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Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with complex
pathogenesis and limited treatment options. The current reliance on clinical evaluation
for diagnosis, due to the absence of reliable non-invasive methods, presents
significant challenges. Traditional diagnostic approaches, including cerebrospinal
fluid or blood sampling, are invasive, pose risks of infection, are costly, and often
require complex procedures. Tongue coating sampling presents a non-invasive,
cost-effective, and repeatable alternative, indicating that it could be a valuable
tool for early detection and monitoring of PD, warranting further investigation.
This study explores the feasibility of using tongue coating samples as a diagnostic
tool for PD through microbiome analysis, with metabolomics data providing
additional context and validation via machine learning models. A cohort of 36
PD patients and 31 controls was recruited. 16S rRNA sequencing was used for
microbiome analysis, revealing significant alterations in the relative abundances
of various microbial taxa, including Firmicutes, Bacteroidetes, and Actinobacteria.
Concurrent metabolomics analysis using UPLC-Q/TOF-MS revealed a decrease in
palmitoylethanolamide (PEA) levels in Parkinson’s disease (PD) patients, and also
showed reduced carnitine levels specifically in the severe Hoehn-Yahr (H-Y) stage
and mild cognitive impairment (MCI) subgroups. These findings provide preliminary
evidence suggesting a potential link between specific microbial alterations and
PD progression, which may warrant further investigation. Additionally, the analysis
indicates a correlation between certain microbial and metabolomic changes and
the advancement of PD. Our results also suggest that tongue coating may serve
as a potential non-invasive tool for PD diagnosis, with a particular emphasis on
the combined role of the microbiome and metabolome in the pathogenesis of
the disease.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by resting tremors, slow movement, muscle rigidity, as
well as some non-motor symptoms and secondary motor symptoms
(Tolosa et al., 2006; Jankovic, 2008). Numerous environmental and
genetic factors influence the risk of PD, with different factors
predominating in distinct patients. These factors converge on specific
pathways, including mitochondrial dysfunction, oxidative stress,
protein aggregation, impaired autophagy, and neuroinflammation
(Simon et al., 2020). It is the second most prevalent neurodegenerative
disease (Ben-Shlomo et al., 2024). In high-income countries, the
median age-standardized annual incidence rate of PD is approximately
14 cases per 100,000 individuals (Ascherio and Schwarzschild, 2016).
Currently, the diagnosis of PD is based on clinical criteria, with the
standard definition encompassing bradykinesia accompanied by
resting tremor, rigidity, or both(Bloem et al., 2021). The current
treatment for PD primarily involves levodopa to alleviate motor
symptoms, supplemented by dopamine agonists or B-type monoamine
oxidase inhibitors based on individual patient profiles (Foltynie et al.,
2024). For all PD patients, current therapies are symptomatic, focusing
on improving motor and non-motor signs and symptoms, with no
medications demonstrating definitive evidence of disease-modifying
effects (Armstrong and Okun, 2020; Vijiaratnam et al., 2021).
However, PD may have a prodromal phase during which precise and
early diagnosis based on clinical presentation remains challenging
(Bloem et al., 2021). In addition, clinical diagnosis of PD typically
achieves an accuracy of only 80-90% when compared to pathological
confirmation (Ascherio and Schwarzschild, 2016). This urgency has
driven significant interest in the study of biomarkers for PD,
highlighting the critical need for more convenient, accurate, and early
diagnostic methods. Currently, the primary sample sources for clinical
research on biomarkers for PD are blood and cerebrospinal fluid
(CSF) (Siderowf et al., 2010; Aasly et al., 2012; Abbasi et al., 2018; Ng
et al., 2020; Aamodt et al., 2021; Mao et al., 2023). However, both
blood and cerebrospinal fluid collection are invasive procedures,
which can impose substantial psychological stress and financial
burden on patients.

