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Chronic obstructive pulmonary disease (COPD) is a progressive lung condition
marked by persistent respiratory symptoms and airflow limitation and significantly
affects global health. The intricate relationship between COPD and the lung
microbiome has garnered attention, with metagenomic analyses revealing critical
insights into microbial community dynamics and their functional roles. In this
study, we conducted a comprehensive metagenomic analysis comparing throat
samples from COPD patients (n = 26) and healthy controls (n = 32) derived
from a large cohort analyzed at the Saarland University Hospital. Taxonomic
profiling and differential abundance analysis indicated a significant reduction
of the microbial diversity in COPD patients, with notable overrepresentation of
pathogenic bacteria, such as Veillonella parvula (NCBI:txid29466), Streptococcus
gordonii (NCBI:txid1302), Scardovia wiggsiae (NCBI:txid230143), as well as a less
stable microbiome composition than in healthy individuals. Functional profiling
identified alterations in metabolic pathways implicating microbial dysbiosis in
disease progression. The study also highlighted enrichment of inflammation-related
pathways in COPD samples, emphasizing the microbiome’s role in inflammatory
processes. Comparative analysis of bronchoalveolar lavage (BAL) and throat samples
collected from the same 11 individuals further underscored distinct microbial
compositions across respiratory tract regions, suggesting spatial variability in
microbial communities. Metagenomic approaches including analysis of metabolic
pathways showed significant alteration of the microbiome of the lung in COPD.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive
inflammatory lung disease characterized by persistent airflow
limitation and chronic bronchitis or emphysema. It is a leading cause
of morbidity and mortality worldwide (3.5 million deaths, fourth most
death cases in 2021), significantly impacting the quality of life and
placing a considerable burden on healthcare systems (Mayo Clinic,
2020; World Health Organization, 2023). COPD results from long-
term exposure to harmful particles or gases, most commonly from
smoking, which leads to abnormal inflammatory responses in the
lungs (Cleveland Clinic, 2022). The chronic exposure to smoke in
COPD causes influx of myeloid cells (macrophages, neutrophils),
activation of lymphoid cells, activation of epithelial inflammation and
remodeling interaction between inflammatory processes and
alterations of the microbiome (O'Donnell et al., 2006). In the COPD-
infected samples, changes in the composition and function of the
microbiome have been observed. Studies using sputum and
bronchoalveolar lavage (BAL) samples have shown distinct microbial
communities in the upper and lower respiratory tracts of COPD
patients (Zakharkina et al., 2013). Recent 16S rRNA gene sequencing
and shotgun/metagenomic studies demonstrate that these variations
may associate with disease status, severity, and exacerbation risk and
influence disease progression and exacerbation frequency (Ramirez et
al.,, 2021; Pathak et al., 2020; Tangedal et al., 2024).

Metagenomic sequencing offers a culture-independent approach
that enables comprehensive profiling of the microbial communities
and their functional potentials directly from clinical samples (Pérez-
Cobas et al., 2020). Metagenomic profiling involves the extraction and
sequencing of microbial DNA from clinical samples, followed by
bioinformatics analysis to identify microbial taxa (taxonomic
profiling) and their functional genes and pathways (functional
profiling) (Aguiar-Pulido et al., 2016). This approach allows for high-
resolution analysis of the compositional microbiome, providing
insights into the potential roles of specific microbes and their
metabolic pathways in COPD, and further uncovers alterations in
metabolic pathways related to lipid metabolism, oxidative stress, and
immune responses in COPD patients (Bowerman et al., 2020; Dora et
al., 2024).

Differential abundance analysis (DAA) is a critical component of
metagenomic studies, as it identifies microbial taxa and functional
genes/pathways that are significantly associated with disease states
(Yang and Chen, 2022). To provide a more robust perspective, these
findings are typically complemented by multivariate community-level
analyses (e.g., ordination and PERMANOVA), which demonstrate
overall differences in microbial composition between groups and
thereby strengthen the evidence for disease-associated shifts (Kleine
Bardenhorst et al., 2021; Xia and Sun, 2017). In the context of COPD,
such analyses have highlighted specific bacterial species and functional
pathways that are differentially abundant in patients compared to
healthy controls. For instance, the increased presence of Proteobacteria
and the depletion of beneficial commensals like Firmicutes have been
linked to disease severity and exacerbations. In healthy individuals,
the predominant phyla in health lungs are Firmicutes and Bacteroidetes,
followed by Proteobacteria and Actinobacteria (Hou et al., 2022).
Altered abundance of Pseudomonas, Moraxella, Lactobacillus, and
Haemophilus have been identified during COPD exacerbations
(Millares et al., 2014). The airway microbiome of COPD patients is

Frontiers in Microbiology

10.3389/fmicb.2025.1636322

typically characterized by a reduction in microbial diversity and an
overrepresentation of potentially pathogenic bacteria in genera such
as Streptococcus, Pseudomonas, Moraxella and Haemophilus using 16S
rRNA gene amplification (Ramsheh et al., 2021; Millares et al., 2014).
These alterations can disrupt the homeostasis of the respiratory tract,
leading to increased inflammation and exacerbations (Po et al., 2011;
De Matteis et al, 2019). Another type of analysis focuses on
differentially represented genes and pathways. Specifically, COPD
patients exhibited an enrichment of genes related to virulence,
antibiotic resistance, and inflammation (Kayongo et al., 2022).

