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Introduction: Celiac Disease (CeD) is an autoimmune small intestinal disorder 
triggered by gluten, with clinical subtypes including typical, atypical, and 
asymptomatic forms.While classic CeD development is linked to microbes/
metabolites, their relationships with other subtypes remain unclear.
Methods: We conducted 16S rDNA sequencing on fecal samples from 14 
asymptomatic CeD (SCeD) patients and integrated this data with our team’s 
prior sequencing data of 30 classic CeD (CDF) patients and 30 healthy controls 
(CDFH).
Results: 16S rDNA results showed: Compared to CDFH, SCeD had lower 
abundances of Bacteroides, Alistipes, CAG-352 and higher abundances of 
Blautia, Collinsella, Dorea, Mediterraneibacter, Gemmiger; a random forest 
model based on 8 differential microbes distinguished SCeD from CDFH 
(AUC = 0.97). Compared to CDF, SCeD had lower Bacteroides and higher 
Faecalibacterium, Blautia, Collinsella, Agathobacter—suggesting Bacteroides 
may relate to CeD symptoms, while Faecalibacterium and Agathobacter may 
alleviate symptoms. Metabolomic analysis identified differential metabolites 
between SCeD and CDFH (enriched in “Steroid Hormone Biosynthesis,” 
“Primary Bile Acid Biosynthesis,” “Tryptophan Metabolism” via KEGG) and 
between SCeD and CDF (enriched in “Tryptophan Metabolism,” “Biosynthesis of 
Plant Secondary Metabolites,” “Degradation of Flavonoids”). Spearman analysis 
showed correlations between differential microbes and metabolites.
Discussion: In conclusion, different CeD subtypes may involve a “host-
microbe-metabolite” trinity network: A random forest model built with SCeD-
CDFH differential microbes/metabolites is a high-efficacy SCeD diagnostic tool; 
modulating these microbes/metabolites could be a new entry point for CeD 
mechanism research and adjunctive therapy.
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1 Introduction

Celiac Disease (CeD) is an autoimmune enteropathy triggered by 
exposure to dietary gluten in genetically susceptible individuals 
(Catassi et al., 2022). The global prevalence of CeD is approximately 
1.4%, and recent studies indicate a rising trend in its prevalence—
posing a significant impact on patients’ quality of life and overall 
health (Lebwohl and Rubio-Tapia, 2021). CeD presents with a wide 
range of clinical manifestations, most commonly gastrointestinal 
symptoms such as abdominal pain and diarrhea; additionally, patients 
with CeD face an increased risk of developing complications affecting 
other bodily systems (Catassi et  al., 2022). However, a subset of 
patients show no obvious clinical symptoms and are therefore 
classified as having asymptomatic celiac disease (SCeD). As a distinct 
subtype of CeD, SCeD is defined by the absence of overt clinical 
symptoms, alongside positive serological test results and pathological 
changes in the small intestinal mucosa (Marsh grade ≥ 2). Notably, 
SCeD patients remain at risk of progressing to classic celiac disease 
(CDF) or developing other related complications (Laurikka et al., 
2022). Given the heterogeneity of CeD subtypes, analyzing only a 
single subgroup makes it challenging to address complex research 
questions. Timely intervention after diagnosis, for example, strict 
adherence to a gluten-free diet (Gluten-Free Diet, GFD), can 
effectively curb the progression of the disease and prevent the 
occurrence of complications (Aljada et al., 2021). That said, due to the 
lack of typical symptoms in SCeD, conventional diagnostic approaches 
often lead to missed diagnoses. Early detection of SCeD is critical for 
preventing complications like malnutrition, osteoporosis, and elevated 
risk of malignant tumors; delayed diagnosis resulting from missed 
cases significantly increases the likelihood of these adverse outcomes. 
Thus, novel diagnostic strategies are urgently needed to enhance the 
diagnostic efficiency of SCeD (Makharia et  al., 2022). Ultimately, 
understanding the differences in microbial communities and 

metabolite profiles across various CeD subtypes can facilitate both the 
diagnosis and adjuvant treatment of CeD.

The intestine, a digestive organ consisting of the large and small 
intestines, is often referred to as “the human body’s second brain.” As 
a key “microbial organ” in humans, the gut microbiota plays a pivotal 
role in maintaining intestinal homeostasis, regulating immune 
responses, and facilitating nutrient metabolism (Zhao et al., 2023). 
Studies have shown that gut microbial dysbiosis is associated with 
various gastrointestinal disorders (Li H. et  al., 2023); it produces 
diverse metabolites—such as bile acids, short-chain fatty acids, 
tryptophan, and methane—all of which are critical for intestinal 
peristalsis and secretion (Fan et  al., 2022). Moreover, research has 
demonstrated that gut microbial dysbiosis is closely associated with the 
development and progression of multiple autoimmune diseases, 
including CeD (Han et al., 2025). Furthermore, CeD development is 
shaped by genetic background, diet, and environment—and these same 
factors also modulate the gut microbiota (Gupta et  al., 2023). 
Specifically, research focusing on patients with classic celiac disease 
(CDF) has confirmed that, when compared to healthy controls, CDF 
patients show marked changes in gut microbial community structure. 
Such changes include higher abundances of specific pathogenic 
bacteria and lower abundances of beneficial bacteria. These microbial 
shifts are not only directly linked to intestinal mucosal barrier damage 
but also influence immune-inflammatory responses through 
metabolite regulation, ultimately driving the pathological initiation, 
progression, and symptom onset of CDF (Bascuñán et al., 2025; Catassi 
et  al., 2024). Certain bacteria elicit host immune responses by 
expressing epitopes analogous to gliadin (Belei et al., 2023), whereas 
other microbes induce intestinal mucosal damage by disrupting host 
immune responses (Acharya et al., 2024), ultimately contributing to 
CeD’s clinical manifestations. In contrast, specific beneficial microbes 
can alleviate disease symptoms by preserving intestinal microecological 
balance (Peng et al., 2022). Alterations in gut microbiota composition 
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typically result in shifts in metabolite profiles (Koh and Bäckhed, 2020). 
Metabolomics allows for comprehensive analysis of endogenous 
metabolite alterations in biological systems, providing insights into an 
organism’s physiological and pathological status (Rostami-Nejad et al., 
2024). In CeD research, metabolomic technologies have been used to 
identify potential biomarkers and uncover disease-related metabolic 
pathways (Girdhar et al., 2023). Early studies conducted metabolomic 
analyses on samples from CD patients and healthy controls (CDH), 
revealing a series of disease-associated differential metabolites involved 
in multiple metabolic pathways such as energy metabolism, amino acid 
metabolism, and lipid metabolism. These findings provided new 
insights into the pathogenesis of celiac disease (Kelley et al., 2025). 
Additionally, metabolomics has been applied to analyze changes in 
metabolites in CeD patients before and after a gluten-free diet (GFD) 
(Vacca et al., 2022). However, these studies have primarily focused on 
celiac disease with typical symptoms, while the characteristics of the 
microbial community, metabolic alterations, and their interactions in 
SCeD patients remain unclear. Currently, there is still a lack of reported 
research on the microbiota and metabolites in SCeD patients.

