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Chronic obstructive pulmonary disease (COPD) is a progressive lung condition 
marked by persistent respiratory symptoms and airflow limitation and significantly 
affects global health. The intricate relationship between COPD and the lung 
microbiome has garnered attention, with metagenomic analyses revealing critical 
insights into microbial community dynamics and their functional roles. In this 
study, we conducted a comprehensive metagenomic analysis comparing throat 
samples from COPD patients (n  = 26) and healthy controls (n  = 32) derived 
from a large cohort analyzed at the Saarland University Hospital. Taxonomic 
profiling and differential abundance analysis indicated a significant reduction 
of the microbial diversity in COPD patients, with notable overrepresentation of 
pathogenic bacteria, such as Veillonella parvula (NCBI:txid29466), Streptococcus 
gordonii (NCBI:txid1302), Scardovia wiggsiae (NCBI:txid230143), as well as a less 
stable microbiome composition than in healthy individuals. Functional profiling 
identified alterations in metabolic pathways implicating microbial dysbiosis in 
disease progression. The study also highlighted enrichment of inflammation-related 
pathways in COPD samples, emphasizing the microbiome’s role in inflammatory 
processes. Comparative analysis of bronchoalveolar lavage (BAL) and throat samples 
collected from the same 11 individuals further underscored distinct microbial 
compositions across respiratory tract regions, suggesting spatial variability in 
microbial communities. Metagenomic approaches including analysis of metabolic 
pathways showed significant alteration of the microbiome of the lung in COPD.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive 
inflammatory lung disease characterized by persistent airflow 
limitation and chronic bronchitis or emphysema. It is a leading cause 
of morbidity and mortality worldwide (3.5 million deaths, fourth most 
death cases in 2021), significantly impacting the quality of life and 
placing a considerable burden on healthcare systems (Mayo Clinic, 
2020; World Health Organization, 2023). COPD results from long-
term exposure to harmful particles or gases, most commonly from 
smoking, which leads to abnormal inflammatory responses in the 
lungs (Cleveland Clinic, 2022). The chronic exposure to smoke in 
COPD causes influx of myeloid cells (macrophages, neutrophils), 
activation of lymphoid cells, activation of epithelial inflammation and 
remodeling interaction between inflammatory processes and 
alterations of the microbiome (O’Donnell et al., 2006). In the COPD-
infected samples, changes in the composition and function of the 
microbiome have been observed. Studies using sputum and 
bronchoalveolar lavage (BAL) samples have shown distinct microbial 
communities in the upper and lower respiratory tracts of COPD 
patients (Zakharkina et al., 2013). Recent 16S rRNA gene sequencing 
and shotgun/metagenomic studies demonstrate that these variations 
may associate with disease status, severity, and exacerbation risk and 
influence disease progression and exacerbation frequency (Ramirez et 
al., 2021; Pathak et al., 2020; Tangedal et al., 2024).

Metagenomic sequencing offers a culture-independent approach 
that enables comprehensive profiling of the microbial communities 
and their functional potentials directly from clinical samples (Pérez-
Cobas et al., 2020). Metagenomic profiling involves the extraction and 
sequencing of microbial DNA from clinical samples, followed by 
bioinformatics analysis to identify microbial taxa (taxonomic 
profiling) and their functional genes and pathways (functional 
profiling) (Aguiar-Pulido et al., 2016). This approach allows for high-
resolution analysis of the compositional microbiome, providing 
insights into the potential roles of specific microbes and their 
metabolic pathways in COPD, and further uncovers alterations in 
metabolic pathways related to lipid metabolism, oxidative stress, and 
immune responses in COPD patients (Bowerman et al., 2020; Dora et 
al., 2024).

