticide fipronil.

2.2 Chemical reagent

The insecticide fipronil (purity >98.8%) was provided by Shanghai
LGC Science Ltd. (Shanghai, China). All experimental solutions were
prepared from this technical grade material.

2.3 Determination of fipronil toxicity to
Binodoxys communis and preparation of
B. communis specimens

The contact toxicity of fipronil to adult B. communis was
determined via a residual film bioassay (Desneux et al., 2004). Graded
concentrations of fipronil (0, 1, 5, 10, 50, and 100 mg/L) were used to
coat the inner surface of finger-shaped tubes (32.73 cm” internal area).
After drying under controlled conditions (25 + 1 °C, 45 + 5% RH),
twenty newly emerged wasps were transferred into each tube. Each
treatment was replicated three times, and mortality was scored after
24 h. Assays with control mortality exceeding 10% were discarded.

In this experiment, we collected parasitoid wasps from two
exposure routes: (1) Host-mediated exposure: Second-instar cotton
aphids were placed on fresh cotton leaves and treated with a sublethal
concentration of fipronil or 0.1% Triton X-100 (control) for 1 h.
Subsequently, B. communis that had emerged within 24 h were
introduced for parasitization. Larvae were collected 3 d post-
parasitization (after removing adult aphids under a microscope). (2)
Direct adult exposure: Newly emerged adult wasps (within 24 h post-
eclosion) were exposed to treated residue vials for 1 h, then transferred
to clean tubes and provided with 10% honey water as a food source.
The treatment group was exposed to a sublethal concentration of
fipronil, while the control group was exposed to 0.1% Triton X-100.
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Adult B. communis were collected at 1 h and 3 d post-treatment. For
each treatment group, thirty surviving individuals (constituting
biological replicates) were transferred to sterile, enzyme-free
centrifuge tubes. Samples were immediately flash-frozen in liquid
nitrogen to preserve microbial DNA integrity and subsequently stored
at —80 °C until further processing. From the assembled samples, three
independent biological replicates per treatment were randomly
selected for 16S rRNA gene sequencing analysis.

2.4 Effects of fipronil on the growth and
development of B. communis

2.4.1 Effects of sublethal concentrations of
fipronil on cotton aphids on parasitoid larvae
(indirect exposure to fipronil)

Second-instar nymphs of the cotton aphid (A. gossypii) were
exposed to sublethal concentrations of fipronil (LCyo: 1.19 mg/L and
LC,s: 1.73 mg/L; Du et al., 2024) for 1 h, with a control group treated
using a fipronil-free diluent solution (0.1% Triton X-100). Following
exposure, aphids were transferred to agar plates (containing 1.8%
agar) with clean cotton leaves for rearing. Newly emerged female
B. communis adults were then introduced and allowed to parasitise for
8 h before removal. Parameters including larval duration, pupal
duration, and total development period of the FO generation parasitoid
were recorded. Subsequently, FO generation adults emerging within
24 h were collected from each treatment group. Their progeny (F1
generation, untreated with fipronil) underwent identical assessment
of the aforementioned parameters. Each treatment comprised 30
aphids, with three replicates.

2.4.2 Effects of sublethal concentrations of
fipronil on adult B. communis (direct exposure to
fipronil)

Thirty newly emerged B. communis adults were placed in fipronil-
impregnated film tubes at sublethal concentrations (LC,, and LC,;s) for
1 h, with an unexposed group serving as control. Following treatment, the
parasitoids were transferred to fresh leaves (containing 1.8% agar) in Petri
dishes housing 30 s-instar aphid nymphs. Leaves were replaced every
three days to maintain normal aphid growth. The larval period, pupal
period, and total survival time of the FO generation parasitoid were
recorded. Adults mated within 24 h post-eclosion were collected, and
identical measurements were performed on their F1 generation
(untreated). Each treatment group was replicated three times.