The aim of this study was to perform a detailed comparison of the
microbiomes from upper respiratory tract samples from COPD
patients and healthy controls from the IMAGINE study (Schmartz et
al., 2024), as well as BAL samples from the University Hospital
Saarland, applying metagenomic analysis of taxonomic and functional
profiling. We demonstrate significant differences in the diversity and
composition of the microbiome between COPD patients and controls
already in the throat samples, alleviating the need to obtain sputum
samples. We highlight inflammation-related genes and pathways that
are enriched in the samples from the COPD patients.

2 Materials and methods
2.1 Sample collection and study design

This study capitalizes on the data collected by the IMAGINE
consortium (Schmartz et al.,, 2024). The whole IMAGINE cohort
consists of 3,483 samples from 657 individuals spanning different
body sites including saliva, interdental plaque, conjunctival swabs,
throat swabs, stool, skin swabs, and so on. The disease information of
these 657 patients was also documented. To focus on the respiratory
system, we selected the available throat samples from 32 normal
health control individuals (without any disease) and 26 COPD
patients, forming the two groups for this study (Supplementary Table 1).
Additionally,
bronchoalveolar lavage (BAL) and throat samples, we selected the 11

in order to draw the comparison between

individuals whose BAL (acquired from the University Hospital
Saarland) and throat samples are both available. Among them 3
individuals are COPD patients overlapped with the COPD patients in
comparison 1, the rest 8 are other non-health individual
(Supplementary Table 1). These individuals are all from the IMAGINE
study (Schmartz et al., 2024). The BAL samples are internally collected
from the University Hospital Saarland and not a part of the
IMAGINE study.

We designed two comparisons (Figure 1A): comparison 1 focuses
on testing the taxonomical and functional differences between the
throat samples in COPD and control groups; comparison 2 is designed
to test if there are significant differences in terms of the microbiome
compositions between the BAL and throat samples (Figure 1B).

2.2 Metagenomics analysis

The computational pipeline of this study is shown in Figure 1C.

For all the throat samples, we downloaded the preprocessed
reads directly from the IMAGINE study in Sequencing Read
Archive (SRA) under the accession code PRJNA1057503. For all
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Design and Bioinformatics workflow of this study. (A) Study design. A total of 1931 high-quality metagenomic samples were obtained from IMAGINE
cohort. Two sets of samples were compared in this study: Comparison 1 is used to compare the taxonomic and functional profiles of the COPD and
control groups. Comparison 2 focused on comparing the taxonomic profiles between BAL (acquired additionally from the University Hospital Saarland)
and throat samples collected from the same individuals. (B) Venn diagram of selected individuals in this study. (C) Workflow of this study.

the BAL samples, we collected the processed reads internally and
uploaded to SRA under the accession code PRINA1327646. All
the processed reads were applied uniformly with the following
pipeline from the IMAGINE study: The raw paired-end reads
were firstly processed with Kneaddata (v0.7.4) to remove human
reads contamination (Beghini et al., 2021). The clean reads were
fed into fastp (v0.20.1) to trim out the low-quality reads (Chen,
2023). MultiQC (v1.11) was used to visualize the results (Ewels et
al., 2016). The remaining filtered reads were used for
further analysis.

To perform the taxonomic profiling, MetaPhlAn4 (4.1.0) was run
on the filtered reads of each sample using the reference database mpa_
vjun23_CHOCOPhIAnSGB_202307 to get the profiling report for
each sample (Blanco-Miguez et al., 2023). The relative counts were
normalized to 100%. The individual samples were merged into an
aggregated text file. These profiling reports were used for further
calculation of alpha and beta diversity using the auxiliary utilities from
the same tool. Species and genus-level abundances were extracted for
visualization (using hclust2 v1.0.0; SegataLab, 2020) and further
differential abundance analysis.
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For functional profiling, HUMAnN3 (3.6.1) with nucleotide
database full_chocophlan_v201901_v31,
UniRef90, and the taxonomic profile from the previous step for each

translation database

sample was employed (Beghini et al., 2021; Suzek et al., 2015). The
output from this tool, namely identified MetaCyc pathway abundances
with contributions from each specific species (stratified outputs), were
then normalized to relative abundances, and individual samples were
merged into an aggregated text file. In MetaCyc, microbial pathways
are defined as metabolic pathways or biochemical reaction networks
that are found in microbes (e.g., bacteria, archaea, fungi). MetaCyc
provides detailed information about these pathways, describing how
specific sequences of enzymatic reactions transform substrates into
products (Caspi et al., 2020). We extracted the total abundance
(unstratified) for each pathway from the aggregated profiles for
further differential abundance analysis. In order to investigate the
dynamics of pathways that are involved in inflammation, we searched
the pathways that are relevant to inflammation in the MetaCyc
database through a literature review and mapped them back to the
pathway abundance results. Pathways were visualized using the
‘Pathway Collages’ tool from the MetaCyc website.
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Welch's t-test and Chi-square test were performed using Python
package scipy (v 1.16.2). PERMANOVA and Principal Coordinate
Analysis (PCoA) analysis were performed using Python package
scikit-bio (v0.7.0). We used the R package MaAsLin2 (version 1.14.1) to
perform differential abundance analysis, fitting generalized linear models
to identify microbial features significantly associated with the primary
grouping factor (Comparison 1: COPD vs. Control; Comparison 2:
Throat vs. BAL). For the comparison of throat samples between the
COPD and control groups (Comparison 1), we focus on testing the
microbial features of taxonomic profiles, functional profiles, and alpha
diversity, by applying the following test settings: (taxonomic profiles and
functional profiles) fixed effects: group (COPD and control, main
interest for testing), age, sex and BMI (covariates); analysis method:
linear model; the minimal required prevalence: 10%; Benjamini-
Hochberg correction; the Total Sum Scaling (TSS) normalization; log
transformation (Mallick et al., 2021). For taxonomic profiles, we focused
on testing the species and genus-level relative abundances. For functional
profiles, we focused on testing the unstratified profile (community-level
abundance) to reduce the number of features (taxonomic profiles and
functional profiles). For the comparison between BAL and throat
samples (Comparison 2), we focus on testing the microbial features of
the alpha diversity by applying the following test settings: fixed effect:
group (COPD and control, main interest for testing), age, sex, and BMI
(covariates); analysis method: linear model; the minimal required
prevalence: 10%. We tested for alpha diversity indices in Shannon and
Simpson metrics (Shannon, 1948; Simpson, 1949). Venn diagrams used
in this study were created using DeepVenn (Hulsen, 2022).