Combining the use of 16S rDNA sequencing and untargeted 
metabolomics enables an understanding of disease pathogenesis from 
two perspectives: the gut microbial community and metabolite levels 
(Zhao et al., 2025). 16S rDNA sequencing can accurately characterize 
changes in the composition and structure of the gut microbial 
community, while untargeted metabolomics can capture disease-
related metabolite fingerprint profiles. The combination of these two 
techniques helps reveal the interaction between microbes and host 
metabolism, providing more comprehensive insights into the 
pathogenesis of celiac disease (CeD) (Gu et al., 2024). Therefore, based 
on 16S rDNA sequencing and untargeted metabolomics, this study 
aims to investigate the roles of microbes and metabolites in different 
subtypes of CeD. Specifically, by comparing differences in microbes 
and metabolites between the asymptomatic CeD (SCeD) group and the 
healthy control (CDFH) group, we  seek to identify microbes and 
metabolites with diagnostic value for SCeD. A diagnostic model will 
then be developed using machine learning, providing new methods 
and tools for the early diagnosis of SCeD. Additionally, by analyzing 
differences in microbes and metabolites between the SCeD group and 
the classic CeD (CDF) group, this study explores the roles of microbes 
and metabolites in the development of different CeD subtypes. This 
work not only provides a theoretical basis for a deeper understanding 
of the progression of different CeD subtypes but also lays the 
groundwork for the development of new therapeutic strategies.

2 Materials

2.1 Patients and healthy controls

Starting in 2022, the Gastroenterology Department of the People’s 
Hospital of Xinjiang Uygur Autonomous Region initiated an 
epidemiological survey. A total of 5,600 individuals participated in this 
investigation. Through screening, 54 patients tested positive for tTG were 
identified. Based on the questionnaires, 14 individuals who exhibited no 
clinical symptoms but had tTG levels greater than 200 were included in 
the SCeD group. Additionally, 30 patients with typical CeD diagnosed in 
our team’s earlier study were included as the CDF group, along with 30 
healthy controls (CDFH group) who were negative for both EMA and 
tTG antibodies, matched by ethnicity, gender, and age (±3 years) (Shi 

et al., 2022). Thus, this study included a total of 44 cases in the disease 
group (CeD) (14 SCeD cases with complete epidemiological survey 
information and stool samples, and 30 CDF cases) and 30 cases in the 
healthy control group (CDFH), All participants included in this study 
are from the Xinjiang Uygur Autonomous Region of China. The 
inclusion and exclusion criteria for this study are as follows:

Inclusion criteria: CDF group: Positive for serum tissue 
transglutaminase IgA (tTG-IgA) or endomysial antibody IgA (EMA-
IgA), with celiac disease (CeD) confirmed by small intestinal biopsy 
combined with histopathological diagnosis (Bai and Ciacci, 2017). SCeD 
group: Serum tTG-IgA titer 10 times the normal value, positive for 
EMA-IgA, and exempt from biopsy for direct diagnosis of CeD (Rubio-
Tapia et al., 2023). Healthy control group: Negative for serum tTG-IgA 
or EMA-IgA, on a normal diet, and no chronic diseases in recent periods.

Exclusion criteria: Patients with other autoimmune diseases 
(including inflammatory bowel disease [IBD], autoimmune gastritis, 
type 1 diabetes mellitus [T1DM], and rheumatoid arthritis [RA]); 
Patients with other specific gastrointestinal infections (bacterial or 
viral infections) or parasitic infections; Pregnant or lactating women; 
Patients who have received antibiotic or probiotic treatment recently; 
Patients who are unwilling to participate in this study. Patients 
meeting any of the above criteria will be excluded from the study.

All participants in this study signed the informed consent form. 
This study was approved by the Ethics Committee of the People’s 
Hospital of Xinjiang Uygur Autonomous Region, with the Ethics 
Approval Number: KY20220311067.

3 Methods

3.1 16S rDNA sequencing and data 
processing

Total genomic DNA was extracted from stool samples of the enrolled 
population using the FastPure Stool DNA Isolation Kit (MJYH, 
Shanghai, China) according to the manufacturer’s instructions. DNA 
integrity was assessed by 1% agarose gel electrophoresis, and 
concentration and purity were determined using the NanoDrop2000 
(Thermo Scientific, United  States). Using the extracted DNA as a 
template, PCR amplification of the 16S rRNA gene V3-V4 variable 
region was performed with the barcoded upstream primer 338F 
(5’-ACTCCTACGGGAGGCAGCAG-3′) and downstream primer 806R 
(5’-GGACTACHVGGGTWTCTAAT-3′) (Marascio et  al., 2023). 
Libraries were constructed using the NEXTFLEX Rapid DNA-Seq Kit, 
followed by adapter ligation, magnetic bead selection, PCR amplification, 
and magnetic bead recovery. Sequencing was performed on the Illumina 
NextSeq  2000 platform. Raw sequencing reads underwent quality 
control and assembly using fastp (Chen et al., 2018) (version 0.19.6) and 
FLASH (Magoč and Salzberg, 2011) (version 1.2.11). Reads were filtered 
for low-quality bases, short reads, and N-containing bases as required. 
Sequences were assembled based on overlap relationships and screened, 
with orientation adjusted according to barcodes and primers. OTUs were 
clustered at 97% similarity using UPARSE v7.1 (Edgar, 2013), and 
chimeras were removed. Sample sequences were downsampled to 20,000 
sequences, achieving an average sequence coverage of 99.09% post-
downsampling. OTU species taxonomic annotation was performed 
using RDP classifier (version 2.11) with a confidence threshold of 70%. 
Functional prediction analysis of 16S rRNA genes was conducted using 
PICRUSt2 (Douglas et al., 2020) (version 2.2.0).
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3.2 Sample preparation, sequencing, and 
data processing for LC–MS