2.5 DNA extraction and PCR amplification

Total genomic DNA was extracted from surface-sterilized insect
samples (sequentially treated with 75% ethanol for 30s and 3%
hydrogen peroxide for 45 s (Du et al., 2024), followed by three sterile
water rinses) using the TIANamp Genomic DNA Kit (TTANGEN,
China). DNA concentration and purity were quantified with a
NanoDrop 2000C (Thermo Scientific, USA), and integrity was
confirmed via 1.5% agarose gel electrophoresis. To monitor exogenous
contamination, extraction blanks (reagents without sample) and PCR
negatives (nuclease-free water instead of template) were included in
each batch. PCR reactions (20 pL total volume) were performed in
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triplicate to amplify the V3-V4 region of the 16S rRNA gene using
primers 338F/806R (5 pM, HPLC-purified). Each reaction contained:
10 ng DNA template, 0.8 uL each of forward and reverse primers, 2 pL
dNTPs (2.5 mM), 4 pL 5 x FastPfu buffer, 0.4 pL FastPfu polymerase,
and nuclease-free water. The thermal cycling conditions were as follows:
95 °C for 3 min; 27 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for
45 s; final extension at 72 °C for 10 min. The resulting amplicons were
visualized electrophoretically, purified, and normalized for sequencing.

2.6 Data analysis

The original 16S rRNA sequencing data were processed using
QIIME 2 (v2020.2). To maintain comparability with conventional
OTU-based studies, sequences were clustered into operational
taxonomic units (OTUs) at a 97% similarity threshold using UPARSE
(v7.0.1001). Representative sequences from each OTU were then
taxonomically annotated using the SILVA database. Alpha diversity
was assessed using the Chaol index (richness) and the Shannon index
(diversity). Beta diversity was evaluated by visualizing principal
component analysis (PCA) plots using the R package ade4, while Venn
diagrams were employed to illustrate OTUs shared between groups and
those unique to each group. The functional potential of the microbial
communities was predicted from the 16S rRNA gene sequences using
PICRUSt2. For the alpha diversity indices and biometric data
(including larval duration, pupal duration, and total survival time), a
one-way analysis of variance (ANOVA) followed by post-hoc tests
(LSD test or Games-Howell test, as appropriate) was applied if the data
met the assumptions of parametric tests, which were verified using the
Shapiro-Wilk test for normality and either Bartlett’s or Levenes test for
homogeneity of variances; otherwise, the Kruskal-Wallis H test was
used. All statistical analyses were performed using SPSS Statistics
(version 27.0). Graphical representations of the data were generated
with GraphPad Prism (version 9.0.0).

All data analyses were conducted using SPSS 27.0. Probability
regression analysis was employed to calculate the LC,, and LCys values
for sublethal and intergenerational toxic effects. Differences in larval
stage survival, pupal stage survival, and total survival time between
treatment groups were compared using one-way analysis of variance
(ANOVA). Prior to analysis, data normality (Shapiro-Wilk test) and
homogeneity of variance (Levene’s test) were verified. Where data met
normality and homogeneity of variance criteria, significant ANOVA
results (p < 0.05) underwent post-hoc LSD comparisons; where data
were normally distributed but heterogeneous in variance, Games-
Howell tests were employed for post-hoc analysis. Where data failed to
satisfy the normality assumption, the non-parametric Kruskal-Wallis H
test was employed. The significance level for all tests was set at p < 0.05.

3 Results

3.1 Determination of fipronil toxicity to
B. communis

The contact toxicity of fipronil to B. communis was evaluated
using a residual film bioassay. This assay determined the LC10 and
LC25 values to be 0.34 mg/L (95% CI: 0.16 - 0.54 mg/L) and 0.64
mg/L (95% CI: 0.37 - 0.91 mg/L), respectively (Table S2). These two
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FIGURE 1

Effect of sublethal concentrations of fipronil on two consecutive generations of B. communis. FO, parental generation; F1, offspring of exposed insects.
(A-C) Effects of direct exposure to fipronil on B. communis. (D-F) Effects of indirect exposure to fipronil on B. communis. Data are presented as the
Mean + SE, LSD test, with different lowercase letters denoting significant differences between treatments (p < 0.05).
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sublethal concentrations (LCyo and LC25) were subsequently selected
for evaluating the non-lethal effects of fipronil on B. communis.

