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Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with complex 
pathogenesis and limited treatment options. The current reliance on clinical evaluation 
for diagnosis, due to the absence of reliable non-invasive methods, presents 
significant challenges. Traditional diagnostic approaches, including cerebrospinal 
fluid or blood sampling, are invasive, pose risks of infection, are costly, and often 
require complex procedures. Tongue coating sampling presents a non-invasive, 
cost-effective, and repeatable alternative, indicating that it could be a valuable 
tool for early detection and monitoring of PD, warranting further investigation. 
This study explores the feasibility of using tongue coating samples as a diagnostic 
tool for PD through microbiome analysis, with metabolomics data providing 
additional context and validation via machine learning models. A cohort of 36 
PD patients and 31 controls was recruited. 16S rRNA sequencing was used for 
microbiome analysis, revealing significant alterations in the relative abundances 
of various microbial taxa, including Firmicutes, Bacteroidetes, and Actinobacteria. 
Concurrent metabolomics analysis using UPLC-Q/TOF-MS revealed a decrease in 
palmitoylethanolamide (PEA) levels in Parkinson’s disease (PD) patients, and also 
showed reduced carnitine levels specifically in the severe Hoehn-Yahr (H-Y) stage 
and mild cognitive impairment (MCI) subgroups. These findings provide preliminary 
evidence suggesting a potential link between specific microbial alterations and 
PD progression, which may warrant further investigation. Additionally, the analysis 
indicates a correlation between certain microbial and metabolomic changes and 
the advancement of PD. Our results also suggest that tongue coating may serve 
as a potential non-invasive tool for PD diagnosis, with a particular emphasis on 
the combined role of the microbiome and metabolome in the pathogenesis of 
the disease.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease 
characterized by resting tremors, slow movement, muscle rigidity, as 
well as some non-motor symptoms and secondary motor symptoms 
(Tolosa et al., 2006; Jankovic, 2008). Numerous environmental and 
genetic factors influence the risk of PD, with different factors 
predominating in distinct patients. These factors converge on specific 
pathways, including mitochondrial dysfunction, oxidative stress, 
protein aggregation, impaired autophagy, and neuroinflammation 
(Simon et al., 2020). It is the second most prevalent neurodegenerative 
disease (Ben-Shlomo et  al., 2024). In high-income countries, the 
median age-standardized annual incidence rate of PD is approximately 
14 cases per 100,000 individuals (Ascherio and Schwarzschild, 2016). 
Currently, the diagnosis of PD is based on clinical criteria, with the 
standard definition encompassing bradykinesia accompanied by 
resting tremor, rigidity, or both(Bloem et  al., 2021). The current 
treatment for PD primarily involves levodopa to alleviate motor 
symptoms, supplemented by dopamine agonists or B-type monoamine 
oxidase inhibitors based on individual patient profiles (Foltynie et al., 
2024). For all PD patients, current therapies are symptomatic, focusing 
on improving motor and non-motor signs and symptoms, with no 
medications demonstrating definitive evidence of disease-modifying 
effects (Armstrong and Okun, 2020; Vijiaratnam et  al., 2021). 
However, PD may have a prodromal phase during which precise and 
early diagnosis based on clinical presentation remains challenging 
(Bloem et al., 2021). In addition, clinical diagnosis of PD typically 
achieves an accuracy of only 80–90% when compared to pathological 
confirmation (Ascherio and Schwarzschild, 2016). This urgency has 
driven significant interest in the study of biomarkers for PD, 
highlighting the critical need for more convenient, accurate, and early 
diagnostic methods. Currently, the primary sample sources for clinical 
research on biomarkers for PD are blood and cerebrospinal fluid 
(CSF) (Siderowf et al., 2010; Aasly et al., 2012; Abbasi et al., 2018; Ng 
et al., 2020; Aamodt et al., 2021; Mao et al., 2023). However, both 
blood and cerebrospinal fluid collection are invasive procedures, 
which can impose substantial psychological stress and financial 
burden on patients.

During the patients’ clinical visits, we observed that the tongue 
coating (TC)of PD patients exhibited a notable thick and greasy 
appearance, with some presenting abnormal white or yellow 
discoloration. This piqued our interest. TC refers to the layer present 
on the dorsal surface of the tongue, which serves as a critical 
observation target in the “visual diagnosis” of traditional Chinese 
medicine (TCM). It is primarily composed of a complex mixture of 
microorganisms (bacteria), keratinized epithelial cells, saliva, blood 
metabolites, and food residues (Danser et al., 2003; Van Tornout et al., 
2013; Seerangaiyan et al., 2018). The appearance of TC is typically 
described based on its color and texture. Coating colors are generally 
classified into four main categories: white, yellow, gray, and black. 
Texture, on the other hand, encompasses various types, including thin, 
thick, smooth, dry, greasy, rotten, peeled, and the presence or absence 
of TC roots. While the study of TC has been extensively explored 
within the framework of traditional Chinese medicine, recent research 
has increasingly focused on advanced techniques such as image 
acquisition, digital processing, and computer-aided analysis (Kim et al., 
2013; Segawa et al., 2021; Yuan et al., 2023). Research has suggested 
that tongue images provide a stable and reliable method for diagnosing 

gastric cancer, offering significant advantages over traditional blood 
biomarkers (Yuan et al., 2023). Research on TC is rapidly advancing, 
with its applications gradually extending beyond oral (Zhang et al., 
2024) and gastrointestinal diseases (Cui et al., 2019; Mu et al., 2019; 
Guo et al., 2022) to encompass a broader spectrum of health conditions 
(Kapila, 2021; Pathak et al., 2021). Beyond image processing, the study 
of TC composition has gained increasing attention. TC sampling is 
straightforward, non-invasive, and low-risk, making it an attractive and 
promising material for clinical research. Emerging evidence suggests 
that TC holds significant potential as a non-invasive diagnostic tool for 
disease detection and as a means to monitor disease progression and 
prognosis (Ali Mohammed et al., 2021; Li et al., 2021).

Building on the aforementioned insights, we  are particularly 
interested in identifying biomarkers within the TC that could aid in 
the diagnosis and prognosis of PD. The unique composition of TC 
presents an untapped potential for uncovering disease-specific 
metabolic signatures. Ultra-Performance Liquid Chromatography 
coupled with Quadrupole Time-of-Flight Mass Spectrometry 
(UPLC-Q/TOF-MS) has been extensively applied in metabolomics 
research, demonstrating its capability to analyze complex biological 
samples and elucidate metabolic alterations in various diseases (Cui 
et al., 2018; Shao et al., 2021; Zhao et al., 2021; Liu et al., 2022; Yang 
et al., 2022). 16S rRNA (16S ribosomal RNA) sequencing technology 
is widely used in microbiome research as it provides insights into the 
composition of microbial communities. It is a reliable method for 
high-throughput sequencing analysis (Curry et al., 2022; Hassler et al., 
2022). Thus, we propose to conduct a non-targeted metabolomics 
study of TC samples from Parkinson’s patients using UPLC-Q/
TOF-MS. At the same time, we applied 16S rRNA sequencing to study 
the microbiome of PD patients, aiming to identify differences in their 
microbial communities. By integrating untargeted metabolomics and 
microbiome analysis, we hope to fill the gap in research in this area. 
Our goal is to identify reliable biomarkers that could serve as 
non-invasive diagnostic tools and provide new therapeutic targets, 
paving the way for innovative approaches in the diagnosis and 
treatment of PD.

2 Materials and methods

2.1 Materials and reagents

Methanol and acetonitrile (LC/MS grade) were purchased from 
Thermo Fisher Scientific (China). Ultrapure water (18.2 MΩ/cm) was 
produced using a Milli-Q system (Millipore, Bedford, MA, 
United States). Formic acid (FA) and ammonium acetate (AA) were 
obtained from ANPEL Lab Tech. (Shanghai, China). Quant-iT 
PicoGreen dsDNA Assay Kit (Invitrogen, United States) TruSeq Nano 
DNA LT Library Prep Kit (Illumina, Inc., United States) Agilent High 
Sensitivity DNA Kit (Agilent Technologies, Inc., United States).

2.2 Sample collection and research 
methods

2.2.1 Sample source
The PD group consisted of patients diagnosed with PD who were 

recruited from the Neurology Outpatient Department of Shanghai 
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General Hospital. All participants in this group were patients 
undergoing follow-up visits every 4 weeks, with the total sample size 
based on the number of patients enrolled during one four-week cycle. 
The control group (CON) was composed of family members 
accompanying the patients, who met the inclusion criteria. All 
participants voluntarily took part in this study and this study was 
approved by the Ethics Committee of Shanghai General Hospital 
(Approval No. 2024HS158). The study strictly adhered to the 
principles outlined in the Declaration of Helsinki and was registered 
with the Chinese Clinical Trial Registry (Registration no. 
ChiCTR2400091883). The experimental workflow is shown in 
Figure 1.

2.2.2 Inclusion and exclusion criteria
PD diagnostic criteria: PD group were based on the internationally 

recognized MDS Clinical Diagnostic Criteria for Parkinson’s Disease 
(Postuma et al., 2015).

Inclusion criteria for the PD group were as follows: (1) 
Fulfillment of the diagnostic criteria for PD (MDS Clinical 
Diagnostic Criteria). (2) Age > 55 years. (3) Willingness to 
participate in the study, with written informed consent provided. 
(4) Absence of other systemic diseases, such as malignancies, 
infectious diseases, or gastrointestinal disorders. (5) Samples were 
collected before the intake of food and Parkinson’s-
related medications.

Inclusion criteria for the CON group were as follows: (1) 
Confirmation of no neurodegenerative diseases. (2) Age > 55 years. 
(3) Willingness to participate in the study, with written informed 
consent provided. (4) Absence of other systemic diseases, such as 
malignancies, infectious diseases, or gastrointestinal disorders.

Exclusion Criteria for Both Groups: (1) Use of medications 
affecting TC status (e.g., antibiotics, antifungal agents) within 2 weeks 
prior to sampling. (2) Presence of diseases that influence TC status 
(e.g., acute upper respiratory tract infection, oral ulcers, glossitis). (3) 
Coexisting major illnesses, such as liver or kidney dysfunction, severe 
infections, or malignancies.

2.2.3 Collection and processing of TC samples
To minimize interference from residual debris, participants were 

instructed to avoid eating prior to TC collection. On-site, participants 
rinsed their mouths three times to further eliminate potential residue 
and saliva interference. Following rinsing, TC images were captured. 
TC samples were collected by scraping the dorsal surface of the tongue 
from left to right five times. The collected material was placed into an 
Eppendorf tube prefilled with 500 μL of physiological saline. The 
sample was then mixed thoroughly. Cell counting was performed 
using the Countess II Automated Cell Counter (Thermo Fisher 
Scientific), and the cell concentration was adjusted to ensure a 
uniform count of approximately 10^6 cells/mL for all samples. Finally, 
the samples were stored at −80°C until further analysis.

2.2.4 Metabolomics processing procedure
After all samples have been collected, they are centrifuged at 

1000 rpm for 4 min at 4°C. The supernatant is dried using 
nitrogen gas (N₂). The cell pellets are then re-suspended in 100 μL 
of cold 90% acetonitrile, ensuring uniform suspension of the cells. 
The samples undergo three freeze–thaw cycles at −80°C, each 
lasting 10 min, to facilitate cell disruption. The remaining 90% 
acetonitrile is added to bring the total volume to 200 μL for 
extraction, followed by vortex mixing to ensure thorough 

FIGURE 1

Experimental flowchart.
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homogenization, resulting in 200 μL of acetonitrile extract. The 
samples are then subjected to ultrasonic treatment for 10 cycles, 
each lasting 30 s, to further enhance extraction. Finally, the 
samples are centrifuged at 15000 rpm for 10 min at 4°C to remove 
any residual solid material, and 150 μL of the supernatant is 
collected for analysis.