3.2.1 Solid sample processing
Place 50 mg of solid sample into a 2 mL centrifuge tube. Add one 

6 mm diameter grinding bead. Extract metabolites using 400 μL of 
extraction solution (methanol:water = 4:1) for metabolite extraction. 
Grind for 6 min at −10 °C and 50 Hz using a cryogenic tissue grinder. 
Perform low-temperature ultrasonic extraction at 5 °C and 40 kHz for 
30 min. After standing at −20 °C for 30 min, centrifuge at 4 °C and 
13,000 g for 15 min. Transfer the supernatant to vials with inserts for 
instrument analysis. Equal volumes of metabolites from all samples 
were pooled to create QC samples. During instrument analysis, one 
QC sample was inserted every 5–15 samples to assess analytical 
process repeatability.

The analysis was performed on a Thermo Fisher Scientific Ultra 
High Performance Liquid Chromatography-Quadrupole-Tandem 
Mass Spectrometry system (UHPLC-Q Exactive HF-X) (Shanghai 
Meiji Biotechnology Co., Ltd.). Chromatographic conditions were as 
follows: 3 μL of sample was injected and separated on an HSS T3 
column (100 mm × 2.1 mm i.d., 1.8 μm). Mobile phase A: 95% water 
+ 5% acetonitrile (containing 0.1% formic acid); Mobile phase B: 
47.5% acetonitrile + 47.5% isopropanol + 5% water (containing 0.1% 
formic acid). Flow rate: 0.40 mL/min; Column temperature: 
40 °C. Mass spectrometry employed both positive and negative ion 
scanning modes. The mass scan range was 70–1,050 m/z. Sheath gas 
flow rate was 50 psi, auxiliary gas flow rate was 13 psi, auxiliary gas 
heating temperature was 425 °C, positive mode ion spray voltage was 
3,500 V, negative mode −3,500 V, ion transfer tube temperature 
325 °C, normalized collision energy 20–40–60 V cycle, MS1 resolution 
60,000, MS2 resolution 7,500, data acquired in DDA mode.

Raw data were imported into Progenesis QI software for baseline 
filtering, peak identification, and other processing steps, yielding a 
data matrix containing retention times, mass-to-charge ratios, and 
peak intensities. Metabolite information was obtained by matching 
MS and MS/MS data against the HMDB, Metlin, and Meiji’s 
proprietary databases. The data matrix was uploaded to the Meiji 
Cloud platform, where it underwent the following preprocessing 
steps: 80% rule for missing value imputation, sum normalization, 
removal of QC samples with RSD > 30%, and log10 transformation. 
PCA and OPLS-DA analyses were performed using the R package 
ropls. Model stability was assessed through 7-fold cross-validation. 
Significantly different metabolites were identified based on VIP > 1 in 
the OPLS-DA model and p < 0.05 in Student’s t-tests. Finally, pathway 
annotation of differential metabolites was performed using the KEGG 
database, followed by pathway enrichment analysis with the Python 
scipy.stats package. Fisher’s exact test was applied to identify relevant 
biological pathways.

3.3 Statistical analysis

All data analyses were conducted on the Majorbio Cloud Platform.1 
Alpha diversity analysis: The mothur software (Schloss et al., 2009) was 

1  https://cloud.majorbio.com

used to calculate Alpha diversity indices (e.g., Chao 1, Shannon), and 
the Wilcoxon rank-sum test was applied to analyze differences in Alpha 
diversity across groups. Microbial community structure analysis: 
Principal Coordinate Analysis (PCoA) based on the Bray-Curtis 
distance algorithm, combined with the PERMANOVA non-parametric 
test, was used to analyze the similarity and differences in microbial 
community structure among samples. Screening of differentially 
abundant bacterial taxa: Linear Discriminant Analysis Effect Size 
(LEfSe) analysis (Barberán et  al., 2012) (with thresholds: LDA > 2, 
p < 0.05) was performed to identify bacterial taxa with significant 
differences in abundance between groups. Impact of clinical indicators: 
Distance-based Redundancy Analysis (db-RDA) was used to investigate 
the influence of clinical indicators on gut bacterial community structure; 
linear regression analysis was employed to evaluate the effect of key 
clinical indicators on microbial Alpha diversity indices. Correlation 
network analysis: Species were selected for correlation network analysis 
[80] based on Spearman correlation analysis (with thresholds: |r| > 0.6, 
p < 0.05). Differences among multiple groups were analyzed using the 
Kruskal-Wallis test, while comparisons between two groups (CeD-
CDFH, SCeD-CDFH, SCeD-CDF) employed Student’s t-test. 
Differences were considered statistically significant at p < 0.05. 
Differential metabolite analysis within each subgroup was screened 
using p-values and Variable Importance Projection (VIP) scores, 
defining metabolites with p < 0.05 and VIP > 1 as differentially altered. 
All significantly altered metabolites or bacterial species were 
incorporated into a random forest model, with highly important 
microbes and metabolites used to construct diagnostic models. Receiver 
operating characteristic (ROC) curves were plotted using R software 
packages, and area under the curve (AUC) was calculated to evaluate 
predictive model performance. Pearson correlation analysis was 
employed to assess correlations between differential metabolites and 
differential microbial communities, with analyses conducted at the 
genus level.