3.2 Effects of fipronil on B. communis
across generations

Direct exposure of B. communis to sublethal fipronil
concentrations (LC,, and LC,;) showed no significant effects on
developmental durations in either generation (Figures 1A-C). The
control group (FO generation) exhibited mean developmental times of
5.33 d (larval), 4.67 d (pupal), and 15.83 d (total). No significant
differences were observed in any developmental duration between the
control and treatment groups (larval: p = 0.285; pupal: p = 0.207; total:
p =0.212). Similar non-significant patterns were observed in the F1
generation (larval: 5.23 d; pupal: 4.67 d; total: 15.40 d).

However, Sublethal fipronil exposure caused significant
developmental delays in the FO generation, specifically a prolongation
of the larval stage (Figures 1D-F). Larval duration increased
significantly to 6.10 d (LC,,) and 5.68 d (LC,s) compared to controls
(5.07 d; p = 0.017). While pupal duration showed a non-significant
reduction (LC,y: 4.18 d vs. control: 4.37 d; F=0.516, df=2.8,
p =0.615), total developmental time decreased. The F1 generation
displayed concentration-dependent trends in all developmental
parameters, though these did not reach statistical significance.

3.3 Microbiome profiling of B. communis

High-throughput sequencing of the 16S rRNA V3-V4 region
generated approximately 3.76 million paired-end reads from 27
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B. communis samples following quality filtering and chimera removal.
After read merging and quality control, 2.16 million high-quality
clean reads were obtained (79,200-79,700 reads per sample; mean +
SD: 79,000 =+ 1,900; see Table S1 for full metrics).

Rarefaction analysis showed that curves reached plateau phases at
approximately 10,000 sequences per sample (Figure S1), suggesting
that the sequencing depth was adequate to capture a comprehensive
representation of the microbial diversity.

3.4 Impact of sublethal fipronil
concentrations on B. communis larval
microbiome

Principal component analysis revealed clear separation between
treatment and control groups, indicating concentration-dependent
microbiome shifts (Figure 2D). Analysis of alpha diversity showed
specific shifts: although species richness (Chaol index) decreased,
community diversity (Shannon index) increased following exposure
(Figures 2A,B). Venn analysis identified 627 operational taxonomic
units (OTUs) common to all groups, suggesting a stable core
microbiome, while the number of unique OTUs varied considerably
among treatments (LC,: 1,661; LCys: 1,150; control: 1,601), indicating
selective effects of fipronil (Figure 2C).

Proteobacteria maintained dominance across all treatments
(control: 32.79%; LCyy: 32.27%; LC,s: 32.47%), followed by sequences
that could not be classified at the phylum level (control: 22.82%; LC,:
23.52%; LCys: 22.41%) and Acidobacteria (Figure 3A). At the genus
level, taxonomic profiles normalized by sequencing depth revealed
notable shifts in dominant taxa following fipronil exposure. Brevitalea
was the most abundant genus in the larvae (CK3D: 2.77%), and the
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dominant genus changed after fipronil treatment (Vicinamibacter)
(LCy 3.37%, LC,5 3.11%). The relative abundance of Vicinamibacter
was significantly higher than in the control group (2.69%, p = 0.006,
p=0.004). At sublethal concentrations (LC,,, LC,s), the relative
abundances of Vicinamibacter, Brevitalea, and Nitrospira were all
higher than in the control group (2.69, 2.77, 2.73%). The relative
abundance of Sphingomonas was lower than in the control group
(1.65%). Specifically: Vicinamibacter and Nitrospira exhibited higher
relative abundances at LCy, (3.37, 2.46%) than at LC,; (3.11, 2.34%). It
was also found that the relative abundance of the dominant genus
Brevitalea increased with increasing sublethal concentration, in
contrast to Vicinamibacter (Figure 3B). These results demonstrate that
sublethal fipronil exposure induces both quantitative and qualitative
changes in the larval microbiome of B. communis.

