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Diarrhea is a common gastrointestinal disease and closely related to the balance 
of the gut microbiota (GM). In turn, dysregulation of the GM can affect the onset 
and progression of diarrhea through regulating the metabolism, intestinal immune 
function, intestinal barrier function and changes in the brain-gut axis of host. 
Although increasing evidence suggests that GM is associated with gastrointestinal 
homeostasis and disease, the underlying mechanisms are not fully understood. 
GM disorder was often accompanied by diarrhea patients and animals, and the 
diarrhea caused by GM imbalance mainly involved the effects on short chain 
fatty acids (SCFAs), bile acids (BAs), intestinal barrier, immune system, and brain-
gut microbiota axis (BGMA). In addition, intervening in the GM (probiotics, fecal 
microbiota transplantation and bacteriophage therapy) has been shown to be an 
effective way to alleviate diarrhea. In this review, the mechanism of diarrhea 
occurrence, probiotics, fecal microbiota transplantation and bacteriophage therapy 
intervene in diarrhea by regulating GM from basic and clinical research were 
summarized and discussed. We aim to provide the latest reference for studying 
the mechanism of treating diarrhea from the perspective of GM, and provide data 
support for clinical treatment of diarrhea.
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1 Introduction

Despite improvements in living conditions and widespread vaccination, diarrhea remains 
one of the most prevalent global health issues, resulting in approximately 1.3 million deaths 
annually (Collaborators G.D.D, 2017; Stockmann et  al., 2017). Diarrhea is an intestinal 
disorder characterized by increased gastrointestinal motility, leading to elevated stool 
frequency and higher water content, often presenting as watery stools. It can be caused by a 
variety of pathogens and other factors (Brehm et al., 2020; Schiller et al., 2017). Common 
forms of diarrhea include infectious diarrhea (caused by bacteria, viruses, parasites, or fungi), 
organic-associated diarrhea, antibiotic-associated diarrhea (AAD), functional diarrhea, and 
diarrhea-predominant irritable bowel syndrome (IBS-D) (Wilkins and Sequoia, 2017). 
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Although the current pharmaceuticals for diarrhea includes various 
agents from traditional Chinese (e.g., Shen-Ling-Bai-Zhu-San) and 
Western medicine (e.g., loperamide, diphenoxylate), the development 
of novel, safer, and more effective treatment strategies is urgently 
required (Ali et al., 2020; Khan et al., 2019; Wang et al., 2020).

The gut microbiota (GM) is increasingly recognized as a pivotal 
factor in human health, influencing nutrient absorption, immune 
regulation and gastrointestinal homeostasis (Paul et  al., 2025). 
Alterations in the composition and function of the GM, often termed 
GM dysregulation, are closely linked to the development of 
gastrointestinal diseases (Quaglio et al., 2022). The onset of diarrhea 
is frequently accompanied by GM disturbances, aberrant metabolite 
levels, reduced immune function, and impaired intestinal barrier 
function (Anbazhagan et al., 2018; Wu et al., 2022).

For instance, patients with IBS-D exhibit an increased relative 
abundance of Shigella, Enterococcus, Streptococcus and Ruminococcus, 
alongside a decreased abundance of Faecalibacterium (Wei et  al., 
2020). Notably, Faecalibacterium is a dominant butyric acid-producing 
genus. Butyric acid serves as a crucial energy source for colonocytes 
and can exert anti-inflammatory, immunomodulatory, and intestinal 
barrier-protecting functions by inhibiting the activation of the toll-like 
receptor 4-myeloid differentiation factor 88-nuclear factor-κB (TLR4-
MyD88-NF-κB) signaling pathway. However, a decline in 
Faecalibacterium abundance is frequently associated with diarrheal 
symptoms and intestinal inflammation (Anbazhagan et  al., 2024; 
Karim et al., 2024). Moreover, it was found that the occurrence of 
IBS-D was closely related to the expression of 5-Hydroxytryptamine 
(5-HT) in the brain-gut microbiota axis (BGMA), and Ruminococcus 
can regulate the production of 5-HT through Trace Amine-Associated 
Receptor 1 (TAAR1) signaling mediated by phenethylamine and 
tryptamine, which can stimulate gastrointestinal transit and lead to 
diarrhea in patients with IBS-D (Shen et al., 2022; Zhai et al., 2023). 
Studies in AAD models have shown reduced GM richness and 
diversity, downregulation of the tight junction (TJ) protein zonula 
occluden 1 (ZO-1) in the colon, and elevated levels of 
pro-inflammatory cytokines including interleukin-2 (IL-2), 
interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) (Cui 
et al., 2021; Xu H. et al., 2023). Collectively, these findings highlight 
the pivotal role of GM in the pathogenesis of diarrhea (Gallardo et al., 
2020; Mei et al., 2021).

Recently, probiotic interventions, fecal microbiota transplantation 
(FMT) techniques and bacteriophage therapy have demonstrated 
considerable potential in the treatment of diarrhea (Fujimoto and 
Uematsu, 2022; Lai et al., 2019; Liu M. et al., 2024). Lactiplantibacillus 
plantarum P9 has been shown to alleviate diarrhea by regulating the 
composition of GM and increasing the patient’s functional intestinal 
metabolites. The specific action mechanisms include increased the 
relative abundances of Butyricicoccus_A sp002395695 and 
Streptococcus thermophilus, reduced the relative abundances of 
Phascolarctobacterium faecium and Faecalibacterium sp., increased the 
content of acetic acid and butyric acid in short chain fatty acids 
(SCFAs), and decreased the level of deoxycholic acid (Yang et al., 
2024). Additionally, studies have reported that transplantation of fecal 
fluid from healthy donors into AAD patients alleviated GM disorders, 
modulated GM composition and quantity, and lowered interleukin-8 
(IL-8) and C-reactive protein (CRP). These changes thereby enhanced 
intestinal immune function and alleviated AAD symptoms (Wang 
L. et  al., 2024). Furthermore, the study found that phage A221 

effectively treated diarrhea caused by Escherichia coli (E. coli) GXXW-
1103 in weaned piglets, increased their daily weight gain, and reduced 
the proportion of Enterobacteriaceae in the duodenum to 0.64%, 
thereby alleviating lesions in the cecum and duodenum (Mao et al., 
2023). Thus, targeted modulation of the GM represents a promising 
therapeutic strategy for alleviating diarrhea.

Therefore, in this review, we  summarize the regulatory 
mechanisms of GM and its metabolites in diarrhea. Specifically, 
we discuss the mechanisms of probiotics, FMT and bacteriophage in 
the treatment of diarrhea, aiming to provide insights for future 
research on targeted modulation of the GM as a therapeutic strategy 
for diarrheal diseases.

2 The pivotal role of GM in diarrhea 
related diseases

As a complex and diverse ecosystem, the GM colonizes the entire 
gastrointestinal tract in a symbiotic fashion, participating in the 
growth and development of the host organism while regulating the 
body’s immune system (Takiishi et al., 2017). The GM is crucial for 
maintaining host homeostasis and overall health. Its diversity and 
abundance have direct implications for disease pathogenesis and 
clinical treatment outcomes (Chen et  al., 2021). Under normal 
physiological conditions, the species composition and proportional 
distribution of GM remain in a homeostatic balance, and it exerts 
multiple pivotal functions in the host, including modulating immune 
responses, mediating metabolic processes, and sustaining the 
homeostasis of the intestinal barrier (Jandhyala et al., 2015; Wu and 
Wu, 2012). In contrast, under pathological circumstances, 
perturbations to the intestinal microecosystem can disrupt this 
balance, ultimately resulting in GM dysbiosis. This dysbiosis 
subsequently impairs host health via a variety of mechanisms, 
including alterations in SCFAs metabolism (Morrison and Preston, 
2016), BAs (Cai et al., 2022), intestinal barriers (Allam-Ndoul et al., 
2020), the immune system (Donald and Finlay, 2023), and BGMA 
(Hillestad et  al., 2022). Such alterations may contribute to the 
development of diseases such as diarrhea (Shao et  al., 2020), 
inflammatory bowel disease (Quaglio et al., 2022), and cardiovascular 
diseases (Witkowski et al., 2020).

2.1 Effect on the composition of the GM

Under physiological conditions, a homeostatic GM supports key 
host functions including immune regulation, metabolic processes, and 
the maintenance of intestinal barrier integrity (Yue et al., 2019).

In healthy individuals, the GM is predominantly composed of 
the phyla Firmicutes and Bacteroidetes, followed by Actinobacteria 
and Verrucomicrobia (Hollister et  al., 2014). Under normal 
physiological conditions, GM is in homeostasis and plays functions 
of immunity, metabolism and maintenance of intestinal barrier 
homeostasis in the body (Yue et  al., 2019). However, the 
composition and diversity of GM is easily influenced by various 
factors (such as diet, drugs, pathogens, and environmental factors), 
further affecting human and animal health (Cryan et  al., 2019; 
Lange et al., 2016; Zhang, 2022). Compelling evidence indicates that 
GM dysbiosis increases host vulnerability to a broad spectrum of 
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pathogens and promotes the development of diverse diseases, 
including diarrhea, IBS, and allergies (Leong et al., 2018; Shchikota 
et al., 2021).

Despite improvements in living conditions and healthcare in 
recent years, diarrhea remains a globally prevalent issue (Wolf et al., 
2022). A topic of growing interest currently is the interplay between 
diarrhea and the GM, which is featured by pathogen-dominated GM 
dysregulation, encompassing bacterial, fungal, and viral etiologies (Li 
et  al., 2021). Invasive pathogens suppress the proliferation of 
commensal bacteria, thereby reducing beneficial gut microbiota and 
increasing pathogenic strains. This imbalance further induces 
intestinal dysfunction and activates immune responses, ultimately 
culminating in diarrhea (Czepiel et al., 2019; Jesser et al., 2023).

Furthermore, it has been observed that other types of diarrhea are 
also closely associated with alterations in the GM (Table 1). Thus, it is 
evident that dysbiosis of the GM exists across various forms 
of diarrhea.

2.2 Effect on metabolites of the GM

SCFAs, including acetate, propionate, and butyrate (Liu et al., 
2021), are mainly produced by GM via anaerobic fermentation of 
indigestible carbohydrates and host-derived substrates (Zhang et al., 
2023). SCFAs contribute to the enhancement of intestinal barrier 
function, exhibit anti-inflammatory effects, and participate in 

TABLE 1  Changes of GM in diarrhea.