2.2.4.1 UPLC-Q/TOF-MS instrument and conditions
Samples were analyzed using an Agilent 1,290 Infinity UPLC 

system (Milford, MA, United States) equipped with a Waters UPLC 
column (ACQUITY HSS T3, 3.0 × 150 mm, 1.8 μm). The mobile 
phase consisted of (A) 10 mM ammonium acetate aqueous solution 
with 0.1% formic acid and (B) acetonitrile. The flow rate was set at 
0.3 mL/min, the column temperature was maintained at 35°C, and the 
injection volume was 5 μL. Gradient elution was performed as follows 
(Mu et  al., 2019): 0–2 min, 10–50%B; 2–14.5 min, 50–95% B; 
14.5–15 min, 95–10% B; 15–20 min, 10–10% B.

Mass spectrometry conditions: Mass spectrometry data were 
obtained using an Agilent 6,545 Q-TOF MS/MS equipped with a dual 
Agilent Jet Stream electrospray ionization (ESI) source operated in 
positive ionization mode. The parameters were set as follows: scan 
range of 100–1,000 m/z for MS and 50–800 m/z for MS/MS; 
fragmentor voltage of 175 V; gas temperature of 320°C; sheath gas 
temperature of 350°C; sheath gas flow rate of 11 L/min; nebulizer gas 
flow rate of 8 L/min; nebulizer gas pressure of 35 psig; and collision 
energy alternating between 10 and 30 eV.

2.2.4.2 Quality control
All enrolled samples were retrieved from the −80°C freezer and 

allowed to reach room temperature. A 20 μL aliquot was taken from 
each sample and pooled to create a quality control (QC) sample, 
which underwent the same preprocessing and instrumental analysis 
as the other samples. PD group samples were injected first, followed 
by CON group samples. A QC sample was injected after every 10 
samples to minimize errors arising from sample preprocessing 
and detection.

2.2.5 Microbiome sample processing procedure
All enrolled samples were collected, and total DNA was extracted. 

DNA concentration was quantified using a Nanodrop 
spectrophotometer, and DNA quality was assessed by 1.2% agarose gel 
electrophoresis. The 16S rRNA gene V3-V4 region was amplified 
using the following primers: Forward primer: 
ACTCCTACGGGAGGCAGCA, Reverse primer: 
GGACTACHVGGGTWTCTAAT. The amplified products were 
purified using magnetic beads and then quantified via fluorescence 
using a Microplate Reader (BioTek, FLx800). The sequencing library 
was prepared using Illumina’s TruSeq Nano DNA LT Library Prep Kit. 
Library quality was assessed on an Agilent Bioanalyzer using the 
Agilent High Sensitivity DNA Kit. After the library passed quality 
control, it was subjected to sequencing.

2.2.6 Data analysis
The measurement data are expressed as mean ± standard 

deviation (x̄ ± s), and categorical data are presented as frequencies and 
percentages. Statistical analysis of the data between groups was 
performed using SPSS (version 25) and R software (version 4.3.3). Age 
was analyzed using a t-test, while gender, the presence of hypertension, 

and the presence of hyperlipidemia were analyzed using chi-square 
(χ2) tests. TCS was analyzed using the Mann–Whitney U test.

The data obtained from UPLC-Q/TOF-MS were processed using 
MassHunter Qualitative Analysis Software (version 10.0) and Mass 
Profiler Professional (MPP) software (version 15.1) for the following 
steps: quality control checks of the raw data, retention time variation 
assessment, compound filtering and calibration, compound 
identification, and differential analysis based on mass and retention 
time. Identification was performed using the METLIN and HMDB 
databases. The processed data from MPP were then imported into the 
MetaboAnalyst 6.0 online platform1 for differential analysis, principal 
component analysis (PCA), partial least squares discriminant analysis 
(PLS-DA), sparse partial least squares discriminant analysis (sPLS-
DA), orthogonal partial least squares discriminant analysis (OPLS-
DA), hierarchical clustering, and enrichment analysis. PCA is an 
unsupervised method that aims to explain the main variations in the 
data by reducing its dimensionality. PLS-DA is a supervised method 
used to relate independent variables to categorical outcomes (i.e., 
class labels). OPLS-DA further enhances PLS-DA by separating 
orthogonal components (unrelated noise) from the model, which 
improves the distinction between categories. The advantage of 
OPLS-DA lies in its ability to improve model interpretability while 
reducing the influence of irrelevant data. R2Y is used to assess the 
model’s ability to explain the Y variable (i.e., class labels), while Q2 
reflects the model’s predictive capability, determined by the cross-
validation-based prediction correlation coefficient. A permutation 
test with 2000 iterations was performed to evaluate the model’s 
validity and statistical significance. In this study, compounds meeting 
both FDR < 0.05 and VIP > 1 were considered differential 
metabolites. The identified differential metabolites were submitted to 
the MetaboAnalyst platform for enrichment analysis. Additionally, 
the diagnostic capability of these differential metabolites was 
evaluated using ROC curve analysis. The ROC curves were generated 
and analyzed via the Extreme Smart Analysis platform,2 and the ROC 
data were further validated using SPSS (version 25). All the data 
analysis was performed using the peak area of mass spectrometry for 
relative quantification.

After performing an initial quality check on the raw 16S rRNA 
sequencing data, the samples were demultiplexed based on index and 
barcode information, and the barcode sequences were removed. The 
data were processed using QIIME2 (2019.4) software, with the 
DADA2 plugin for quality control, denoising, merging, and chimera 
removal. After denoising all libraries, the Amplicon Sequence Variants 
(ASVs) feature sequences and the corresponding ASV table were 
merged, and singleton ASVs were removed. The Greengenes database 
(Release 13.8) was used for taxonomic assignment of each ASV’s 
feature sequence in QIIME2 using the default parameters and a 
pre-trained Naive Bayes classifier. Taxonomic classification results at 
the phylum and genus levels were primarily presented. Alpha diversity 
indices were used to characterize the species richness, diversity, and 
evenness within habitats, while beta diversity indices were used to 
assess the differences between samples and habitats. The LEfSe (LDA 
Effect Size) analysis, which combines the non-parametric 

1  https://www.metaboanalyst.ca/

2  https://www.xsmartanalysis.com
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Kruskal-Wallis and Wilcoxon rank-sum tests with linear discriminant 
analysis (LDA) effect size, was used to identify robust differential 
species between groups. Additionally, metabolic pathway analysis was 
performed using the KEGG database.

TC images were primarily assessed using the TC Score (TCS) 
(Aimetti et al., 2015). The TCS is calculated as the product of the TC 
coverage area and thickness. Coverage area is scored from 0 to 3 as 
follows: 0 (no TC), 1 (coating covers ≤1/3 of the tongue dorsum), 2 
(1/3 < coating coverage ≤ 2/3), and 3 (coating covers >2/3 of the 
tongue dorsum). Thickness is also scored from 0 to 3: 0 (no TC), 1 
(thin coating), 2 (moderate coating with papillae not visible), and 3 
(thick coating).

The Mini-Mental State Examination (MMSE) is a widely used tool 
to assess cognitive function. In our study, scores below 27 were 
classified as the mild cognitive impairment (MCI) group, while scores 
of 27 or above were classified as the Normal group. The Hoehn and 
Yahr (H-Y) scale is a clinical rating system used to assess the severity 
of Parkinson’s disease (PD) based on motor symptoms. The scale 
ranges from 1 to 5, with stages 4 and 5 categorized as the severe group, 
and stages 1, 1.5, 2, 2.5, and 3 categorized as the mild and moderate 
group. The MMSE score and H-Y stage help categorize PD patients 
into different stages of cognitive decline and disease progression, 
providing a framework for understanding the relationship between 
cognitive decline and disease severity.

Random Forest classification is a commonly used machine 
learning method for developing predictive models in various research 
environments (Speiser et  al., 2019). It improves the accuracy of 
classification or regression models by constructing multiple decision 
trees and combining their predictions. We conducted Random Forest 
analysis on the metabolomics data using R (version 4.4.4). In this 
experiment, we  first randomly selected 5 samples from the 36 
Parkinson’s disease (PD) group samples as an independent validation 
set, ensuring that the model could later be tested. Next, we constructed 
a dataset using the remaining 31 PD group samples and 31 control 
(CON) group samples, with the data randomly split into 70% training 
set and 30% testing set for model training and evaluation. After the 
model was established, we  further validated its performance by 
applying the model to the previously randomly selected independent 
validation set consisting of the 5 samples.

3 Results

3.1 Demographic characteristics

The mean age of the CON group was (71.77 ± 6.453) years, 
while the mean age of the PD group was (72.81 ± 7.398) years. 
There was no statistically significant difference in the overall age 
between the two groups (RD –1.031, 95% CI –4.446–2.383, 
t = −0.603, p = 0.584). In terms of gender, 33.3% of the PD group 
were female, and 54.8% of the CON group were female. No 
statistically significant difference was found between the two groups 
in terms of gender (RD 0.22, 95% CI − 0.0182–0.4483, χ2 = 3.138, 
p = 0.076). For hypertension, 58.3% of the PD group had 
hypertension, while 51.6% of the CON group had hypertension. 
There was no statistically significant difference between the two 
groups regarding the presence of hypertension (RD 0.07, 95% CI 
–0.1713–0.3057, χ2 = 0.304, p = 0.581). Similarly, 47.2% of the PD 
group had hyperlipidemia, while 48.4% of the CON group had 
hyperlipidemia. Again, no statistically significant difference was 
found between the two groups regarding the presence of 
hyperlipidemia (RD –0.01, 95% CI –0.2512–0.2282, χ2 = 0.009, 
p = 0.924). Therefore, neither the age, gender, hypertension, nor 
hyperlipidemia of participants had any impact on the experimental 
grouping in this study. The median TCS score for the PD group was 
3 (2, 6), while the median TCS score for the CON group was 2 (2, 
3). A statistically significant difference was observed in the overall 
TCS distribution between the two groups (Z = 2.507, p = 0.012) 
(Table 1).

3.2 16S rRNA sequencing results

At the phylum level (Figure  2A), the microbial composition 
between the CON and PD groups showed differences. Firmicutes and 
Bacteroidetes were the dominant phyla in both groups, with the 
relative abundance of Firmicutes increased in the PD group, while 
Bacteroidetes showed the opposite trend. The relative abundance of 
Proteobacteria and Actinobacteria slightly increased in the PD group. 
Other phyla, such as Fusobacteria, also exhibited minor changes, but 

TABLE 1  Demographic characteristics.