3.5 Impact of fipronil on the bacterial
community in adult B. communis

Microbial richness (Chaol indice) significantly increased in adult
B. communis following fipronil exposure (1 h and 3 d) compared to

10.3389/fmicb.2025.1637234

controls (p < 0.05), with LC10 treatments showing greater effects than
LC25. Diversity indices (Shannon) were also significantly elevated in
exposed wasps (p < 0.05, Figures 4A,B). Principal component analysis
revealed distinct separation between fipronil-treated and control groups
atboth time. The first two principal components (PC1 and PC2) together
explained 89.19% of the total variance in the microbial community data
(PC1: 85.79%; PC2: 3.4%), supporting that the observed separation is a
major source of variation in the dataset (Figure 4C). OTU analysis
revealed distinct, treatment-specific microbial community patterns. The
number of unique OTUs within each treatment group varied
significantly: at the 1 h exposure time point, counts were 459 (control),
1,408 (F1), and 944 (F2); this shifted to 469 (control), 725 (F1), and 709
(F2) after 3 days of exposure. A shared microbiome comprising of 104
OTUs was found to be persistently present across all treatment groups
and time points (Figure 4D), indicating a stable microbial component
resistant to the applied treatments.

Five phyla dominated the adult microbiome (Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteriota, and Verrucomicrobia),
collectively representing >85% of bacterial communities. Following
fipronil exposure, Firmicutes remained the dominant phylum, with its
relative abundance increasing from 26.15% (CK1h) to 35.62% (LC,,)
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FIGURE 4
Bacterial community dynamics in adult B. communis symbionts. (A,B) Box plots of alpha diversity measured by second indices (Letters indicate
differences based on LSD test following ANOVA. Data are presented as mean + SE, *P < 0.05, **P < 0.01, ***P < 0.001). (C) Principal component
analysis (PCA) between samples from different subgroups. (D) OTU Venn diagram analysis of different samples.
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and 28.74% (LCys) after 1 h (p=0.013, p =0.445). Notably, the
increase was significantly more pronounced in the LC,, than in the
LC,s, indicating a non-linear, dose-dependent response to the
insecticide. The relative abundance of Firmicutes increased from
24.09% (CK3d) to 24.24% (LC,,) and 23.30% (LC,s) after 3 d of
fipronil treatment. Proteobacteria showed significant increases at both
time points (1 h: 34.88 and 26.20%; 3 d: 19.72 and 20.26%; p < 0.01)
compared to controls (CK1h 12.21%, CK3d 12.14%). Conversely,
Bacteroidota, Actinobacteria and Verrucomicrobia abundances were
significantly reduced following exposure (1 h: 22.43,21.04 and 1.19%,
10.23%; 3 d: 20.76, 20.66 and 11.75%, 12.71%; p < 0.01) relative to
controls (23.44 and 17.37%, Figure 5A).

Genus-level analysis revealed treatment-dependent shifts in
dominant taxa, with alterations in community structure occurring 1 h
after exposure. (Figure 5B). While Akkermansia remained most
abundant in controls (1 h: 13.33%; 3 d: 14.98%), fipronil exposure
prompted Lactobacillus dominance after 1h (LC,y: 10.02%, LC,s:
7.52%). Both Lactobacillus and Escherichia showed significantly
elevated abundances in 1 h treatments (CK1h: 4.84, 1.37%, p < 0.001).
Streptomyces was lower than that of the control group (5.01%). After 3
d exposure, Akkermansia dominance persisted, while the relative
abundance of Lactobacillus was significantly higher than in controls
(4.42%, p < 0.01). Concentration-dependent decreases were observed
for Akkermansia (11.17 to 11.43%), Muribaculum (6.12 to 5.85%). The
opposite was true for Bacteroides (3.98 to 4.05%) and Streptomyces
(2.96 t0 3.34%, p < 0.01).