3 Results
3.1 Summary of study participants

In the IMAGINE cohort, each individual is associated with
metadata including information on, for example, disease status, age,
sex, etc. We identified 38 COPD patients and 46 healthy individuals
(participants without any known disease) as the healthy controls in
this cohort. To focus on COPD-relevant probes, we selected throat
samples, resulting in 32 and 26 available throat samples for the COPD
and control groups, respectively (Table 1). The age and BMI between
the COPD and control group are significantly different (Welch’s t-test,
age: p =0.0000; BMI: p =0.0164). Additionally, to compare the
microbiome composition between BAL and throat samples, we

TABLE 1 Baseline summary of the individuals in this study.

Comparison 1

Control (n = 32) COPD (n = 26)
Age* 24.34£3.20 65.35+8.18
Sex (Male/Female) 15/17 16/10
BMI (kg/m2)* 22.90 £3.39 26.58 £ 6.65

Comparison 2 (n = 11)

Age 63.6 +9.25

Sex (Male/Female) 8/3

BMI (kg/m2) 24.45+4.01
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collected data for 11 individuals (among which 3 are COPD patients,
Figure 1B), whose BAL and throat samples are both available (Table 1).
See Supplementary 1 for the complete metadata.

3.2 Both taxonomic and functional profiles
show a higher diversity in the control
group over the COPD group

PERMANOVA analysis indicated a statistically significant
difference in throat microbiome composition at the species level
between COPD and control cohorts (Bray-Curtis dissimilarity;
pseudo-F =3.16, p =0.002, 999 permutations). This result was
corroborated by the principal coordinates analysis (PCoA), which
revealed clear group separation along the first two principal
coordinates based on Bray-Curtis dissimilarities (Figure 2A).

Taxonomic profiling results have shown that more different
bacterial species and genera have been detected in the control group
than in the COPD samples (control: 230, COPD: 179, shared: 151).
For the control group, we found that the most abundant species
detected include Neisseria subflava (NCBI:txid28449), Rothia
muciladinosa (NCBI:txid43675), Veillonella dispar (NCBI:txid39778),
Veillonella  atypical (NCBIL:txid39777), and Schaalia species
(NCBI:txid2529408) and the most abundant genera are Neisseria
(NCBI:txid482), Veillonella (NCBI:txid29465), Schaalia, Rothia
(NCBI:txid32207), and Actinomyces (NCBIL:txid1654), the results are
largely consistent with the findings reported in the previous study
(Natalini et al., 2023). For the COPD group, we detected similar
species and genera as most abundant, but their distribution is skewed
compared to the control group, with a more dominant abundance for
Rothia mucilaginosa on the species level and Veillonella on the genus
level (Supplementary Figures 1A,B).

Among the top 20 species and genera with the largest abundance
variation across all COPD and control samples (Figures 2B,C), we
observed that the most variable taxa for healthy controls agree well with
the those observed in the sample-wise profiles, while the COPD samples
have higher variable abundances for these taxa. Further, differential
abundance analysis revealed 73 species and 40 genera significantly
enriched in the control group, and 43 species and 15 genera significantly
enriched in the COPD group (Supplementary Tables 2, 3). The results
align closely with the findings of the previous study (Natalini et al., 2023)
(Figure 3).

Interestingly, the control samples have statistically significantly
higher alpha diversities (Shannon and Simpson) than the COPD
samples (Figures 4A,B and Supplementary Figure 2). Beta diversity
(Bray-Curtis) analysis indicated that the control group showed slightly
smaller inter-group diversity (0.658 + 0.193) compared to the COPD
group (0.726 + 0.197) (Figure 4C). These results suggest that the lung
microbiome of COPD patients tends, on one hand, to comprise fewer
different bacteria, but on the other hand, has a more variable
composition between patients, as compared to the healthy controls.