Differential abundance analysis (DAA) is a critical component of 
metagenomic studies, as it identifies microbial taxa and functional 
genes/pathways that are significantly associated with disease states 
(Yang and Chen, 2022). To provide a more robust perspective, these 
findings are typically complemented by multivariate community-level 
analyses (e.g., ordination and PERMANOVA), which demonstrate 
overall differences in microbial composition between groups and 
thereby strengthen the evidence for disease-associated shifts (Kleine 
Bardenhorst et al., 2021; Xia and Sun, 2017). In the context of COPD, 
such analyses have highlighted specific bacterial species and functional 
pathways that are differentially abundant in patients compared to 
healthy controls. For instance, the increased presence of Proteobacteria 
and the depletion of beneficial commensals like Firmicutes have been 
linked to disease severity and exacerbations. In healthy individuals, 
the predominant phyla in health lungs are Firmicutes and Bacteroidetes, 
followed by Proteobacteria and Actinobacteria (Hou et al., 2022). 
Altered abundance of Pseudomonas, Moraxella, Lactobacillus, and 
Haemophilus have been identified during COPD exacerbations 
(Millares et al., 2014). The airway microbiome of COPD patients is 

typically characterized by a reduction in microbial diversity and an 
overrepresentation of potentially pathogenic bacteria in genera such 
as Streptococcus, Pseudomonas, Moraxella and Haemophilus using 16S 
rRNA gene amplification (Ramsheh et al., 2021; Millares et al., 2014). 
These alterations can disrupt the homeostasis of the respiratory tract, 
leading to increased inflammation and exacerbations (Po et al., 2011; 
De Matteis et al., 2019). Another type of analysis focuses on 
differentially represented genes and pathways. Specifically, COPD 
patients exhibited an enrichment of genes related to virulence, 
antibiotic resistance, and inflammation (Kayongo et al., 2022).

The aim of this study was to perform a detailed comparison of the 
microbiomes from upper respiratory tract samples from COPD 
patients and healthy controls from the IMAGINE study (Schmartz et 
al., 2024), as well as BAL samples from the University Hospital 
Saarland, applying metagenomic analysis of taxonomic and functional 
profiling. We demonstrate significant differences in the diversity and 
composition of the microbiome between COPD patients and controls 
already in the throat samples, alleviating the need to obtain sputum 
samples. We highlight inflammation-related genes and pathways that 
are enriched in the samples from the COPD patients.

2 Materials and methods

2.1 Sample collection and study design

This study capitalizes on the data collected by the IMAGINE 
consortium (Schmartz et al., 2024). The whole IMAGINE cohort 
consists of 3,483 samples from 657 individuals spanning different 
body sites including saliva, interdental plaque, conjunctival swabs, 
throat swabs, stool, skin swabs, and so on. The disease information of 
these 657 patients was also documented. To focus on the respiratory 
system, we selected the available throat samples from 32 normal 
health control individuals (without any disease) and 26 COPD 
patients, forming the two groups for this study (Supplementary Table 1). 
Additionally, in order to draw the comparison between 
bronchoalveolar lavage (BAL) and throat samples, we selected the 11 
individuals whose BAL (acquired from the University Hospital 
Saarland) and throat samples are both available. Among them 3 
individuals are COPD patients overlapped with the COPD patients in 
comparison 1, the rest 8 are other non-health individual 
(Supplementary Table 1). These individuals are all from the IMAGINE 
study (Schmartz et al., 2024). The BAL samples are internally collected 
from the University Hospital Saarland and not a part of the 
IMAGINE study.

We designed two comparisons (Figure 1A): comparison 1 focuses 
on testing the taxonomical and functional differences between the 
throat samples in COPD and control groups; comparison 2 is designed 
to test if there are significant differences in terms of the microbiome 
compositions between the BAL and throat samples (Figure 1B).