3.6 Functional prediction analysis of
microbial communities via PICRUSt 2

Functional prediction of the 16S amplicon sequencing data
derived from B. communis associated microbiota was conducted using
PICRUSt2 with reference to the KEGG database. The analysis revealed
that the predicted functional genes were predominantly enriched in
six major categories: cellular processes, environmental information
processing, genetic information processing, human diseases,
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metabolism, and organismal systems. Notably, metabolic functions
constituted the most substantial proportion (75%) of the predicted
functional repertoire, suggesting that the microbiota associated with
B. communis may play a critical role in its metabolism (Figure 6).

4 Discussion

As a broad-spectrum insecticide with multiple modes of action,
prolonged residual activity, and versatile application methods, fipronil
has become a cornerstone in modern agricultural pest management
(Singh etal., 2021; Chen et al., 2022; Jaiswal et al., 2023). However, its
ecological footprint extends beyond target pests, potentially affecting
non-target organisms including beneficial insects such as predatory
and parasitoid natural enemies through both direct and indirect
exposure pathways (Stark et al, 2007; Biondi et al, 2012).
Understanding these non-target effects is critical for optimizing
integrated pest management (IPM) strategies that balance chemical
and biological control (Tingle et al., 2003; Furlan et al., 2021; Lira
et al., 2024). However, despite its ecological relevance, how sublethal
fipronil exposure affects the symbiotic microbiome of parasitoid wasps
like B. communis remains largely unknown. Our integrated approach,
combining biological assays with 16S rRNA sequencing, provides the
first evidence of fipronil-induced alterations in the microbiome of
B. communis, highlighting a previously overlooked dimension of
pesticide impact on parasitoid wasps. These findings underscore
microbes can be used as an important reference for future evaluation
of the safety of pesticides on insects that are not natural enemies of
the target.

Our findings demonstrate that sublethal fipronil exposure (LCy,
and LC,;) induces significant developmental delays in B. communis
larvae, with dose-dependent effects becoming particularly evident.
We hypothesise that the observed developmental delays are likely the
result of an energy trade-off. Larvae exposed to fipronil may divert
energy resources originally allocated to growth and development
toward detoxification processes and cellular repair, thereby mitigating
the insecticide’s neurotoxic effects. This observation aligns with
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Functional analysis prediction. According to PICRUSt 2 function prediction, symbiotic bacteria in B. communis are primarily enriched in the top 6
biological KEGG functions. (A) B. communis larval. (B) Adult B. communis.

numerous reports documenting similar sublethal impacts of fipronil
on non-target insect species (Desneux et al., 2004; Tosi et al., 2022;
Du et al., 2024), reinforcing the broader ecological implications of
pesticide use. The dose-response relationship observed in larval
development with LC,; treatments showing greater prolongation than
LCy, established patterns of
developmental delays (Sirota and Grafius, 1994; Kopit et al,, 2021),
suggesting conserved physiological responses across insect taxa.

follows insecticide-induced

Notably, these developmental effects appear limited to the FO
generation, as we detected no significant impacts on larval duration,
pupal development, or total lifespan in the F1 generation (Figure 1).
This temporal limitation contrasts with known intergenerational
effects of insecticides on other biological parameters such as
parasitism efficiency and survival traits. For instance, bumblebees
exhibited reduced lifespan following 48 h exposure to imidacloprid,
thiamethoxam, and fipronil, whereas honeybees demonstrated
increased survival rates after 4 h of exposure to sublethal doses of
neonicotinoid insecticides (Lu et al., 2020; Blanc et al., 2020),
highlighting the complex and parameter-specific nature of pesticide-
induced transgenerational effects in insects.