Type of diarrhea Classification level Changes in microbiota Reference

Infectious diarrhea

Bacterial diarrhea

(E. coli O101)

Phylum level

Proteobacteria and Actinobacteria 

increased; Firmicutes and 

Verrucomicrobia decreased.
Sun et al. (2019)

Genus level

Escherichia and Shigella increased; 

Prevotella, Enterococcus and 

Akkermansia decreased.

Virus diarrhea

(Rotavirus)
Genus level

Acinetobacter increased; 

Ruminococcaceae NK4A214 

decreased.
Mizutani et al. (2021)

Virus diarrhea

(Norovirus)
Genus level

Holdemanella, Staphylococcus, 

Howardella, Corynebacterium, and 

Massilia increased.

Parasitic diarrhea

(Giardia)
Phylum level

Proteobacteria increased, 

Firmicutes and Melainabacteria 

decreased.

Barash et al. (2017)

Organic - associated 

diarrhea
Post-cholecystectomy diarrhea

Phylum level
Bacteroidota increased, Firmicutes 

decreased.

Xu Y. et al. (2022)

Genus level

Prevotella and Enterococcus 

increased, Alistipes, Lactobacillus, 

Ruminococcus and Bacteroides 

decreased.

Antibiotic - associated diarrhea

(AAD)

Phylum level

Proteobacteria increased, and 

Firmicutes, Bacteroidetes, 

Actinobacteria and 

Planctomycetes decreased.
Shao et al. (2020)

Genus level
Enterococcus and Clostridium 

increased, Lactobacillus decreased.

Functional diarrhea

Phylum level
Bacteroides increased, Firmicutes 

and Proteobacteria decreased.

Li X. T. et al. (2023)

Genus level

Akkermansia increased, 

Lactobacillus, Ruminococcus and 

Allobaculum decreased.

IBS-D

Phylum level

Proteobacteria increased, 

Firmicutes, Fusobacteria, and 

Actinobacteria decreased.
Mei et al. (2021)

Genus level

Enterobacteriaceae increased, 

Alloprevotella and Fusobacterium 

decreased.
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immunomodulation (Parada Venegas et al., 2019). Specifically, acetate 
and propionate serve as energy sources for peripheral tissues (den 
Besten et  al., 2013). A recent study demonstrated that acetic acid 
mediates crosstalk between epithelial and immune cells and promotes 
T cell-dependent immunoglobulin A (IgA) production by stimulating 
CD4+ T cells (Takeuchi et al., 2021). Moreover, propionate has been 
shown to prevent the reduction of TJ proteins, such as ZO-1 and 
occludin, in colon tissue, and to suppress the mRNA expression of 
pro-inflammatory cytokines IL-1β, IL-6, and TNF-α (Tong et  al., 
2016). Butyrate also exerts anti-inflammatory effects by inhibiting the 
secretion of IL-8, IL-6, IL-12, and TNF-α, while promoting the 
production of the anti-inflammatory cytokine IL-10, thereby 
contributing to the maintenance of the intestinal epithelial barrier 
(Lee et al., 2017). Additionally, they promote the growth of beneficial 
bacteria, improve GM composition, and help regulate host immune 
homeostasis (Fukuda et al., 2011; Mann et al., 2024). Moreover, a 
separate study demonstrated that propionic acid, secreted by 
Akkermansia muciniphila, binds to G-protein-coupled receptor 43 on 
the surface of intestinal epithelial cells. This interaction enhances 
histone acetylation, which in turn upregulates the expression of TJ 
proteins occludin and ZO-1 and increases mucin levels, ultimately 
improving the integrity of the intestinal epithelial barrier (He et al., 
2023). In addition, another study demonstrated that, relative to 
healthy calves, calves with diarrhea induced by bovine rotavirus (BRV) 
exhibited significantly reduced concentrations of total SCFAs, acetic 
acid, propionic acid, and isocaproic acid; in contrast, only propionic 
acid concentrations were markedly decreased in calves with diarrhea 
caused by bovine coronavirus. Notably, the depletion of 
Parabacteroides and Ruminococcus was strongly associated with 
reduced acetic acid levels, while declines in isocaproic acid content 
were closely linked to the loss of Parabacteroides, Ruminococcus, 
Fournierella, and Rikenellaceae_RC9_gut_group. Furthermore, a 
significant reduction in propionic acid concentrations showed a 
positive correlation with the depletion of Collinsella (Cui et al., 2023). 
Both propionic and butyric acids are believed to enhance the integrity 
of epithelial cells, with butyric acid serving as the primary energy 
source for colonocytes (Furusawa et  al., 2013; Tong et  al., 2016). 
Reduced butyrate levels have been shown to elevate intestinal 
oxygenation, which not only drives gut microbial dysbiosis and 
promotes the expansion of aerobic pathogens but also disrupts 
intestinal homeostasis (Handa et al., 2023). SCFAs are absorbed by 
epithelial cells, which in turn stimulates Na+-dependent absorption of 
water and electrolytes, thereby mitigating diarrhea symptoms (Binder, 
2010). Several studies have indicated that ADD-type mice exhibit 
reduced levels of SCFAs (Min et al., 2024; Yang L. et al., 2021; Zhan 
et  al., 2023). Furthermore, piglets infected with E. coli developed 
diarrhea and exhibited decreased levels of SCFAs in their feces (Liu 
et al., 2019).

Bile acids (BAs) serve as essential signaling molecules that 
significantly regulate glucose homeostasis, lipid metabolism, and 
energy expenditure (Sah et al., 2022; Yu et al., 2023). They consist of 
primary bile acids (PBAs), which are synthesized by the liver, and 
secondary bile acids (SBAs), which are metabolized by the 
GM. Among them, PBAs include chenodeoxycholic acid (CDCA) and 
cholic acid (CA), while SBAs comprise lithocholic acid (LCA) and 
deoxycholic acid (DCA). Nearly 95% of luminal BAs are reabsorbed 
in the distal ileum, while the remainder undergoes microbial 
modification by the GM prior to excretion or passive absorption. In 

humans, the GM is instrumental in the generation of SBAs via a series 
of enzymatic reactions, including deconjugation, 7α-dehydroxylation, 
oxidation, epimerization, desulfation, and esterification. Of these, 
deconjugation and 7α-dehydroxylation are the most physiologically 
significant processes (Ridlon et al., 2016; Wahlström et al., 2017). 
When intestinal homeostasis is disrupted, dysbiosis of the GM affects 
BAs metabolism and ultimately alters the host response. In IBS-D, 
excessive fecal BAs are considered a contributing factor to 
pathogenesis, and there are higher levels of PBAs in fecal samples of 
IBS-D patients compared to healthy subjects (Duboc et al., 2012; Wei 
et al., 2021; Wei et al., 2020). However, research has indicated that a 
microbiota rich in Clostridia can promote BAs excretion in IBS-D 
patients (Zhao et al., 2020). It is well established that BAs modulate 
intestinal mucosal permeability and participate in inflammatory 
responses. Specifically, CDCA and DCA exert their effects by 
promoting epidermal growth factor receptor (EGFR) 
autophosphorylation and occludin dephosphorylation, leading to the 
reorganization of occludin within TJs and a consequent increase in 
paracellular permeability (Raimondi et al., 2008). Additionally, CDCA 
contributes to pro-inflammatory responses by stimulating the release 
of IL-8 and reactive oxygen species (ROS), as well as amplifying the 
effects of TNF-α and IL-1β on interferon-γ (IFN-γ) production 
(Sarathy et al., 2017). Ursodeoxycholic Acid (UDCA) has been shown 
to reduce the production of inflammatory cytokines by participating 
in the BA receptor Farnesoid X Receptor (FXR), while inhibiting 
NF-κB activation in macrophages (Pi et al., 2023). BAs metabolites 
were found to be  excessive in the feces of Primary Sclerosing 
Cholangitis (PCD) patients and PCD mice, and SBAs [DCA, LCA and 
Hyodeoxycholic Acid (HDCA)] were found to be associated with the 
onset of diarrhea. These SBAs shortened the gastrointestinal transit 
time by 0.6-fold, increased the fecal water content by 1.3-fold and 
stimulated 5-HT levels in  vitro and in  vivo (Xu Y. et  al., 2023). 
However, blocking BAs conjugated Takeda G protein-coupled receptor 
5/Transient Receptor Potential Ankyrin 1 (TGR5/TRPA1) receptors 
significantly alleviated PCD GM-induced diarrhea. The present study 
demonstrates that GM and BA metabolism play a role in diarrhea. 
These results offer promising biomarkers for diagnosing and treating 
diarrhea and lay the groundwork for further investigation.

Branched chain amino acids (BCAAs), which include leucine 
(Leu), isoleucine (Ile), and valine (Val), are essential amino acids for 
the human body (Peng et al., 2020). These amino acids exert direct or 
indirect effects on diverse physiological functions, including energy 
metabolism, protein synthesis, and immune responses (Ma et al., 
2018; Stipanuk, 2007). Similarly, BCAAs function as modulators that 
promote intestinal development and enhance gut health (Ren et al., 
2016; Ren et  al., 2015). Currently, the majority of research has 
concentrated on the function of Leu, with less attention paid to Val 
and Ile in the gut. Leu can maintain intestinal health by enhancing TJ 
in fish (Jiang et al., 2015). Additionally, it has been shown to improve 
intestinal epithelial cell proliferation, increase villus height, and 
promote growth in the small intestine of pigs. However, intestinal 
growth was inhibited when Leu levels were as high as 2.57% (Ren 
et al., 2015). Dietary Ile improves intestinal immune function and 
microbial population, and regulates gene expression of antioxidant 
enzymes, TJ, Nuclear factor erythroid 2-related factor 2 (Nrf2), 
Kelch-like ECH-associated protein 1 (Keap1), p38, and Extracellular 
Signal-regulated Kinase 1 (ERK1) in the intestine of Jian carp (Zhao 
et al., 2014). Additionally, BCAAs have been significantly linked to 
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diarrhea; a decreasing trend in BCAA levels was observed in both the 
functional diarrhea group and the IBS-D group (James et al., 2023). 
Rotavirus infection induces diarrhea in weaned pigs via systemic 
protein metabolic disorders and jejunal mucosal dysfunction. 
However, dietary supplementation with 1% leucine alleviated 
rotavirus-induced diarrhea in weaned pigs, potentially due to 
leucine’s roles in enhancing protein metabolism, improving intestinal 
digestive and absorptive capacities, and reinforcing the non-specific 
barrier function of the intestinal mucosa (Mao et  al., 2015). 
Furthermore, L-isoleucine supplementation has been found to 
significantly reduce stool output and fluid intake in children suffering 
from non-cholera acute watery diarrhea (Alam et al., 2011). More 
recently, a study demonstrated that supplementation with Ile 
increased the relative abundance of Prevotella and decreased the 
relative abundance of Rikenellaceae in the colon of diarrhea piglets 
infected with rotavirus, increased the secretion of interleukin-4 
(IL-4), IL-10, and Secretory Immunoglobulin A (sIgA), and increased 
the expression of Claudin-3, Occludin, ZO-1 and mucin 1 (MUC-1), 
improved the immunity, colon barrier function and colon GM of 
piglets with diarrhea (Jiang C. et al., 2024; Jiang C. Y. et al., 2024). 
Nevertheless, the existing literature displays a striking imbalance 
toward Leu, leaving the mechanisms and efficacy of Val and Ile 
underexplored. Future studies should thus prioritize elucidating the 
individualized and synergistic contributions of all three BCAAs—
particularly Val and Ile—ac different physiological and pathological 
contexts, to enable more precise and effective nutritional strategies 
for intestinal health.