2.2 Metagenomics analysis

The computational pipeline of this study is shown in Figure 1C.
For all the throat samples, we downloaded the preprocessed 

reads directly from the IMAGINE study in Sequencing Read 
Archive (SRA) under the accession code PRJNA1057503. For all 
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the BAL samples, we collected the processed reads internally and 
uploaded to SRA under the accession code PRJNA1327646. All 
the processed reads were applied uniformly with the following 
pipeline from the IMAGINE study: The raw paired-end reads 
were firstly processed with Kneaddata (v0.7.4) to remove human 
reads contamination (Beghini et al., 2021). The clean reads were 
fed into fastp (v0.20.1) to trim out the low-quality reads (Chen, 
2023). MultiQC (v1.11) was used to visualize the results (Ewels et 
al., 2016). The remaining filtered reads were used for 
further analysis.

To perform the taxonomic profiling, MetaPhlAn4 (4.1.0) was run 
on the filtered reads of each sample using the reference database mpa_
vJun23_CHOCOPhlAnSGB_202307 to get the profiling report for 
each sample (Blanco-Míguez et al., 2023). The relative counts were 
normalized to 100%. The individual samples were merged into an 
aggregated text file. These profiling reports were used for further 
calculation of alpha and beta diversity using the auxiliary utilities from 
the same tool. Species and genus-level abundances were extracted for 
visualization (using hclust2 v1.0.0; SegataLab, 2020) and further 
differential abundance analysis.

For functional profiling, HUMAnN3 (3.6.1) with nucleotide 
database full_chocophlan_v201901_v31, translation database 
UniRef90, and the taxonomic profile from the previous step for each 
sample was employed (Beghini et al., 2021; Suzek et al., 2015). The 
output from this tool, namely identified MetaCyc pathway abundances 
with contributions from each specific species (stratified outputs), were 
then normalized to relative abundances, and individual samples were 
merged into an aggregated text file. In MetaCyc, microbial pathways 
are defined as metabolic pathways or biochemical reaction networks 
that are found in microbes (e.g., bacteria, archaea, fungi). MetaCyc 
provides detailed information about these pathways, describing how 
specific sequences of enzymatic reactions transform substrates into 
products (Caspi et al., 2020). We extracted the total abundance 
(unstratified) for each pathway from the aggregated profiles for 
further differential abundance analysis. In order to investigate the 
dynamics of pathways that are involved in inflammation, we searched 
the pathways that are relevant to inflammation in the MetaCyc 
database through a literature review and mapped them back to the 
pathway abundance results. Pathways were visualized using the 
‘Pathway Collages’ tool from the MetaCyc website.

FIGURE 1

Design and Bioinformatics workflow of this study. (A) Study design. A total of 1931 high-quality metagenomic samples were obtained from IMAGINE 
cohort. Two sets of samples were compared in this study: Comparison 1 is used to compare the taxonomic and functional profiles of the COPD and 
control groups. Comparison 2 focused on comparing the taxonomic profiles between BAL (acquired additionally from the University Hospital Saarland) 
and throat samples collected from the same individuals. (B) Venn diagram of selected individuals in this study. (C) Workflow of this study.
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Welch’s t-test and Chi-square test were performed using Python 
package scipy (v 1.16.2). PERMANOVA and Principal Coordinate 
Analysis (PCoA) analysis were performed using Python package 
scikit-bio (v0.7.0). We used the R package MaAsLin2 (version 1.14.1) to 
perform differential abundance analysis, fitting generalized linear models 
to identify microbial features significantly associated with the primary 
grouping factor (Comparison 1: COPD vs. Control; Comparison 2: 
Throat vs. BAL). For the comparison of throat samples between the 
COPD and control groups (Comparison 1), we focus on testing the 
microbial features of taxonomic profiles, functional profiles, and alpha 
diversity, by applying the following test settings: (taxonomic profiles and 
functional profiles) fixed effects: group (COPD and control, main 
interest for testing), age, sex and BMI (covariates); analysis method: 
linear model; the minimal required prevalence: 10%; Benjamini-
Hochberg correction; the Total Sum Scaling (TSS) normalization; log 
transformation (Mallick et al., 2021). For taxonomic profiles, we focused 
on testing the species and genus-level relative abundances. For functional 
profiles, we focused on testing the unstratified profile (community-level 
abundance) to reduce the number of features (taxonomic profiles and 
functional profiles). For the comparison between BAL and throat 
samples (Comparison 2), we focus on testing the microbial features of 
the alpha diversity by applying the following test settings: fixed effect: 
group (COPD and control, main interest for testing), age, sex, and BMI 
(covariates); analysis method: linear model; the minimal required 
prevalence: 10%. We tested for alpha diversity indices in Shannon and 
Simpson metrics (Shannon, 1948; Simpson, 1949). Venn diagrams used 
in this study were created using DeepVenn (Hulsen, 2022).