4 Results

4.1 CeD-induced gut microbiota alterations 
based on 16S rDNA data

For 16S rDNA sequencing, the generated sequences were clustered 
at the operational taxonomic unit (OTU) level with 97% similarity to 
reveal the composition of the gut microbiota. The Shannon diversity 
rarefaction curve tended to flatten (Figure 1A), indicating that the 
amount of sequencing data was appropriate and reasonable for 
representing the microbial community. In general, both the Shannon 
index and Chao index of the CeD group were lower than those of the 
CDFH group (Figures 1B,C). After dividing the disease group into 
different subtypes, the Sobs index of the SCeD group showed that the 
species richness of the SCeD group was lower than that of the other 
two groups (Supplementary Figures S1B,C). There was no significant 
difference in the Shannon index between the SCeD group and the 
CDF group, but both were significantly lower than that of the CDFH 
group (p < 0.05) (Figure 1D), which indicated that the species diversity 
of the disease groups was lower. The results of the Simpson index were 
consistent with those of the Shannon index. There was a significant 
difference in the Chao index between the SCeD group and the CDF 
group, with the SCeD group being lower than the CDF group 
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(p < 0.05) (Figure 1E). Regarding the microbiota β-diversity, at the 
species and genus levels, there were certain differences in the principal 
coordinate analysis (PCoA) between the CeD group and the CDFH 
group (Figures  1F,G); there were significant differences in PCoA 
among the SCeD, CDF, and CDFH groups (Figures 1H,I).

We compared the relative abundance of gut microbiota at the 
phylum and genus levels between the CeD group (CDF group and 

SCeD group) and the CDFH group. At the phylum level, compared 
with CDFH, the CeD group exhibited lower abundance of Bacillota 
and Bacteroidota, while showing higher abundance of Actinomycetota 
and Pseudomonadota (Figure 2A). At the genus level, compared with 
CDFH, the CeD group exhibited lower abundances of Bacteroides, 
Faecalibacterium, Blautia, Agathobacter, and Alistipes; while Segatella 
and Bifidobacterium showed higher abundances (Figure 2B).

FIGURE 1

α-diversity and β-diversity. (A) Shannon diversity rarefaction curve. (B) Shannon index of the CeD group and CDFH group. (C) Chao index of the CeD 
group and CDFH group. (D) Shannon index of the SCeD group, CDF group, and CDFH group. (E) Chao index of the SCeD group, CDF group, and 
CDFH group. (F) β-diversity of the CeD group and CDFH group at the genus level. (G) β-diversity of the CeD group and CDFH group at the species 
level. (H) β-diversity of the SCeD group, CDF group, and CDFH group at the genus level. (I) β-diversity of the SCeD group, CDF group, and CDFH group 
at the species level.
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FIGURE 2

Microbial composition. (A) Phylum-level composition of the CeD group and CDFH group. (B) Genus-level composition of CeD and CDFH groups. 
(C) Phylum-level composition of SCeD, CDF, and CDFH groups. (D) Genus-level composition of SCeD, CDF, and CDFH groups. (E) Genus-level 
differential analysis between SCeD and CDFH groups. (F) Genus-level differential analysis between SCeD and CDF groups.
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To understand the relative abundance of microbiota in different 
types of CeD patients, we compared the abundance differences of gut 
microbiota at the phylum and genus levels among the SCeD, CDF, and 
CDFH groups. At the phylum level (Figure 2C), Bacillota exhibited the 
highest relative abundance across all three sample groups. Beyond 
Bacillota, Actinomycetota showed the highest abundance in the SCeD 
group. While Bacteroidetota dominated in CDF. At the genus level 
(Figure  2D), Bacteroides and Faecalibacterium exhibited high 
abundance in the CDFH group, suggesting strong adaptability and 
competitiveness in this environment. In the SCeD group, 
Bifidobacterium, Blautia, and Faecalibacterium were highly abundant. 
In the CDF group, Bacteroides and Segatella were highly abundant.

To identify microorganisms exhibiting significant differences 
between the two groups, we performed analysis using Student’s t-test. 
The results are shown in the figure. Compared to the CDFH group 
(Supplementary Figure S2), the CeD group exhibited higher 
abundances of Mediterranei-bacter, Streptococcus, and Lactobacillus 
species, while Bacteroides, Agathobacter, Alistipes, and others were 
lower than in the CDFH group. Compared to the CDFH group 
(Figure 2E), the SCeD group exhibited significantly lower levels of 
Bacteroides, Alistipes, and CAG-352; conversely, the SCeD group 
showed significantly higher levels of Bifidobacterium, Blautia, 
Collinsella, Dorea, Mediterraneibacter, Gemmiger, and Lactobacillus 
compared to the CDFH group (p < 0.05). Compared with the CDF 
group (Figure 2F), the SCeD group showed significantly lower levels 
of Bacteroides (p < 0.05) and significantly higher levels of 
Bifidobacterium, Faecalibacterium, Blautia, Collinsella, Agathobacter, 
Dorea, Mediterraneibacter, Gemmiger, and Anaerobutyricum 
(p < 0.05).

4.2 Metabolomics analysis results

4.2.1 Metabolites significantly altered during the 
development of CeD and its subtypes

Metabolite characteristics among the groups are shown in 
Supplementary Figure S3. There were 1,543 shared metabolites 
among the CDFH, CDF, and SCeD groups; the number of unique 
metabolites in each group was 435, 92, and 4,170, respectively. There 
were both shared and differential metabolites among the groups, 
with specific details provided in Supplementary Tables. The partial 
least squares discriminant analysis (PLS-DA) model of the CeD and 
CDFH groups indicated differences in metabolites between the two 
groups (Figure  3A). The volcano plot showed that under the 
conditions of p < 0.05 and VIP > 1, there were 1,690 differentially 
expressed metabolites (96 upregulated and 1,594 downregulated) 
(Figure 3C). Through KEGG analysis, the differential metabolites 
were mainly enriched in pathways such as Steroid hormone 
biosynthesis, Retinol metabolism, and Neuroactive ligand-receptor 
interaction (Figure  3E), suggesting that these key metabolic 
functions are abnormal in CeD patients. The PLS-DA model of the 
SCeD and CDFH groups revealed significant differences in 
metabolites between the two groups (Figure 3B). The volcano plot 
showed that under the conditions of p < 0.05 and VIP > 1, there were 
1,897 differentially expressed metabolites (308 upregulated and 
1,589 downregulated) (Figure 3D). KEGG analysis indicated that 
these differential metabolites were mainly enriched in pathways 

including Steroid hormone biosynthesis, Primary bile acid 
biosynthesis, and Tryptophan metabolism (Figure 3F), suggesting 
that compared with the CDFH group, these key metabolic functions 
are abnormal in SCeD patients. These analyses indicate that Steroid 
hormone biosynthesis may play an important role in the 
development of CeD.