2.3 Effect on intestinal barrier function

The intestinal barrier is a complex physiological structure that 
serves as a physical, biological, chemical, and immunological barrier. 
It interacts with the external environment and regulates host health 
(Zhou et  al., 2024). The intestinal barrier, being semi-permeable, 
serves a dual function: it safeguards the internal milieu against the 
potential translocation of pathological molecules and microorganisms, 
while facilitating the absorption of nutrients and water (Martini et al., 
2017). However, in pathological conditions, the integrity of the 
intestinal barrier can be compromised, leading to many local and 
systemic diseases (Aleman et al., 2023; Wang et al., 2022). TJs serve as 
a crucial form of connection between intestinal epithelial cells.

The proteins ZO-1 and occludin are key structural components of 
TJs. They are essential for maintaining cellular morphology and TJ 
structural integrity, and are widely used as indicators for assessing 
intestinal barrier function (Al-Sadi et al., 2011; Haas et al., 2022). 
Mucins are the primary glycoproteins that constitute the intestinal 
mucosal barrier. Among them, Mucin 2 (MUC2) is the most secreted 
mucin in the gastrointestinal tract and maintains the integrity of the 
mucus barrier, which is closely related to GM homeostasis (Liu et al., 
2023; Yao et al., 2021). Tropini et al. demonstrated that diarrhea is 
closely related to the GM and the intestinal mucus barrier (Tropini 
et al., 2018). Diarrhea significantly disrupts the GM and is associated 
with thinning or loss of the intestinal mucus layer. This effect may 
be linked to dysregulated expression of the tight junction proteins 
ZO-1 and occludin, which compromises intestinal barrier integrity 
and increases permeability (Chen H. R. et  al., 2024; Tropini 
et al., 2018).

Impaired intestinal mucosal barrier function serves as the primary 
pathological basis for the development of IBS-D (Shi et al., 2023). 
Upon the onset of IBS-D, patients exhibit a significant reduction in the 
expression of occludin, ZO-1, and other epithelial tight junction 
proteins, resulting in compromised intestinal epithelial barrier 
integrity and elevated intestinal permeability (Guo et al., 2023; Wang 
L. et al., 2023). Recent studies have found that Lactobacillus promotes 
occludin and ZO-1 expression and improves diarrheal symptoms 
(Hou et al., 2020). Related studies have further demonstrated that in 
diarrheic piglets infected with E. coli, increased abundances of 
Lactobacillus and Cyanobacterium are associated with reduced 
intestinal permeability and enhanced barrier repair, with Lactobacillus 
showing a particularly strong correlation with key intestinal barrier 
markers (Luo et al., 2022). Xu et al. found that MUC2 is a crucial 
protein in the prevention and treatment of rotavirus infections and 
diarrhea. It functions by safeguarding the epithelial barrier and 
enhancing intestinal permeability resistance (Xu et al., 2016). Wang 
et al. further observed that elevated MUC2 content in the ileum of 
diarrheal rats enhances intestinal barrier defense and confers intestinal 
protection (Wang et al., 2019). Furthermore, MUC2 concentration 
was significantly lower in AAD mice than in normal mice. A 
significant negative correlation was also identified between MUC2 
and two gut microbial taxa, Prevotellaceae_NK3B31_group and Rothia 
(Li C. et al., 2023; Li X. T. et al., 2023). Collectively, these findings 
demonstrate a close association between diarrhea development, GM 
composition, and intestinal barrier function.

2.4 Effects on intestinal immune function

The GM intricately interacts with the host immune system. The 
crosstalk between the GM and enterocytes plays a crucial role in 
shaping the intestinal environment, thereby profoundly influencing 
intestinal immune homeostasis (Hold, 2016). Different types of 
diarrhea induce alterations in GM composition, which in turn 
modulates the expression of inflammatory factors. For example, in 
patients with diarrhea-predominant IBS-D, levels of IL-8 and TNF-α 
are elevated, while IL-10 is reduced; in mice with AAD, GM dysbiosis 
is observed, characterized by a marked increase in Proteobacteria and 
decreases in Bacteroidetes and Firmicutes, accompanied by 
upregulated IL-1 and IL-6 levels (Chen et al., 2022; Zhen et al., 2015; 
Zhu et al., 2022). It was observed that E. coli O1 caused diarrhea in 
calves with disturbances in the GM and an increased abundance of 
Proteobacteria and Clostridiales. This condition was accompanied by 
a decreased expression of CD4+ T and an elevated expression of 
Cluster of Differentiation 8 Positive T Lymphocyte (CD8+ T) and 
CD11c-positive T lymphocyte (CD11c+ T) in the ileum. Additionally, 
there were reduced serum levels of IgA and Immunoglobulin G (IgG), 
alongside heightened levels of IL-6 and TNF-α (Chen H. et al., 2023). 
T helper cell 17 (Th17) contribute to the maintenance of host intestinal 
immune homeostasis through interleukin-17A (IL-17A)-induced 
expression of the epithelial polymeric immunoglobulin receptor (Cao 
et al., 2012). In colonic tissues of IBS-D mice, the Th17/Tregs ratio was 
found to be significantly altered, characterized by reduced Tregs and 
IL-10+Foxp3+T cells alongside increased Th17 cells. Correlation 
analysis further revealed positive associations between Ruminococcus_
gnavus with the Th17/Tregs ratio (Zhang M. M. et al., 2024; Zhang 
Y. et al., 2024; Zhang Z. et al., 2024).
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It is thus clear that GM plays an important role in regulating 
intestinal immune homeostasis during diarrhea.

2.5 Effects on BGMA

In recent years, this concept has expanded to include BGMA, 
prompted by the growing recognition of the gut microbiota’s critical 
role in human health and disease (Lee et al., 2023). The BGMA acts as 
a bidirectional communication pathway between the central nervous 
system (CNS) and the gastrointestinal tract. It mediates interactions 
involving the CNS, enteric nervous system (ENS), neuroendocrine 
system, and immune system, with signals being transmitted either 
directly or indirectly between the CNS and ENS (Arneth, 2018; 
Grenham et al., 2011; Morais et al., 2021).

Notably, microbial metabolic activity profoundly shapes brain–
gut signaling. For example, disruptions in tryptophan metabolism 
impact the synthesis of serotonin (5-HT), a key intermediate, which 
can activate brain–gut neural circuits and precipitate diarrheal 
responses (Morais et al., 2021; Spencer and Hu, 2020). Furthermore, 
central processes modulate gut function via the hypothalamic–
pituitary–adrenal (HPA) axis: psychological stress triggers cortisol 
release, altering intestinal permeability and compounding gut 
dysfunction (Chen H. et al., 2023; Chen X. et al., 2023; Chen J. et al., 
2023; Morais et al., 2021). Evidence underscores a robust association 
between functional diarrhea and impairment of the BGMA. Notably 
higher rates of this condition occur in patients with mental 
disorders, with GM-CNS crosstalk serving as a potential mediator 
of this comorbidity (Zhang et al., 2021). The pathogenesis of IBS-D 
involves multifaceted interactions among brain–gut peptides, 
immune activation, and microbial composition (Li et al., 2020). For 
instance, Gao et al. demonstrated that dampening HPA axis activity 
via CRHR1 downregulation alleviates diarrheal symptoms in IBS 
models, underscoring the therapeutic relevance of BGMA 
modulation (Gao et al., 2023). Wu et al. provided further mechanistic 
insight, identifying correlations between specific microbial genera 
and neuro-immune markers in IBS-D rats. The genus Paraprevotella 
was positively associated with elevated 5-HT, CRF, and NPY, 
suggesting its potential role in modulating the HPA axis via 
serotonergic pathways (Wu et  al., 2022). Additionally, microbial 
metabolites such as SCFAs and 5-HT are implicated in bidirectional 
BGMA communication, and their aberrant levels have been 
consistently reported in IBS-D patients (Dinan and Cryan, 2017; 
Luo et al., 2021). Interventions including probiotic supplementation 
have shown promise in reducing 5-HT levels and ameliorating 
IBS-D symptoms, highlighting the translational potential of 
targeting microbial components (Gu et al., 2022; Wu et al., 2024). 
Another compelling example comes from Chen et al. reported that 
alkaline mineral complex (AMC) water improved diarrhea resistance 
in stressed piglets by rebalancing the HPA axis and enriching 
beneficial bacteria such as Lactobacillus helveticus and Ruminococcus 
gnavus. This reinforces the notion that BGMA-oriented 
interventions can restore gut homeostasis through multifactorial 
mechanisms (Chen H. et  al., 2023; Chen X. et  al., 2023; Chen 
J. et al., 2023).

Overall, research on the BGMA provides critical insights into the 
mechanisms underlying diarrhea and reveals promising therapeutic 
potential. Current evidence suggests that targeting the 

BGMA—through modulation of microbial metabolites, 
neuroendocrine pathways, and immune signaling—may alleviate both 
intestinal and psychiatric symptoms. However, most studies to date 
remain correlative or reliant on animal models, highlighting a need 
for causal validation and clinical translation. Future work should 
integrate multi-omics approaches to elucidate precise molecular 
targets within the BGMA, ultimately facilitating the development of 
personalized therapies and bridging the gap between mechanistic 
discovery and clinical application.

In summary, the occurrence of diarrhea can alter the composition 
of the gut microbiota and the levels of its metabolites, regulate 
immune function, affect the gut-brain axis, and impair intestinal 
barrier integrity. The potential mechanisms mediating these effects are 
illustrated in Figure 1.

3 Impact of interventions targeting 
GM on diarrhea

3.1 Probiotic interventions

Probiotics are defined as beneficial, viable microorganisms, and a 
growing body of evidence has shown that numerous probiotic strains 
alleviate diarrhea by modulating the GM (Wieërs et  al., 2019), 
regulation of inflammatory factor production (Wang F. et al., 2023), 
and enhancement of the intestinal mucosal barrier function 
(Camilleri, 2021; Su et al., 2022).