Functional profiling identified a total of 430 microbial pathways
(metabolic pathways or biochemical reaction networks that are found
in microbes, e.g., bacteria, archaea, fungi) across all the samples,
where 382 pathways are shared between the COPD and control
groups. The control group contains a higher number of pathways than
the COPD group. The abundance of each pathway was determined by
summing the abundances of its constituent reactions, inferred from
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FIGURE 2

COPD and control species profiling comparison. (A) Principal Coordinates Analysis (PCoA) based on Bray—Curtis dissimilarity of throat microbiome
samples from COPD patients and healthy controls. Each point represents a sample, colored by group (blue: Control; red: COPD). Dashed ellipses
indicate the 95% confidence interval of each group, showing partial separation along the first two principal coordinates (PC1: 20.69% variance
explained; PC2: 15.30% variance explained). (B) The top 20 variable species in both the COPD and control groups; (C) The top 20 variable genera in
both the COPD and control groups.

gene family abundances mapped to enzymatic functions, and adjusted ~ pathways in total than the COPD group (control: 38; COPD: 32).
for pathway completeness and sequencing depth. By analyzing the  Differential abundance analysis suggests that 21 pathways are
eight most abundant pathways per sample (Figure 5), we found that  significantly enriched in the control group, and 55 pathways are
the control group exhibits a greater number of distinctive abundant  significantly enriched in the COPD group (Supplementary Table 4).
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plotted by effect size (x-axis) and —logl0-transformed g-value (y-axis). Gray points indicate non-significant species, while red and blue points denote
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3.3 Inflammation-related pathway
enrichment analysis

Previous studies have demonstrated that isoprenoids, in
particular farnesyl pyrophosphate (FPP), geranylgeranyl giphosphate
(GGPP) and farnesol, play a key role in inflammation response
(Marcuzzi et al., 2008; Santoro et al., 2018) (Supplementary Figure 3).
Between our COPD and control groups, the COPD are enriched in
three pathways assisting isoprenoid production: isoprene
biosynthesis I (via MEP) (BioCyc Id: PWY-6270), superpathway of
geranylgeranyl diphosphate biosynthesis II (via MEP) (BioCyc Id:
PWY-5121) and all-trans-farnesol biosynthesis (BioCyc Id:
PWY-6859). By examining the stratified contributors to each
pathway, we cannot identify a single major contributing species
(where they come from), but rather we observe a community effort
from various bacteria across different samples, possibly caused by
the infection stimulating the joint proliferation of bacteria harboring
these pathways (Figure 6).

3.4 BAL samples show significant
difference with throat samples

We also performed a comparison between the BAL samples and
throat samples from 11 participants to evaluate whether pharyngeal
samples can replace BAL samples for metagenomic and metabolomic
analysis, since BAL samples depend on an invasive procedure of
bronchoscopy. However, the throat samples contain more species
(throat: 392; BAL: 82; shared: 62) and genera (throat: 166; BAL: 59;
shared: 44) than the BAL samples. Differential abundance analysis also
shows significantly higher alpha diversities (Shannon, Simpson, and
richness) from the throat samples (Figure 7), which makes it difficult
to replace one with the other.

Frontiers in Microbiology

4 Discussion

In this study, we compared upper respiratory tract microbiomes
of COPD patients and healthy individuals. We conclude, first, that the
control group exhibits greater taxonomic and functional diversity
compared to the COPD group; second, that in the COPD group,
three pathways involved in isoprenoid production are enriched,
which supports the notion of the inflammatory response in COPD;
and third, that bronchoalveolar lavage (BAL) samples differ
significantly from throat samples.

COPD is a complex disease whose mechanisms are not yet fully
understood. It involves interactions among bacteria within the human
lung microbiome environment. To understand the disease mechanisms,
it is essential to understand the role of microbiomes and its functional
capabilities. Thanks to the recent development of sequencing technology
and metagenomics methods, we are now in a position to gain a better
understanding of that. In recent years, several studies have leveraged
metagenomic approaches to explore the microbial and functional
landscape of COPD. High-throughput sequencing has been used to
analyze the lung microbiomes of COPD patients, identifying significant
alterations in microbial diversity and functional genes related to
inflammation and immune response (Cameron et al., 2016). Another
study focused on the microbiome diversity in the bronchial tracts of
COPD patients using high-throughput sequencing, revealing that COPD
patients have a significantly different microbial composition compared
to healthy individuals (Cabrera-Rubio et al., 2012). Furthermore, a
comprehensive study analyzed sputum samples from COPD patients and
controls and identified biomarkers that are significantly elevated in
COPD patients. These biomarkers are associated with disease severity
and can predict future exacerbations, implicating pathways such as
mucus hydration, adenosine metabolism, and oxidative stress as
potential therapeutic targets (Esther et al.,, 2022). All these findings agree
well with the results of the study presented here. Despite these
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advancements, limitations persist. Regardless of comprehensive
metagenomic studies on microbial organisms, genes, and pathways, they
do not always clarify which microbial species are actively contributing to
disease pathology. Functional metagenomics is still in its infancy, and
interpreting the vast amount of data generated remains a significant
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challenge. Future research should focus on integrating multi-omics
approaches and longitudinal studies to better understand the dynamic
interactions between the lung microbiome and COPD pathogenesis.
This study contributes to the progress on the field in several aspects.
First, the analysis of the taxonomic and functional profiles of the COPD
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and control groups throat samples and of the microbiomes contributed
to the understanding of the species diversity and its change in the disease.
Second, a systematical comparison of the COPD and control groups
indicates that the microbiomes and pathways that are significantly
different. Third, the characterization of the pathways involving the
inflammation process and of other inflammation-related pathways
demonstrates that they are enriched in the COPD samples. The detected
microbiomes in COPD samples from our study align closely with those
reported in the previous research (Cameron et al., 2016; Cabrera-Rubio
etal, 2012; Wang et al., 2021). Furthermore, our findings on higher alpha
diversity in the control group over the COPD group are consistent with
the previous study (Diao et al., 2017). Additionally, we identified a higher
beta diversity in the COPD samples, which, together with our
observations on alpha diversity, indicate that microbiome in COPD
patients is narrower and destabilized. This finding aligns well with the
prior research and further strengthens our comprehension of the
microbiome community within the intricate landscape of COPD (Sin,
2023). A key innovation of our study lies in its comprehensive functional
profiling of samples, particularly the comparison of inflammation-
related pathways between COPD and control groups. This contrasts with
previous studies that predominantly focused on other pathways, such as
bacterial growth, or focused on the mechanisms of the inflammation-
related pathway itself (Cameron et al., 2016; Yamada and Ichinose, 2018).
Earlier studies have shown that isoprenoids such as farnesyl
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pyrophosphate (FPP), geranylgeranyl diphosphate (GGPP), and farnesol
play central roles in regulating inflammation and immune signaling
(Marcuzzi et al., 2008; Santoro et al., 2018). The enrichment of three
isoprenoid-related ~microbial ~pathways in COPD-associated
microbiomes (isoprene biosynthesis I (via MEP) (BioCyc Id: PWY-6270),
superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
(BioCyc Id: PWY-5121) and all-trans-farnesol biosynthesis (BioCyc Id:
PWY-6859)) identified by this study suggests a clinically relevant
metabolic link between microbial activity and chronic airway
inflammation. Specifically, the microbial pathway of isoprene
biosynthesis leads to the formation of precursors for nonsterol
isoprenoids such as farnesyl and geranylgeranyl derivatives that play
essential roles in immune regulation and inflammation control (Houten
et al., 2003). Further, farnesol biosynthesis can downregulate the
expression of inflammatory mediators and act as a virulence factor by
inducing  anti-inflammatory ~ responses and  suppressing
pro-inflammatory cytokines, thereby increasing host susceptibility to
infection (Jung et al., 2018). Together, these findings point to microbial
isoprenoid metabolism as a clinically relevant contributor to airway
inflammation in COPD and a potential target for therapeutic modulation.

