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Integrated analysis of fecal
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reveals unique characteristics of
asymptomatic and classic celiac
disease

Shanxia Yao?, Shenglong Xue?, Na Li??, Tian Shi?*, Yan Feng??,
Munila Maimaiti®®, Ayinuer Maimaitireyimu?3, Halina Halike??*
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!College of Life Science and Technology, Xinjiang University, Urumaji, China, 2Department of
Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumgi, China, *Xinjiang
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Introduction: Celiac Disease (CeD) is an autoimmune small intestinal disorder
triggered by gluten, with clinical subtypes including typical, atypical, and
asymptomatic forms.While classic CeD development is linked to microbes/
metabolites, their relationships with other subtypes remain unclear.

Methods: We conducted 16S rDNA sequencing on fecal samples from 14
asymptomatic CeD (SCeD) patients and integrated this data with our team’s
prior sequencing data of 30 classic CeD (CDF) patients and 30 healthy controls
(CDFH).

Results: 16S rDNA results showed: Compared to CDFH, SCeD had lower
abundances of Bacteroides, Alistipes, CAG-352 and higher abundances of
Blautia, Collinsella, Dorea, Mediterraneibacter, Gemmiger; a random forest
model based on 8 differential microbes distinguished SCeD from CDFH
(AUC = 0.97). Compared to CDF, SCeD had lower Bacteroides and higher
Faecalibacterium, Blautia, Collinsella, Agathobacter—suggesting Bacteroides
may relate to CeD symptoms, while Faecalibacterium and Agathobacter may
alleviate symptoms. Metabolomic analysis identified differential metabolites
between SCeD and CDFH (enriched in "Steroid Hormone Biosynthesis,”
"Primary Bile Acid Biosynthesis,” “Tryptophan Metabolism” via KEGG) and
between SCeD and CDF (enriched in "Tryptophan Metabolism,” “Biosynthesis of
Plant Secondary Metabolites,” "Degradation of Flavonoids”). Spearman analysis
showed correlations between differential microbes and metabolites.
Discussion: In conclusion, different CeD subtypes may involve a “host-
microbe-metabolite” trinity network: A random forest model built with SCeD-
CDFH differential microbes/metabolites is a high-efficacy SCeD diagnostic tool;
modulating these microbes/metabolites could be a new entry point for CeD
mechanism research and adjunctive therapy.
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GRAPHICAL ABSTRACT

1 Introduction

Celiac Disease (CeD) is an autoimmune enteropathy triggered by
exposure to dietary gluten in genetically susceptible individuals
(Catassi et al., 2022). The global prevalence of CeD is approximately
1.4%, and recent studies indicate a rising trend in its prevalence—
posing a significant impact on patients’ quality of life and overall
health (Lebwohl and Rubio-Tapia, 2021). CeD presents with a wide
range of clinical manifestations, most commonly gastrointestinal
symptoms such as abdominal pain and diarrhea; additionally, patients
with CeD face an increased risk of developing complications affecting
other bodily systems (Catassi et al., 2022). However, a subset of
patients show no obvious clinical symptoms and are therefore
classified as having asymptomatic celiac disease (SCeD). As a distinct
subtype of CeD, SCeD is defined by the absence of overt clinical
symptoms, alongside positive serological test results and pathological
changes in the small intestinal mucosa (Marsh grade > 2). Notably,
SCeD patients remain at risk of progressing to classic celiac disease
(CDF) or developing other related complications (Laurikka et al.,
2022). Given the heterogeneity of CeD subtypes, analyzing only a
single subgroup makes it challenging to address complex research
questions. Timely intervention after diagnosis, for example, strict
adherence to a gluten-free diet (Gluten-Free Diet, GFD), can
effectively curb the progression of the disease and prevent the
occurrence of complications (Aljada et al., 2021). That said, due to the
lack of typical symptoms in SCeD, conventional diagnostic approaches
often lead to missed diagnoses. Early detection of SCeD is critical for
preventing complications like malnutrition, osteoporosis, and elevated
risk of malignant tumors; delayed diagnosis resulting from missed
cases significantly increases the likelihood of these adverse outcomes.
Thus, novel diagnostic strategies are urgently needed to enhance the
diagnostic efficiency of SCeD (Makharia et al., 2022). Ultimately,
understanding the differences in microbial communities and

Frontiers in Microbiology

metabolite profiles across various CeD subtypes can facilitate both the
diagnosis and adjuvant treatment of CeD.