Lactobacillus and Bifidobacterium are widely employed as 
probiotics in the treatment of diarrhea, owing to their crucial 
functions in alleviating inflammation and promoting the balance of 
the intestinal microbiota. Lactoferricin produced by Lactobacillus 
reuteri CO21 was found to be able to modulate the intestinal physical 
barrier function by inhibiting the TLR4, Myd88 and Myosin light-
chain kinase (MLCK) pathways and up-regulating the expression of 
the TJ proteins ZO-1 and claudin-2, thereby increasing piglets’ 
resistance to Enterotoxigenic E. coli and alleviating diarrhea (Xie et al., 
2021). Lactobacillus and Saccharomyces boulardii have also shown 
effectiveness in the prevention or treatment of AAD (Doar and 
Samuthiram, 2023; Yang Y. et  al., 2023; Yang Q. et  al., 2023). 
Saccharomyces boulardii alleviates GM disorders and improves 
intestinal barrier function (Bustos Fernández et  al., 2023). 
Saccharomyces boulardii mitigates mucosal injury by modulating 
intestinal mucin composition and secretion, strengthening the mucin 
barrier, and reducing SN-38 penetration into epithelial cells (Sezer 
et al., 2009).

In conclusion, probiotics exert beneficial effects on both the 
prevention and treatment of diarrhea, with such effects being 
strain-and dose-dependent. Thus, further studies are required to 
identify and optimize the selection and application of probiotics for 
managing different types of diarrhea.

3.1.1 Basic experiments
During animal development, exposure to various pathogenic 

bacteria and toxic compounds often leads to intestinal barrier 
dysfunction, thereby contributing to the onset of diarrhea and 
impaired growth (Kovanda et al., 2023; Satitsri et al., 2016). However, 
probiotics can modulate intestinal barrier function, alleviate intestinal 
injury, and mitigate diarrhea.
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ETEC is a major pathogen of animal diarrhea (Xu C. et al., 2023; 
Xu Y. et al., 2023; Xu H. et al., 2023), which disrupts the intestinal 
epithelial barrier through adhesins and enterotoxins (Zhu et al., 2018). 
It has been found that Lactobacillus plantarum ZLP001 has 
antimicrobial activity, which prevents ETEC growth by producing 
certain antimicrobial substances and generating a relatively acidic 
environment (Wang et  al., 2018b). Treatment with L. plantarum 
ZLP001 alleviated ETEC-induced intestinal damage by preserving the 
expression of TJ proteins (claudin-1, occludin, ZO-1), downregulating 
pro-inflammatory cytokines (IL-6, IL-8, TNF-α), and strengthening 
the intestinal barrier via enhancing epithelial defense and modulating 
the GM (Wang et al., 2018a). AAD triggered by GM dysbiosis post-
antibiotic therapy, poses serious threat to human and animal health. 
However, Lactobacillus plantarum H-6 was found to modulate the 
colonic microbial composition in mice by increasing the abundance 
of Lactobacillus and Akkermansia, decreasing that of Bacteroides, 
downregulating the expression of pro-inflammatory factors (e.g., 
IL-1β, IL-6), and elevating the levels of L-tryptophan and 
LysoPC. These changes improve serum metabolism, thereby 
alleviating AAD (Yan et  al., 2023). In addition, Akkermansia 
muciniphila was able to reduce the relative abundance of Citrobacter 
at the genus level, inhibit intestinal inflammation by up-regulating the 
expression of G protein-Coupled Receptor 109A (GPR109A) and 
Solute Carrier family 5 member 8 (SLC5A8) and down-regulating the 
expression of TNF-α, IFN-γ, IL-1β, and IL-6, and at the same time 
improve the down-regulation of ZO-1, Occludin, Claudin-4 (CLDN4), 
and Muc2 in AAD model mice, restore the intestinal barrier function 
and optimize intestinal health to prevent AAD (S. Liu et al., 2024). 
Saccharomyces boulardii can upregulate Serotonin Transporter (SERT) 

through activation of epidermal growth factor receptor and modulate 
GM to inhibit gut motility to alleviate IBS-D symptoms (Gu et al., 
2022). The efficacy of other probiotics in modulating the GM for 
diarrhea treatment is summarized in Table  2, while the potential 
mechanisms underlying probiotic-mediated diarrhea management are 
illustrated in Figure 2.

3.1.2 Clinical experiments
Clinical studies have extensively documented the efficacy of 

probiotics in managing diarrhea. Bifidobacterium bifidum G9-1 
was reported to reduce serum pro-inflammatory cytokine 
(Monocyte Chemoattractant Protein-1, IL-8 and Macrophage 
Inflammatory Protein-1β) levels and increase the abundance of 
Bifidobacterium, alleviating diarrhea in IBS-D patients (Tomita 
et al., 2023). Similarly, longum ES1 significantly lowered serum 
IL-6 and TNF-α levels in IBS-D patients compared to baseline 
(Caviglia et al., 2020). Clostridium butyricum ameliorated diarrhea 
in IBS-D patients by decreasing stool frequency and modulating 
GM composition (Sun et  al., 2018). Lactobacillus plantarum 
LRCC5310 improved diarrhea and Vesikari scores in rotavirus-
infected children while suppressing viral proliferation (Shin et al., 
2020). Alkalihalobacillus clausii 088AE exerts a therapeutic effect 
on diarrhea in children, adolescents, and adults. Specifically, in 
the treatment of AAD, it has been demonstrated to be safe and 
effective in reducing diarrhea episodes and alleviating associated 
severe symptoms, such as abdominal discomfort, pain, bloating, 
and flatulence (Maity and Gupta, 2021). However, supplementation 
with Bifidobacterium breve BB05 can partially restore the 
disrupted GM at both the phylum and genus levels, notably by 

FIGURE 1

The potential mechanism of diarrhea development. (The relationship between diarrhea and GM, GM metabolites, the immune system, the intestinal 
barrier, and BGMA).
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TABLE 2  Basic studies on the potential mechanisms of probiotics against diarrhea.

Types of probiotics Type of diarrhea Effect on GM Relief or treatment of symptoms Reference

Lactobacillus reuteri DSM 17938 E. coli-induced diarrhea
Unclassified_Lachnospiraceae and Anaerostipes 

increased, Escherichia_Shigella decreased.

Restored the expression of inflammatory factors (IL-6, IL-10, TNF-α, 

and IFN-γ), reduced the colon inflammatory damage, maintained the 

integrity of the intestinal barrier, and regulated the composition of 

GM to alleviate diarrhea.

Wang D. et al. (2024)

Lactobacillus paracasei Diarrhea caused by E. coli O8 Lactobacillus increased, Enterobacter decreased.

Elevated the TJ protein levels and downregulated proinflammatory 

cytokines IL-6, IL-1β, TNF-α, and p65, Myosin Regulatory Light 

Chain (MLC2), MLCK.

Ren et al. (2022)

Lactobacillus plantarum CCFM1143 Diarrhea caused by ETEC

Odoribacter, Bifidobacterium, Allobaculum and 

Pediococcus increased, Blautia and Pseudomonas 

decreased.

Reduced TNF-α, IFN-γ and IL-6 as well as jejunal damage, 

rebalanced the GM and modulated the production of SCFAs.
Yue et al. (2020)

Lactobacillus reuteri HCM2 Diarrhea caused by ETEC
Lactobacillus increased, Enterobacteriaceae 

decreased.

Inhibited the growth of ETEC, prevented ETEC infection-induced 

dysbiosis by stabilizing the relative abundance of the dominant 

bacteria.

Wang T. et al. (2018)

Lactobacillus AAD

Muribaculaceae, Bacteroides, Bifidobacterium, 

Lactobacillus and Akkermansia increased, 

Klebsiella, Parabacteroides, and Clostridia_

vadinBB60_group decreased.

Regulated the microbiota-SCFAs signaling cascade, improved SCFAs 

levels, inhibited the activation of the TLR4/NF-κB pathway, relieved 

the intestinal inflammation in AAD.

Xu et al. (2024)

Limosilactobacillus fermentum N-30 Diarrhea caused by rotavirus
Firmicutes increased, Bacteroidota and 

Proteobacteria decreased.
Improve diarrhea symptoms caused by rotavirus infection. Murtaza et al. (2024)

Bifidobacterium. bifidum FSDJN7O5 Diarrhea caused by ETEC
Bifidobacterium and Lactobacillus increased, 

Escherichia–Shigella decreased.

Reduced the water content of the feces, restored the villi structure in 

the jejunum, and improved the content of SCFAs in the feces.
. Yang et al. (2021a)

Bifidobacterium bifidum G9-1 Phytohemagglutinin-induced diarrhea Rikenellaceae decreased.
Inhibited the excessive proliferation of E. coli, restored the length of 

jejunum villi and relieved diarrhea symptoms.
Makizaki et al. (2019)

Bifidobacterium animalis subsp. lactis 

XLTG11
AAD

Muribaculaceae, Bacteroides, Bifidobacterium, 

Lactobacillus and Akkermansia increased, 

Klebsiella, Parabacteroides and Clostridia_

vadinBB60_group decreased.

Increased the expression of TJ protein, inhibited the activation of 

TLR4/NF-κB signaling pathway, increased the level of anti-

inflammatory cytokines, decreased the level of pro-inflammatory 

cytokines, increased the production of SCFAs, and decreased the 

permeability of the intestine.

Xu B. et al. (2022)

Bacteroides uniformis FGDLZ48B1 and 

Bifidobacterium adolescentis FHNFQ48M5
AAD Restoring the diversity of GM.

Decreased IL-6 levels, restored occludin expression in the colon, 

increased Mucin-2 expression, and increased concentrations of acetic 

acid, propionic acid, isobutyric acid, and isovaleric acid in the cecum.

Guo et al. (2021)

(Continued)
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TABLE 2  (Continued)

Types of probiotics Type of diarrhea Effect on GM Relief or treatment of symptoms Reference

Weizmannia coagulans WC10 AAD Bifidobacterium and Roseburia increased.

Decreased diarrhea status score and fecal water content. Decreased 

the levels of serum enterotoxin and Diamine Oxidase (DAO), 

increased the expression of intestinal mucosal immune factors sIgA 

and occludin, decreased the expression of pro-inflammatory 

cytokines.

Wang Z. et al. (2024)

Pediococcus pentosaceus Li05 IBS-D

Alloprevotella, Anaerotruncus and Mucispirillum 

increased. [Ruminococcus] gauvreauii, Dubosiella, 

Erysipelatoclostridium and Blautia decreased.