We also compared samples from BAL with those from pharyngeal
swabs to evaluate whether both sample types correlate and established
a significantly lower microbiome diversity in the BAL samples

compared to the pharyngeal swabs. This conclusion aligns with the
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well-established ecological split between the upper and lower airways.
Oropharyngeal communities are consistently more diverse and
cluster separately from lung communities, reflecting the upper
airway’s higher biomass and frequent immigration from the oral
cavity. In contrast, the lower airways are a low-biomass environment
shaped by stronger niche filtering and host defenses. Previous study
has also validated this conclusion and reported greater diversity in
oropharyngeal/throat swabs than in BAL, with clear community
separation (Kirst et al., 2019). Clinically, reduced a-diversity in the

Frontiers in Microbiology

lower airways is often interpreted as a shift toward dysbiosis or
domination by a few taxa, which may compromise ecological
resilience and cost the lung susceptible to pathogen overgrowth or
inflammation (Dickson et al., 2020). In chronic airway disease such
as COPD, lower airway microbiome alterations and loss of diversity
have been associated with more frequent exacerbations and adverse
clinical trajectories (Li et al., 2024). The diminished diversity in BAL
relative to throat samples underscores the possibility that changes in
the lower-airway microbiota may more closely reflect disease
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The microbiome abundance comparison between BAL and throat samples. Box plot of alpha diversities in (A) Shannon, (B) Simpson and (C) Richness
metrics show statistically significant differences between the throat and BAL groups.

processes or prognostic risk than do surrogate upper-airway samples
(Mikhail and O’Dwyer, 2025).

In conclusion, this study provides important contributions to our
understanding of the COPD-associated microbiome and its functional
capabilities. The insights gained could trigger future efforts to identify
microbiome-based biomarkers or therapeutic targets, ultimately
aiding in the development of more personalized and effective
treatment strategies for COPD.

Data availability statement

The throat samples metagenomic sequencing data after removing
ambient human DNA analyzed for this study was retrieved from the
Sequencing Read Archive under the accession code PRINA1057503
(https://www.ncbi.nlm.nih.gov/bioproject/PRINA1057503). The BAL
samples metagenomic sequencing data after removing ambient
human DNA analyzed for this study has been deposited in the
Sequencing Read Archive under the accession code PRINA1327646
(https://www.ncbi.nlm.nih.gov/bioproject/PRINA1327646). Details of
the sample sources are provided in Supplementary Table 5.

Ethics statement

The studies involving humans were approved by Ethic committee
of the Landesérztekammer des Saarlandes. The studies were conducted
in accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

GC: Visualization, Writing - original draft, Investigation, Software,
Data curation, Resources, Project administration, Conceptualization,
Formal Analysis, Methodology, Writing - review & editing, Validation.
CW: Writing - review & editing. AW: Writing - review & editing. CH:

Frontiers in Microbiology

Writing - review & editing. RM: Writing — review & editing. RB:
Resources, Funding acquisition, Investigation, Writing — review &
editing, Project administration, Methodology, Supervision, Validation,
Conceptualization. OK: Validation, Resources, Conceptualization,
Funding acquisition, administration,

Project Supervision,

Methodology, Writing - review & editing, Investigation.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. GC was funded by the
Leibniz Science Campus “Living Therapeutic Materials” OK
acknowledges funding from the Klaus Faber Foundation.

Acknowledgments

We would like to thank Georges P. Schmartz (Clinical
Bioinformatics, Saarland University) for the management of
IMAGINE data. We would also like to extend our gratitude to
Andreas Keller (Helmholtz Institute for Pharmaceutical Research
Saarland (HIPS) and Clinical Bioinformatics, Saarland University)
and Aranzazu del Campo (INM-Leibniz Institute for New Materials
and Chemistry Department, Saarland University) for their guidance.

Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

10 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1636322
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1057503
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1327646

Chen et al.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

Aguiar-Pulido, V., Huang, W.,, Suarez-Ulloa, V., Cickovski, T., Mathee, K., and
Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics
approaches for microbiome analysis. Evol. Bioinformatics Online 12, 5-16. doi: 10.4137/
EBO.S36436

Beghini, F, Mclver, L. J., Blanco-Miguez, A., Dubois, L., Asnicar, E, Maharjan, S., et al.
(2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial
communities with bioBakery 3. eLife 10:e65088. doi: 10.7554/eLife.65088

Blanco-Miguez, A., Beghini, E, Cumbo, E, Mclver, L. J., Thompson, K. N., Zolfo, M.,
et al. (2023). Extending and improving metagenomic taxonomic profiling with
uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633-1644. doi:
10.1038/s41587-023-01688-w

Bowerman, K. L., Rehman, S. F, Vaughan, A., Lachner, N., Budden, K. F, Kim, R. Y.,
et al. (2020). Disease-associated gut microbiome and metabolome changes in patients
with chronic obstructive pulmonary disease. Nat. Commun. 11:5886. doi: 10.1038/
541467-020-19701-0

Cabrera-Rubio, R., Garcia-Nuifiez, M., Set6, L., Ant6, ]. M., Moya, A., Monsé, E., et al.
(2012). Microbiome diversity in the bronchial tracts of patients with chronic obstructive
pulmonary disease. J. Clin. Microbiol. 50, 3562-3568. doi: 10.1128/JCM.00767-12

Cameron, S. J. S., Lewis, K. E., Huws, S. A, Lin, W,, Hegarty, M. J., Lewis, P. D., et al.
(2016). Metagenomic sequencing of the chronic obstructive pulmonary disease upper
bronchial tract microbiome reveals functional changes associated with disease severity.
PLoS One 11:¢0149095. doi: 10.1371/journal.pone.0149095

Caspi, R, Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E.,
etal. (2020). The MetaCyc database of metabolic pathways and enzymes - a 2019 update.
Nucleic Acids Res. 48, D445-D453. doi: 10.1093/nar/gkz862

Chen, S. (2023). Ultrafast one-pass FASTQ data preprocessing, quality control, and
deduplication using fastp. iMeta 2:¢107. doi: 10.1002/imt2.107

Cleveland Clinic. (2022) Available online at: https://my.clevelandclinic.org/health/
diseases/8709-chronic-obstructive-pulmonary-disease-copd (Accessed June 1, 2024).

De Matteis, S., Jarvis, D., Darnton, A., Hutchings, S., Sadhra, S., Fishwick, D., et al.
(2019). The occupations at increased risk of COPD: analysis of lifetime job-histories in
the population-based UK biobank cohort. Eur. Respir. J. 54:1900186. doi:
10.1183/13993003.00186-2019

Diao, W,, Shen, N., Du, Y., Qian, K., and He, B. (2017). Characterization of throat
microbial flora in smokers with or without COPD. Int. J. Chron. Obstruct. Pulmon. Dis.
12, 1933-1946. doi: 10.2147/COPD.S140243

Dickson, R. P, Schultz, M. J., van der Poll, T., Schouten, L. R., Falkowski, N. R.,
Luth, J. E,, et al. (2020). Lung microbiota predict clinical outcomes in critically ill
patients. Am. J. Respir. Crit. Care Med. 201, 555-563. doi: 10.1164/rccm.201907-14870C

Dora, D., Revisnyei, P, Mihucz, A., Kiraly, P, Szklenarik, G., Dulka, E., et al. (2024).
Metabolic pathways from the gut metatranscriptome are associated with COPD and
respiratory function in lung cancer patients. Front. Cell. Infect. Microbiol. 14:1381170.
doi: 10.3389/fcimb.2024.1381170

Esther, C. R, ONeal, W. K., Anderson, W. H., Kesimer, M., Ceppe, A.,
Doerschuk, C. M., et al. (2022). Identification of sputum biomarkers predictive of
pulmonary exacerbations in COPD. Chest 161, 1239-1249. doi: 10.1016/j.
chest.2021.10.049

Ewels, P., Magnusson, M., Lundin, S., and Kaller, M. (2016). MultiQC: summarize
analysis results for multiple tools and samples in a single report. Bioinformatics 32,
3047-3048. doi: 10.1093/bioinformatics/btw354

Hou, K., Wu, Z.-X,, Chen, X.-Y,, Wang, J.-Q., Zhang, D., Xiao, C., et al. (2022).
Microbiota in health and diseases. Signal Transduct. Target. Ther. 7:135. doi: 10.1038/
541392-022-00974-4

Houten, S. M., Frenkel, J., and Waterham, H. R. (2003). Isoprenoid biosynthesis in
hereditary periodic fever syndromes and inflammation. Cell. Mol. Life Sci. 60,
1118-1134. doi: 10.1007/s00018-003-2296-4

Frontiers in Microbiology

11

10.3389/fmicb.2025.1636322

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.1636322/
full#supplementary-material

Hulsen, T. (2022). Deepvenn -- a web application for the creation of area-proportional
Venn diagrams using the deep learning framework tensorflow.Js. arXiv.