3 Results

3.1 Summary of study participants

In the IMAGINE cohort, each individual is associated with 
metadata including information on, for example, disease status, age, 
sex, etc. We identified 38 COPD patients and 46 healthy individuals 
(participants without any known disease) as the healthy controls in 
this cohort. To focus on COPD-relevant probes, we selected throat 
samples, resulting in 32 and 26 available throat samples for the COPD 
and control groups, respectively (Table 1). The age and BMI between 
the COPD and control group are significantly different (Welch’s t-test, 
age: p  = 0.0000; BMI: p  = 0.0164). Additionally, to compare the 
microbiome composition between BAL and throat samples, we 

collected data for 11 individuals (among which 3 are COPD patients, 
Figure 1B), whose BAL and throat samples are both available (Table 1). 
See Supplementary 1 for the complete metadata.

3.2 Both taxonomic and functional profiles 
show a higher diversity in the control 
group over the COPD group

PERMANOVA analysis indicated a statistically significant 
difference in throat microbiome composition at the species level 
between COPD and control cohorts (Bray–Curtis dissimilarity; 
pseudo-F  = 3.16, p  = 0.002, 999 permutations). This result was 
corroborated by the principal coordinates analysis (PCoA), which 
revealed clear group separation along the first two principal 
coordinates based on Bray–Curtis dissimilarities (Figure 2A).

Taxonomic profiling results have shown that more different 
bacterial species and genera have been detected in the control group 
than in the COPD samples (control: 230, COPD: 179, shared: 151). 
For the control group, we found that the most abundant species 
detected include Neisseria subflava (NCBI:txid28449), Rothia 
muciladinosa (NCBI:txid43675), Veillonella dispar (NCBI:txid39778), 
Veillonella atypical (NCBI:txid39777), and Schaalia species 
(NCBI:txid2529408) and the most abundant genera are Neisseria 
(NCBI:txid482), Veillonella (NCBI:txid29465), Schaalia, Rothia 
(NCBI:txid32207), and Actinomyces (NCBI:txid1654), the results are 
largely consistent with the findings reported in the previous study 
(Natalini et al., 2023). For the COPD group, we detected similar 
species and genera as most abundant, but their distribution is skewed 
compared to the control group, with a more dominant abundance for 
Rothia mucilaginosa on the species level and Veillonella on the genus 
level (Supplementary Figures 1A,B).

Among the top 20 species and genera with the largest abundance 
variation across all COPD and control samples (Figures 2B,C), we 
observed that the most variable taxa for healthy controls agree well with 
the those observed in the sample-wise profiles, while the COPD samples 
have higher variable abundances for these taxa. Further, differential 
abundance analysis revealed 73 species and 40 genera significantly 
enriched in the control group, and 43 species and 15 genera significantly 
enriched in the COPD group (Supplementary Tables 2, 3). The results 
align closely with the findings of the previous study (Natalini et al., 2023) 
(Figure 3).

Interestingly, the control samples have statistically significantly 
higher alpha diversities (Shannon and Simpson) than the COPD 
samples (Figures 4A,B and Supplementary Figure 2). Beta diversity 
(Bray-Curtis) analysis indicated that the control group showed slightly 
smaller inter-group diversity (0.658 ± 0.193) compared to the COPD 
group (0.726 ± 0.197) (Figure 4C). These results suggest that the lung 
microbiome of COPD patients tends, on one hand, to comprise fewer 
different bacteria, but on the other hand, has a more variable 
composition between patients, as compared to the healthy controls.