It ameliorated intestinal and systemic inflammation by decreasing the 

levels of chemokines and pro-inflammatory cytokines. Regulated on 

Activation, Normal T cell Expressed and Secreted (RANTES), IL-1β, 

IL-7, and IL-18, and effectively reduced the expression of intestinal 

5-Hydroy-tryptamine 3B (5-HT3B) receptor, regulated excessive 

intestinal motility and secretion in patients with IBS-D.

Wu et al. (2024)

Lactiplantibacillus plantarum ELF051 AAD
Oscillospira and Prevotella increased, Allobaculum, 

Desulfovibrio and Akkermansia decreasd.

Improved the pathological changes of colon tissue, down-regulated 

IL-1β and TNF-α, up-regulated IL-10, increased the level of intestinal 

SCFAs, and regulated TLR4/MyD88/NF-κB and PI3K/AKT/NF-κB 

signaling pathways, thereby reducing inflammation.

Liang et al. (2023)

Lactiplantibacillus plantarum 2-33 AAD
Lactobacillus increased, Enterococcus and Bacillus 

decreased.

Increased the levels of anti-inflammatory cytokines IL-4 and IL-10, 

reduced the levels of proinflammatory cytokines TNF-α and IFN-γ, 

and also adjusted carbohydrate metabolism, amino acid metabolism, 

restored energy metabolism to normal level, accelerated the recovery 

of intestinal bacterial structure in AAD mice, alleviated AAD.

Bao et al. (2022)
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elevating the abundances of Bifidobacterium and Roseburia. In the 
probiotic-supplemented group, fecal 5-HT concentration was 
increased, whereas levels of acetylcholine, epinephrine, and 
norepinephrine were reduced—suggesting that Bifidobacterium 
breve BB05 may alleviate anxiety and diarrhea by BGMA (Wang 
Y. et al., 2024).

Most existing literature has only summarized the therapeutic 
effects of probiotics on clinical diarrhea (focusing on diarrhea 
alleviation) and their safety profiles in patients, with relatively few 
studies investigating their specific efficacy and underlying mechanisms 
of action. Supplementary details regarding the clinical application of 
probiotics for diarrhea treatment and their corresponding mechanisms 
are provided in Table  3, while the potential mechanisms through 
which probiotics may exert anti-diarrheal effects in clinical settings 
are illustrated in Figure 3.

3.2 FMT

FMT is a procedure that involves transferring GM from healthy 
donors into the gastrointestinal tract of patients to restore a balanced 
microbial community and treat diseases, particularly those associated 
with gut dysbiosis such as diarrhea (Almeida et  al., 2022; Li 
et al., 2022).

The therapeutic efficacy of FMT in diarrhea alleviation is closely 
linked to the modulation of GM composition. On one hand, FMT 
reintroduces a healthy microbial community that competes for 
ecological niches in the gastrointestinal tract, thereby suppressing 

pathogen colonization-this process further facilitates the restoration 
of immune function and mitigates host tissue damage. On the other 
hand, FMT aids in replenishing essential metabolites for host 
metabolism, such as SCFAs, antimicrobial peptides, bacteriocins, and 
BAs (Ademe, 2020). IBS-D is a common gastrointestinal disorder and 
is characterized by altered GM, especially involving Firmicutes and 
Bacteroidetes (Mei et al., 2021; Zhen et al., 2021). However, FMT can 
reduce intestinal permeability and alleviate the diarrheal effects of 
IBS-D by modulating GM disorders and affecting GM-produced 
metabolites such as increasing the production of SCFAs (Lin et al., 
2021; Singh et  al., 2022; Song et  al., 2023). Clostridium difficile 
infection (CDI) is considered a common cause of AAD (Bosnjak et al., 
2023; Tubau-Juni et al., 2023). One study demonstrated that FMT 
administration to children with recurrent CDI enhanced GM diversity 
while driving shifts in GM composition and function toward those of 
the donor (Fareed et al., 2018). During the weaning transition, piglets 
are prone to diarrhea, which is related to the damaged state of the 
microbiome and immature immune system (Han et  al., 2024). In 
diarrheal piglets infected with E. coli K88, the application of FMT 
increased the number of beneficial bacteria in the gut and reduced the 
number of harmful bacteria, and further research found that FMT 
triggered intestinal mucosal autophagy and reduced the damage of 
E. coli K88 to the intestinal barrier (Cheng et al., 2018).

Currently, research on the underlying mechanisms of FMT 
remains limited. Available evidence suggests that alterations in the 
GM following FMT play a significant role in the pathogenesis of 
diarrhea. However, several studies indicate that the therapeutic 
efficacy of FMT may be constrained. Additionally, to date, FMT has 

FIGURE 2

Proposed mechanisms of action of probiotics against diarrhea derived from basic studies. (These potential mechanisms mainly involve the GM, SCFAs, 
the immune system, and intestinal barrier function).
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been predominantly investigated for the treatment of CDI and 
diarrhea-predominant IBS-D, while its efficacy in diarrhea of other 
etiologies remains less established. Thus, further clinical trials are 
warranted to validate the potential benefits of FMT across diverse 
forms of diarrhea and to better define its role in managing diarrhea-
related disorders. It is also important to note that the limited efficacy 
of FMT in some cases of diarrhea may be attributable to insufficient 
donor-recipient matching, among other factors, highlighting the need 
for more personalized approaches in future studies.

3.2.1 Basic experiment
Diarrhea in animals, triggered by multiple etiologies, is highly 

prevalent and remains a major challenge afflicting the animal 
husbandry industry. To address this issue, FMT-an emerging 

therapeutic technology-has been increasingly applied to the treatment 
of animal diarrhea in recent years.

Advances in modern genetics and enhanced sow reproductive 
performance have facilitated the widespread implementation of 
artificial lactation systems in commercial swine production. However, 
these systems are linked to a high incidence of diarrhea in piglets. To 
tackle this challenge, researchers have utilized FMT as a therapeutic 
strategy to alleviate diarrhea induced by artificial feeding. Results 
demonstrated that FMT modulates the composition of colonic 
microbiota and its metabolites, promotes tryptophan metabolism and 
5-hydroxyindoleacetic acid (5-HIAA) production, enhances intestinal 
mucosal barrier function, inhibits the activation of the Jun N-terminal 
kinase (JNK) pathway and the expression of matrix metalloproteinases 
(MMPs), reduces the secretion of proinflammatory cytokines and 

TABLE 3  Clinical studies on the potential mechanisms of probiotics against diarrhea.

Types of Probiotics Type of diarrhea Effect on GM Relief or treatment of 
symptoms

Reference

Combined B. infantis, L. 

acidophilus, E. faecalis, and B. 

cereus tablets

Chemotherapy-induced 

diarrhea in patients with 

rectal cancer

Streptococcus, Blautia and 

Bifidobacterium increased.

Alleviated chemotherapy-

induced diarrhea in Colorectal 

Cancer (CRC) patients by 

modulating the GM and 

promoting SCFA production.

Huang et al. (2023)

Lactobacillus plantarum 

CCFM1143
Chronic Diarrhea

Akkermansia, Anaerostipes, 

Terrisporobacter, Escherichia, and 

Shigella increased, Bacteroides, 

Eggerthella, Lachnoclostridium, and 

Lachnospira decreased.

Reduced the clinical symptoms 

of chronic diarrhea. In addition, 

it inhibited the elevation of IL-6 

and the reduction of motilin; 

and regulated the production of 

SCFAs.

Yang et al. (2021b)

Lacticaseibacillus paracasei 

Zhang, Lactiplantibacillus 

plantarum p-8, and 

Bifidobacterium animalis subsp. 

lactis V9

Chronic diarrhea

Dysosmobacter welbionis and 

Faecalibacterium prausnitzii 

increased, Megamonas funiformis 

decreased.

Alleviated diarrhea by 

modulating the tryptophan-5-

hydroxytryptophan and 

tryptophan-kynurenine 

pathways, and improved the 

patients’ Bristol Stool Scale 

scores, frequency of defecation, 

and urgency to defecate.

Guo et al. (2024)

Lactiplantibacillus plantarum 

CJLP243
Functional diarrhea Leuconostoc increased. Improved diarrhea symptoms. Jung M. et al. (2022)

Lacticaseibacillus rhamnosus 

LRa05
AAD

Faecalibacterium, Lachnospira, 

Parabacteroides, 

Phascolarctobacterium, 

Fusicatenibacter, Alistipes, 

Coprococcus, Oscillibacter, 

Parasutterella, and Megamonas 

increased.

Relieved adverse symptoms, 

regulated the inflammatory 

response.

Niu et al. (2024)

Lactiplantibacillus plantarum 

APsulloc 331261
IBS-D

Firmicutes increased, Bacteroidetes 

decreased.

Reduced the severity and 

frequency of abdominal pain, 

bloating, and feeling of 

incomplete evacuation.

Jung K. et al. (2022)

Bifidobacterium animalis subsp. 

lactis BLa80
Acute diarrhea in children

Bifidobacterium breve and 

Lactobacillus murinus increased, 

Bifidobacterium longum decreased.

Reduced duration of diarrhea, 

accelerated improvement in 

stool consistency and alteration 

of the gut microbiome.

Chen K. et al. (2024)
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chemokines, and ultimately alleviates artificial feeding-induced 
diarrhea in piglets (Han, 2023). Bovine viral diarrhea virus (BVDV) 
is widespread throughout the world and has caused significant 
economic losses to animal husbandry (Pang et  al., 2023). BVDV 
infection significantly decreased the diversity and changed the 
composition of GM in mice. However, after FMT, BVDV RNA and 
protein levels in duodenum, jejunum, spleen and liver were 
significantly inhibited, Interferon-α (IFN-α) and Interferon-β (IFN-β) 
mRNA levels were increased, and Interferon Regulatory Factor 1 
(IRF1) and Interferon Regulatory Factor 7 (IRF7) mRNA levels were 
increased. The expression of Toll-Like Receptor 7 (TLR7) and Toll-
Like Receptor 9 (TLR9) was restored, the proportion of Cluster of 
Differentiation 3 (CD3) and CD8 T cells was restored, the expression 
of ZO-1 protein was increased, and the proliferation of Peripheral 
Blood Leukocytes (PBL) was restored (Zhang Z. et al., 2024). FMT 
significantly alleviates symptoms of IBS-D, potentially through 
modulating the 5-HT signaling pathway within the BGMA. It was 
found that after FMT, the mental condition of IBS-D mice was 
improved, the diarrhea was improved, and the fecal water content was 
significantly reduced. Additionally, the expression levels of 5-HT and 
SP in brain tissue and serum were significantly decreased, the 
expression levels of SERT and 5-Hydroxytyryptamine Receptor 4 
(5-HT4R) proteins in colon and brain tissues were increased, and the 
expression levels of Tryptophan Hydroxylase 1 (THP1) and 
(5-Hydroxytyryptamine Receptor 3) 5-HT3R proteins were 
significantly reduced (Ouyang et al., 2022).