The intestine, a digestive organ consisting of the large and small
intestines, is often referred to as “the human body’s second brain.” As
a key “microbial organ” in humans, the gut microbiota plays a pivotal
role in maintaining intestinal homeostasis, regulating immune
responses, and facilitating nutrient metabolism (Zhao et al., 2023).
Studies have shown that gut microbial dysbiosis is associated with
various gastrointestinal disorders (Li H. et al., 2023); it produces
diverse metabolites—such as bile acids, short-chain fatty acids,
tryptophan, and methane—all of which are critical for intestinal
peristalsis and secretion (Fan et al., 2022). Moreover, research has
demonstrated that gut microbial dysbiosis is closely associated with the
development and progression of multiple autoimmune diseases,
including CeD (Han et al., 2025). Furthermore, CeD development is
shaped by genetic background, diet, and environment—and these same
factors also modulate the gut microbiota (Gupta et al., 2023).
Specifically, research focusing on patients with classic celiac disease
(CDF) has confirmed that, when compared to healthy controls, CDF
patients show marked changes in gut microbial community structure.
Such changes include higher abundances of specific pathogenic
bacteria and lower abundances of beneficial bacteria. These microbial
shifts are not only directly linked to intestinal mucosal barrier damage
but also influence immune-inflammatory responses through
metabolite regulation, ultimately driving the pathological initiation,
progression, and symptom onset of CDF (Bascunan et al., 2025; Catassi
et al, 2024). Certain bacteria elicit host immune responses by
expressing epitopes analogous to gliadin (Belei et al., 2023), whereas
other microbes induce intestinal mucosal damage by disrupting host
immune responses (Acharya et al., 2024), ultimately contributing to
CeD’s clinical manifestations. In contrast, specific beneficial microbes
can alleviate disease symptoms by preserving intestinal microecological
balance (Peng et al., 2022). Alterations in gut microbiota composition
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typically result in shifts in metabolite profiles (Koh and Bickhed, 2020).
Metabolomics allows for comprehensive analysis of endogenous
metabolite alterations in biological systems, providing insights into an
organism’s physiological and pathological status (Rostami-Nejad et al.,
2024). In CeD research, metabolomic technologies have been used to
identify potential biomarkers and uncover disease-related metabolic
pathways (Girdhar et al., 2023). Early studies conducted metabolomic
analyses on samples from CD patients and healthy controls (CDH),
revealing a series of disease-associated differential metabolites involved
in multiple metabolic pathways such as energy metabolism, amino acid
metabolism, and lipid metabolism. These findings provided new
insights into the pathogenesis of celiac disease (Kelley et al., 2025).
Additionally, metabolomics has been applied to analyze changes in
metabolites in CeD patients before and after a gluten-free diet (GFD)
(Vacca et al., 2022). However, these studies have primarily focused on
celiac disease with typical symptoms, while the characteristics of the
microbial community, metabolic alterations, and their interactions in
SCeD patients remain unclear. Currently, there is still a lack of reported
research on the microbiota and metabolites in SCeD patients.
Combining the use of 16S rDNA sequencing and untargeted
metabolomics enables an understanding of disease pathogenesis from
two perspectives: the gut microbial community and metabolite levels
(Zhao et al., 2025). 16S rDNA sequencing can accurately characterize
changes in the composition and structure of the gut microbial
community, while untargeted metabolomics can capture disease-
related metabolite fingerprint profiles. The combination of these two
techniques helps reveal the interaction between microbes and host
metabolism, providing more comprehensive insights into the
pathogenesis of celiac disease (CeD) (Gu et al., 2024). Therefore, based
on 16S rDNA sequencing and untargeted metabolomics, this study
aims to investigate the roles of microbes and metabolites in different
subtypes of CeD. Specifically, by comparing differences in microbes
and metabolites between the asymptomatic CeD (SCeD) group and the
healthy control (CDFH) group, we seek to identify microbes and
metabolites with diagnostic value for SCeD. A diagnostic model will
then be developed using machine learning, providing new methods
and tools for the early diagnosis of SCeD. Additionally, by analyzing
differences in microbes and metabolites between the SCeD group and
the classic CeD (CDF) group, this study explores the roles of microbes
and metabolites in the development of different CeD subtypes. This
work not only provides a theoretical basis for a deeper understanding
of the progression of different CeD subtypes but also lays the
groundwork for the development of new therapeutic strategies.

2 Materials
2.1 Patients and healthy controls

Starting in 2022, the Gastroenterology Department of the People’s
Hospital of Xinjiang Uygur Autonomous Region initiated an
epidemiological survey. A total of 5,600 individuals participated in this
investigation. Through screening, 54 patients tested positive for tTG were
identified. Based on the questionnaires, 14 individuals who exhibited no
clinical symptoms but had tTG levels greater than 200 were included in
the SCeD group. Additionally, 30 patients with typical CeD diagnosed in
our team’s earlier study were included as the CDF group, along with 30
healthy controls (CDFH group) who were negative for both EMA and
tTG antibodies, matched by ethnicity, gender, and age (+3 years) (Shi
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etal,, 2022). Thus, this study included a total of 44 cases in the disease
group (CeD) (14 SCeD cases with complete epidemiological survey
information and stool samples, and 30 CDF cases) and 30 cases in the
healthy control group (CDFH), All participants included in this study
are from the Xinjiang Uygur Autonomous Region of China. The
inclusion and exclusion criteria for this study are as follows:

Inclusion criteria: CDF group: Positive for serum tissue
transglutaminase IgA (tTG-IgA) or endomysial antibody IgA (EMA-
IgA), with celiac disease (CeD) confirmed by small intestinal biopsy
combined with histopathological diagnosis (Bai and Ciacci, 2017). SCeD
group: Serum tTG-IgA titer 10 times the normal value, positive for
EMA-IgA, and exempt from biopsy for direct diagnosis of CeD (Rubio-
Tapia et al., 2023). Healthy control group: Negative for serum tTG-IgA
or EMA-IgA, on a normal diet, and no chronic diseases in recent periods.

Exclusion criteria: Patients with other autoimmune diseases
(including inflammatory bowel disease [IBD], autoimmune gastritis,
type 1 diabetes mellitus [TIDM], and rheumatoid arthritis [RA]);
Patients with other specific gastrointestinal infections (bacterial or
viral infections) or parasitic infections; Pregnant or lactating women;
Patients who have received antibiotic or probiotic treatment recently;
Patients who are unwilling to participate in this study. Patients
meeting any of the above criteria will be excluded from the study.

All participants in this study signed the informed consent form.
This study was approved by the Ethics Committee of the People’s
Hospital of Xinjiang Uygur Autonomous Region, with the Ethics
Approval Number: KY20220311067.