Variable CON (n = 31) PD (n = 36) Test Statistic [RD (95% CI)] p-value

Age (Mean±SD) 71.77 ± 6.453 72.81 ± 7.398 t = −0.603 –1.031(−4.446–2.383) 0.548

Gender [n (%)]

 � Woman 17(54.8%) 12(33.3%)
χ2 = 3.138 0.22(−0.0182–0.4483) 0.076

 � Man 14(45.2%) 24(66.7%)

TCS [M (P25, P75)] 2(2,3) 3(2,6) Z = 2.507 1(0–4) 0.012

BMI (Mean ± SD) 22.72 ± 2.367 21.79 ± 2.985 t = 1.394 0.9282(−0.4015–2.2579) 0.168

Hypertension

 � Yes 16(51.6%) 21(58.3%)
χ2 = 0.304 0.07(−0.1713–0.3057) 0.581

 � No 15(48.4%) 15(41.7%)

Hyperlipidemia

 � Yes 15(48.4%) 17(47.2%)
χ2 = 0.009 –0.01(−0.2512–0.2282) 0.924

 � No 16(51.6%) 19(52.8%)
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their impact was minimal. At the genus level (Figure 2B), differences 
were also observed among the top 20 dominant genera in the CON 
and PD groups. For instance, Prevotella and Veillonella, which 
dominated in the CON group, decreased in the PD group, while 
Streptococcus and Actinomyces, which had higher proportions, 
increased in the PD group. Other genera showed certain changes, 
indicating notable inter-group differences. Through α-diversity 
analysis (Figure  2C), no significant differences were observed 
between the CON and PD groups in terms of the Chao1, Simpson, 
Shannon, and Pielou_e indices (p > 0.05), suggesting that the overall 
species richness, diversity, and evenness remained relatively stable 
between the two groups. LEfSe analysis (Figure  2D) revealed 
significant differences between the CON and PD groups across 
multiple taxonomic levels, including phylum, class, order, family, and 
genus. Specifically, populations associated with Erysipelotrichaceae 
and Bulleidia were significantly enriched in the CON group, while 
taxa related to Actinobacteria, Bifidobacterium, Coriobacteriaceae, 
and Flavobacterium were notably enriched in the PD group. These 
differential microbial populations may serve as important microbial 
biomarkers that contribute to or reflect the pathophysiological 
changes in PD. In the KEGG pathway enrichment analysis 

(Figure  2E), we  observed that pathways related to metabolism 
occupied a larger proportion.

3.3 Metabolomics data results

3.3.1 Data stability and reliability
In Figure 3, panels A and B show significant separation among the 

three groups, with the QC results indicating that the samples were 
stable throughout the preprocessing and analysis processes. Panels C 
and D suggest that the R2 and Q2 values for the first two components 
are both >0.7. After performing 2000 random permutations, the 
statistic for each permutation was calculated, yielding a p-value of 
0.002, which indicates statistical significance. This suggests that our 
model has strong predictive power, high classification accuracy, and 
low risk of overfitting. Four components are considered the optimal 
choice, as this configuration balances model performance 
and complexity.

The mass spectrometry TIC comparison between the PD group 
and the CON group is shown in Figure  4A, where a noticeable 
difference is observed between the two. In Figure 3, panels E and F 

FIGURE 2

(A) shows the relative abundance distribution of microbial communities at the phylum level between the CON and PD groups. The relative abundance 
of the top 20 dominant phyla is color-coded, and the bar area represents the relative abundance of each phylum within each group. (B) displays the 
relative abundance distribution of microbial communities at the genus level between the CON and PD groups. The relative abundance of the top 20 
dominant genera is color-coded, and the bar area reflects the relative proportion of each genus within each group. (C) presents the microbial diversity 
in the CON and PD groups using boxplots, including the Chao1 index, Simpson index, Shannon index, Pielou_e index, Observed_species count, and 
Faith_pd index. The p-values indicate the significance of differences in these indices between the two groups, with a significance level of p < 0.05 
considered statistically meaningful. (D) shows the differential microbial taxa identified by LEfSe analysis. The length of the bars represents the LDA 
score, with larger values indicating more significant differences. A score greater than 2 is considered statistically significant. Green bars represent taxa 
enriched in the CON group, and purple bars represent taxa enriched in the PD group. (E) presents the relative abundance distribution of KEGG 
pathways predicted from functional analysis.
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suggest a clear separation between the two groups. Panel G shows R2Y 
and Q2 values > 0.8 for the model, indicating good fitting and 
predictive performance. The permutation test effectively prevents 
overfitting, further supporting the robustness and reliability of 
the model.

3.3.2 Screening and Analysis of Potential 
Biomarkers

After filtering through MPP software, a total of 1,037 metabolites 
were identified, among which 294 were preliminarily annotated. 
Hierarchical clustering analysis was performed on the annotated 
metabolites to illustrate the similarities between different samples or 
metabolites. The clustering of samples was based on standardized 
metabolite data. Figure 3H highlights the top 150 metabolites with the 
highest significance in the analysis.

Figure 3I illustrates the differential expression of metabolites, 
with 35 upregulated and 116 downregulated metabolites identified 
among the 294 compounds. The upregulated metabolites may 
be associated with metabolic activation or promotion effects, while 
the downregulated metabolites may reflect suppressed metabolism or 
weakened activity in related pathways. Figure 3J depicts the KEGG 
pathway enrichment analysis of the upregulated and downregulated 

metabolites identified in the volcano plot. The metabolites are 
primarily enriched in pathways such as transmission across chemical 
synapses, neuronal system, mercaptopurine metabolism pathway, 
neurotransmitter clearance, azathioprine ADME, and methylation.

Compounds with FDR < 0.05 and VIP > 1 were identified as 
differential metabolites, totaling 31 compounds, including: 
2-Methylglutaric acid, Docosanamide, Palmitoylethanolamide, 
2-Hydroxymyristic acid, Oleyl alcohol, (E)-Herclavine, Armillaripin, 
Erythroskyrin, Methyl tetradecanoate, 1-Tridecene, Osmundalactone, 
(Z)-Cinnamaldehyde, trans-2-trans-4-Nonadiene, 2-Acetylfuran, 
Cinnamyl cinnamate, Withanolide A, Artabsinolide A, 6-Hydroxy-8-
pentacosanone, Phytal, Armillaricin, (3'x,5'a,9'x,10'b)-O-(3-Hydroxy-
6-oxo-7-drimen-11-yl)umbelliferone, erythro-6,8-Tricosanediol, 
Indan-1-ol, 6-Mercaptopurine, Chlorhexidine, Edrophonium, 
Styrene, o-Xylene, 10,16-Dihydroxy-palmitic acid, alpha-
Methylstyrene, and 13Z,16Z-docosadienoic acid. Among these, 9 
compounds belong to Fatty Acyls, 5 to Benzene and substituted 
derivatives, 3 to Prenol lipids, 2 to Cinnamic acids and derivatives, 2 
to Unsaturated hydrocarbons, and the rest are classified into 
Non-metal oxoanionic compounds, Carboximidic acids and 
derivatives, Organic phosphoric acids and derivatives, Furofurans, 
Pyrans, Cinnamaldehydes, Organooxygen compounds, Steroids and 

FIGURE 3

Panels (A–D) represent the PCA score plot, sPLS-DA score plot, bar chart of model performance metrics (Accuracy, R2, Q2) under different component 
numbers in PLS-DA, and the 2000-permutation test for PLS-DA, respectively, for the PD group, CON group, and QC group. Panels (E–G) show the 
PCA score plot, OPLS-DA score plot, and the 2000-permutation test for OPLS-DA, respectively, for the PD and CON groups. Panel (H) displays a 
hierarchical clustering heatmap of metabolites. Panel (I) shows the volcano plot of metabolites, where significantly upregulated metabolites are 
located in the top-right corner [log2(FC) > 1 and -Log10(p) > 1.3], and significantly downregulated metabolites are located in the top-left corner 
[log2(FC) < −1 and -Log10(p) > 1.3, with p-values adjusted using the Benjamini-Hochberg correction]. Panel (J) shows the KEGG enrichment analysis. 
Panel (K) presents the ROC analysis of 31 potential biomarkers for PD diagnosis.
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steroid derivatives, Lactones, Coumarins and derivatives, Indanes, 
Imidazopyrimidines, and Hydroxy acids and derivatives. The specific 
information is shown in Table  2. The mass spectrum of the 
differentiated compound is shown in Figure 5.

The Receiver Operating Characteristic (ROC) curve is a widely 
used method for evaluating the performance of binary classification 
models. It assesses the model’s classification capability by examining 
the relationship between sensitivity (true positive rate) and specificity 
(1 - false positive rate) across different thresholds. The diagonal line 
on the ROC curve represents random guessing, while curves closer to 
the top-left corner indicate stronger classification performance. 
Figure 3K indicates that in this study, ROC curve analysis revealed 
that 31 metabolites possessed an AUC value greater than 0.75. This 
indicates that these metabolites exhibit good accuracy and diagnostic 
efficacy in distinguishing between PD and non-PD cases.

As shown in Figures 6A,B, the Mild and Moderate group and the 
Severe group (20 vs. 16) within the PD samples are well-separated, 
with the model demonstrating strong fit (R2Y > 0.9) and predictive 
capability (Q2 > 0.6). Figures  6C,D illustrate the differential 
metabolites between the two groups, revealing downregulation of 
Hypoxanthine, Carnitine, Nitrite, and Proline betaine, alongside a 
notable upregulation of alpha-CEHC. As shown in panels E and F of 
Figure 6, the MCI and Normal groups in PD samples can be well 
separated, with the model’s R2Y > 0.8 and Q2 > 0.5, indicating good 
model fitting and predictive ability. Panels G and H display the 
differential metabolites between the MCI and Normal groups (18 vs. 
18), with downregulation of proline betaine, isoamyl nitrite, 

hypoxanthine, 1-nitroheptane, and carnitine, while phthalate 
is upregulated.

3.3.3 Random Forest
In the Random Forest model constructed with 31 PD group samples 

and 31 CON group samples, 44 samples were allocated to the test set, and 
18 samples were assigned to the validation set. Figure 7A shows that, in 
the validation set, our model correctly classified all 9 PD group samples. 
Among the 9 CON group samples, 7 were correctly classified, while 2 
were misclassified as PD group. Figure  7C presents the model’s 
performance, revealing an accuracy of 88.9% on the validation set. This 
result appears considerably higher than the baseline accuracy of 50%, 
which may indicate the model’s potential utility, though further 
validation is required given the exploratory nature and limited sample 
size of this study. This further highlights the effectiveness and reliability 
of our Random Forest model. Figure 7B presents the top 20 important 
features, with the y-axis representing their HMDB IDs. The 
corresponding compound names can be found in Table 2. These features 
have a substantial contribution to the prediction results, suggesting that 
they are the primary drivers of the model’s predictions. Figure 7D shows 
the validation of the 5 randomly selected PD group samples, which were 
independently tested before the model was constructed. All samples were 
correctly predicted, demonstrating that our Random Forest model has 
high generalization capability and stability. Even with independent 
validation samples, the model can effectively identify key features and 
make accurate predictions. This high accuracy further enhances the 
model’s reliability in disease prediction.

FIGURE 4

(A) shows the comparison of TIC chromatograms between the two groups. (B) illustrates the EIC chromatograms of PEA in representative samples 
from both groups. (C) presents the MS/MS identification spectrum of PEA.
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TABLE 2  The basic information of the 31 differential metabolites.