Basic experimental data on the use of FMT for diarrhea treatment 
in other studies are presented in Table  4, while the potential 

mechanisms underlying FMT’s therapeutic effects on diarrhea are 
illustrated in Figure 4.

3.2.2 Clinical experiments
FMT has emerged as a novel clinical strategy for treating diarrhea. 

As an intestinal microecological therapy with proven efficacy, FMT 
entails the transfer of GM from healthy donors to patients with 
diarrhea, which modulates GM composition, restores the intestinal 
mucosal immune barrier, and thereby exerts therapeutic effects.

CDI is the main cause of nosocomial infectious diarrhea and a 
high proportion of clinical cure rates have been achieved by restoring 
the GM with FMT in CDI therapy (Chen and Chiu, 2022; Roshan 
et al., 2020). Shao et al. found a significant increase in a diversity of 
GM in CDI patients after FMT, with GM composition more similar to 
that of healthy donors, increased the abundances of families 
Ruminococcaceae, Prevotellaceae, Coriobacteriaceae, 
Porphyromonadaceae, Bacteroidaceae, Bifidobacteriaceae, and 
Eubacteriaceae, and reduced the abundance of Enterobacteriaceae, 
Veillonellaceae, Enterococcaceae, and Peptostreptococcaceae (Wei 
et al., 2022). Clinically, FMT alleviates IBS-D symptoms and improves 
patients’ quality of life by restoring a balanced GM (Fu and Huang, 
2022). Studies have shown that GM and SCFAs in patients with IBS-D 
differ from those of donors at baseline, such as decreased levels of 
Actinobacteria and Bifidobacterium and increased levels of 
Bacteroidetes and Proteobacteria, however these differences gradually 
return to normal after 3 weeks after FMT, while patients also have 
improved symptoms and quality of life of IBS-D during the same 
period (Mazzawi et al., 2019). However, some studies have also shown 

FIGURE 3

Demonstrated mechanisms of probiotics against diarrhea from clinical studies. (These potential mechanisms mainly involve GM, SCFAs, the immune 
system, and BGMA).
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conflicting results. For example, studies in the treatment of IBS-D 
have shown that both FMT and placebo recipients showing 
improvements in irritable bowel syndrome-Severity Scoring System 
(IBS-SSS) and irritable bowel syndrome-Quality of Life (IBS-QOL) 
scores and reporting improvements in fecal morphology, however, no 
differences were found between the two groups (Aroniadis et  al., 
2019). Therefore, more research is needed to determine the efficacy of 
FMT for IBS-D.

Currently, FMT has shown expanding clinical applications across 
various diseases. However, clinical evidence supporting FMT for 
diarrhea remains limited, with existing studies reporting inconsistent 
therapeutic outcomes. Most available literature has documented 
improvements in clinical symptoms, FMT safety, and the efficacy and 
duration of single or multiple transplantation regimens in diarrhea 
patients, while studies investigating its specific mechanisms of action 
remain scarce. Additional information on FMT-induced symptomatic 
improvements and mechanisms in diarrhea treatment is presented in 
Table  5, and the potential mechanisms underlying FMT’s clinical 
efficacy in diarrhea are illustrated in Figure 5.

3.3 Bacteriophage therapy

Bacteriophages, viruses that specifically infect and lyse bacteria, 
offer a promising therapeutic strategy by precisely targeting 
pathogenic bacteria while preserving the commensal GM (Chen 
H. et al., 2023; Chen X. et al., 2023; Chen J. et al., 2023; Strathdee 
et al., 2023).

Antibiotics have always been the cornerstone of treating diarrhea, 
but rising antimicrobial resistance (AMR) has diminished their 
efficacy (Baran et  al., 2023). Moreover, antibiotics disrupt the 
commensal GM, leading to dysbiosis and increased susceptibility to 
recurrent infections (Ramirez et al., 2020). Phage therapy, which uses 
viruses to specifically infect and kill bacteria, has re-emerged as a 
promising alternative due to its specificity, self-replicating nature, and 
ability to disrupt biofilms (Duan et al., 2022).

Multiple in vitro studies have demonstrated the effectiveness of 
phage therapy for treating diarrheal pathogens. Research has shown 
that a phage cocktail targeting E. coli, such as a combination of six 
bacteriophages, can reduce bacterial load by 3 log CFU/mL in vitro 

TABLE 4  Basic studies on the application of FMT technique in the treatment of diarrhea.

Type of diarrhea Donor Changes in microbiota Relief or treatment of 
symptoms

Reference

Horse with diarrhea
Healthyage-matched 

control horses

Verrucomicrobia increased and 

Proteobacteria decreased.
Reduced the severity of diarrhea. McKinney et al. (2020)

Foals with diarrhea Healthy calves
Verrucomicrobiota and 

Akkermansia increased.

Alleviated the symptoms of 

weaning diarrhea in calves.
Bell et al. (2024)

Cynomolgus monkeys with 

diarrhea
Healthy human donors

Firmicutes and Lactobacillus 

increased, Lactobacillus fermentum 

and Lactobacillus ruminis 

CAG_367 increased.

Increased serum levels of IL-10 

and decreased levels of IL-6, IL-8, 

IL-1β and IFN-γ in monkeys with 

chronic diarrhea.

Tian et al. (2022)

Calves suffering from 

intractable diarrhea
Healthy calves

Lactobacillus, Veillonellaceae, 

Selenomonas, Acidaminococcus, 

and Collinsella increased.

Increased the content of SCFAs 

(especially butyric acid) and 

medium-chain fatty acids (e.g., 

octanoic acid) after FMT 

treatment. Decreased the fecal 

content of most amino acids in 

successful recipients.

Islam et al. (2022)

Post-weaning diarrhea in 

piglets
Healthy Tibetan pigs

Firmicutes, Euryarchaeota, and 

Tenericutes increased, 

Proteobacteria and Melainabacteria 

decreased.

Lactobacillus and 

Methanobrevibacter increased, 

Campylobacter decreased.

Reduced the incidence of diarrhea, 

which attenuated the reduction of 

CD4 T cells and CD4/CD8 ratio in 

peripheral blood. Down-regulation 

of mRNA expression of Toll-Like 

Receptor 2 (TLR2) and NF-κB.

Tang et al. (2020)

IBS-D rats Healthy rat

Firmicutes and Bacteroides 

increased, Proteobacteria and 

Prevotella decreased.

Inhibited visceral hypersensitivity 

and regulated GM balance to 

relieve diarrhea.

Jiang C. Y. et al. (2024)

Oligofructose-induced 

diarrhea in horses
Healthy horse

Patescibacteria and 

Planctomycetota increased, 

Proteobacteria, Desulfobacterota, 

and Fusobacteriota decreased.

Streptococcus and Lactobacillus 

decreased.

Decreased body temperature and 

diarrhea score, and increased fecal 

pH, decreased inflammatory 

responses such as increased serum 

Lipopolysaccharide (LPS), IL-17A, 

lactic acid and total protein.

Tuniyazi et al. (2024)
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and effectively inhibit biofilm formation (Youssef et  al., 2025). In 
addition, a 2023 study utilized a resource library termed the gut phage 
isolate collection (GPIC)—composed of bacteriophages isolated from 
healthy human guts—to demonstrate that a bacteriophage cocktail 
targeting Bacteroides fragilis significantly reduced the abundance of 
the target bacteria in in vitro fecal cultures, highlighting the potential 
of bacteriophages in modulating the GM (Shen et al., 2023). In animal 
model studies, phage therapy has also shown promising effects. 
Research has shown that the microencapsulated bacteriophage A221 
is as effective as the antibiotic florfenicol in treating piglet diarrhea 
models (Youssef et  al., 2025). In addition, phage cocktail therapy 
targeting Klebsiella pneumoniae associated with inflammatory bowel 
disease can alleviate intestinal inflammation and tissue damage in 
mouse models (Fuerte-Stone and Mimee, 2022). These studies indicate 
that bacteriophages can not only effectively reduce the load of 
pathogenic bacteria, but also alleviate the inflammatory response and 
tissue damage caused by it.

In recent years, clinical trials of phage therapy for diarrhea have 
also made some progress. A phase 1 clinical trial in 2022 tested two 
bacteriophages targeting Klebsiella pneumoniae associated with 
inflammatory bowel disease on 18 healthy volunteers. The results 
showed that when taken together with antacids such as CaCO₃, the 
bacteriophages not only survived at high levels but also remained 
active throughout the gastrointestinal tract without affecting the 
resident GM. All participants did not experience any serious 
treatment-related adverse events, laying the foundation for further 
research in patients (Federici et al., 2022).

Although these studies indicate that bacteriophages have great 
potential in treating diarrhea, a critical translational challenge involves 
phage instability in the harsh gastrointestinal environment. Gastric 
acidity and digestive enzymes rapidly denature phage particles, 
compromising therapeutic efficacy. Advanced encapsulation strategies 
using electrospun fibers, liposomes, or pH-responsive hydrogels are 
being developed to shield phages during transit and ensure targeted 
colonic release (Yang Y. et al., 2023; Yang Q. et al., 2023). Additionally, 
the field must address the complexity of phage ecology, particularly 
the potential for temperate phages to facilitate horizontal gene transfer 
of virulence or resistance genes. Careful selection of obligately lytic 
phages is therefore essential for clinical safety and efficacy (Gummalla 
et al., 2023).

3.3.1 Basic experiment
Diarrhea is now a significant public health concern. Consequently, 

bacteriophage therapy has emerged as a promising therapeutic 
strategy. Phages modulate the composition and abundance of the GM, 
which in turn alters the expression of intestinal proteins and 
inflammatory factors, ultimately alleviating various forms of diarrhea.

The mechanism of action of bacteriophages against diarrhea is 
multifaceted. It begins with the specific lysis of bacterial pathogens, 
which in turn drives the recovery of healthy GM. This rebalancing 
directly leads to a reduction in inflammation, an enhancement of the 
intestinal barrier, and a positive regulation of the immune response, 
collectively alleviating the symptoms and pathology of diarrhea. 
Specifically, bacteriophage vB_Ecos_ULIM2 effectively lysed F18 

FIGURE 4

Potential mechanisms of FMT in treating diarrhea revealed by basic research. (These potential mechanisms mainly involve GM, SCFAs, the immune 
system, and intestinal barrier function).
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ETEC strain (Navez et  al., 2023), ZC22 bacteriophage specifically 
targeted and reduced the load of Salmonella typhimurium in organs 
(Sun et al., 2025), and broad-spectrum cocktail reduced fecal E. coli 
count by 1.33 logarithmic units (Sun et al., 2025).