Jung, Y. Y., Hwang, S. T., Sethi, G., Fan, L., Arfuso, E, and Ahn, K. S. (2018). Potential
anti-inflammatory and anti-Cancer properties of farnesol. Molecules 23:2827. doi:
10.3390/molecules23112827

Kayongo, A., Robertson, N. M., Siddharthan, T., Ntayi, M. L., Ndawula, J. C,,
Sande, O.]., et al. (2022). Airway microbiome-immune crosstalk in chronic obstructive
pulmonary disease. Front. Immunol. 13:1085551. doi: 10.3389/fimmu.2022.1085551

Kirst, M. E., Baker, D,, Li, E., Abu-Hasan, M., and Wang, G. P. (2019). Upper versus
lower airway microbiome and metagenome in children with cystic fibrosis and their
correlation with lung inflammation. PLoS One 14:€0222323. doi: 10.1371/journal.
pone.0222323

Kleine Bardenhorst, S., Berger, T., Klawonn, E, Vital, M., Karch, A., and
Riibsamen, N. (2021). Data analysis strategies for microbiome studies in human
populations-a systematic review of current practice. mSystems 6:10.1128/msystem
5.01154-20msystems.01154-20. doi: 10.1128/mSystems.01154-20

Li, R,, Li, J., and Zhou, X. (2024). Lung microbiome: new insights into the pathogenesis
of respiratory diseases. Signal Transduct. Target. Ther. 9:19. doi: 10.1038/
541392-023-01722-y

Mallick, H., Rahnavard, A., Mclver, L. J., Ma, S., Zhang, Y., Nguyen, L. H., et al. (2021).
Multivariable association discovery in population-scale meta-omics studies. PLoS
Comput. Biol. 17:€1009442. doi: 10.1371/journal.pcbi. 1009442

Marcuzzi, A., Pontillo, A., De Leo, L., Tommasini, A., Decorti, G., Not, T, et al. (2008).
Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate
kinase deficiency. Pediatr. Res. 64, 177-182. doi: 10.1203/PDR.0b013e3181761870

Mayo Clinic. (2020) Available online at: https://www.mayoclinic.org/diseases-
conditions/copd/symptoms-causes/syc-20353679 (Accessed June 1, 2024).

Mikhail, S. G., and O’'Dwyer, D. N. (2025). The lung microbiome in interstitial lung
disease. Breathe (Sheff.) 21:240167.

Millares, L., Ferrari, R., Gallego, M., Garcia-Nufiez, M., Pérez-Brocal, V., Espasa, M.,
etal. (2014). Bronchial microbiome of severe COPD patients colonised by Pseudomonas
aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1101-1111. doi: 10.1007/
510096-013-2044-0

Natalini, J. G., Singh, S., and Segal, L. N. (2023). The dynamic lung microbiome in
health and disease. Nat. Rev. Microbiol. 21, 222-235. doi: 10.1038/s41579-022-00821-x

O’Donnell, R., Breen, D., Wilson, S., and Djukanovic, R. (2006). Inflammatory cells
in the airways in COPD. Thorax 61, 448-454. doi: 10.1136/thx.2004.024463

Pathak, U., Gupta, N. C,, and Suri, J. C. (2020). Risk of COPD due to indoor air
pollution from biomass cooking fuel: a systematic review and meta-analysis. Int. J.
Environ. Health Res. 30, 75-88. doi: 10.1080/09603123.2019.1575951

Pérez-Cobas, A. E., Gomez-Valero, L., and Buchrieser, C. (2020). Metagenomic
approaches in microbial ecology: an update on whole-genome and marker gene
sequencing analyses. Microb Genom. 6, 1-22. doi: 10.1099/mgen.0.000409

Po, J. Y. T,, FitzGerald, J. M., and Carlsten, C. (2011). Respiratory disease associated
with solid biomass fuel exposure in rural women and children: systematic review and
meta-analysis. Thorax 66, 232-239. doi: 10.1136/thx.2010.147884

Ramirez, R., van Buuren, N., Gamelin, L., Soulette, C., May, L., Han, D., et al. (2021).
Targeted long-read sequencing reveals comprehensive architecture, burden, and
transcriptional signatures from hepatitis B virus-associated integrations and
translocations in hepatocellular carcinoma cell lines. J. Virol. 95:€0029921. doi: 10.1128/
JV1.00299-21

Ramsheh, M. Y., Haldar, K., Esteve-Codina, A., Purser, L. E, Richardson, M.,
Miiller-Quernheim, J., et al. (2021). Lung microbiome composition and bronchial
epithelial gene expression in patients with COPD versus healthy individuals: a bacterial
16S rRNA gene sequencing and host transcriptomic analysis. Lancet Microbe. 2, e300~
€310. doi: 10.1016/S2666-5247(21)00035-5