No. Compound 
Name

Chemical 
Formula

VIP m/z RT Ion Species HMDB ID Class Sub Class

1 2-Methylglutaric acid C6H10O4 1.407228369 147.0650 9.861286 [M + H]+ HMDB00422 Fatty Acyls Fatty acids and 

conjugates

2 Docosanamide C22H45NO 1.271730991 340.3564 17.147444 [M + H]+ HMDB00583 Fatty Acyls Fatty amides

3 Palmitoylethanolamide C18H37NO2 1.409097251 300.2897 8.077143 [M + H]+ HMDB02100 Carboximidic acids 

and derivatives

Carboximidic acids

4 2-Hydroxymyristic 

acid

C14H28O3 1.409379563 262.2377 5.0424294 [M + NH4]+ HMDB02261 Fatty Acyls Fatty acids and 

conjugates

5 Oleyl alcohol C18H36O 1.408221254 286.3098 10.384477 [M + NH4]+ HMDB29632 Fatty Acyls Fatty alcohols

6 (E)-Herclavine C19H21NO2 1.20291303 296.1645 5.23275 [M + H]+ HMDB30242 Cinnamic acids and 

derivatives

-

7 Armillaripin C24H30O6 1.498546157 437.1935 9.857175 [M + Na]+ HMDB30404 Prenol lipids Sesquiterpenoids

8 Erythroskyrin C26H33NO6 1.474101452 473.2645 9.869257 [M + NH4]+ HMDB30464 Furofurans -

9 Methyl tetradecanoate C15H30O2 1.215490157 260.2580 6.9075556 [M + NH4]+ HMDB30469 Fatty Acyls Fatty acid esters

10 1-Tridecene C13H26 1.200519194 200.2372 7.2188125 [M + H]+ HMDB30930 Unsaturated 

hydrocarbons

Unsaturated aliphatic 

hydrocarbons

11 Osmundalactone C6H8O3 1.406839683 129.0545 9.859429 [M + H]+ HMDB31303 Pyrans Pyranones and 

derivatives

12 (Z)-Cinnamaldehyde C9H8O 1.406503366 133.0647 9.852 [M + H]+ HMDB32072 Cinnamaldehydes -

13 trans-2-trans-4-

Nonadiene

C12H22 1.201197402 184.2057 15.880687 [M + NH4]+ HMDB32537 Unsaturated 

hydrocarbons

Olefins

14 2-Acetylfuran C6H6O2 1.302724524 111.0441 9.870579 [M + H]+ HMDB33127 Organooxygen 

compounds

Carbonyl compounds

15 Cinnamyl cinnamate C18H16O2 1.261071761 265.1219 5.159588 [M + H]+ HMDB33832 Cinnamic acids and 

derivatives

Cinnamic acid esters

16 Withanolide A C28H38O6 1.408047691 488.2994 9.872429 [M + NH4]+ HMDB34415 Steroids and steroid 

derivatives

Steroid lactones

17 Artabsinolide A C15H20O5 1.407195665 281.1382 9.857573 [M + H]+ HMDB35620 Lactones Gamma 

butyrolactones

18 6-Hydroxy-8-

pentacosanone

C25H50O2 1.210803489 400.4151 14.007502 [M + NH4]+ HMDB35629 Fatty Acyls Fatty alcohols

19 Phytal C20H38O 1.538749089 312.3257 13.192042 [M + NH4]+ HMDB35654 Prenol lipids Diterpenoids

(Continued)
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TABLE 2  (Continued)

No. Compound 
Name

Chemical 
Formula

VIP m/z RT Ion Species HMDB ID Class Sub Class

20 Armillaricin C24H29ClO5 1.405564635 433.1773 13.334667 [M + H]+ HMDB38686 Prenol lipids Sesquiterpenoids

21 (3'x,5’a,9'x,10'b)-O-(3-

Hydroxy-6-oxo-7-

drimen-11-yl) 

umbelliferone

C24H28O5 1.406902218 397.2007 9.855715 [M + H]+ HMDB39042 Coumarins and 

derivatives

-

22 erythro-6,8-

Tricosanediol

C23H48O2 1.129635003 374.3993 13.191354 [M + NH4]+ HMDB41070 Fatty Acyls Fatty alcohols

23 Indan-1-ol C9H10O 1.407340829 135.0805 9.857572 [M + H]+ HMDB0059601 Indanes -

24 6-Mercaptopurine C5H4N4S 1.20230933 153.0215 4.81188 [M + H]+ HMDB0015167 Imidazopyrimidines Purines and purine 

derivatives

25 Chlorhexidine C22H30Cl2N10 1.25504509 253.1084 4.8078055 [M + H] + [2 M + H]+ HMDB0015016 Benzene and 

substituted 

derivatives

Halobenzenes

26 Edrophonium C10H16NO 1.13010143 184.1549 4.8068333 [M + NH4]+ HMDB0015145 Benzene and 

substituted 

derivatives

Aniline and 

substituted anilines

27 Styrene C8H8 1.406734828 105.0696 9.859428 [M + H]+ HMDB0034240 Benzene and 

substituted 

derivatives

Styrenes

28 o-Xylene C8H10 1.407586764 107.0857 9.857573 [M + H]+ HMDB0059851 Benzene and 

substituted 

derivatives

Xylenes

29 10,16-dihydroxy-

palmitic acid

C16H32O4 1.409150801 306.2635 5.0832863 [M + NH4]+ HMDB0037798 Fatty Acyls Fatty acids and 

conjugates

30 alpha-Methylstyrene C16H32O4 1.460029545 119.0865 9.862625 [M + H]+ HMDB0059899 Benzene and 

substituted 

derivatives

Phenylpropenes

31 13Z,16Z-docosadienoic 

acid

C22H40O2 1.215573431 354.3358 12.466 [M + NH4]+ HMDB0061714 Fatty Acyls Fatty acids and 

conjugates
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FIGURE 5

The mass spectrum of the differentiated compound.

FIGURE 6

Panels (A,B) show the VIP, FC, and FDR visibility for metabolite comparisons between the mild-to-moderate and severe groups, and Panels (C,D) 
display the model results for these two groups, representing the metabolites in the PD group categorized according to the H-Y staging. Panels (E,F) 
show the VIP, FC, and FDR visibility for metabolite comparisons between the MCI and Normal groups, and Panels (G,H) display the model results for 
these two groups, representing the metabolites in the PD group categorized according to the MMSE scale.
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4 Discussion

TCM has a long history in treating PD, and modern research in 
this field is also progressing rapidly. For example, studies have 
suggested that acupuncture holds significant promise as a 
therapeutic approach for PD, showing potential benefits in 
alleviating symptoms and improving patients’ quality of life (Zhuang 
and Wang, 2000; Zuo et al., 2022). This provides valuable insights 
into exploring TCM’s potential in diagnosing and treating PD. As a 
vital part of TCM, TC can provide a micro - level explanation of 
diseases through component research. Most studies by international 
scholars on TC have primarily focused on its association with 
halitosis (Roldán et al., 2005; Liu et al., 2006; Romano et al., 2020). 
Moreover, it is quite common internationally to use the complete 
removal of TC as one of the methods for treating halitosis (Kostka 
et al., 2008). Additionally, some international studies have explored 
the relationship between TC and systemic diseases beyond the oral 
and digestive systems (Kim et al., 2013; Mu et al., 2019; Hao et al., 
2021; Xu et al., 2021), such as early rheumatoid arthritis (Kroese 
et al., 2021), pneumonia(Takeshita et al., 2010), lung cancer (Su 
et al., 2011), chronic renal failure (Gulsahi et al., 2014; Hao et al., 
2019), coronary heart disease (Hao et  al., 2019), perioperative 
conditions (Funahara et al., 2018), osteoporosis (Pereira et al., 2018), 
ischemic stroke (Huang et al., 2022), menstrual pain (Kim et al., 
2017) and so on. However, most of these studies focus on the visual 
characteristics of TC, with limited investigation into its composition. 
Compared to the superficial visual features of TC, studying its 
composition offers deeper insights into disease mechanisms at the 
molecular level. Therefore, in clinical practice, when observing 
distinctive TC characteristics in outpatient cases, our team places 

greater emphasis on and interest in research focusing on 
its composition.

Our experimental results suggested a significant difference in TCS 
between the PD and CON groups, prompting us to focus on molecular 
studies of TC composition to further explore the unique characteristics 
of PD patients. To our knowledge, no studies have yet investigated the 
microbial composition of TC samples from PD patients. However, 
studies (Fan et al., 2022; Hu et al., 2024) on fecal samples from PD 
patients have shown significant increases in the relative abundance of 
Proteobacteria, Firmicutes, and Actinobacteria at the phylum level, 
while Bacteroidetes exhibited a significant decrease. At the genus level, 
Streptococcaceae increased, and Veillonellaceae decreased, with LEfSe 
analysis showing significant enrichment of Bifidobacterium in PD 
samples. These findings align with the microbial alterations observed 
in TC samples from PD patients in our study. Compared to fecal 
samples, TC sampling is more easily accepted by patients and is also 
more convenient, clean, and safe for the operators. KEGG pathway 
analysis in our study suggested that metabolism-related pathways 
were notably enriched, which may reflect increased metabolic activity 
within the microbial community. This has sparked further interest in 
the metabolomics profile of the TC samples. So, we also opted for 
non-targeted metabolomics due to its high sensitivity, comprehensive 
nature, and ability to provide an intuitive reflection of biological states. 
The UPLC-Q/TOF-MS system was selected for its advantages, 
including high separation efficiency, exceptional mass resolution and 
sensitivity, rich structural information, and strong stability and 
reproducibility, making it highly suitable for analyzing a wide range 
of metabolites in complex biological samples. Given that most PD 
patients are elderly and often present with underlying conditions such 
as hypertension and hyperlipidemia, these factors are unavoidable in 

FIGURE 7

(A) represents the confusion matrix of the Random Forest model on the validation set, displaying the number of true positives, false positives, true 
negatives, and false negatives. In the matrix, 0 indicates the CON group, and 1 indicates the PD group. (B) shows the bar plot of feature importance in 
the Random Forest model. (C) presents the overall accuracy, baseline accuracy, and accuracy ratio of the model. (D) illustrates the prediction results of 
the five randomly selected independent validation set samples in the model.
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clinical sample collection. To mitigate their potential influence on our 
study, we  selected family members accompanying patients for 
follow-up visits, matched by age group, as the CON group. This 
approach helped reduce the confounding effects of environmental and 
lifestyle factors. Statistical analysis showed no significant differences 
in the prevalence of hypertension and hyperlipidemia between the PD 
and CON groups, further enhancing the reliability of our research. At 
the same time, we  combined image-based evaluation with 
metabolomics assessment to fully leverage the advantages of TC 
analysis. Our results suggested the robustness and reliability of our 
model. In our study, we  identified 31 significant differential 
compounds. Some differential compounds, such as the upregulation 
of Docosanamide, originate from external contamination, while 
others, like the downregulation of Palmitoylethanolamide (PEA), are 
primarily derived from the body itself. This suggests that the disease 
state of Parkinson’s patients is influenced by both external 
environmental factors and internal factors. The utility of PEA has been 
widely studied, particularly in the context of neurodegenerative 
diseases. The mass spectrometry results of PEA are shown in 

Figures  4B,C. The Spearman correlation analysis between 
metabolomics and microbiome data is shown in Figure 8.