In addition to direct killing, bacteriophages also significantly 
regulate the GM to restore health: (1) Reduce pathogenic bacteria: 
Multiple studies have shown that bacteriophages effectively reduce the 
abundance of pathogenic families such as Enterobacteriaceae (Li et al., 
2024; Mao et  al., 2023) and specific genera such as Shigella, 
Clostridium, and Desulfovibrio (Chen et al., 2025; Choi et al., 2023). 
(2) Promotion of beneficial bacteria: A key finding is that targeted 
phage therapy can reduce or even promote the growth of beneficial 
bacteria. Research consistently reports an increase in the abundance 
of Lactobacillus (Canibe et al., 2022; Castro et al., 2022; Chen J. et al., 
2025; Choi et  al., 2023; Feng et  al., 2025; Mao et  al., 2023) and 
Bifidobacterium (Chen J. et al., 2025; Choi et al., 2023), which is crucial 

for gut health. (3) Increasing diversity: Phage cocktails can increase 
the richness and diversity of microorganisms that are infected and 
destroyed (such as Chao1 index) (Zeng et al., 2021).

Continuous treatment with bacteriophages can also lead to 
significant reductions in pro-inflammatory cytokines such as IL-1β, 
IL-6, IL-8, and TNF-α (J. Chen et al., 2025; Choi et al., 2023; Dong 
et al., 2024; Kim et al., 2022; Sun et al., 2025; Zeng et al., 2021). On the 
contrary, they can increase the levels of anti-inflammatory cytokines 
such as IL-10 (Zeng et al., 2021). A reduction in inflammation often 
correlates with decreased intestinal damage. Bacteriophages contribute 
to the restoration of intestinal barrier integrity, they upregulated the 
expression of TJ proteins, including ZO-1, Occludin, and Claudin-1/3 
(Choi et al., 2023; Dong et al., 2024; Feng et al., 2025; Kim et al., 2022). 
This will lead to a decrease in intestinal permeability (Kim et  al., 
2022). In addition, there will also be  improvements in intestinal 
morphology, with studies showing an increase in villus height and a 

TABLE 5  Clinical study on the application of FMT technique in the treatment of diarrhea.

Type of diarrhea Donor Changes in microbiota Relief or treatment of 
symptoms

Reference

IBS-D Healthy 36-year-old men
Faecalibacterium, Eubacterium and 

Escherichia decreased.

Relieved diarrhea and anxiety 

symptoms in IBS-D patients and 

reduced fecal isovaleric and 

valeric acid levels.

Lin et al. (2021)

Clostridium difficile infection 

(CDI)
Healthy donor

Lactobacillaceae, Ruminococcaceae, 

Desulfovibrionaceae, Sutterellaceae 

and Porphyromonadaceae increased, 

Enterobacteriaceae and 

Veillonellaceae decreased.

Decreased serum 

proinflammatory cytokines 

(TNF-α, IL-1β, IL-6, IL-8 and 

IL-12), returned CRP and fecal 

calcarein to normal. Increased 

LL-37 in plasma of successfully 

treated patients were monitored 

3 months after FMT.

Konturek et al. (2016)

AAD Healthy donor

Firmicutes, Bacteroidota, and 

Actinobacteriota increased, 

Proteobacteria decreased.

Bacteroides and Faecalibacterium 

increased, Escherichia-Shigella and 

Veillonella decreased.

Reduced inflammatory markers 

IL-8 and CRP and alleviated 

diarrhea symptoms in patients.

Wang L. et al. (2024)

IBS-D

FMT was prepared from 

one or two healthy 

unrelated donors

Lawsonibacter increased, 

Ruminococcus gnavus decreased.

Relieved the patients’ abdominal 

distension and general 

symptoms.

Yau et al. (2023)

IBS-D

Screening of eligible faecal 

donors, and matched by 

donor-recipient

Gemella in donor-recipient-matched 

group and Acidovorax and Klebsiella 

in random-donor group were 

decreased.

Compared with random-donor 

FMT, donor-recipient-matched 

FMT significantly improves the 

clinical symptoms of patients 

with IBS-D.

Zhang Y, et al. (2024)

IBS-D Healthy donor

Weissella, Bacteroides, Escherichia-

Shigella, Akkermansia, Enterococcus, 

Parabacteroides, Collinsella and Dorea 

increased, Streptococcus, Lactobacillus, 

Romboutsia, Bifidobacterium, 

Subdoligranulum, Pediococcus, 

Blautia, Faecalibacterium, and 

Fusobacterium decreased.

Improved the patient’s QOL, and 

also improved Hamilton anxiety 

scale and Hamilton depression 

scale scores, and was effective in 

the following 4 dimensions: 

interference with activities, health 

concerns, food avoidance, and 

interpersonal relationships.

Huang et al. (2022)
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decrease in crypt depth (Chen J. et al., 2025; Choi et al., 2023; Zeng 
et  al., 2021), indicating enhanced nutrient absorption and 
intestinal health.

In addition to the above, bacteriophages can regulate the host’s 
immune response, including enhancing specific immunity (increasing 
IgA and IgG levels) and non-specific immunity (such as increasing 
IFN-γ and lysozyme activity) (Alomari et al., 2021). Bacteriophages 
can also indirectly affect the intestinal environment, and some 
therapies lead to an increase in SCFAs (Dong et al., 2024), which are 
beneficial metabolites produced by intestinal bacteria, supporting 
barrier function and reducing inflammation.

The specific basic experiments of bacteriophages in the treatment 
of diarrhea were shown in Table 6, and the potential mechanism of 
bacteriophages in the treatment of diarrhea were shown in Figure 6.

3.3.2 Clinical experiments
At present, in addition to probiotics, FMT and other important 

treatments for diarrhea, phage therapy is also used in clinical 
diarrhea diseases.

Based on a randomized, double-blind, placebo-controlled 
clinical trial conducted in Bangladesh, oral bacteriophage therapy 
was evaluated as a method for treating acute bacterial diarrhea in 
children. These studies aim to evaluate the safety, in vivo kinetics, 
and clinical efficacy of a customized T4 like E. coli phage cocktail 
and a commercial Russian phage product (Microgen ColiProteus). 
A total of 120 male children aged 6–24 months hospitalized for 
acute diarrhea received phage or placebo treatment, as well as 

standard oral rehydration and zinc therapy. The results indicate 
that oral phage administration is safe, with no evidence of 
systemic phage exposure, endotoxin release, or immune response 
(such as anti phage or anti LPS antibodies) detected, and no 
serious adverse events or systemic inflammatory reactions 
observed. These studies emphasize the inherent instability of the 
gut microbiota in Bangladeshi children, which should 
be considered in future research on the association of microbiota 
diseases (Sarker et al., 2017; Sarker and Brüssow, 2016; Sarker 
et  al., 2016). Another study conducted safety testing of phage 
therapy, which was designed as a single center, randomized, 
placebo-controlled study. Fifteen healthy volunteers received 
higher doses of bacteriophages (dose A, 105 PFU/ml), lower doses 
of bacteriophages (dose B, 103 PFU/ml), and placebo (dose C). 
The subjects were randomly assigned to one of the following 
treatment sequences: ABC, BCA, or CAB. During the study, 
participants provided all fecal samples produced daily. The 
incidence of adverse events in the high-dose phage group was 
comparable to that in the low-dose and placebo groups. Ultimately, 
no adverse events were found to be related to phage administration 
(Bruttin and Brüssow, 2005).

Although phage therapy is safe and has the potential to serve as 
an alternative to antibiotic treatment for drug-resistant infections, its 
efficacy in treating diarrhea has not been confirmed in controlled 
trials. In the future, we  need to conduct pre-screening of phage 
susceptibility and pathogen dominance, and further fundamental 
research on phage bacterial dynamics in the human gut. The reason 

FIGURE 5

Observed outcomes and proposed mechanisms of FMT for diarrhea in clinical studies. (These potential mechanisms mainly involve GM, SCFAs, and 
immune system).
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TABLE 6  Basic studies on the potential mechanisms of bacteriophages against diarrhea.

Types of bacteriophages Type of diarrhea Effect on GM Relief or treatment of symptoms Reference

Microencapsulated Phage A221
E. coli-induced PWD (Post-Weaning 
Diarrhea)

Reduced Enterobacteriaceae abundance in 
duodenum to 0.64%; Increased 
Lactobacillaceae and Oscillospiraceae.

Reduced bacterial load in jejunal lymph nodes, cecum, and spleen, and alleviated 
intestinal lesions (villi atrophy, gland degeneration, bleeding).

Mao et al. (2023)

Phage ZK22 Salmonella-induced diarrhea
Highly specific to Salmonella Typhimurium; 
no significant disruption to normal GM 
expected due to narrow host range.

Increased survival rate in mice; reduced bacterial load in blood, heart, liver, and 
spleen; alleviated inflammatory response (IL-2, IL-6, TNF-α).

Sun et al. (2025)

Unclassified Caudoviricetes, 
Siphoviridae

Early-onset diarrhea
Increased viral heterogeneity; reduced 
Clostridium perfringens and Escherichia; 
constrained bacterial composition.

Reduced NEC severity, intestinal inflammation, and levels of IL-1β and IL-8; 
decreased abundance of pathobionts.

Spiegelhauer et al. (2025)

Mixed bacteriophage (Targeting 
Salmonella, E. coli, Clostridium 
perfringens, S. aureus)

Post-weaning diarrhea
Altered relative abundance of Firmicutes, 
Bacteroidetes, and Tenericutes.

Reduced feed/gain ratio and diarrhea incidence; Enhanced intestinal morphology 
(increased villus height, decreased crypt depth); modulated inflammatory 
response (decreased IL-1β, TNF-α; increased IL-10); enhanced intestinal barrier 
function (increased ZO-1, Claudin-1, Occludin).

Zeng et al. (2021)

φ26, φ27, φ29 (All belonging to 
Myoviridae)

E. coli-induced diarrhea
Reduced pathogenic E. coli; no effect on 
commensal E. coli

Reduced duration of diarrhea; enhanced specific (IgA, IgG) and nonspecific (IFN-
γ, lysozyme) immune response; reduced inflammatory damage; maintained 
intestinal barrier integrity.

Alomari et al. (2021)

Myovirus phage vB_AccP_PAc Aeromonas caviae-induced diarrhea Lactobacillaceae increased
Alleviated diarrhea, reduced inflammatory cytokines, increased TJ molecules, and 
improved intestinal barrier function.