3 Methods

3.1 16S rDNA sequencing and data
processing

Total genomic DNA was extracted from stool samples of the enrolled
population using the FastPure Stool DNA Isolation Kit (MJYH,
Shanghai, China) according to the manufacturer’s instructions. DNA
integrity was assessed by 1% agarose gel electrophoresis, and
concentration and purity were determined using the NanoDrop2000
(Thermo Scientific, United States). Using the extracted DNA as a
template, PCR amplification of the 16S rRNA gene V3-V4 variable
region was performed with the barcoded upstream primer 338F
(5-ACTCCTACGGGAGGCAGCAG-3') and downstream primer 806R
(5°-GGACTACHVGGGTWTCTAAT-3’) (Marascio et al, 2023).
Libraries were constructed using the NEXTFLEX Rapid DNA-Seq Kit,
followed by adapter ligation, magnetic bead selection, PCR amplification,
and magnetic bead recovery. Sequencing was performed on the Illumina
NextSeq 2000 platform. Raw sequencing reads underwent quality
control and assembly using fastp (Chen et al., 2018) (version 0.19.6) and
FLASH (Magoc¢ and Salzberg, 2011) (version 1.2.11). Reads were filtered
for low-quality bases, short reads, and N-containing bases as required.
Sequences were assembled based on overlap relationships and screened,
with orientation adjusted according to barcodes and primers. OTUs were
clustered at 97% similarity using UPARSE v7.1 (Edgar, 2013), and
chimeras were removed. Sample sequences were downsampled to 20,000
sequences, achieving an average sequence coverage of 99.09% post-
downsampling. OTU species taxonomic annotation was performed
using RDP classifier (version 2.11) with a confidence threshold of 70%.
Functional prediction analysis of 16S rRNA genes was conducted using
PICRUSt2 (Douglas et al., 2020) (version 2.2.0).
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3.2 Sample preparation, sequencing, and
data processing for LC-MS

3.2.1 Solid sample processing

Place 50 mg of solid sample into a 2 mL centrifuge tube. Add one
6 mm diameter grinding bead. Extract metabolites using 400 pL of
extraction solution (methanol:water = 4:1) for metabolite extraction.
Grind for 6 min at —10 °C and 50 Hz using a cryogenic tissue grinder.
Perform low-temperature ultrasonic extraction at 5 °C and 40 kHz for
30 min. After standing at —20 °C for 30 min, centrifuge at 4 °C and
13,000 g for 15 min. Transfer the supernatant to vials with inserts for
instrument analysis. Equal volumes of metabolites from all samples
were pooled to create QC samples. During instrument analysis, one
QC sample was inserted every 5-15 samples to assess analytical
process repeatability.

The analysis was performed on a Thermo Fisher Scientific Ultra
High Performance Liquid Chromatography-Quadrupole-Tandem
Mass Spectrometry system (UHPLC-Q Exactive HF-X) (Shanghai
Meiji Biotechnology Co., Ltd.). Chromatographic conditions were as
follows: 3 pL of sample was injected and separated on an HSS T3
column (100 mm x 2.1 mm i.d., 1.8 pm). Mobile phase A: 95% water
+ 5% acetonitrile (containing 0.1% formic acid); Mobile phase B:
47.5% acetonitrile + 47.5% isopropanol + 5% water (containing 0.1%
formic acid). Flow rate: 0.40 mL/min; Column temperature:
40 °C. Mass spectrometry employed both positive and negative ion
scanning modes. The mass scan range was 70-1,050 m/z. Sheath gas
flow rate was 50 psi, auxiliary gas flow rate was 13 psi, auxiliary gas
heating temperature was 425 °C, positive mode ion spray voltage was
3,500 V, negative mode —3,500V, ion transfer tube temperature
325 °C, normalized collision energy 20-40-60 V cycle, MS' resolution
60,000, MS? resolution 7,500, data acquired in DDA mode.

Raw data were imported into Progenesis QI software for baseline
filtering, peak identification, and other processing steps, yielding a
data matrix containing retention times, mass-to-charge ratios, and
peak intensities. Metabolite information was obtained by matching
MS and MS/MS data against the HMDB, Metlin, and Meiji’s
proprietary databases. The data matrix was uploaded to the Meiji
Cloud platform, where it underwent the following preprocessing
steps: 80% rule for missing value imputation, sum normalization,
removal of QC samples with RSD > 30%, and log10 transformation.
PCA and OPLS-DA analyses were performed using the R package
ropls. Model stability was assessed through 7-fold cross-validation.
Significantly different metabolites were identified based on VIP > 1 in
the OPLS-DA model and p < 0.05 in Student’s t-tests. Finally, pathway
annotation of differential metabolites was performed using the KEGG
database, followed by pathway enrichment analysis with the Python
scipy.stats package. Fisher’s exact test was applied to identify relevant
biological pathways.

3.3 Statistical analysis

All data analyses were conducted on the Majorbio Cloud Platform.’
Alpha diversity analysis: The mothur software (Schloss et al., 2009) was

1 https://cloud.majorbio.com
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used to calculate Alpha diversity indices (e.g., Chao 1, Shannon), and
the Wilcoxon rank-sum test was applied to analyze differences in Alpha
diversity across groups. Microbial community structure analysis:
Principal Coordinate Analysis (PCoA) based on the Bray-Curtis
distance algorithm, combined with the PERMANOVA non-parametric
test, was used to analyze the similarity and differences in microbial
community structure among samples. Screening of differentially
abundant bacterial taxa: Linear Discriminant Analysis Effect Size
(LEfSe) analysis (Barberdn et al., 2012) (with thresholds: LDA > 2,
p <0.05) was performed to identify bacterial taxa with significant
differences in abundance between groups. Impact of clinical indicators:
Distance-based Redundancy Analysis (db-RDA) was used to investigate
the influence of clinical indicators on gut bacterial community structure;
linear regression analysis was employed to evaluate the effect of key
clinical indicators on microbial Alpha diversity indices. Correlation
network analysis: Species were selected for correlation network analysis
[80] based on Spearman correlation analysis (with thresholds: |r| > 0.6,
p <0.05). Differences among multiple groups were analyzed using the
Kruskal-Wallis test, while comparisons between two groups (CeD-
CDFH, SCeD-CDFH, SCeD-CDF) employed Student’s t-test.
Differences were considered statistically significant at p < 0.05.
Differential metabolite analysis within each subgroup was screened
using p-values and Variable Importance Projection (VIP) scores,
defining metabolites with p < 0.05 and VIP > 1 as differentially altered.
All significantly altered metabolites or bacterial species were
incorporated into a random forest model, with highly important
microbes and metabolites used to construct diagnostic models. Receiver
operating characteristic (ROC) curves were plotted using R software
packages, and area under the curve (AUC) was calculated to evaluate
predictive model performance. Pearson correlation analysis was
employed to assess correlations between differential metabolites and
differential microbial communities, with analyses conducted at the
genus level.