The relationship between the oral-gut axis has been extensively 
studied. Building on this, research on the oral-gut-liver axis has also 
gained traction, leading to discoveries such as the connection between 
periodontitis and cardiovascular diseases (Koren et al., 2011; Acharya 
et al., 2017). This highlights the inseparable link between the oral 
cavity and the gut while offering promising avenues for exploring the 
oral-gut axis and its derivative pathways. For example, the oral-gut-
brain axis. The gut microbiota plays a key role in communication 
between the brain and the gut (Aburto and Cryan, 2024). Increasing 
evidence suggests that impaired gut barrier function is associated with 
a wide range of central nervous system disorders, including 
neurodevelopmental, psychiatric, and neurological diseases. This has 
expanded the perspective of brain-related conditions to systemic 
diseases, with PD being one of the most extensively studied 
neurological conditions describing the relationship between the gut 
barrier and brain barrier (Aburto and Cryan, 2024). Studies have 
shown that one of the hallmarks of neurodegenerative diseases is 

FIGURE 8

Spearman correlation analysis between metabolomics and microbiome. *: p < 0.05, **: p < 0.01.
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alterations in the gut microbiota. PEA plays a role in several 
physiological processes directly related to maintaining gut barrier 
function, regulating inflammation and pain, and energy metabolism 
(Russo et al., 2018). PEA is an endogenous cannabinoid ethanolamide 
that acts as an “on-demand molecule” in the central nervous system, 
produced and released from neurons and glial cells. It is known for its 
analgesic, anti-inflammatory, and neuroprotective properties, 
achieved through the activation of various receptors and ion channels 
(Cordaro et  al., 2018; Kiani et  al., 2020; Cifelli et  al., 2022). PEA 
belongs to the N-acylethanolamine (NAE) family, a group of bioactive 
lipids capable of modulating peripheral and central pathological 
processes (Russo et al., 2018). Neuroinflammation plays a crucial role 
in the pathogenesis of neurodegenerative diseases such as Alzheimer’s 
disease (AD) and PD (Siracusa et al., 2015; Crupi et al., 2018; Cordaro 
et  al., 2020). PEA, with its potent neuroprotective and anti-
inflammatory properties, is a key player in resolving 
neuroinflammation (Skaper et al., 2015; Cordaro et al., 2020; Petrosino 
and Schiano Moriello, 2020). Its primary target is the nuclear 
peroxisome proliferator-activated receptor-α (PPAR-α). Additionally, 
PEA can activate and regulate transient receptor potential vanilloid 1 
(TRPV1) channels and indirectly activate cannabinoid receptors CB1 
and CB2 (Esposito et al., 2012; Petrosino and Schiano Moriello, 2020; 
Cifelli et al., 2022). Through the CB2-mediated anti-inflammatory 
pathway, PEA modulates microglial polarization, reduces the release 
of pro-inflammatory cytokines, and enhances migration and 
phagocytic activity (Cifelli et  al., 2022). By binding to GPR55 
receptors, PEA enhances GABAergic transmission in the striatum and 
increases the postsynaptic synthesis of endogenous cannabinoid 
2-AG, thereby regulating GABA release via presynaptic CB1Rs (Cifelli 

et al., 2022). This multifaceted mechanism endows PEA with exciting 
potential in treating PD and controlling its progression, as supported 
by various studies (Siracusa et al., 2015; Avagliano et al., 2016; Brotini 
et  al., 2017; Crupi et  al., 2018; Brotini, 2021; Palese et  al., 2022). 
Moreover, PEA has shown promising effects in improving cognitive 
decline and mild cognitive impairment (MCI), particularly in the 
early stages of cognitive disorders (Calabrò et al., 2016; Colizzi et al., 
2022; Landolfo et al., 2022). In our results, the PEA level in the PD 
group is significantly downregulated, making it an important factor 
distinguishing the PD group from the CON group. This further 
supports previous affirmations regarding the effects of PEA. Our 
findings indicate that the deficiency of PEA is a significant 
characteristic of PD patients and may even be a potential underlying 
cause of PD. This result is also evident at the level of TC, suggesting 
the potential for further research. It suggests that TC plays an 
important role in differentiating between individuals with or without 
PD. Additionally, since TC is a convenient and non-invasive sample 
type, it emphasizes its advantages and potential. Therefore, our study 
indicates that TC could serve as a promising sample for distinguishing 
PD, with PEA as a key biomarker for this differentiation. Given that 
PEA is endogenous, it is a more accurate reflection of the host’s 
condition. We have summarized the relevant routes of PEA based on 
literature, as shown in Figure 9 (Costa et al., 2008; Ueda et al., 2013; 
Aguilera et al., 2015; Musella et al., 2017; Lee et al., 2020; Mirzaei et al., 
2021; Cifelli et al., 2022; Cong et al., 2022; Ikeda et al., 2022).

In our study, PEA appeared to play a significant role in 
differentiating between the PD and CON groups, but was not found 
to be significantly correlated with cognitive (based on MMSE scores) 
or disease progression (based on H-Y staging) groupings. This is 

FIGURE 9

Pathway of PEA synthesis, metabolism, and mechanism, and its relationship with significantly enriched microbiota in this study. NAPE, N-acyl-
phosphatidylethanolamine; NAPE-PLD, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; NAE, N-acylethanolamine; PEA, 
Palmitoylethanolamide; NAAA, NAE-hydrolyzing acid amidase; FAAH, Fatty acid amide hydrolase; TRPV1, Transient Receptor Potential Vanilloid type-1; 
PPAR-α, Peroxisome Proliferator-Activated Receptor Alpha, CB2 Receptor: Cannabinoid Receptor Type 2, GPR55 Receptor: G Protein-Coupled 
Receptor 55. GPR41/43/109A: G Protein-Coupled Receptor 41/42/109A.
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because the difference in PEA levels between the CON and PD 
groups is substantial. In the CON group, the mass spectrometry 
peak value of PEA was relatively high, reaching hundreds of 
thousands, while in the PD group, the relative peak value was only 
1. Therefore, PEA could be  clearly separated between these two 
groups, where it serves an important role. However, when the 
relative peak value of PEA is uniformly 1 in the PD group across all 
samples, it cannot be  used as a marker for cognitive or disease 
progression groupings based on H-Y staging or MMSE scores. 
Despite this, we identified an interesting metabolite in the cognitive 
and disease progression experiments: carnitine. Carnitine is a long-
chain amino acid synthesized in the brain from essential amino acids 
lysine and methionine, which undergoes acetylation in the 
mitochondria to form acetyl-L-carnitine (Sergi et al., 2018). Many 
studies have focused on this compound, which has neuroprotective 
properties (Afshin-Majd et al., 2017; Gill et al., 2018). Some studies 
have also found that carnitine can prevent neuronal loss in 
Parkinson’s rat models and improve memory function (Singh et al., 
2018). Recent studies have suggested a specific deficiency of free 
carnitine in early-stage Alzheimer’s disease (AD) in women. Patients 
with lower levels of free carnitine exhibit higher accumulation of 
β-amyloid (Aβ) and increased t-Tau levels in cerebrospinal fluid 
(CSF) (Bigio et  al., 2025). In our results, carnitine levels were 
observed to be lower in both the severe H-Y stage group and the 

MCI group (based on MMSE scores), which aligns with the 
previously noted patterns. The mechanism of carnitine’s function in 
the body is shown in Figure 10 (Longo et al., 2016; McCann et al., 
2021; Virmani and Cirulli, 2022). However, the relatively small 
sample size in the PD group limits the scope of these findings and 
warrants further investigation.

In addition, for the metabolomics data of the PD and CON 
groups, we also used the Random Forest method to build a robust and 
reliable model, which supported the predictive power of our 
biomarkers. This model suggested strong predictive performance 
under double validation, supporting the ability of our biomarkers to 
predict the disease and indicating a potential for the effectiveness of 
the biomarkers we identified.

The approach of combining microbiomics with untargeted 
metabolomics, using TC as a sample to identify biomarkers for 
neurodegenerative diseases, followed by validation through machine 
learning models, offers a promising new methodology. Compared to 
traditional sampling methods such as CSF, blood, urine, or feces, 
collecting TC is more convenient, less invasive, and more acceptable 
to patients. Moreover, it has greater potential for widespread adoption 
in community healthcare settings. If the sampling and processing 
procedures are thoroughly developed and standardized through 
research, patients could eventually collect samples themselves for 
basic testing. These findings suggest a potential foundation for future 

FIGURE 10

The pathway of carnitine undergoing β-oxidation in the body to release ATP and exert its function. FATP: Fatty Acid Transport Proteins, FAT/CD36: Fatty 
Acid Translocase, FABPpm: Plasma Membrane Fatty Acid Binding Proteins, ACSs: Acyl-CoA Synthases, CPT-1: Carnitine Palmitoyl Transferase 1, 
OCTN2: Organic Cation/Carnitine Transporter 2, CPT-2: Carnitine Palmitoyl Transferase 2, CACT: Carnitine-Acylcarnitine Translocase.
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studies investigating the diagnostic and therapeutic role of TC in PD 
and other neurodegenerative diseases.

5 Conclusion

In conclusion, our study underscores the potential of TC 
samples as a non-invasive, cost-effective tool for diagnosing and 
monitoring PD. Metabolomics and microbiome analysis 
revealed differences between PD patients and controls, hinting 
at potential metabolic and microbial alterations relevant to 
PD. Key findings include reduced levels of palmitoylethanolamide 
(PEA) in PD patients, as well as a correlation between specific 
microbial phyla and differential metabolites. PEA deficiency 
may contribute to PD pathogenesis, but further studies are 
needed to fully elucidate its role. Moreover, the decreased 
carnitine levels observed in the severe H-Y stage and mild 
cognitive impairment (MCI) groups suggest a possible link to 
PD progression and cognitive decline. The application of 
machine learning techniques further supported the robustness 
of these findings, yielding an accuracy of 88.9%. This suggests 
that TC samples may hold potential as a tool for early PD 
diagnosis, a possibility warranting further investigation. These 
results suggest the clinical potential of combining metabolomics, 
microbiome analysis, and machine learning in advancing PD 
diagnostics and monitoring, which could lead to non-invasive, 
reliable tools for PD management. Most importantly, it offers 
new approaches and perspectives that could contribute to 
advancing PD research.

In summary, our findings suggest that conducting 
metabolomics and microbiomics studies using TC samples from 
PD patients provides an efficient means to uncover disease 
characteristics. However, the relatively small sample size and 
single-source outpatient data may limit the generalizability of 
our findings. A key aspect of our methodology was the 
implementation of strict inclusion criteria in our outpatient 
sampling. Our target population included PD patients 
committed to regular four-week follow-ups, and post-sample 
collection, any samples failing cell count standards were 
excluded. Consequently, only patients who successfully 
navigated all these rigorous screening and exclusion steps were 
included in the final study. We hope that through these stringent 
inclusion and exclusion criteria, our exploratory study, despite 
its small sample size, can provide a more robust data foundation. 
Our study supports the potential of TC samples as a non-invasive 
tool for PD diagnosis, but further validation in larger cohorts 
and multiple centers is required to confirm its clinical utility. 
Additionally, the current limitations in metabolite databases 
may have led to incomplete metabolite identification, 
highlighting the need for more comprehensive and updated 
reference databases to improve future research outcomes. The 
complexity of microbiome data, coupled with the limitations in 
functional inference, may result in the underrepresentation of 
certain microbial components. Future improvements could 
be achieved through more precise functional prediction models, 
enhancing the accuracy of microbiome analysis. Furthermore, 
variations in TC sampling methods across different research 
teams highlight the need for standardized protocols to ensure 

scientific rigor and consistency. Currently, we  are actively 
strengthening our collaborations with neurologists and 
specialists. We  plan to expand the scope of our research by 
conducting studies in multiple hospital environments. This 
strategy is expected to significantly increase our sample size and 
enhance the generalizability of our research findings. Future 
studies should focus on further validating the use of TC as a 
non-invasive sampling material, addressing standardization 
issues, and expanding its applicability in community 
healthcare settings.

Data availability statement

The original contributions presented in the study are publicly 
available. The raw microbiome data can be found at: https://www.ncbi.
nlm.nih.gov, accession number: PRJNA1259750. The raw 
metabolomics data can be found at: https://www.ebi.ac.uk/
metabolights/MTBLS12679.