Feng et al. (2025)

Bacteriophage EK99P-1 ETEC K99-induced diarrhea Reduction of ETEC K99 colonization
Restored intestinal barrier integrity (ZO-1, occludin, claudin-3), reduced 
intestinal permeability, decreased pro-inflammatory cytokines (IL-8, MCP-1, 
IL-1β).

Kim et al. (2022)

Broad-spectrum phage cocktail (vs. 
multiple pathogens)

Non-sanitary environment diarrhea

Decreased Proteobacteria, Desulfovibrio, 
Escherichia-Shigella, Clostridium spp.; 
increased Eubacterium and Lactobacillus 
spp.

Increased ADG, G/F; decreased fecal score; decreased serum IL-1β, IL-6, TNF-α; 
increased intestinal barrier function; improved microbiota diversity.

Chen J. et al. (2025)

Microencapsulated phage cocktail 
(NJ12 + EP01)

Mixed E. coli O157: H7 and 
Salmonella Typhimurium-induced 
diarrhea

Reduced the relative abundance of 
Enterobacteriaceae

Reduced diarrhea incidence and severity; increased fecal score; decreased bacterial 
load in jejunum; attenuated intestinal inflammation and damage; improved weight 
gain in weaned piglets.

Li et al. (2024)

Bacteriophage cocktail (targeting E. 
coli, Salmonella, Clostridium 
perfringens)

Post-weaning diarrhea (mainly E. 
coli and Clostridium spp. induced)

Decreased Proteobacteria; Escherichia-
Shigella; increased Eubacterium; 
Lactobacillus spp.; Bifidobacterium spp.; 
decreased Clostridium spp.; coliforms; 
Desulfovibrio.

Improved growth performance (final BW, ADG, G/F); reduced pro-inflammatory 
cytokines (IL-1β, IL-6, TNF-α); decreased myeloperoxidase (MPO) and zonulin; 
enhanced antioxidant capacity (increased SOD, decreased MDA); improved 
intestinal morphology, reduced diarrhea incidence and fecal score.

Choi et al. (2023)

Unclassified Caudoviricetes, 
Siphoviridae

Early-onset diarrhea
Reduced Clostridium perfringens and 
Escherichia

Reduced NEC severity, intestinal inflammation, and levels of IL-1β and IL-8; 
decreased abundance of pathobionts.

Kreis and Soutourina (2022)

Bacteriophage cocktail (Salmonella, 
E. coli, etc.)

ETEC-induced diarrhea Increased Lactobacillus concentration
Improved average daily gain, feed intake, and nutrient digestibility; enhanced 
villus height in duodenum and jejunum.

Castro et al. (2022)

Bacteriophage cocktail (E. coli strains 
K88, K99, F18, F41, 987P, O78)

ETEC-induced diarrhea

Increased the relative abundance of 
Bacteroidota and Muribaculaceae, 
decreased the relative abundance of 
Verrucomicrobiota and Akkermansiaceae

Reduced serum DAO level and increased the expression of Claudin-1, Occludin, 
and ZO-1. Decreased TNF-α, IL-1β and IL-6 levels, and inhibited TLR-4/NF-κB 
pathway activation induced by ETEC infection. Moreover, the bacteriophage 
administration increased the levels of acetic acid, propionic acid, butyric acid, and 
total SCFAs.

Dong et al. (2024)
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FIGURE 6

Potential mechanisms of bacteriophage therapy for diarrhea from basic studies. (These potential mechanisms mainly involve GM, SCFAs, the immune 
system, and intestinal barrier function).

for poor efficacy in the diarrhea test described above may be that some 
patients have low abundance of the target pathogen (E. coli). There are 
other pathogens that bacteriophages do not target, such as 
streptococcus. Possible issues with phage stability, dosage, or delivery 
to the site of infection. Future research on phage therapy for diarrhea 
should incorporate more rigorous randomized controlled trials, 
improved phage characterization, comprehensive sensitivity testing, 
and optimized dosage regimens.

4 Discussion

Diarrhea, induced by diverse pathogens or contributing factors, is 
closely associated with alterations in the GM. As a complex and diverse 
ecosystem, the GM resides symbiotically within the gastrointestinal 
tract and plays critical roles in host immunity, metabolism, and the 
maintenance of intestinal barrier homeostasis (Riccio and Rossano, 
2020). During episodes of diarrhea, however, disruption of this 
microbial ecosystem leads to GM dysbiosis, which impairs metabolite 
production and immune responses, thereby compromising intestinal 
barrier function (Rengarajan et al., 2020; Shi Z. et al., 2023). Deficiency 
of beneficial bacteria and overgrowth of certain pathogens (e.g., E. coli 
and Shigella) is one of the important pathogenic mechanisms of 
diarrhea (Baker and The, 2018; Khan et al., 2022).

Diarrhea can alter the composition of the GM, and in turn, the 
application of probiotics, FMT or bacteriophage can directly or 

indirectly influence the GM and the therapeutic outcome of diarrhea. 
Currently, probiotics, FMT and bacteriophage have demonstrated 
considerable anti-diarrheal potential, which can regulate the immune 
response and enhance intestinal barrier function by regulating the 
diversity and composition of GM and the content of metabolites, and 
effectively improving diarrhea symptoms (Pilla and Suchodolski, 
2019; Sánchez et al., 2017). Notably, the use of probiotics for treating 
diarrhea is well-documented. These interventions broadly fall into 
three categories: single-strain preparations, multi-strain mixtures, or 
probiotics used in conjunction with conventional therapy. Probiotic 
supplementation not only helps prevent the occurrence of diarrhea 
but also enhances overall therapeutic efficacy and clinical cure rates, 
while shortening the duration of symptoms. Importantly, probiotic 
interventions are associated with a low incidence of adverse reactions 
(Liu et  al., 2022; Steyer et  al., 2022). Commonly used probiotics 
including Lactobacillus and Bifidobacterium, etc. Probiotics can gain 
a competitive advantage by altering the intestinal environment, e.g., 
inhibiting the growth of pathogenic bacteria through the competitive 
exclusion of intestinal binding sites; probiotics can up-regulate the 
synthesis of TJ proteins and then protect the intestinal barrier; and 
they can inhibit the production of pro-inflammatory cytokines to 
regulate intestinal immune function (Du et al., 2023). In addition, the 
application of FMT for the treatment of diarrhea has gained increasing 
attention in recent years owing to its favorable safety profile. The 
infusion of fecal material from healthy donors can help restore the GM 
of diarrhea patients to a state resembling that of the donor, thereby 
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alleviating diarrheal symptoms (Li et al., 2019; Zheng et al., 2020). 
Currently, most studies have documented and summarized the 
phenomenon of healing in patients with diarrhea after treatment with 
FMT, such as clinical cure rate and duration of action (Lee et al., 2018; 
Pereira et al., 2018). Other investigations have explored alterations in 
the composition and structure of the GM post-FMT, as well as its 
effects on intestinal immune-inflammatory responses and barrier 
function, to elucidate the mechanisms underlying the alleviation of 
diarrhea (Li, 2020; Tian et al., 2022). Compared to probiotics and 
FMT, phage therapy demonstrates unique application value in the 
treatment of diarrhea due to its highly specific antibacterial effects 
(Chen X. et al., 2023). Phages can precisely recognize and lyse specific 
pathogenic bacteria (such as diarrheagenic E. coli and Salmonella), 
while preserving the stability of beneficial bacterial communities, 
thereby enabling precise modulation of the GM (Battistelli et al., 2024; 
Cui et al., 2022). Research has demonstrated that phage therapy can 
effectively alleviate symptoms of bacterial diarrhea, reduce levels of 
inflammatory cytokines, and promote the repair of the intestinal 
mucosal barrier (Dong et al., 2024). However, despite these results 
indicating the significant potential of phages in combating diarrhea, 
their clinical application still faces a critical translational challenge: the 
relatively poor stability of phages in the hostile gastrointestinal 
environment. Gastric acid and digestive enzymes can readily cause 
rapid denaturation of phage particles, thereby compromising 
therapeutic efficacy (Nobrega et al., 2016). Current research primarily 
focuses on the clearance of pathogens by phages and preliminary 
evaluation of clinical efficacy, while studies on post-treatment changes 
in gut microbiota diversity, metabolite profiles, and immune 
mechanisms remain relatively limited. Future efforts should involve 
more rigorous randomized controlled trials, along with optimization 
of phage characterization, sensitivity detection, and dosing regimens.

A review of the relationship between GM and disease reveals 
that GM dysbiosis is a critical factor in the pathogenesis of 
diarrhea. Alterations in the GM can lead to abnormal levels of 
microbial metabolites, such as SCFAs and BAs. These changes in 
the GM and its metabolites may further modulate immune cell 
functions and inflammatory factor levels, ultimately contributing 
to the onset of diarrhea. Although probiotics, FMT, and 
bacteriophage have been widely used in the treatment of diarrhea, 
and their efficacy and safety have encouraged the development of 
therapeutic approaches for gastrointestinal and other systemic 
diseases, there are still some issues that need to be  addressed. 
Firstly, there is a scarcity of large-scale clinical trials, and secondly, 
the underlying mechanisms have not been sufficiently clarified 
through basic experimental research. Therefore, probiotic and 
bacteriophage interventions, as well as fecal microbiota 
transplantation, as safe and effective anti-diarrheal treatment 
strategies still need to go through a long journey.

5 Conclusion

Overall, GM alterations represent a crucial factor in diarrhea 
pathogenesis and a key target for its treatment. Diarrhea incidence has 
been closely linked to elevated levels of Proteobacteria and reduced 
Firmicutes; thus, targeted GM modulation aids in alleviating diarrhea 
symptoms. Currently, based on the principle of alleviating gut 
microbiota disorders, the use of probiotics (such as Lactobacillus and 

Bifidobacterium), FMT, and bacteriophages has been demonstrated to 
have definite effects on diarrhea. However, substantial clinical and basic 
research is still required to elucidate the optimal selection of these 
interventions, such as screening probiotic strains, FMT donors, and 
bacteriophages with superior pathogen-targeting advantages, as well as 
to investigate their long-term safety and efficacy in the treatment of 
diarrhea. Encouragingly, advances in multi-omics technologies have 
greatly facilitated investigations into diarrhea treatment mechanisms. 
Future studies should actively employ diverse research approaches to 
explore the potential mechanisms of different interventions in various 
diarrheal diseases and other related conditions, thereby providing data 
support for clinical diarrhea management and a foundation for the 
development of novel anti-diarrheal agents.
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