4 Results

4.1 CeD-induced gut microbiota alterations
based on 16S rDNA data

For 16S rDNA sequencing, the generated sequences were clustered
at the operational taxonomic unit (OTU) level with 97% similarity to
reveal the composition of the gut microbiota. The Shannon diversity
rarefaction curve tended to flatten (Figure 1A), indicating that the
amount of sequencing data was appropriate and reasonable for
representing the microbial community. In general, both the Shannon
index and Chao index of the CeD group were lower than those of the
CDFH group (Figures 1B,C). After dividing the disease group into
different subtypes, the Sobs index of the SCeD group showed that the
species richness of the SCeD group was lower than that of the other
two groups (Supplementary Figures S1B,C). There was no significant
difference in the Shannon index between the SCeD group and the
CDF group, but both were significantly lower than that of the CDFH
group (p < 0.05) (Figure 1D), which indicated that the species diversity
of the disease groups was lower. The results of the Simpson index were
consistent with those of the Shannon index. There was a significant
difference in the Chao index between the SCeD group and the CDF
group, with the SCeD group being lower than the CDF group
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FIGURE 1
a-diversity and p-diversity. (A) Shannon diversity rarefaction curve. (B) Shannon index of the CeD group and CDFH group. (C) Chao index of the CeD
group and CDFH group. (D) Shannon index of the SCeD group, CDF group, and CDFH group. (E) Chao index of the SCeD group, CDF group, and
CDFH group. (F) B-diversity of the CeD group and CDFH group at the genus level. (G) p-diversity of the CeD group and CDFH group at the species
level. (H) p-diversity of the SCeD group, CDF group, and CDFH group at the genus level. (I) -diversity of the SCeD group, CDF group, and CDFH group
at the species level.

(p <0.05) (Figure 1E). Regarding the microbiota B-diversity, at the
species and genus levels, there were certain differences in the principal
coordinate analysis (PCoA) between the CeD group and the CDFH
group (Figures 1EG); there were significant differences in PCoA
among the SCeD, CDFE, and CDFH groups (Figures 1H,]I).

We compared the relative abundance of gut microbiota at the
phylum and genus levels between the CeD group (CDF group and
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SCeD group) and the CDFH group. At the phylum level, compared
with CDFH, the CeD group exhibited lower abundance of Bacillota
and Bacteroidota, while showing higher abundance of Actinomycetota
and Pseudomonadota (Figure 2A). At the genus level, compared with
CDFH, the CeD group exhibited lower abundances of Bacteroides,
Faecalibacterium, Blautia, Agathobacter, and Alistipes; while Segatella
and Bifidobacterium showed higher abundances (Figure 2B).
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FIGURE 2
Microbial composition. (A) Phylum-level composition of the CeD group and CDFH group. (B) Genus-level composition of CeD and CDFH groups.
(C) Phylum-level composition of SCeD, CDF, and CDFH groups. (D) Genus-level composition of SCeD, CDF, and CDFH groups. (E) Genus-level
differential analysis between SCeD and CDFH groups. (F) Genus-level differential analysis between SCeD and CDF groups.
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To understand the relative abundance of microbiota in different
types of CeD patients, we compared the abundance differences of gut
microbiota at the phylum and genus levels among the SCeD, CDF, and
CDFH groups. At the phylum level (Figure 2C), Bacillota exhibited the
highest relative abundance across all three sample groups. Beyond
Bacillota, Actinomycetota showed the highest abundance in the SCeD
group. While Bacteroidetota dominated in CDE. At the genus level
(Figure 2D), Bacteroides and Faecalibacterium exhibited high
abundance in the CDFH group, suggesting strong adaptability and
competitiveness in this environment. In the SCeD group,
Bifidobacterium, Blautia, and Faecalibacterium were highly abundant.
In the CDF group, Bacteroides and Segatella were highly abundant.

To identify microorganisms exhibiting significant differences
between the two groups, we performed analysis using Student’s t-test.
The results are shown in the figure. Compared to the CDFH group
(Supplementary Figure S2), the CeD group exhibited higher
abundances of Mediterranei-bacter, Streptococcus, and Lactobacillus
species, while Bacteroides, Agathobacter, Alistipes, and others were
lower than in the CDFH group. Compared to the CDFH group
(Figure 2E), the SCeD group exhibited significantly lower levels of
Bacteroides, Alistipes, and CAG-352; conversely, the SCeD group
showed significantly higher levels of Bifidobacterium, Blautia,
Collinsella, Dorea, Mediterraneibacter, Gemmiger, and Lactobacillus
compared to the CDFH group (p < 0.05). Compared with the CDF
group (Figure 2F), the SCeD group showed significantly lower levels
of Bacteroides (p<0.05) and significantly higher levels of
Bifidobacterium, Faecalibacterium, Blautia, Collinsella, Agathobacter,
Dorea, Mediterraneibacter,
(p < 0.05).