Ethics statement

The studies involving humans were approved by Ethics 
Committee of Shanghai General Hospital (Approval no. 
2024HS158). The studies were conducted in accordance with the 
local legislation and institutional requirements. The participants 
provided their written informed consent to participate in 
this study.

Author contributions

RY: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Writing  – original draft. MJ: 
Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Writing – review & editing. YX: Data curation, Formal 
analysis, Methodology, Writing – original draft. ZW: Data curation, 
Formal analysis, Methodology, Writing – review & editing. DW: Data 
curation, Formal analysis, Methodology, Writing – original draft. YG: 
Funding acquisition, Project administration, Resources, Supervision, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. The study was supported by 
Shanghai Science and Technology Program/Natural Science 
Foundation of Shanghai (22ZR1449800) Shanghai Hospital 
Development Center/Technical standardization management and 
promotion project (SHDC22024202).

Acknowledgments

We would like to express our sincere gratitude to Guorong 
Fan for his invaluable guidance and continuous concern 

https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/metabolights/MTBLS12679
https://www.ebi.ac.uk/metabolights/MTBLS12679


Yang et al.� 10.3389/fmicb.2025.1621468

Frontiers in Microbiology 17 frontiersin.org

throughout this project. His insightful advice and steadfast 
support were crucial to the successful completion of this work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found 
at: 10.3389/fmicb.2025.1721341.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the reviewers. 
Any product that may be evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

References
Aamodt, W. W., Waligorska, T., Shen, J., Tropea, T. F., Siderowf, A., Weintraub, D., 

et al. (2021). Neurofilament light chain as a biomarker for cognitive decline in Parkinson 
disease. Mov. Disord. 36, 2945–2950. doi: 10.1002/mds.28779

Aasly, J. O., Shi, M., Sossi, V., Stewart, T., Johansen, K. K., Wszolek, Z. K., et al. (2012). 
Cerebrospinal fluid amyloid β and tau in LRRK2 mutation carriers. Neurology 78, 55–61. 
doi: 10.1212/WNL.0b013e31823ed101

Abbasi, N., Mohajer, B., Abbasi, S., Hasanabadi, P., Abdolalizadeh, A., and Rajimehr, R. 
(2018). Relationship between cerebrospinal fluid biomarkers and structural brain 
network properties in Parkinson’s disease. Mov. Disord. 33, 431–439. doi: 
10.1002/mds.27284

Aburto, M. R., and Cryan, J. F. (2024). Gastrointestinal and brain barriers: unlocking 
gates of communication across the microbiota-gut-brain axis. Nat. Rev. Gastroenterol. 
Hepatol. 21, 222–247. doi: 10.1038/s41575-023-00890-0

Acharya, C., Sahingur, S. E., and Bajaj, J. S. (2017). Microbiota, cirrhosis, and the 
emerging oral-gut-liver axis. JCI Insight 2:e94416. doi: 10.1172/jci.insight.94416

Afshin-Majd, S., Bashiri, K., Kiasalari, Z., Baluchnejadmojarad, T., Sedaghat, R., and 
Roghani, M. (2017). Acetyl-L-carnitine protects dopaminergic nigrostriatal pathway in 
6-hydroxydopamine-induced model of Parkinson’s disease in the rat. Biomed. 
Pharmacother. 89, 1–9. doi: 10.1016/j.biopha.2017.02.007

Aguilera, M., Cerdà-Cuéllar, M., and Martínez, V. (2015). Antibiotic-induced 
dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor 
changes in mice. Gut Microbes 6, 10–23. doi: 10.4161/19490976.2014.990790

Aimetti, M., Perotto, S., Castiglione, A., Ercoli, E., and Romano, F. (2015). Prevalence 
estimation of halitosis and its association with oral health-related parameters in an adult 
population of a city in North Italy. J. Clin. Periodontol. 42, 1105–1114. doi: 
10.1111/jcpe.12474

Ali Mohammed, M. M., Al Kawas, S., and Al-Qadhi, G. (2021). Tongue-coating 
microbiome as a cancer predictor: a scoping review. Arch. Oral Biol. 132:105271. doi: 
10.1016/j.archoralbio.2021.105271

Armstrong, M. J., and Okun, M. S. (2020). Diagnosis and treatment of Parkinson 
disease: a review. JAMA 323, 548–560. doi: 10.1001/jama.2019.22360

Ascherio, A., and Schwarzschild, M. A. (2016). The epidemiology of Parkinson’s 
disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272. doi: 
10.1016/S1474-4422(16)30230-7

Avagliano, C., Russo, R., De Caro, C., Cristiano, C., La Rana, G., Piegari, G., et al. 
(2016). Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity 
and endoplasmic reticulum stress: in vivo and in vitro evidence. Pharmacol. Res. 113, 
276–289. doi: 10.1016/j.phrs.2016.09.004

Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M., and 
Tanner, C. (2024). The epidemiology of Parkinson’s disease. Lancet 403, 283–292. doi: 
10.1016/S0140-6736(23)01419-8

Bigio, B., Lima-Filho, R. A. S., Barnhill, O., Sudo, F. K., Drummond, C., Assunção, N., 
et al. (2025). Sex differences in mitochondrial free-carnitine levels in subjects at-risk and 
with Alzheimer’s disease in two independent study cohorts. Mol. Psychiatry 30:1. doi: 
10.1038/s41380-024-02862-5

Bloem, B. R., Okun, M. S., and Klein, C. (2021). Parkinson’s disease. Lancet 397, 
2284–2303. doi: 10.1016/S0140-6736(21)00218-X

Brotini, S. (2021). Palmitoylethanolamide/luteolin as adjuvant therapy to 
improve an unusual case of camptocormia in a patient with Parkinson’s disease: 
a case report. Innov. Clin. Neurosci. 18, 12–14. Available at: https://pubmed.ncbi.
nlm.nih.gov/35096476/

Brotini, S., Schievano, C., and Guidi, L. (2017). Ultra-micronized 
palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson’s disease. CNS 
Neurol. Disord. 16, 705–713. doi: 10.2174/1871527316666170321124949

Calabrò, R. S., Naro, A., De Luca, R., Leonardi, S., Russo, M., Marra, A., et al. (2016). 
PEALut efficacy in mild cognitive impairment: evidence from a SPECT case study! 
Aging Clin. Exp. Res. 28, 1279–1282. doi: 10.1007/s40520-016-0533-6

Cifelli, P., Ruffolo, G., Ceccanti, M., Cambieri, C., Libonati, L., Palma, E., et al. (2022). 
Classical and unexpected effects of ultra-micronized PEA in neuromuscular function. 
Biomolecules 12:758. doi: 10.3390/biom12060758

Colizzi, M., Bortoletto, R., Colli, C., Bonomo, E., Pagliaro, D., Maso, E., et al. (2022). 
Therapeutic effect of palmitoylethanolamide in cognitive decline: a systematic review 
and preliminary meta-analysis of preclinical and clinical evidence. Front. Psych. 
13:1038122. doi: 10.3389/fpsyt.2022.1038122

Cong, J., Zhou, P., and Zhang, R. (2022). Intestinal microbiota-derived short chain 
fatty acids in host health and disease. Nutrients 14:1977. doi: 10.3390/nu14091977

Cordaro, M., Cuzzocrea, S., and Crupi, R. (2020). An update of palmitoylethanolamide 
and luteolin effects in preclinical and clinical studies of neuroinflammatory events. 
Antioxidants 9:216. doi: 10.3390/antiox9030216

Cordaro, M., Siracusa, R., Crupi, R., Impellizzeri, D., Peritore, A. F., D’Amico, R., et al. 
(2018). 2-Pentadecyl-2-Oxazoline reduces neuroinflammatory environment in the 
MPTP model of Parkinson disease. Mol. Neurobiol. 55, 9251–9266. doi: 
10.1007/s12035-018-1064-2

Costa, B., Comelli, F., Bettoni, I., Colleoni, M., and Giagnoni, G. (2008). The 
endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-
hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 
and PPARγ receptors and neurotrophic factors. Pain 139, 541–550. doi: 
10.1016/j.pain.2008.06.003

Crupi, R., Impellizzeri, D., Cordaro, M., Siracusa, R., Casili, G., Evangelista, M., et al. 
(2018). N-palmitoylethanolamide prevents parkinsonian phenotypes in aged mice. Mol. 
Neurobiol. 55, 8455–8472. doi: 10.1007/s12035-018-0959-2

Cui, J., Cui, H., Yang, M., Du, S., Li, J., Li, Y., et al. (2019). Tongue coating microbiome 
as a potential biomarker for gastritis including precancerous cascade. Protein Cell 10, 
496–509. doi: 10.1007/s13238-018-0596-6

Cui, L., Lu, H., and Lee, Y. H. (2018). Challenges and emergent solutions for LC-MS/
MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 37, 772–792. doi: 
10.1002/mas.21562

Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., et al. (2022). 
Emu: species-level microbial community profiling of full-length 16S rRNA Oxford 
Nanopore sequencing data. Nat. Methods 19:845. doi: 10.1038/s41592-022-01520-4

Danser, M. M., Gómez, S. M., and Van der Weijden, G. A. (2003). Tongue coating and 
tongue brushing: a literature review. Int. J. Dent. Hyg. 1, 151–158. doi: 
10.1034/j.1601-5037.2003.00034.x

Esposito, E., Impellizzeri, D., Mazzon, E., Paterniti, I., and Cuzzocrea, S. (2012). 
Neuroprotective activities of Palmitoylethanolamide in an animal model of Parkinson’s 
disease. PLoS One 7:e41880. doi: 10.1371/journal.pone.0041880

Fan, T., Li, X., Zhang, X., Zhang, J., Sun, L., Chen, J., et al. (2022). Influence of aerobic 
exercise training on mice gut microbiota in Parkinson’s disease. Turk. J. Biol. 46:288. doi: 
10.55730/1300-0152.2617

Foltynie, T., Bruno, V., Fox, S., Kühn, A. A., Lindop, F., and Lees, A. J. (2024). Medical, 
surgical, and physical treatments for Parkinson’s disease. Lancet 403, 305–324. doi: 
10.1016/S0140-6736(23)01429-0

https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3389/fmicb.2025.1721341
https://doi.org/10.1002/mds.28779
https://doi.org/10.1212/WNL.0b013e31823ed101
https://doi.org/10.1002/mds.27284
https://doi.org/10.1038/s41575-023-00890-0
https://doi.org/10.1172/jci.insight.94416
https://doi.org/10.1016/j.biopha.2017.02.007
https://doi.org/10.4161/19490976.2014.990790
https://doi.org/10.1111/jcpe.12474
https://doi.org/10.1016/j.archoralbio.2021.105271
https://doi.org/10.1001/jama.2019.22360
https://doi.org/10.1016/S1474-4422(16)30230-7
https://doi.org/10.1016/j.phrs.2016.09.004
https://doi.org/10.1016/S0140-6736(23)01419-8
https://doi.org/10.1038/s41380-024-02862-5
https://doi.org/10.1016/S0140-6736(21)00218-X
https://pubmed.ncbi.nlm.nih.gov/35096476/
https://pubmed.ncbi.nlm.nih.gov/35096476/
https://doi.org/10.2174/1871527316666170321124949
https://doi.org/10.1007/s40520-016-0533-6
https://doi.org/10.3390/biom12060758
https://doi.org/10.3389/fpsyt.2022.1038122
https://doi.org/10.3390/nu14091977
https://doi.org/10.3390/antiox9030216
https://doi.org/10.1007/s12035-018-1064-2
https://doi.org/10.1016/j.pain.2008.06.003
https://doi.org/10.1007/s12035-018-0959-2
https://doi.org/10.1007/s13238-018-0596-6
https://doi.org/10.1002/mas.21562
https://doi.org/10.1038/s41592-022-01520-4
https://doi.org/10.1034/j.1601-5037.2003.00034.x
https://doi.org/10.1371/journal.pone.0041880
https://doi.org/10.55730/1300-0152.2617
https://doi.org/10.1016/S0140-6736(23)01429-0