The x-axis represents the fold change value of metabolite 
expression difference between the two groups, i.e., log2FC; the y-axis 
represents the statistical test value of the difference in metabolite 
expression level change, i.e., −log10(p_value). The higher the value, 
the more significant the expression difference.

4.2.2 Relationship between different types of CeD 
and metabolites

The PLS-DA model results for the SCeD and CDF groups revealed 
significant differences in metabolites between the two groups 
(Figure  4A). Under the conditions of p < 0.05 and VIP > 1, 1,835 
differentially expressed metabolites were identified (599 upregulated 
and 1,236 downregulated) (Figure 4B). KEGG analysis revealed that 
differentially expressed metabolites were primarily enriched in 
pathways including Tryptophan metabolism, Biosynthesis of plant 
secondary metabolites, Biosynthesis of alkaloids derived from 
shikimate pathway, and Degradation of flavonoids (Figure  4C). 
Compared to the CDF group, 6-methyl-5-nitroquinoline 
(FC = 15.8745), Nb-p-coumaroyltryptamine (FC = 11.9082), 2-oxo-3-
phenylpropanoate (FC = 9.0352), and 4-hydroxy-5-(phenyl)-valeric 
acid-O-sulfate (FC = 7.4546) were significantly upregulated in the 
SCeD group with large fold changes (Figure 4D).

4.3 Construction of diagnostic models for 
CeD and SCeD based on differential 
microorganisms and metabolites

We developed a diagnostic model for CeD (SCeD and CDF) based 
on differential microorganisms and metabolites. To investigate the 
diagnostic value of microorganisms in CeD, we employed the random 
forest model to identify candidate microbial taxa for achieving the 
optimal AUC value. Through feature selection with 10-fold cross-
validation, we ultimately selected five candidate microbial taxa to 
construct the diagnostic model for CeD (AUC = 0.84, Figures 5A,B), 
indicating that these five taxa hold potential as diagnostic biomarkers 
for CeD. To investigate the diagnostic value of metabolites for CeD, 
we  selected the top  7 differential metabolites (ranked by species 
importance) based on the random forest model to construct a 
diagnostic model for CeD. Each of these 7 differential metabolites 
individually exhibited high diagnostic value for CeD (AUC ≥ 0.85, see 
Supplementary Figure S4 for details), and the diagnostic model built 
by combining these 7 differential metabolites achieved an AUC of 0.96 
(Figures 5C,D). In addition, we constructed a combined diagnostic 
model based on both differential microorganisms and differential 
metabolites, which significantly improved the diagnostic value for 
CeD (AUC = 0.98, Supplementary Figure S5). These results indicate 
that the CeD diagnostic models constructed based on either 
differential microorganisms or metabolites both have good diagnostic 
value. However, the current sample size is limited, and their diagnostic 
efficacy has not been validated in larger-scale, more diverse clinical 

https://doi.org/10.3389/fmicb.2025.1636007
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yao et al.� 10.3389/fmicb.2025.1636007

Frontiers in Microbiology 08 frontiersin.org

cohorts. Therefore, these models are not yet ready for direct 
application in clinical testing.

To explore the diagnostic ability of differential microorganisms and 
differential metabolites for SCeD, we performed random forest regression 

analysis based on differential microorganisms and used the top  8 
microorganisms (ranked by importance) to establish a diagnostic model. 
The combined diagnostic model constructed based on these 8 
microorganisms achieved an AUC of 0.97 (Figures 5E,F), indicating 

FIGURE 3

Metabolite changes in CeD patients. (A) PLS-DA scores of the CeD group vs. the CDFH group. (B) PLS-DA scores of the SCeD group vs. the CDFH 
group. (C) Volcano plot of differential metabolites between the CeD group and the CDFH group. (D) Volcano plot of differential metabolites between 
the SCeD group and the CDFH group. (E) KEGG enrichment analysis of differential metabolites between the CeD group and the CDFH group. (F) KEGG 
enrichment analysis of differential metabolites between the SCeD group and the CDFH group.
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FIGURE 4

Differences in metabolite types between CeD groups. (A) PLS-DA scores for SCeD and CDF groups. (B) Volcano plot of differential metabolites 
between SCeD and CDF groups. (C) KEGG analysis of differential metabolites between SCeD and CDF groups. (D) Top four differential metabolites with 
the highest fold change in SCeD relative to CDF groups.
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FIGURE 5

Diagnostic Models Based on Differential Microorganisms and Metabolites. (A) Top 5 differential microorganisms (ranked by importance) between the 
CeD group and CDFH group. (B) ROC curve of the 5 differential microorganisms for CeD. (C) Top 7 differential metabolites between the CeD group 
and CDFH group. (D) ROC curve of the 7 differential metabolites for CeD. (E) Top 8 differential microorganisms (ranked by importance) between the 
SCeD group and CDFH group. (F) ROC curve of the 8 differential microorganisms for SCeD. (G) Top 6 differential metabolites between the SCeD group 
and CDFH group. (H) ROC curve of the 6 differential metabolites for SCeD.
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excellent diagnostic efficacy of this model—i.e., these 8 microorganisms 
have the potential to serve as potential biomarkers for SCeD. Furthermore, 
based on the VIP values of differential metabolites between the two 
groups, we selected the top 6 metabolites (ranked by VIP values) to 
establish a diagnostic model (AUC ≥ 0.9, Figures 5G,H). The AUC values 
of Hymatoxin D, 2′,4′,6′-Trihydroxydihydrochalcone, Clozapine N-oxide, 
Imazamethabenz-methyl, Nb-p-Coumaroyltryptamine, and 6-methyl-5-
nitroquinoline were 1, 0.9667, 1, 1, 0.9143, and 0.9119, respectively. The 
results indicated that these metabolites may have the ability to distinguish 
between SCeD and CDFH. In conclusion, these differential 
microorganisms and metabolites exhibit good discriminatory potential 
for the SCeD group.