Gemmiger, and Anaerobutyricum

4.2 Metabolomics analysis results

4.2.1 Metabolites significantly altered during the
development of CeD and its subtypes

Metabolite characteristics among the groups are shown in
Supplementary Figure S3. There were 1,543 shared metabolites
among the CDFH, CDE, and SCeD groups; the number of unique
metabolites in each group was 435, 92, and 4,170, respectively. There
were both shared and differential metabolites among the groups,
with specific details provided in Supplementary Tables. The partial
least squares discriminant analysis (PLS-DA) model of the CeD and
CDFH groups indicated differences in metabolites between the two
groups (Figure 3A). The volcano plot showed that under the
conditions of p < 0.05 and VIP > 1, there were 1,690 differentially
expressed metabolites (96 upregulated and 1,594 downregulated)
(Figure 3C). Through KEGG analysis, the differential metabolites
were mainly enriched in pathways such as Steroid hormone
biosynthesis, Retinol metabolism, and Neuroactive ligand-receptor
interaction (Figure 3E), suggesting that these key metabolic
functions are abnormal in CeD patients. The PLS-DA model of the
SCeD and CDFH groups revealed significant differences in
metabolites between the two groups (Figure 3B). The volcano plot
showed that under the conditions of p < 0.05 and VIP > 1, there were
1,897 differentially expressed metabolites (308 upregulated and
1,589 downregulated) (Figure 3D). KEGG analysis indicated that
these differential metabolites were mainly enriched in pathways
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including Steroid hormone biosynthesis, Primary bile acid
biosynthesis, and Tryptophan metabolism (Figure 3F), suggesting
that compared with the CDFH group, these key metabolic functions
are abnormal in SCeD patients. These analyses indicate that Steroid
hormone biosynthesis may play an important role in the
development of CeD.

The x-axis represents the fold change value of metabolite
expression difference between the two groups, i.e., log2FC; the y-axis
represents the statistical test value of the difference in metabolite
expression level change, i.e., —log10(p_value). The higher the value,
the more significant the expression difference.

4.2.2 Relationship between different types of CeD
and metabolites

The PLS-DA model results for the SCeD and CDF groups revealed
significant differences in metabolites between the two groups
(Figure 4A). Under the conditions of p <0.05 and VIP > 1, 1,835
differentially expressed metabolites were identified (599 upregulated
and 1,236 downregulated) (Figure 4B). KEGG analysis revealed that
differentially expressed metabolites were primarily enriched in
pathways including Tryptophan metabolism, Biosynthesis of plant
secondary metabolites, Biosynthesis of alkaloids derived from
shikimate pathway, and Degradation of flavonoids (Figure 4C).
Compared to the CDF group, 6-methyl-5-nitroquinoline
(FC = 15.8745), Nb-p-coumaroyltryptamine (FC = 11.9082), 2-oxo-3-
phenylpropanoate (FC = 9.0352), and 4-hydroxy-5-(phenyl)-valeric
acid-O-sulfate (FC = 7.4546) were significantly upregulated in the
SCeD group with large fold changes (Figure 4D).

4.3 Construction of diagnostic models for
CeD and SCeD based on differential
microorganisms and metabolites

We developed a diagnostic model for CeD (SCeD and CDF) based
on differential microorganisms and metabolites. To investigate the
diagnostic value of microorganisms in CeD, we employed the random
forest model to identify candidate microbial taxa for achieving the
optimal AUC value. Through feature selection with 10-fold cross-
validation, we ultimately selected five candidate microbial taxa to
construct the diagnostic model for CeD (AUC = 0.84, Figures 5A,B),
indicating that these five taxa hold potential as diagnostic biomarkers
for CeD. To investigate the diagnostic value of metabolites for CeD,
we selected the top 7 differential metabolites (ranked by species
importance) based on the random forest model to construct a
diagnostic model for CeD. Each of these 7 differential metabolites
individually exhibited high diagnostic value for CeD (AUC > 0.85, see
Supplementary Figure 54 for details), and the diagnostic model built
by combining these 7 differential metabolites achieved an AUC of 0.96
(Figures 5C,D). In addition, we constructed a combined diagnostic
model based on both differential microorganisms and differential
metabolites, which significantly improved the diagnostic value for
CeD (AUC = 0.98, Supplementary Figure S5). These results indicate
that the CeD diagnostic models constructed based on either
differential microorganisms or metabolites both have good diagnostic
value. However, the current sample size is limited, and their diagnostic
efficacy has not been validated in larger-scale, more diverse clinical
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cohorts. Therefore, these models are not yet ready for direct
application in clinical testing.

To explore the diagnostic ability of differential microorganisms and
differential metabolites for SCeD, we performed random forest regression
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analysis based on differential microorganisms and used the top 8
microorganisms (ranked by importance) to establish a diagnostic model.
The combined diagnostic model constructed based on these 8
microorganisms achieved an AUC of 0.97 (Figures 5E,F), indicating
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excellent diagnostic efficacy of this model—i.e., these 8 microorganisms 4.4 Correlation analysis of differential
have the potential to serve as potential biomarkers for SCeD. Furthermore, ~ MiCrOO rgan isms and differential

based on the VIP values of differential metabolites between the two  Metabolites

groups, we selected the top 6 metabolites (ranked by VIP values) to

establish a diagnostic model (AUC > 0.9, Figures 5G,H). The AUC values Given the significant differences in microbial and metabolite levels
of Hymatoxin D, 2',4’,6'- Trihydroxydihydrochalcone, Clozapine N-oxide, ~ across subgroups, and considering that combining these factors
Imazamethabenz-methyl, Nb-p-Coumaroyltryptamine, and 6-methyl-5-  enhances diagnostic performance, analyzing correlations between