Yang et al.� 10.3389/fmicb.2025.1621468

Frontiers in Microbiology 18 frontiersin.org

Funahara, M., Yanamoto, S., Soutome, S., Hayashida, S., and Umeda, M. (2018). 
Clinical observation of tongue coating of perioperative patients: factors related to the 
number of bacteria on the tongue before and after surgery. BMC Oral Health 18:223. doi: 
10.1186/s12903-018-0689-x

Gill, E. L., Raman, S., Yost, R. A., Garrett, T. J., and Vedam-Mai, V. (2018). L-carnitine 
inhibits lipopolysaccharide-induced nitric oxide production of SIM-A9 microglia cells. 
ACS Chem. Neurosci. 9, 901–905. doi: 10.1021/acschemneuro.7b00468

Gulsahi, A., Evirgen, S., Oztas, B., Genc, Y., and Cetinel, Y. (2014). Volatile Sulphur 
compound levels and related factors in patients with chronic renal failure. J. Clin. 
Periodontol. 41, 814–819. doi: 10.1111/jcpe.12280

Guo, X.-J., Jiang, T., Ma, X.-X., Hu, X.-J., Huang, J.-B., Cui, L.-T., et al. (2022). 
Relationships between diurnal changes of tongue coating microbiota and intestinal 
microbiota. Front. Cell. Infect. Microbiol. 12:813790. doi: 10.3389/fcimb.2022.813790

Hao, Y., Yuan, X., Yan, J., Pham, M., Rohlsen, D., Qian, P., et al. (2019). Metabolomic 
markers in tongue-coating samples from damp phlegm pattern patients of coronary 
heart disease and chronic renal failure. Dis. Markers 2019:4106293. doi: 
10.1155/2019/4106293

Hao, Y., Zhang, R., Morris, R., Cheng, F., Zhu, Z., Xu, Y., et al. (2021). Metabolome 
and microbiome alterations in tongue coating of gastric precancerous lesion patients. 
Expert Rev. Gastroenterol. Hepatol. 15, 949–963. doi: 10.1080/17474124.2021.1850259

Hassler, H. B., Probert, B., Moore, C., Lawson, E., Jackson, R. W., Russell, B. T., et al. 
(2022). Phylogenies of the 16S rRNA gene and its hypervariable regions lack 
concordance with core genome phylogenies. Microbiome 10:104. doi: 
10.1186/s40168-022-01295-y

Hu, Y., Wang, H., Zhong, Y., and Sun, Y. (2024). Retrospective analysis of diet and gut 
microbiota diversity and clinical pharmacology outcomes in patients with Parkinsonism 
syndrome. Heliyon 10:e38645. doi: 10.1016/j.heliyon.2024.e38645

Huang, Y.-S., Wu, H.-K., Chang, H.-H., Lee, T.-C., Huang, S.-Y., Chiang, J. Y., et al. 
(2022). Exploring the pivotal variables of tongue diagnosis between patients with acute 
ischemic stroke and health participants. J. Tradit. Complement. Med. 12, 505–510. doi: 
10.1016/j.jtcme.2022.04.001

Ikeda, T., Nishida, A., Yamano, M., and Kimura, I. (2022). Short-chain fatty acid 
receptors and gut microbiota as therapeutic targets in metabolic, immune, and 
neurological diseases. Pharmacol. Ther. 239:108273. doi: 
10.1016/j.pharmthera.2022.108273

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. 
Neurosurg. Psychiatry 79, 368–376. doi: 10.1136/jnnp.2007.131045

Kapila, Y. L. (2021). Oral health’s inextricable connection to systemic health: special 
populations bring to bear multimodal relationships and factors connecting periodontal 
disease to systemic diseases and conditions. Periodontol. 87, 11–16. doi: 
10.1111/prd.12398

Kiani, A. K., Miggiano, G. A. D., Aquilanti, B., Velluti, V., Matera, G., Gagliardi, L., 
et al. (2020). Food supplements based on palmitoylethanolamide plus hydroxytyrosol 
from olive tree or Bacopa monnieri extracts for neurological diseases. Acta Biomed. 
91:e2020007. doi: 10.23750/abm.v91i13-S.10582

Kim, J., Lee, H., Kim, H., Kim, J. Y., and Kim, K. H. (2017). Differences in the tongue 
features of primary dysmenorrhea patients and controls over a normal menstrual cycle. 
Evid. Based Complement. Alternat. Med. 2017:ECAM 2017, 6435702. doi: 
10.1155/2017/6435702

Kim, J., Son, J., Jang, S., Nam, D.-H., Han, G., Yeo, I., et al. (2013). Availability of 
tongue diagnosis system for assessing tongue coating thickness in patients with 
functional dyspepsia. Evid. Based Complement. Altern. Med. 2013:348272. doi: 
10.1155/2013/348272

Koren, O., Spor, A., Felin, J., Fåk, F., Stombaugh, J., Tremaroli, V., et al. (2011). Human 
oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. 
U. S. A. 108, 4592–4598. doi: 10.1073/pnas.1011383107

Kostka, E., Wittelkindt, C., and Guntinas-Lichius, O. (2008). Tongue coating, mouth 
odor, gustatory sense disorder - earlier and new treatment options by means of tongue 
scraper. Laryngorhinootologie 87, 546–550. doi: 10.1055/s-2007-995614

Kroese, J. M., Brandt, B. W., Buijs, M. J., Crielaard, W., Lobbezoo, F., Loos, B. G., et al. 
(2021). Differences in the Oral microbiome in patients with early rheumatoid arthritis 
and individuals at risk of rheumatoid arthritis compared to healthy individuals. Arthritis 
Rheumatol. 73, 1986–1993. doi: 10.1002/art.41780

Landolfo, E., Cutuli, D., Petrosini, L., and Caltagirone, C. (2022). Effects of 
Palmitoylethanolamide on neurodegenerative diseases: a review from rodents to 
humans. Biomolecules 12:667. doi: 10.3390/biom12050667

Lee, J., d’Aigle, J., Atadja, L., Quaicoe, V., Honarpisheh, P., Ganesh, B. P., et al. (2020). 
Gut microbiota-derived short-chain fatty acids promote Poststroke recovery in aged 
mice. Circ. Res. 127, 453–465. doi: 10.1161/CIRCRESAHA.119.316448

Li, Y., Cui, J., Liu, Y., Chen, K., Huang, L., and Liu, Y. (2021). Oral, tongue-coating 
microbiota, and metabolic disorders: a novel area of interactive research. Front. 
Cardiovasc. Med. 8:203. doi: 10.3389/fcvm.2021.730203

Liu, J., Geng, W., Sun, H., Liu, C., Huang, F., Cao, J., et al. (2022). Integrative 
metabolomic characterisation identifies altered portal vein serum metabolome 
contributing to human hepatocellular carcinoma. Gut 71, 1203–1213. doi: 
10.1136/gutjnl-2021-325189

Liu, X. N., Shinada, K., Chen, X. C., Zhang, B. X., Yaegaki, K., and Kawaguchi, Y. 
(2006). Oral malodor-related parameters in the Chinese general population. J. Clin. 
Periodontol. 33, 31–36. doi: 10.1111/j.1600-051X.2005.00862.x

Longo, N., Frigeni, M., and Pasquali, M. (2016). Carnitine transport and fatty acid 
oxidation. Biochim. Biophys. Acta 1863, 2422–2435. doi: 10.1016/j.bbamcr.2016.01.023

Mao, S., Teng, X., Li, Z., Zu, J., Zhang, T., Xu, C., et al. (2023). Association of serum 
neurofilament light chain and glial fibrillary acidic protein levels with cognitive 
decline in Parkinson’s disease. Brain Res. 1805:148271. doi: 
10.1016/j.brainres.2023.148271

McCann, M. R., George De la Rosa, M. V., Rosania, G. R., and Stringer, K. A. (2021). 
L-carnitine and Acylcarnitines: mitochondrial biomarkers for precision medicine. 
Metabolites 11:51. doi: 10.3390/metabo11010051

Mirzaei, R., Bouzari, B., Hosseini-Fard, S. R., Mazaheri, M., Ahmadyousefi, Y., 
Abdi, M., et al. (2021). Role of microbiota-derived short-chain fatty acids in nervous 
system disorders. Biomed. Pharmacother. 139:111661. doi: 10.1016/j.biopha.2021.111661

Mu, X., Ji, C., Wang, Q., Liu, K., Hao, X., Zhang, G., et al. (2019). Non-targeted 
metabolomics reveals diagnostic biomarker in the tongue coating of patients with 
chronic gastritis. J. Pharm. Biomed. Anal. 174, 541–551. doi: 10.1016/j.jpba.2019.06.025

Musella, A., Fresegna, D., Rizzo, F. R., Gentile, A., Bullitta, S., De Vito, F., et al. (2017). 
A novel crosstalk within the endocannabinoid system controls GABA transmission in 
the striatum. Sci. Rep. 7:7363. doi: 10.1038/s41598-017-07519-8

Ng, A. S. L., Tan, Y. J., Yong, A. C. W., Saffari, S. E., Lu, Z., Ng, E. Y., et al. (2020). Utility 
of plasma Neurofilament light as a diagnostic and prognostic biomarker of the postural 
instability gait disorder motor subtype in early Parkinson’s disease. Mol. Neurodegener. 
15:33. doi: 10.1186/s13024-020-00385-5

Palese, F., Pontis, S., Realini, N., Torrens, A., Ahmed, F., Assogna, F., et al. (2022). 
Targeting NAAA counters dopamine neuron loss and symptom progression in mouse 
models of Parkinsonism. Pharmacol. Res. 182:106338. doi: 10.1016/j.phrs.2022.106338

Pathak, J. L., Yan, Y., Zhang, Q., Wang, L., and Ge, L. (2021). The role of oral 
microbiome in respiratory health and diseases. Respir. Med. 185:106475. doi: 
10.1016/j.rmed.2021.106475

Pereira, I. F., Brasileiro, C. B., Kleperon, N. P., Nogueira, M. H., de Abreu, G., da 
Silva, T. A., et al. (2018). Comparative study of oral and salivary parameters in patients 
with and without loss of bone mass. Braz. Oral Res. 32:e54. doi: 
10.1590/1807-3107bor-2018.vol32.0054

Petrosino, S., and Schiano Moriello, A. (2020). Palmitoylethanolamide: a nutritional 
approach to keep Neuroinflammation within physiological boundaries-a systematic 
review. Int. J. Mol. Sci. 21:9526. doi: 10.3390/ijms21249526

Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., et al. (2015). 
MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601. doi: 
10.1002/mds.26424

Roldán, S., Herrera, D., O’Connor, A., González, I., and Sanz, M. (2005). A combined 
therapeutic approach to manage oral halitosis: a 3-month prospective case series. J. 
Periodontol. 76, 1025–1033. doi: 10.1902/jop.2005.76.6.1025