4.4 Correlation analysis of differential 
microorganisms and differential 
metabolites

Given the significant differences in microbial and metabolite levels 
across subgroups, and considering that combining these factors 
enhances diagnostic performance, analyzing correlations between 
microorganisms and metabolites is of great significance. Spearman 
correlation analysis revealed correlations between the top  20 
differentially abundant microorganisms and metabolites, as shown in 
Figure 6. Correlation analysis between CeD and CDFH groups revealed 
that Bacteroides and Alistipes were positively correlated with 

FIGURE 6

Correlation analysis of differential microbes and differential metabolites. (A) Correlation between CeD and CDFH groups. (B) Correlation between 
SCeD and CDFH groups. (C) Correlation between SCeD and CDF groups.
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Docosa-4,7,10,13,16,19-hexaenoic acid ethyl ester, Tetracosahexaenoic 
acid, and 3-Ketocholanic Acid; and negatively correlated with 
N-Acetylcadaverine, Lauryldiethanolamine, and Farnesyl acetone 
(Figure 6A). Spearman correlation analysis between the SCeD group 
and CDFH group revealed consistent relationships between Bacteroides 
and CAG-352 with metabolites: both showed significant positive 
correlations with multiple metabolites including Vaccenic acid, 
3-Ketocholanic Acid, and Docosa-4,7,10,13,16,19-hexaenoic acid ethyl 
ester; while negatively correlated with Lauryldiethanolamine, Xanthine, 
and L-Isoleucine. Bifidobacterium, Collinsella, and Dorea showed 
positive correlations with Indoline and Lauryldiethanolamine, and 
negative correlations with Mesobilirubinogen, Vaccenic acid, and St 
(28:1_o_s) (Figure 6B). In both SCeD and CDF groups, Bacteroides 
showed positive correlations with Mesobilirubinogen, Cholesterol 
sulfate, and Tetracosahexaenoic acid; and negative correlations with 
Docosahexaenoic acid ethyl ester, L-Isoleucine, and 
Lauryldiethanolamine. Microorganisms such as Collinsella, Dorea, and 
Gemmiger were positively correlated with Docosahexaenoic acid ethyl 
ester, L-Isoleucine, and Lauryldiethanolamine; negatively correlated 
with 14-Methylpentadecanoic acid, Docosa-4,7,10,13,16,19-hexaenoic 
acid ethyl ester, and Tetracosahexaenoic acid (Figure 6C).

5 Discussion

In this study, we analyzed 16 s rDNA sequencing and LC–MS data 
from 74 fecal samples and identified differences in various 
microorganisms and metabolites across comparative groups. Integrated 
multi-omics analysis revealed specific microbes and metabolites 
associated with the occurrence and symptoms of CeD. The multi-omics 
integration approach helped uncover biologically relevant pathways in 
CeD, while machine learning enabled the identification of multiple 
biomarkers capable of effectively distinguishing the SCeD group from the 
CDFH group. Furthermore, our results demonstrated differences in 
microorganisms and metabolites between the symptomatic CeD group 
(CDF) and the asymptomatic CeD group (SCeD), indicating the 
important role of microbes and metabolites in driving CeD symptoms.

At the phylum level, Firmicutes accounted for the highest 
proportion across all groups, which is consistent with previous CeD 
studies reporting Firmicutes as the dominant phylum in fecal 
microbiota (Constante et al., 2022). Apart from Firmicutes, the SCeD 
group showed a higher proportion of Actinobacteria. Actinobacteria 
are Gram-positive bacteria widely distributed in nature and exhibit a 
dual functional nature. Bifidobacteria, representative probiotics within 
this phylum, can protect the intestine by modulating immune 
responses and enhancing the intestinal barrier (Al-Sadi et al., 2021; 
Zhou et  al., 2024). However, the genus Actinomyces constitutes 
55–68% of Actinobacteria and, along with its related metabolites, 
plays a pathogenic role in genitourinary tract infections and 
actinomycosis (Gajdács and Urbán, 2020; Könönen and Wade, 2015). 
Additionally, one study reported elevated levels of Actinobacteria in 
cancer groups of unknown primary origin (Dorobisz et al., 2024). 
Another study indicated that CeD patients had relatively higher 
proportions of Firmicutes and Actinobacteria compared to treated 
subjects [68]. These findings suggest that Actinobacteria may 
be associated with the development and progression of CeD.

At the genus level, compared with the CDFH group, the CeD 
group exhibited lower abundances of Bacteroides, Faecalibacterium, 
Blautia, Agathobacter, and Alistipes, and higher abundances of 

Segatella and Bifidobacterium. The change in Bacteroides abundance 
was consistent with the findings of a previous study (Di Biase et al., 
2021). Studies have shown that Bacteroides can enhance intestinal 
barrier function, regulate immunity, and modulate inflammation by 
producing short-chain fatty acids (SCFAs) (Brown et al., 2019); thus, 
immune dysregulation and intestinal barrier dysfunction in CeD 
patients may be closely associated with Bacteroides. However, other 
studies have indicated that Bacteroides dominates the duodenal 
microbiota in active CeD (Lupu et  al., 2023). Such discrepancies 
among different studies may be closely related to disease status and 
sample type. The changes in Faecalibacterium and Blautia were also 
consistent with previous research, showing a significant decrease in 
their abundances in CeD (Shi et al., 2022). Agathobacter abundance 
was higher in groups with high genetic risk (HLA DQ2/DQ8 positive) 
and positive serum antibodies, while Alistipes abundance was higher 
in non-high-risk groups (Aguayo-Patrón et al., 2023). Additionally, 
studies have reported that Agathobacter—a genus that produces 
SCFAs—is reduced in CeD (Jing et al., 2023), which is consistent with 
the results of our study. The mechanism underlying the role of 
Segatella in CeD remains unclear. However, studies have shown that 
Segatella abundance is increased in rheumatoid arthritis (RA), and its 
potential role in the pathogenesis of RA may involve stimulating 
helper T cell (Th) 17 populations and inducing the production of Th17 
cell-related cytokines (IL-6 and IL-23) (Korzeniowska et al., 2024). 
IL-6, IL-23, and Th17 cells have also been reported in CeD-related 
studies (Fryk et al., 2024). Therefore, the presence of CeD-related 
inflammatory factors may be associated with Segatella.