nitroquinoline were 1, 0.9667, 1, 1, 0.9143, and 0.9119, respectively. The ~ microorganisms and metabolites is of great significance. Spearman
results indicated that these metabolites may have the ability to distinguish ~ correlation analysis revealed correlations between the top 20
between SCeD and CDFH. In conclusion, these differential  differentially abundant microorganisms and metabolites, as shown in
microorganisms and metabolites exhibit good discriminatory potential ~ Figure 6. Correlation analysis between CeD and CDFH groups revealed
for the SCeD group. that Bacteroides and Alistipes were positively correlated with
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Docosa-4,7,10,13,16,19-hexaenoic acid ethyl ester, Tetracosahexaenoic
acid, and 3-Ketocholanic Acid; and negatively correlated with
N-Acetylcadaverine, Lauryldiethanolamine, and Farnesyl acetone
(Figure 6A). Spearman correlation analysis between the SCeD group
and CDFH group revealed consistent relationships between Bacteroides
and CAG-352 with metabolites: both showed significant positive
correlations with multiple metabolites including Vaccenic acid,
3-Ketocholanic Acid, and Docosa-4,7,10,13,16,19-hexaenoic acid ethyl
ester; while negatively correlated with Lauryldiethanolamine, Xanthine,
and L-Isoleucine. Bifidobacterium, Collinsella, and Dorea showed
positive correlations with Indoline and Lauryldiethanolamine, and
negative correlations with Mesobilirubinogen, Vaccenic acid, and St
(28:1_o_s) (Figure 6B). In both SCeD and CDF groups, Bacteroides
showed positive correlations with Mesobilirubinogen, Cholesterol
sulfate, and Tetracosahexaenoic acid; and negative correlations with
ethyl
Lauryldiethanolamine. Microorganisms such as Collinsella, Dorea, and

Docosahexaenoic  acid ester, L-Isoleucine, and
Gemmiger were positively correlated with Docosahexaenoic acid ethyl
ester, L-Isoleucine, and Lauryldiethanolamine; negatively correlated
with 14-Methylpentadecanoic acid, Docosa-4,7,10,13,16,19-hexaenoic

acid ethyl ester, and Tetracosahexaenoic acid (Figure 6C).

5 Discussion

In this study, we analyzed 16 s IDNA sequencing and LC-MS data
from 74 fecal samples and identified differences in various
microorganisms and metabolites across comparative groups. Integrated
multi-omics analysis revealed specific microbes and metabolites
associated with the occurrence and symptoms of CeD. The multi-omics
integration approach helped uncover biologically relevant pathways in
CeD, while machine learning enabled the identification of multiple
biomarkers capable of effectively distinguishing the SCeD group from the
CDFH group. Furthermore, our results demonstrated differences in
microorganisms and metabolites between the symptomatic CeD group
(CDF) and the asymptomatic CeD group (SCeD), indicating the
important role of microbes and metabolites in driving CeD symptoms.

At the phylum level, Firmicutes accounted for the highest
proportion across all groups, which is consistent with previous CeD
studies reporting Firmicutes as the dominant phylum in fecal
microbiota (Constante et al., 2022). Apart from Firmicutes, the SCeD
group showed a higher proportion of Actinobacteria. Actinobacteria
are Gram-positive bacteria widely distributed in nature and exhibit a
dual functional nature. Bifidobacteria, representative probiotics within
this phylum, can protect the intestine by modulating immune
responses and enhancing the intestinal barrier (Al-Sadi et al., 2021;
Zhou et al., 2024). However, the genus Actinomyces constitutes
55-68% of Actinobacteria and, along with its related metabolites,
plays a pathogenic role in genitourinary tract infections and
actinomycosis (Gajdacs and Urban, 2020; Kononen and Wade, 2015).
Additionally, one study reported elevated levels of Actinobacteria in
cancer groups of unknown primary origin (Dorobisz et al., 2024).
Another study indicated that CeD patients had relatively higher
proportions of Firmicutes and Actinobacteria compared to treated
subjects [68].
be associated with the development and progression of CeD.

At the genus level, compared with the CDFH group, the CeD
group exhibited lower abundances of Bacteroides, Faecalibacterium,

These findings suggest that Actinobacteria may

Blautia, Agathobacter, and Alistipes, and higher abundances of
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Segatella and Bifidobacterium. The change in Bacteroides abundance
was consistent with the findings of a previous study (Di Biase et al.,
2021). Studies have shown that Bacteroides can enhance intestinal
barrier function, regulate immunity, and modulate inflammation by
producing short-chain fatty acids (SCFAs) (Brown et al., 2019); thus,
immune dysregulation and intestinal barrier dysfunction in CeD
patients may be closely associated with Bacteroides. However, other
studies have indicated that Bacteroides dominates the duodenal
microbiota in active CeD (Lupu et al., 2023). Such discrepancies
among different studies may be closely related to disease status and
sample type. The changes in Faecalibacterium and Blautia were also
consistent with previous research, showing a significant decrease in
their abundances in CeD (Shi et al., 2022). Agathobacter abundance
was higher in groups with high genetic risk (HLA DQ2/DQ8 positive)
and positive serum antibodies, while Alistipes abundance was higher
in non-high-risk groups (Aguayo-Patron et al., 2023). Additionally,
studies have reported that Agathobacter—a genus that produces
SCFAs—is reduced in CeD (Jing et al., 2023), which is consistent with
the results of our study. The mechanism underlying the role of
Segatella in CeD remains unclear. However, studies have shown that
Segatella abundance is increased in rheumatoid arthritis (RA), and its
potential role in the pathogenesis of RA may involve stimulating
helper T cell (Th) 17 populations and inducing the production of Th17
cell-related cytokines (IL-6 and IL-23) (Korzeniowska et al., 2024).
IL-6, IL-23, and Th17 cells have also been reported in CeD-related
studies (Fryk et al., 2024). Therefore, the presence of CeD-related
inflammatory factors may be associated with Segatella.