Romano, F., Pigella, E., Guzzi, N., Manavella, V., Campanelli, L., and Aimetti, M. 
(2020). Etiology and characteristics of halitosis in patients of a halitosis center in 
northern Italy. Minerva Stomatol. 69, 174–182. doi: 10.23736/S0026-4970.19.04186-4

Russo, R., Cristiano, C., Avagliano, C., De Caro, C., La Rana, G., Raso, G. M., et al. 
(2018). Gut-brain Axis: role of lipids in the regulation of inflammation, pain and CNS 
diseases. Curr. Med. Chem. 25, 3930–3952. doi: 10.2174/0929867324666170216113756

Seerangaiyan, K., Jüch, F., and Winkel, E. G. (2018). Tongue coating: its characteristics 
and role in intra-oral halitosis and general health-a review. J. Breath Res. 12:034001. doi: 
10.1088/1752-7163/aaa3a1

Segawa, M., Iizuka, N., Ogihara, H., Tanaka, K., Nakae, H., Usuku, K., et al. (2021). 
Construction of a standardized tongue image database for diagnostic education: 
development of a tongue diagnosis e-learning system. Front. Med. Technol. 3:760542. 
doi: 10.3389/fmedt.2021.760542

Sergi, G., Pizzato, S., Piovesan, F., Trevisan, C., Veronese, N., and Manzato, E. (2018). 
Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging 
Clin. Exp. Res. 30, 133–138. doi: 10.1007/s40520-017-0770-3

Shao, Y., Li, T., Liu, Z., Wang, X., Xu, X., Li, S., et al. (2021). Comprehensive metabolic 
profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. 
Neurodegener. 16:4. doi: 10.1186/s13024-021-00425-8

Siderowf, A., Xie, S. X., Hurtig, H., Weintraub, D., Duda, J., Chen-Plotkin, A., et al. 
(2010). CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. 
Neurology 75, 1055–1061. doi: 10.1212/WNL.0b013e3181f39a78

Simon, D. K., Tanner, C. M., and Brundin, P. (2020). Parkinson disease epidemiology, 
pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 36, 1–12. doi: 
10.1016/j.cger.2019.08.002

Singh, S., Mishra, A., Srivastava, N., Shukla, R., and Shukla, S. (2018). Acetyl-L-
carnitine via Upegulating dopamine D1 receptor and attenuating microglial activation 
prevents neuronal loss and improves memory functions in parkinsonian rats. Mol. 
Neurobiol. 55, 583–602. doi: 10.1007/s12035-016-0293-5

Siracusa, R., Paterniti, I., Impellizzeri, D., Cordaro, M., Crupi, R., Navarra, M., et al. 
(2015). The association of Palmitoylethanolamide with luteolin decreases 

https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1186/s12903-018-0689-x
https://doi.org/10.1021/acschemneuro.7b00468
https://doi.org/10.1111/jcpe.12280
https://doi.org/10.3389/fcimb.2022.813790
https://doi.org/10.1155/2019/4106293
https://doi.org/10.1080/17474124.2021.1850259
https://doi.org/10.1186/s40168-022-01295-y
https://doi.org/10.1016/j.heliyon.2024.e38645
https://doi.org/10.1016/j.jtcme.2022.04.001
https://doi.org/10.1016/j.pharmthera.2022.108273
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1111/prd.12398
https://doi.org/10.23750/abm.v91i13-S.10582
https://doi.org/10.1155/2017/6435702
https://doi.org/10.1155/2013/348272
https://doi.org/10.1073/pnas.1011383107
https://doi.org/10.1055/s-2007-995614
https://doi.org/10.1002/art.41780
https://doi.org/10.3390/biom12050667
https://doi.org/10.1161/CIRCRESAHA.119.316448
https://doi.org/10.3389/fcvm.2021.730203
https://doi.org/10.1136/gutjnl-2021-325189
https://doi.org/10.1111/j.1600-051X.2005.00862.x
https://doi.org/10.1016/j.bbamcr.2016.01.023
https://doi.org/10.1016/j.brainres.2023.148271
https://doi.org/10.3390/metabo11010051
https://doi.org/10.1016/j.biopha.2021.111661
https://doi.org/10.1016/j.jpba.2019.06.025
https://doi.org/10.1038/s41598-017-07519-8
https://doi.org/10.1186/s13024-020-00385-5
https://doi.org/10.1016/j.phrs.2022.106338
https://doi.org/10.1016/j.rmed.2021.106475
https://doi.org/10.1590/1807-3107bor-2018.vol32.0054
https://doi.org/10.3390/ijms21249526
https://doi.org/10.1002/mds.26424
https://doi.org/10.1902/jop.2005.76.6.1025
https://doi.org/10.23736/S0026-4970.19.04186-4
https://doi.org/10.2174/0929867324666170216113756
https://doi.org/10.1088/1752-7163/aaa3a1
https://doi.org/10.3389/fmedt.2021.760542
https://doi.org/10.1007/s40520-017-0770-3
https://doi.org/10.1186/s13024-021-00425-8
https://doi.org/10.1212/WNL.0b013e3181f39a78
https://doi.org/10.1016/j.cger.2019.08.002
https://doi.org/10.1007/s12035-016-0293-5


Yang et al.� 10.3389/fmicb.2025.1621468

Frontiers in Microbiology 19 frontiersin.org

neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol. 
Disord. 14, 1350–1366. doi: 10.2174/1871527314666150821102823

Skaper, S. D., Facci, L., Barbierato, M., Zusso, M., Bruschetta, G., Impellizzeri, D., et al. 
(2015). N-Palmitoylethanolamine and Neuroinflammation: a novel therapeutic strategy 
of resolution. Mol. Neurobiol. 52, 1034–1042. doi: 10.1007/s12035-015-9253-8

Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest 
variable selection methods for classification prediction modeling. Expert Syst. Appl. 134, 
93–101. doi: 10.1016/j.eswa.2019.05.028

Su, W., Xu, Z.-Y., Wang, Z.-Q., and Xu, J.-T. (2011). Objectified study on tongue 
images of patients with lung cancer of different syndromes. Chin. J. Integr. Med. 17, 
272–276. doi: 10.1007/s11655-011-0702-6

Takeshita, T., Tomioka, M., Shimazaki, Y., Matsuyama, M., Koyano, K., Matsuda, K., 
et al. (2010). Microfloral characterization of the tongue coating and associated risk for 
pneumonia-related health problems in institutionalized older adults. J. Am. Geriatr. Soc. 
58, 1050–1057. doi: 10.1111/j.1532-5415.2010.02867.x

Tolosa, E., Wenning, G., and Poewe, W. (2006). The diagnosis of Parkinson’s disease. 
Lancet Neurol. 5, 75–86. doi: 10.1016/S1474-4422(05)70285-4

Ueda, N., Tsuboi, K., and Uyama, T. (2013). Metabolism of endocannabinoids and 
related -acylethanolamines: canonical and alternative pathways. FEBS J. 280, 1874–1894. 
doi: 10.1111/febs.12152

Van Tornout, M., Dadamio, J., Coucke, W., and Quirynen, M. (2013). Tongue coating: 
related factors. J. Clin. Periodontol. 40, 180–185. doi: 10.1111/jcpe.12031

Vijiaratnam, N., Simuni, T., Bandmann, O., Morris, H. R., and Foltynie, T. (2021). 
Progress towards therapies for disease modification in Parkinson’s disease. Lancet 
Neurol. 20, 559–572. doi: 10.1016/S1474-4422(21)00061-2

Virmani, M. A., and Cirulli, M. (2022). The role of l-carnitine in mitochondria, 
prevention of metabolic inflexibility and disease initiation. Int. J. Mol. Sci. 23:2717. doi: 
10.3390/ijms23052717

Xu, Y., Zhang, R., Morris, R., Cheng, F., Wang, Y., Zhu, Z., et al. (2021). Metabolite 
characteristics in tongue coating from damp phlegm pattern in patients with gastric 
precancerous lesion. Evid. Based Complement. Alternat. Med. 2021, 5515325–5515316. 
doi: 10.1155/2021/5515325

Yang, L., Xiang, Z., Zou, J., Zhang, Y., Ni, Y., and Yang, J. (2022). Comprehensive 
analysis of the relationships between the gut microbiota and fecal metabolome in 
individuals with primary Sjogren’s syndrome by 16S rRNA sequencing and LC-MS-
based metabolomics. Front. Immunol. 13:874021. doi: 10.3389/fimmu.2022.874021

Yuan, L., Yang, L., Zhang, S., Xu, Z., Qin, J., Shi, Y., et al. (2023). Development of a 
tongue image-based machine learning tool for the diagnosis of gastric cancer: a 
prospective multicentre clinical cohort study. EClinicalMedicine 57:101834. doi: 
10.1016/j.eclinm.2023.101834

Zhang, Y., Lo, K. L., Liman, A. N., Feng, X. P., and Ye, W. (2024). Tongue-coating 
microbial and metabolic characteristics in halitosis. J. Dent. Res. 103, 484–493. doi: 
10.1177/00220345241230067

Zhao, F., An, R., Wang, L., Shan, J., and Wang, X. (2021). Specific gut microbiome and 
serum metabolome changes in lung Cancer patients. Front. Cell. Infect. Microbiol. 
11:725284. doi: 10.3389/fcimb.2021.725284

Zhuang, X., and Wang, L. (2000). Acupuncture treatment of Parkinson’s disease--a 
report of 29 cases. J. Tradit. Chin. Med. 20, 265–267. doi: 10.19852/j.cnki.jtcm.2000.04.007

Zuo, T., Xie, M., Yan, M., Zhang, Z., Tian, T., Zhu, Y., et al. (2022). In situ analysis of 
acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice 
of Parkinson’s disease. Cell Prolif. 55:e13213. doi: 10.1111/cpr.13213

https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.2174/1871527314666150821102823
https://doi.org/10.1007/s12035-015-9253-8
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1007/s11655-011-0702-6
https://doi.org/10.1111/j.1532-5415.2010.02867.x
https://doi.org/10.1016/S1474-4422(05)70285-4
https://doi.org/10.1111/febs.12152
https://doi.org/10.1111/jcpe.12031
https://doi.org/10.1016/S1474-4422(21)00061-2
https://doi.org/10.3390/ijms23052717
https://doi.org/10.1155/2021/5515325
https://doi.org/10.3389/fimmu.2022.874021
https://doi.org/10.1016/j.eclinm.2023.101834
https://doi.org/10.1177/00220345241230067
https://doi.org/10.3389/fcimb.2021.725284
https://doi.org/10.19852/j.cnki.jtcm.2000.04.007
https://doi.org/10.1111/cpr.13213

	Microbiome and metabolome integrated analysis: exploring potential diagnostic approaches for Parkinson’s disease using tongue coating samples
	1 Introduction
	2 Materials and methods
	2.1 Materials and reagents
	2.2 Sample collection and research methods
	2.2.1 Sample source
	2.2.2 Inclusion and exclusion criteria
	2.2.3 Collection and processing of TC samples
	2.2.4 Metabolomics processing procedure
	2.2.4.1 UPLC-Q/TOF-MS instrument and conditions
	2.2.4.2 Quality control
	2.2.5 Microbiome sample processing procedure
	2.2.6 Data analysis

	3 Results
	3.1 Demographic characteristics
	3.2 16S rRNA sequencing results
	3.3 Metabolomics data results
	3.3.1 Data stability and reliability
	3.3.2 Screening and Analysis of Potential Biomarkers
	3.3.3 Random Forest

	4 Discussion
	5 Conclusion

	References