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1636322
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1636322/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1636322/full#supplementary-material
https://doi.org/10.4137/EBO.S36436
https://doi.org/10.4137/EBO.S36436
https://doi.org/10.7554/eLife.65088
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1038/s41467-020-19701-0
https://doi.org/10.1038/s41467-020-19701-0
https://doi.org/10.1128/JCM.00767-12
https://doi.org/10.1371/journal.pone.0149095
https://doi.org/10.1093/nar/gkz862
https://doi.org/10.1002/imt2.107
https://my.clevelandclinic.org/health/diseases/8709-chronic-obstructive-pulmonary-disease-copd
https://my.clevelandclinic.org/health/diseases/8709-chronic-obstructive-pulmonary-disease-copd
https://doi.org/10.1183/13993003.00186-2019
https://doi.org/10.2147/COPD.S140243
https://doi.org/10.1164/rccm.201907-1487OC
https://doi.org/10.3389/fcimb.2024.1381170
https://doi.org/10.1016/j.chest.2021.10.049
https://doi.org/10.1016/j.chest.2021.10.049
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1038/s41392-022-00974-4
https://doi.org/10.1038/s41392-022-00974-4
https://doi.org/10.1007/s00018-003-2296-4
https://doi.org/10.3390/molecules23112827
https://doi.org/10.3389/fimmu.2022.1085551
https://doi.org/10.1371/journal.pone.0222323
https://doi.org/10.1371/journal.pone.0222323
https://doi.org/10.1128/mSystems.01154-20
https://doi.org/10.1038/s41392-023-01722-y
https://doi.org/10.1038/s41392-023-01722-y
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1203/PDR.0b013e3181761870
https://www.mayoclinic.org/diseases-conditions/copd/symptoms-causes/syc-20353679
https://www.mayoclinic.org/diseases-conditions/copd/symptoms-causes/syc-20353679
https://doi.org/10.1007/s10096-013-2044-0
https://doi.org/10.1007/s10096-013-2044-0
https://doi.org/10.1038/s41579-022-00821-x
https://doi.org/10.1136/thx.2004.024463
https://doi.org/10.1080/09603123.2019.1575951
https://doi.org/10.1099/mgen.0.000409
https://doi.org/10.1136/thx.2010.147884
https://doi.org/10.1128/JVI.00299-21
https://doi.org/10.1128/JVI.00299-21
https://doi.org/10.1016/S2666-5247(21)00035-5

Chen et al.

Santoro, A., Ciaglia, E., Nicolin, V., Pescatore, A., Prota, L., Capunzo, M., et al. (2018).
The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response
through the inhibition of the NFkB and STAT3 pathways in cystic fibrosis cells. Inflamm.
Res. 67, 315-326. doi: 10.1007/s00011-017-1123-6

Schmartz, G. P, Rehner, J., Gund, M. P, Keller, V., Molano, L.-A. G., Rupf, S., et al.
(2024). Decoding the diagnostic and therapeutic potential of microbiota using pan-body
pan-disease microbiomics. Nat. Commun. 15:8261. doi: 10.1038/s41467-024-52598-7

SegataLab 2020 Hclust2: a handy tool for plotting heat-maps with several useful
options to produce high quality figures that can be used in publication

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. ].
27, 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688-688. doi:
10.1038/163688a0

Sin, D. D. (2023). Chronic obstructive pulmonary disease and the airway microbiome:
what respirologists need to know. Tuberc Respir Dis (Seoul). 86, 166-175. doi: 10.4046/
trd.2023.0015

Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., and Wu, C. H.UniProt
Consortium (2015). UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics 31, 926-932. doi: 10.1093/
bioinformatics/btu739

Frontiers in Microbiology

12

10.3389/fmicb.2025.1636322

Tangedal, S., Nielsen, R., Aanerud, M., Drengenes, C., Husebg, G. R., Lehmann, S.,
et al. (2024). Lower airway microbiota in COPD and healthy controls. Thorax 79,
219-226. doi: 10.1136/thorax-2023-220455

Wang, Z., Zhang, R, Yang, Q., Zhang, ]., Zhao, Y., Zheng, Y., et al. (2021). Recent
advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. Adv.
Appl. Microbiol. 114, 1-35. doi: 10.1016/bs.aambs.2020.11.001

‘World Health Organization. (2023). Available online at: https://www.who.int/news-room/
fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (Accessed June 1, 2024).

Xia, Y., and Sun, J. (2017). Hypothesis testing and statistical analysis of microbiome.
Genes Dis. 4, 138-148. doi: 10.1016/j.gendis.2017.06.001

Yamada, M., and Ichinose, M. (2018). The cholinergic pathways in inflammation: a
potential pharmacotherapeutic target for COPD. Front. Pharmacol. 9:1426. doi: 10.3389/
fphar.2018.01426

Yang, L., and Chen, J. (2022). A comprehensive evaluation of microbial differential
abundance analysis methods: current status and potential solutions. Microbiome. 10:130.
doi: 10.1186/s40168-022-01320-0

Zakharkina, T., Heinzel, E., Koczulla, R. A., Greulich, T., Rentz, K., Pauling, J. K., et al.
(2013). Analysis of the airway microbiota of healthy individuals and patients with
chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One
8:¢68302. doi: 10.1371/journal.pone.0068302

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1636322
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1007/s00011-017-1123-6
https://doi.org/10.1038/s41467-024-52598-7
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/163688a0
https://doi.org/10.4046/trd.2023.0015
https://doi.org/10.4046/trd.2023.0015
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1136/thorax-2023-220455
https://doi.org/10.1016/bs.aambs.2020.11.001
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
https://doi.org/10.1016/j.gendis.2017.06.001
https://doi.org/10.3389/fphar.2018.01426
https://doi.org/10.3389/fphar.2018.01426
https://doi.org/10.1186/s40168-022-01320-0
https://doi.org/10.1371/journal.pone.0068302

	Comparative metagenomic analysis on COPD and health control samples reveals taxonomic and functional motifs
	1 Introduction
	2 Materials and methods
	2.1 Sample collection and study design
	2.2 Metagenomics analysis

	3 Results
	3.1 Summary of study participants
	3.2 Both taxonomic and functional profiles show a higher diversity in the control group over the COPD group
	3.3 Inflammation-related pathway enrichment analysis
	3.4 BAL samples show significant difference with throat samples

	4 Discussion

	Acknowledgments
	References