Compared with the CDFH group, the SCeD group exhibited
significantly lower abundances of Bacteroides, Alistipes, and CAG-352,
higher
Bifidobacterium, Blautia, Collinsella, Dorea, Mediterraneibacter,

and significantly abundances of genera including
Gemmiger, and Ligilactobacillus. Since no detailed reports on the
microbiota of SCeD patients have been published previously, we can
only provide a possible explanation for the development of SCeD
based on the inherent functions of the bacteria themselves. Some
bacteria with anti-inflammatory effects (Blautia, Gemmiger) were
more abundant in the SCeD group; it is hypothesized that the
microbiota may compensate for the host’s physiological imbalance by
increasing probiotics, thereby alleviating the occurrence of symptoms
(Chandrasekaran et al., 2024). Studies have shown that the abundance
of Bacteroides is lower in patients with inflammatory bowel disease
(IBD) (Zhou and Zhi, 2016), and supplementation with Bacteroides
thetaiotaomicron and its inactivated form can alleviate colitis by
inhibiting the activation of macrophages (Yinhe et al., 2024). Research
indicates that insufficient dietary fiber intake may lead to the
overgrowth of Collinsella, alter the overall fermentation pattern of the
gut microbiota, and exert potential adverse effects on the host’s
metabolic and inflammatory health (Gomez-Arango et al., 2018).
However, other studies have shown that ursodeoxycholic acid
produced by Collinsella can inhibit cytokine storm syndrome and
prevent COVID-19 infection (Hirayama et al., 2021). It is evident that
Collinsella plays different roles in different diseases; it may exert a
beneficial effect in SCeD, and further research is needed to confirm
this. Studies have reported that Mediterraneibacter is enriched in fecal
samples from mice with polycystic ovary syndrome (PCOS), as well
as in samples from patients with irritable bowel syndrome (IBS) and
colorectal polyps (Huang E et al., 2024; Intarajak et al., 2024; Jagare
et al., 2023). The abundance of Escherichia-Shigella is increased in
various diseases, such as chronic pancreatitis, pancreatic ductal
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adenocarcinoma (PDAC), autism spectrum disorder (ASD), and
inflammatory bowel disease (IBD) (Chen et al., 2024; Hong et al,,
2024; Valenzuela-Zamora et al., 2022). In conclusion, the development
and specificity of SCeD may be the result of interactions among
multiple microorganisms. However, the complex and diverse
interactions require support from more basic experiments.

Compared with the CDF group, the SCeD group exhibited a
significantly lower abundance of Bacteroides, and significantly higher
abundances of Bifidobacterium, Faecalibacterium, Blautia, Collinsella,
Agathobacter,  Dorea,  Mediterraneibacter, ~ Gemmiger,  and
Anaerobutyricum. This corresponds with findings from other studies
indicating that Bacteroides is associated with inflammation, while
Bifidobacterium and Faecalibacterium possess anti-inflammatory
properties (Charlet et al., 2020; Huang Y. et al., 2024; Quévrain et al.,
2016). The abundances of Faecalibacterium and Agathobacter were
significantly higher in the SCeD group than in the CDF group. Studies
have shown that butyrate— a fermentation product of Faecalibacterium
prausnitzii, a key member of the Faecalibacterium genus—exerts anti-
inflammatory effects via the NOD2-mediated signaling pathway. It
promotes the expression of anti-inflammatory cytokines (e.g., IL-10 and
IFN-v), inhibits the expression of pro-inflammatory cytokines (e.g.,
IL-12), and exerts a protective effect on the intestinal mucosa (Touch
etal., 2022). Furthermore, our analysis at the species level revealed that
the abundance of Faecalibacterium prausnitzii was significantly higher
in the SCeD group than in the CDF group. Therefore, the high
abundance of Faecalibacterium prausnitzii may inhibit pro-inflammatory
cytokine expression, promote anti-inflammatory cytokine expression,
and enhance immune responses—thereby preventing the development
of relevant clinical symptoms in SCeD patients. Studies have reported
that Agathobacter and its metabolic product butyrate can alleviate
neuroinflammation induced by Alzheimer’s disease (AD) by regulating
the NF-kB signaling pathway (Lv et al., 2024). Additionally, earlier
studies have identified NF-kB as a potential molecular target for
regulating inflammatory responses in celiac disease (CeD) (Maiuri
etal., 2003). In conclusion, the increased abundances of Faecalibacterium
and Agathobacter may be important contributing factors to the absence
of clinical symptoms in SCeD patients. The results of this sequencing
data will provide a certain theoretical basis for subsequent experiments.

In metabolomic studies, it has been found that changes in
metabolites are associated with a variety of diseases (Yuan et al., 2024),
such as inflammatory bowel disease (IBD), type 1 diabetes mellitus
(T1DM), and systemic lupus erythematosus (SLE) (Huang et al., 2022;
Lietal, 2024; Vich Vila et al.,, 2023; Zeng et al., 2022); however, there
are relatively few metabolomic studies on SCeD. In the present study,
through LC-MS analysis, we found that the SCeD group exhibits
unique metabolic profiles compared with the CDFH group and CeD
group. Compared with the CDFH group, 1,897 metabolites were
differentially expressed in the SCeD group (p <0.05, VIP > 1).
Through KEGG analysis, these differential metabolites were mainly
enriched in pathways such as Steroid hormone biosynthesis, Primary
bile acid biosynthesis, and Tryptophan metabolism. Under the
conditions of p<0.05 and VIP > 2, there were 44 differentially
expressed metabolites (4 upregulated and 40 downregulated). The four
upregulated metabolites—Tetrahydrodeoxycortisol, Hymatoxin D,
Imazamethabenz-methyl, and Ile-Asp-may play a role in the
development and progression of SCeD.