Functional profiling identified a total of 430 microbial pathways 
(metabolic pathways or biochemical reaction networks that are found 
in microbes, e.g., bacteria, archaea, fungi) across all the samples, 
where 382 pathways are shared between the COPD and control 
groups. The control group contains a higher number of pathways than 
the COPD group. The abundance of each pathway was determined by 
summing the abundances of its constituent reactions, inferred from 

TABLE 1  Baseline summary of the individuals in this study.

Comparison 1

Control (n = 32) COPD (n = 26)

Age* 24.34 ± 3.20 65.35 ± 8.18

Sex (Male/Female) 15/17 16/10

BMI (kg/m2)* 22.90 ± 3.39 26.58 ± 6.65

Comparison 2 (n = 11)

Age 63.6 ± 9.25

Sex (Male/Female) 8/3

BMI (kg/m2) 24.45 ± 4.01
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gene family abundances mapped to enzymatic functions, and adjusted 
for pathway completeness and sequencing depth. By analyzing the 
eight most abundant pathways per sample (Figure 5), we found that 
the control group exhibits a greater number of distinctive abundant 

pathways in total than the COPD group (control: 38; COPD: 32). 
Differential abundance analysis suggests that 21 pathways are 
significantly enriched in the control group, and 55 pathways are 
significantly enriched in the COPD group (Supplementary Table 4).

FIGURE 2

COPD and control species profiling comparison. (A) Principal Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarity of throat microbiome 
samples from COPD patients and healthy controls. Each point represents a sample, colored by group (blue: Control; red: COPD). Dashed ellipses 
indicate the 95% confidence interval of each group, showing partial separation along the first two principal coordinates (PC1: 20.69% variance 
explained; PC2: 15.30% variance explained). (B) The top 20 variable species in both the COPD and control groups; (C) The top 20 variable genera in 
both the COPD and control groups.
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3.3 Inflammation-related pathway 
enrichment analysis

Previous studies have demonstrated that isoprenoids, in 
particular farnesyl pyrophosphate (FPP), geranylgeranyl giphosphate 
(GGPP) and farnesol, play a key role in inflammation response 
(Marcuzzi et al., 2008; Santoro et al., 2018) (Supplementary Figure 3). 
Between our COPD and control groups, the COPD are enriched in 
three pathways assisting isoprenoid production: isoprene 
biosynthesis I (via MEP) (BioCyc Id: PWY-6270), superpathway of 
geranylgeranyl diphosphate biosynthesis II (via MEP) (BioCyc Id: 
PWY-5121) and all-trans-farnesol biosynthesis (BioCyc Id: 
PWY-6859). By examining the stratified contributors to each 
pathway, we cannot identify a single major contributing species 
(where they come from), but rather we observe a community effort 
from various bacteria across different samples, possibly caused by 
the infection stimulating the joint proliferation of bacteria harboring 
these pathways (Figure 6).

3.4 BAL samples show significant 
difference with throat samples

We also performed a comparison between the BAL samples and 
throat samples from 11 participants to evaluate whether pharyngeal 
samples can replace BAL samples for metagenomic and metabolomic 
analysis, since BAL samples depend on an invasive procedure of 
bronchoscopy. However, the throat samples contain more species 
(throat: 392; BAL: 82; shared: 62) and genera (throat: 166; BAL: 59; 
shared: 44) than the BAL samples. Differential abundance analysis also 
shows significantly higher alpha diversities (Shannon, Simpson, and 
richness) from the throat samples (Figure 7), which makes it difficult 
to replace one with the other.

4 Discussion

In this study, we compared upper respiratory tract microbiomes 
of COPD patients and healthy individuals. We conclude, first, that the 
control group exhibits greater taxonomic and functional diversity 
compared to the COPD group; second, that in the COPD group, 
three pathways involved in isoprenoid production are enriched, 
which supports the notion of the inflammatory response in COPD; 
and third, that bronchoalveolar lavage (BAL) samples differ 
significantly from throat samples.