The symbiotic microbiota of B. communis has undergone dynamic
changes across developmental stages, reflecting distinct physiological
demands. During the larval phase, Proteobacteria dominates the
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microbial community, likely facilitating nutrient acquisition through
organic matter decomposition and metabolic conversion critical
processes supporting the parasitic larval lifestyle (Dillon and Charnley,
2002). This microbial profile shifts markedly in adults, with Firmicutes
emerging as the predominant phylum, consistent with its established
role in carbohydrate metabolism and environmental adaptation
(Meister et al., 2009; Wang et al., 2021). This distribution of dominant
taxa aligns with the dominant phyla observed in the gut microbiome
of honeybees (Wang et al., 2020; Zarrillo et al., 2025). Such stage-
specific microbial transitions align with broader patterns observed in
insect-microbe symbioses (Dillon and Dillon, 2004; Engel and Moran,
2013), suggesting an evolutionary conserved strategy for meeting
developmental requirements.

The symbiotic microbiome of B. communis shows stage-specific
modulation of microbial communities. While larval stages displayed
increased microbial diversity coupled with decreased species
richness, adults demonstrated concurrent increases in both
diversity and richness indices. This differential response likely
reflects the distinct physiological requirements and ecological roles
of these developmental stages (Gao et al., 2021). The observed
enhancement of microbial diversity, particularly in adults, may
confer improved disease resistance and environmental resilience
(Sheng et al., 2012), suggesting potential compensatory mechanisms
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in response to pesticide stress. These microbial shifts likely influence
critical host functions including nutrient metabolism (Eichler and
Schaub, 2002), immune regulation (Kikuchi et al., 2011), and
physiological homeostasis (Meister et al., 2009). As predicted by our
functional model, fipronil exerts an effect on the metabolism of
parasitoids. The stage-specific nature of these microbial changes
may underlie the differential developmental responses observed
between larvae and adults, highlighting the intricate interplay
between host physiology and symbiotic microbiota in mediating
pesticide tolerance.

of B.
Vicinamibacter, Brevitalea, Akkermansia, and Muribaculum,

The core microbiome communis, comprising
demonstrates sensitivity to fipronil exposure. Notably, Soil-
acidophilic bacteria such as Vicinamibacter and Brevitalea,
typically associated with acidic soils, may be acquired through
the soil-plant-aphid trophic cascade (Pineda et al., 2010),
highlighting the ecological connectivity of agricultural systems.
This transfer exemplifies how edaphic microbial signatures can
propagate across trophic levels, potentially influencing insect
microbiomes. Of particular interest is the transient dominance
shift from Akkermansia to Muribaculum in adults following 1 h
LC,, exposure, potentially reflecting rapid microbial community
restructuring in response to pesticide stress. Both genera play
vital roles in gut barrier function and immune regulation
(Macchione et al., 2019; Lei et al., 2023), suggesting that such
perturbations could have cascading effects on host physiology.
While prolonged (3 d) exposure did not alter the identity of the
dominant genera, significant changes in their relative abundances
were observed, indicating that fipronil primarily modulates
microbial communities through quantitative rather than
qualitative shifts. This finding supports the hypothesis that
sublethal pesticide concentrations may influence host fitness by
disrupting the delicate balance of symbiotic relationships rather
than eliminating key microbial partners. The observed microbial
dynamics could potentially impact critical host functions
including nutrient assimilation, metabolic regulation, and
immune competence, underscoring the need to consider
microbiome-mediated pathways when evaluating pesticide effects
on beneficial insects. These results contribute to a growing
understanding of how agrochemicals may indirectly affect insect
populations through subtle but ecologically significant alterations
of their symbiotic microbiota.

5 Conclusion

Sublethal fipronil exposure (LC,, and LC,s) induces stage-specific
and concentration-dependent alterations in the endosymbiotic
bacterial communities of B. communis, as revealed by 16S rRNA
sequencing. Although larval development was prolonged in the FO
generation, no transgenerational effects on pupal duration or total
lifespan were observed. The pesticide exposure dynamically modified
microbial composition across developmental stages, affecting both
relative abundance and diversity indices. However, these microbiome
perturbations remained below the threshold for severe physiological
disruption, suggesting resilience in the host-microbe symbiosis. Our
findings demonstrate that sublethal pesticide exposure can cause
subtle but ecologically significant microbial shifts, warranting further
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investigation into potential cumulative effects of prolonged or
multigenerational exposure on host fitness.
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