Compared with the CDFH group, the SCeD group exhibited 
significantly lower abundances of Bacteroides, Alistipes, and CAG-352, 
and significantly higher abundances of genera including 
Bifidobacterium, Blautia, Collinsella, Dorea, Mediterraneibacter, 
Gemmiger, and Ligilactobacillus. Since no detailed reports on the 
microbiota of SCeD patients have been published previously, we can 
only provide a possible explanation for the development of SCeD 
based on the inherent functions of the bacteria themselves. Some 
bacteria with anti-inflammatory effects (Blautia, Gemmiger) were 
more abundant in the SCeD group; it is hypothesized that the 
microbiota may compensate for the host’s physiological imbalance by 
increasing probiotics, thereby alleviating the occurrence of symptoms 
(Chandrasekaran et al., 2024). Studies have shown that the abundance 
of Bacteroides is lower in patients with inflammatory bowel disease 
(IBD) (Zhou and Zhi, 2016), and supplementation with Bacteroides 
thetaiotaomicron and its inactivated form can alleviate colitis by 
inhibiting the activation of macrophages (Yinhe et al., 2024). Research 
indicates that insufficient dietary fiber intake may lead to the 
overgrowth of Collinsella, alter the overall fermentation pattern of the 
gut microbiota, and exert potential adverse effects on the host’s 
metabolic and inflammatory health (Gomez-Arango et  al., 2018). 
However, other studies have shown that ursodeoxycholic acid 
produced by Collinsella can inhibit cytokine storm syndrome and 
prevent COVID-19 infection (Hirayama et al., 2021). It is evident that 
Collinsella plays different roles in different diseases; it may exert a 
beneficial effect in SCeD, and further research is needed to confirm 
this. Studies have reported that Mediterraneibacter is enriched in fecal 
samples from mice with polycystic ovary syndrome (PCOS), as well 
as in samples from patients with irritable bowel syndrome (IBS) and 
colorectal polyps (Huang F. et al., 2024; Intarajak et al., 2024; Jagare 
et al., 2023). The abundance of Escherichia-Shigella is increased in 
various diseases, such as chronic pancreatitis, pancreatic ductal 
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adenocarcinoma (PDAC), autism spectrum disorder (ASD), and 
inflammatory bowel disease (IBD) (Chen et al., 2024; Hong et al., 
2024; Valenzuela-Zamora et al., 2022). In conclusion, the development 
and specificity of SCeD may be  the result of interactions among 
multiple microorganisms. However, the complex and diverse 
interactions require support from more basic experiments.

Compared with the CDF group, the SCeD group exhibited a 
significantly lower abundance of Bacteroides, and significantly higher 
abundances of Bifidobacterium, Faecalibacterium, Blautia, Collinsella, 
Agathobacter, Dorea, Mediterraneibacter, Gemmiger, and 
Anaerobutyricum. This corresponds with findings from other studies 
indicating that Bacteroides is associated with inflammation, while 
Bifidobacterium and Faecalibacterium possess anti-inflammatory 
properties (Charlet et al., 2020; Huang Y. et al., 2024; Quévrain et al., 
2016). The abundances of Faecalibacterium and Agathobacter were 
significantly higher in the SCeD group than in the CDF group. Studies 
have shown that butyrate— a fermentation product of Faecalibacterium 
prausnitzii, a key member of the Faecalibacterium genus—exerts anti-
inflammatory effects via the NOD2-mediated signaling pathway. It 
promotes the expression of anti-inflammatory cytokines (e.g., IL-10 and 
IFN-γ), inhibits the expression of pro-inflammatory cytokines (e.g., 
IL-12), and exerts a protective effect on the intestinal mucosa (Touch 
et al., 2022). Furthermore, our analysis at the species level revealed that 
the abundance of Faecalibacterium prausnitzii was significantly higher 
in the SCeD group than in the CDF group. Therefore, the high 
abundance of Faecalibacterium prausnitzii may inhibit pro-inflammatory 
cytokine expression, promote anti-inflammatory cytokine expression, 
and enhance immune responses—thereby preventing the development 
of relevant clinical symptoms in SCeD patients. Studies have reported 
that Agathobacter and its metabolic product butyrate can alleviate 
neuroinflammation induced by Alzheimer’s disease (AD) by regulating 
the NF-κB signaling pathway (Lv et  al., 2024). Additionally, earlier 
studies have identified NF-κB as a potential molecular target for 
regulating inflammatory responses in celiac disease (CeD) (Maiuri 
et al., 2003). In conclusion, the increased abundances of Faecalibacterium 
and Agathobacter may be important contributing factors to the absence 
of clinical symptoms in SCeD patients. The results of this sequencing 
data will provide a certain theoretical basis for subsequent experiments.

In metabolomic studies, it has been found that changes in 
metabolites are associated with a variety of diseases (Yuan et al., 2024), 
such as inflammatory bowel disease (IBD), type 1 diabetes mellitus 
(T1DM), and systemic lupus erythematosus (SLE) (Huang et al., 2022; 
Li et al., 2024; Vich Vila et al., 2023; Zeng et al., 2022); however, there 
are relatively few metabolomic studies on SCeD. In the present study, 
through LC–MS analysis, we  found that the SCeD group exhibits 
unique metabolic profiles compared with the CDFH group and CeD 
group. Compared with the CDFH group, 1,897 metabolites were 
differentially expressed in the SCeD group (p < 0.05, VIP > 1). 
Through KEGG analysis, these differential metabolites were mainly 
enriched in pathways such as Steroid hormone biosynthesis, Primary 
bile acid biosynthesis, and Tryptophan metabolism. Under the 
conditions of p < 0.05 and VIP > 2, there were 44 differentially 
expressed metabolites (4 upregulated and 40 downregulated). The four 
upregulated metabolites—Tetrahydrodeoxycortisol, Hymatoxin D, 
Imazamethabenz-methyl, and Ile-Asp-may play a role in the 
development and progression of SCeD.