COPD is a complex disease whose mechanisms are not yet fully 
understood. It involves interactions among bacteria within the human 
lung microbiome environment. To understand the disease mechanisms, 
it is essential to understand the role of microbiomes and its functional 
capabilities. Thanks to the recent development of sequencing technology 
and metagenomics methods, we are now in a position to gain a better 
understanding of that. In recent years, several studies have leveraged 
metagenomic approaches to explore the microbial and functional 
landscape of COPD. High-throughput sequencing has been used to 
analyze the lung microbiomes of COPD patients, identifying significant 
alterations in microbial diversity and functional genes related to 
inflammation and immune response (Cameron et al., 2016). Another 
study focused on the microbiome diversity in the bronchial tracts of 
COPD patients using high-throughput sequencing, revealing that COPD 
patients have a significantly different microbial composition compared 
to healthy individuals (Cabrera-Rubio et al., 2012). Furthermore, a 
comprehensive study analyzed sputum samples from COPD patients and 
controls and identified biomarkers that are significantly elevated in 
COPD patients. These biomarkers are associated with disease severity 
and can predict future exacerbations, implicating pathways such as 
mucus hydration, adenosine metabolism, and oxidative stress as 
potential therapeutic targets (Esther et al., 2022). All these findings agree 
well with the results of the study presented here. Despite these 

FIGURE 3

Volcano plots of differential abundant taxa between COPD and control groups in throat samples using MaAsLin2. Each point represents one taxon, 
plotted by effect size (x-axis) and –log10-transformed q-value (y-axis). Gray points indicate non-significant species, while red and blue points denote 
COPD- and control-enriched species, respectively. Stars highlight the top three significantly enriched taxa per group. The horizontal dashed line marks 
the default significance threshold at q-value = 0.25 by MaAsLin2. (A) Results for species-level. (B) Results for genus-level.
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advancements, limitations persist. Regardless of comprehensive 
metagenomic studies on microbial organisms, genes, and pathways, they 
do not always clarify which microbial species are actively contributing to 
disease pathology. Functional metagenomics is still in its infancy, and 
interpreting the vast amount of data generated remains a significant 

challenge. Future research should focus on integrating multi-omics 
approaches and longitudinal studies to better understand the dynamic 
interactions between the lung microbiome and COPD pathogenesis.

This study contributes to the progress on the field in several aspects. 
First, the analysis of the taxonomic and functional profiles of the COPD 

FIGURE 4

Alpha and beta diversity of samples between the COPD and control group. (A) Box plot of alpha diversities in Shannon metrics show statistically 
significant differences between the COPD and control groups. (B) Box plot of alpha diversities in Simpson metrics show statistically significant 
differences between the COPD and control groups. (C) Grouped pairwise beta diversities (Bray-Curtis) in intra-group comparisons (control vs. control, 
COPD vs. COPD) and inter-group comparison (COPD vs. control).
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and control groups throat samples and of the microbiomes contributed 
to the understanding of the species diversity and its change in the disease. 
Second, a systematical comparison of the COPD and control groups 
indicates that the microbiomes and pathways that are significantly 
different. Third, the characterization of the pathways involving the 
inflammation process and of other inflammation-related pathways 
demonstrates that they are enriched in the COPD samples. The detected 
microbiomes in COPD samples from our study align closely with those 
reported in the previous research (Cameron et al., 2016; Cabrera-Rubio 
et al., 2012; Wang et al., 2021). Furthermore, our findings on higher alpha 
diversity in the control group over the COPD group are consistent with 
the previous study (Diao et al., 2017). Additionally, we identified a higher 
beta diversity in the COPD samples, which, together with our 
observations on alpha diversity, indicate that microbiome in COPD 
patients is narrower and destabilized. This finding aligns well with the 
prior research and further strengthens our comprehension of the 
microbiome community within the intricate landscape of COPD (Sin, 
2023). A key innovation of our study lies in its comprehensive functional 
profiling of samples, particularly the comparison of inflammation-
related pathways between COPD and control groups. This contrasts with 
previous studies that predominantly focused on other pathways, such as 
bacterial growth, or focused on the mechanisms of the inflammation-
related pathway itself (Cameron et al., 2016; Yamada and Ichinose, 2018). 
Earlier studies have shown that isoprenoids such as farnesyl 