Compared with the CDF group, a total of 1,835 metabolites were
differentially expressed between the SCeD group and the CDF group
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(p<0.05, VIP>1). Through KEGG analysis, these differential
metabolites were mainly enriched in pathways such as Tryptophan
metabolism, Biosynthesis of plant secondary metabolites, Biosynthesis
of alkaloids derived from the shikimate pathway, and Degradation of
flavonoids. Existing studies have shown that tryptophan metabolism is
altered in CeD patients, and the score of the Gastrointestinal Symptom
Rating Scale (GSRS) was also significantly reduced after tryptophan
intervention (Asgari et al, 2025). In our study, the abundance of
(+/=)-Tryptophan in the SCeD group was higher than that in the CDF
group. Additionally, studies have indicated that tryptophan metabolites
regulate intestinal barrier function via the aryl hydrocarbon receptor
(AhR) (Lamas et al., 2020). Furthermore, research has suggested that
tryptophan has the potential to treat CeD by regulating immune
responses (Asgari et al., 2025). This also provides certain evidence
supporting the role of tryptophan metabolism in the clinical symptoms
of CeD. Combined with the microbial findings, flavonoids can
be converted into short-chain fatty acids (SCFAs) by a variety of
bacteria, and the converted SCFAs improve the intestinal barrier
through anti-inflammatory effects (Al-Khayri et al., 2022; Liu et al.,
2021). Compared with the CDF group, the abundances of
6-methyl-5-nitroquinoline, Nb-p-Coumaroyltryptamine, 2-oxo-3-
phenylpropanoate, and 4-Hydroxy-5-(phenyl)-valeric acid-O-sulfate
were higher in the SCeD group.6-methyl-5-nitroquinoline contains a
quinoline structure and may be associated with the aryl hydrocarbon
receptor (AhR) pathway. AhR is a transcription factor that can
be activated by a variety of ligands; activated AhR can promote the
differentiation of regulatory T cells (Treg cells), and Treg cells possess
immunosuppressive functions that can alleviate inflammatory responses
(Zeng et al., 2022). 4-Hydroxy-5-(phenyl)-valeric acid-O-sulfate is a
compound related to flavan-3-ol metabolism. Some studies have shown
that flavan-3-ols and their metabolites have anti-inflammatory activity
(Yang Q. et al., 2022). Multiple studies have demonstrated that changes
in microorganisms and metabolites can protect the intestinal barrier by
regulating the inflammatory state (Gilsenan et al., 2024; Li S. et al.,, 2023).
Based on the random forest model, we found that differential
microorganisms and differential metabolites not only exhibited
excellent diagnostic performance for CeD (the microbial-based model
achieved an AUC of 0.84, the metabolite-based model an AUC of 0.96,
and the combined model of differential microorganisms and
metabolites an AUC of 0.98) but also showed good diagnostic
performance for SCeD (the microbial-based model achieved an AUC
of 0.97, and the metabolite-based model an AUC > 0.9). However,
given the small sample size in our study, their diagnostic efficacy (e.g.,
sensitivity and specificity) still needs to be validated in larger-scale and
more diverse clinical cohorts, and the models are not yet ready for
direct application in clinical testing. Nevertheless, this also suggests
that microorganisms and metabolites have the potential to serve as
diagnostic biomarkers for SCeD. Multiple studies have indicated that
changes in fecal metabolites are associated with gut microbiota during
disease progression, such as in ulcerative colitis (UC), metabolic-
associated fatty liver disease (MAFLD), and primary Sjogren’s
syndrome (pSS) (Yang et al., 2022a,b; Yang et al., 2021). In this study,
via Spearman correlation analysis, we identified a certain correlation
between differential microorganisms and differential metabolites.
This study also has certain limitations. First, the sample size
included in the study is small, with only 14 cases in the SCeD group,
which is insufficient to fully reflect the changes in gut microbiota and
metabolites in SCeD patients. Future studies should expand the
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sample size of SCeD patients to explain the unique gut microbiota and
metabolic characteristics of these patients.

Second, CeD is a heterogeneous disease, encompassing classic
CeD, atypical CeD, and SCeD. In this study, we only compared the
differences in microbiota and metabolites between the CDF group and
the SCeD group, while the gut microbiota and metabolomic
characteristics of other CeD subtypes were not reflected. Additionally,
gut microbiota and metabolomic results are influenced by factors such
as environment, diet, and geography. All patients included in this study
were from Xinjiang, China, and Xinjiang has its unique geographical
and dietary environments—this may result in the lack of generalizability
of the study’s findings. In the future, larger-sample longitudinal studies
can be conducted, with the incorporation of dietary data, to validate
the current research results and control for confounding variables.

6 Conclusion

We detected the microbiota and metabolites in fecal samples from
SCeD patients using 16S rDNA sequencing and liquid chromatography-
mass spectrometry (LC-MS). The results showed that there were
differences in microbiota and metabolites between the CeD group
(including SCeD and CDF) and the CDFH group, between the SCeD
group and the CDFH group, and between the SCeD group and the CDF
group. In addition, correlation analysis revealed a correlation between
changes in differential microorganisms and differential metabolites
across different groups. In this study, we found that both the
composition and abundance of gut microbiota and metabolites in CeD
patients had changed. Patients with different CeD subtypes (SCeD and
CDF) exhibited unique fecal microbiota and metabolite characteristics.
Therefore, changes in microorganisms and metabolites not only
participate in the development of CeD but also are associated with
different subtypes of CeD. In conclusion, the pathogenesis of different
CeD subtypes may involve a “host-microbe-metabolite” trinity
interaction network. Based on machine learning, a random forest model
can be established using differential microorganisms and metabolites
between the SCeD group and the CDFH group, serving as a diagnostic
tool for SCeD. Additionally, modulating the differential microorganisms
and metabolites across groups can act as a new entry point for studying
the mechanism of CeD and an adjunctive approach for its treatment.
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