Compared with the CDF group, a total of 1,835 metabolites were 
differentially expressed between the SCeD group and the CDF group 

(p < 0.05, VIP > 1). Through KEGG analysis, these differential 
metabolites were mainly enriched in pathways such as Tryptophan 
metabolism, Biosynthesis of plant secondary metabolites, Biosynthesis 
of alkaloids derived from the shikimate pathway, and Degradation of 
flavonoids. Existing studies have shown that tryptophan metabolism is 
altered in CeD patients, and the score of the Gastrointestinal Symptom 
Rating Scale (GSRS) was also significantly reduced after tryptophan 
intervention (Asgari et  al., 2025). In our study, the abundance of 
(+/−)-Tryptophan in the SCeD group was higher than that in the CDF 
group. Additionally, studies have indicated that tryptophan metabolites 
regulate intestinal barrier function via the aryl hydrocarbon receptor 
(AhR) (Lamas et al., 2020). Furthermore, research has suggested that 
tryptophan has the potential to treat CeD by regulating immune 
responses (Asgari et  al., 2025). This also provides certain evidence 
supporting the role of tryptophan metabolism in the clinical symptoms 
of CeD. Combined with the microbial findings, flavonoids can 
be  converted into short-chain fatty acids (SCFAs) by a variety of 
bacteria, and the converted SCFAs improve the intestinal barrier 
through anti-inflammatory effects (Al-Khayri et al., 2022; Liu et al., 
2021). Compared with the CDF group, the abundances of 
6-methyl-5-nitroquinoline, Nb-p-Coumaroyltryptamine, 2-oxo-3-
phenylpropanoate, and 4-Hydroxy-5-(phenyl)-valeric acid-O-sulfate 
were higher in the SCeD group.6-methyl-5-nitroquinoline contains a 
quinoline structure and may be associated with the aryl hydrocarbon 
receptor (AhR) pathway. AhR is a transcription factor that can 
be activated by a variety of ligands; activated AhR can promote the 
differentiation of regulatory T cells (Treg cells), and Treg cells possess 
immunosuppressive functions that can alleviate inflammatory responses 
(Zeng et al., 2022). 4-Hydroxy-5-(phenyl)-valeric acid-O-sulfate is a 
compound related to flavan-3-ol metabolism. Some studies have shown 
that flavan-3-ols and their metabolites have anti-inflammatory activity 
(Yang Q. et al., 2022). Multiple studies have demonstrated that changes 
in microorganisms and metabolites can protect the intestinal barrier by 
regulating the inflammatory state (Gilsenan et al., 2024; Li S. et al., 2023).

Based on the random forest model, we  found that differential 
microorganisms and differential metabolites not only exhibited 
excellent diagnostic performance for CeD (the microbial-based model 
achieved an AUC of 0.84, the metabolite-based model an AUC of 0.96, 
and the combined model of differential microorganisms and 
metabolites an AUC of 0.98) but also showed good diagnostic 
performance for SCeD (the microbial-based model achieved an AUC 
of 0.97, and the metabolite-based model an AUC ≥ 0.9). However, 
given the small sample size in our study, their diagnostic efficacy (e.g., 
sensitivity and specificity) still needs to be validated in larger-scale and 
more diverse clinical cohorts, and the models are not yet ready for 
direct application in clinical testing. Nevertheless, this also suggests 
that microorganisms and metabolites have the potential to serve as 
diagnostic biomarkers for SCeD. Multiple studies have indicated that 
changes in fecal metabolites are associated with gut microbiota during 
disease progression, such as in ulcerative colitis (UC), metabolic-
associated fatty liver disease (MAFLD), and primary Sjögren’s 
syndrome (pSS) (Yang et al., 2022a,b; Yang et al., 2021). In this study, 
via Spearman correlation analysis, we identified a certain correlation 
between differential microorganisms and differential metabolites.

This study also has certain limitations. First, the sample size 
included in the study is small, with only 14 cases in the SCeD group, 
which is insufficient to fully reflect the changes in gut microbiota and 
metabolites in SCeD patients. Future studies should expand the 

https://doi.org/10.3389/fmicb.2025.1636007
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yao et al.� 10.3389/fmicb.2025.1636007

Frontiers in Microbiology 14 frontiersin.org

sample size of SCeD patients to explain the unique gut microbiota and 
metabolic characteristics of these patients.

Second, CeD is a heterogeneous disease, encompassing classic 
CeD, atypical CeD, and SCeD. In this study, we only compared the 
differences in microbiota and metabolites between the CDF group and 
the SCeD group, while the gut microbiota and metabolomic 
characteristics of other CeD subtypes were not reflected. Additionally, 
gut microbiota and metabolomic results are influenced by factors such 
as environment, diet, and geography. All patients included in this study 
were from Xinjiang, China, and Xinjiang has its unique geographical 
and dietary environments—this may result in the lack of generalizability 
of the study’s findings. In the future, larger-sample longitudinal studies 
can be conducted, with the incorporation of dietary data, to validate 
the current research results and control for confounding variables.

6 Conclusion

We detected the microbiota and metabolites in fecal samples from 
SCeD patients using 16S rDNA sequencing and liquid chromatography-
mass spectrometry (LC–MS). The results showed that there were 
differences in microbiota and metabolites between the CeD group 
(including SCeD and CDF) and the CDFH group, between the SCeD 
group and the CDFH group, and between the SCeD group and the CDF 
group. In addition, correlation analysis revealed a correlation between 
changes in differential microorganisms and differential metabolites 
across different groups. In this study, we  found that both the 
composition and abundance of gut microbiota and metabolites in CeD 
patients had changed. Patients with different CeD subtypes (SCeD and 
CDF) exhibited unique fecal microbiota and metabolite characteristics. 
Therefore, changes in microorganisms and metabolites not only 
participate in the development of CeD but also are associated with 
different subtypes of CeD. In conclusion, the pathogenesis of different 
CeD subtypes may involve a “host-microbe-metabolite” trinity 
interaction network. Based on machine learning, a random forest model 
can be established using differential microorganisms and metabolites 
between the SCeD group and the CDFH group, serving as a diagnostic 
tool for SCeD. Additionally, modulating the differential microorganisms 
and metabolites across groups can act as a new entry point for studying 
the mechanism of CeD and an adjunctive approach for its treatment.
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