pyrophosphate (FPP), geranylgeranyl diphosphate (GGPP), and farnesol 
play central roles in regulating inflammation and immune signaling 
(Marcuzzi et al., 2008; Santoro et al., 2018). The enrichment of three 
isoprenoid-related microbial pathways in COPD-associated 
microbiomes (isoprene biosynthesis I (via MEP) (BioCyc Id: PWY-6270), 
superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP) 
(BioCyc Id: PWY-5121) and all-trans-farnesol biosynthesis (BioCyc Id: 
PWY-6859)) identified by this study suggests a clinically relevant 
metabolic link between microbial activity and chronic airway 
inflammation. Specifically, the microbial pathway of isoprene 
biosynthesis leads to the formation of precursors for nonsterol 
isoprenoids such as farnesyl and geranylgeranyl derivatives that play 
essential roles in immune regulation and inflammation control (Houten 
et al., 2003). Further, farnesol biosynthesis can downregulate the 
expression of inflammatory mediators and act as a virulence factor by 
inducing anti-inflammatory responses and suppressing 
pro-inflammatory cytokines, thereby increasing host susceptibility to 
infection (Jung et al., 2018). Together, these findings point to microbial 
isoprenoid metabolism as a clinically relevant contributor to airway 
inflammation in COPD and a potential target for therapeutic modulation.

We also compared samples from BAL with those from pharyngeal 
swabs to evaluate whether both sample types correlate and established 
a significantly lower microbiome diversity in the BAL samples 
compared to the pharyngeal swabs. This conclusion aligns with the 

FIGURE 5

Comparison of detected pathways between the COPD and control group. The top 8 abundant pathways in each sample of the COPD and control 
groups. Circle size is proportional to the relative abundance.
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well-established ecological split between the upper and lower airways. 
Oropharyngeal communities are consistently more diverse and 
cluster separately from lung communities, reflecting the upper 
airway’s higher biomass and frequent immigration from the oral 
cavity. In contrast, the lower airways are a low-biomass environment 
shaped by stronger niche filtering and host defenses. Previous study 
has also validated this conclusion and reported greater diversity in 
oropharyngeal/throat swabs than in BAL, with clear community 
separation (Kirst et al., 2019). Clinically, reduced α-diversity in the 

lower airways is often interpreted as a shift toward dysbiosis or 
domination by a few taxa, which may compromise ecological 
resilience and cost the lung susceptible to pathogen overgrowth or 
inflammation (Dickson et al., 2020). In chronic airway disease such 
as COPD, lower airway microbiome alterations and loss of diversity 
have been associated with more frequent exacerbations and adverse 
clinical trajectories (Li et al., 2024). The diminished diversity in BAL 
relative to throat samples underscores the possibility that changes in 
the lower-airway microbiota may more closely reflect disease 

FIGURE 6

Three inflammation-related pathways (A) isoprene biosynthesis I (via MEP) (BioCyc Id: PWY-6270), (B) superpathway of geranylgeranyl diphosphate 
biosynthesis II (via MEP) (BioCyc Id: PWY-5121), and (C) all-trans-farnesol biosynthesis (BioCyc Id: PWY-6859) are enriched in the COPD samples.
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processes or prognostic risk than do surrogate upper-airway samples 
(Mikhail and O’Dwyer, 2025).

In conclusion, this study provides important contributions to our 
understanding of the COPD-associated microbiome and its functional 
capabilities. The insights gained could trigger future efforts to identify 
microbiome-based biomarkers or therapeutic targets, ultimately 
aiding in the development of more personalized and effective 
treatment strategies for COPD.
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