During the patients’ clinical visits, we observed that the tongue
coating (TC)of PD patients exhibited a notable thick and greasy
appearance, with some presenting abnormal white or yellow
discoloration. This piqued our interest. TC refers to the layer present
on the dorsal surface of the tongue, which serves as a critical
observation target in the “visual diagnosis” of traditional Chinese
medicine (TCM). It is primarily composed of a complex mixture of
microorganisms (bacteria), keratinized epithelial cells, saliva, blood
metabolites, and food residues (Danser et al., 2003; Van Tornout et al.,
2013; Seerangaiyan et al., 2018). The appearance of TC is typically
described based on its color and texture. Coating colors are generally
classified into four main categories: white, yellow, gray, and black.
Texture, on the other hand, encompasses various types, including thin,
thick, smooth, dry, greasy, rotten, peeled, and the presence or absence
of TC roots. While the study of TC has been extensively explored
within the framework of traditional Chinese medicine, recent research
has increasingly focused on advanced techniques such as image
acquisition, digital processing, and computer-aided analysis (Kim et al.,
2013; Segawa et al., 2021; Yuan et al., 2023). Research has suggested
that tongue images provide a stable and reliable method for diagnosing
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gastric cancer, offering significant advantages over traditional blood
biomarkers (Yuan et al., 2023). Research on TC is rapidly advancing,
with its applications gradually extending beyond oral (Zhang et al.,
2024) and gastrointestinal diseases (Cui et al., 2019; Mu et al., 2019;
Guo etal,, 2022) to encompass a broader spectrum of health conditions
(Kapila, 2021; Pathak et al., 2021). Beyond image processing, the study
of TC composition has gained increasing attention. TC sampling is
straightforward, non-invasive, and low-risk, making it an attractive and
promising material for clinical research. Emerging evidence suggests
that TC holds significant potential as a non-invasive diagnostic tool for
disease detection and as a means to monitor disease progression and
prognosis (Ali Mohammed et al., 2021; Li et al., 2021).

Building on the aforementioned insights, we are particularly
interested in identifying biomarkers within the TC that could aid in
the diagnosis and prognosis of PD. The unique composition of TC
presents an untapped potential for uncovering disease-specific
metabolic signatures. Ultra-Performance Liquid Chromatography
coupled with Quadrupole Time-of-Flight Mass Spectrometry
(UPLC-Q/TOE-MS) has been extensively applied in metabolomics
research, demonstrating its capability to analyze complex biological
samples and elucidate metabolic alterations in various diseases (Cui
et al,, 2018; Shao et al,, 2021; Zhao et al,, 2021; Liu et al., 2022; Yang
etal, 2022). 16S rRNA (16S ribosomal RNA) sequencing technology
is widely used in microbiome research as it provides insights into the
composition of microbial communities. It is a reliable method for
high-throughput sequencing analysis (Curry et al., 2022; Hassler et al.,
2022). Thus, we propose to conduct a non-targeted metabolomics
study of TC samples from Parkinson’s patients using UPLC-Q/
TOF-MS. At the same time, we applied 16S rRNA sequencing to study
the microbiome of PD patients, aiming to identify differences in their
microbial communities. By integrating untargeted metabolomics and
microbiome analysis, we hope to fill the gap in research in this area.
Our goal is to identify reliable biomarkers that could serve as
non-invasive diagnostic tools and provide new therapeutic targets,
paving the way for innovative approaches in the diagnosis and
treatment of PD.

2 Materials and methods
2.1 Materials and reagents

Methanol and acetonitrile (LC/MS grade) were purchased from
Thermo Fisher Scientific (China). Ultrapure water (18.2 MQ/cm) was
produced using a Milli-Q system (Millipore, Bedford, MA,
United States). Formic acid (FA) and ammonium acetate (AA) were
obtained from ANPEL Lab Tech. (Shanghai, China). Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen, United States) TruSeq Nano
DNA LT Library Prep Kit (Illumina, Inc., United States) Agilent High
Sensitivity DNA Kit (Agilent Technologies, Inc., United States).

2.2 Sample collection and research
methods
2.2.1 Sample source

The PD group consisted of patients diagnosed with PD who were
recruited from the Neurology Outpatient Department of Shanghai
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General Hospital. All participants in this group were patients
undergoing follow-up visits every 4 weeks, with the total sample size
based on the number of patients enrolled during one four-week cycle.
The control group (CON) was composed of family members
accompanying the patients, who met the inclusion criteria. All
participants voluntarily took part in this study and this study was
approved by the Ethics Committee of Shanghai General Hospital
(Approval No. 2024HS158). The study strictly adhered to the
principles outlined in the Declaration of Helsinki and was registered
with the Chinese Clinical Trial Registry (Registration no.
ChiCTR2400091883). The experimental workflow is shown in
Figure 1.

2.2.2 Inclusion and exclusion criteria

PD diagnostic criteria: PD group were based on the internationally
recognized MDS Clinical Diagnostic Criteria for Parkinson’s Disease
(Postuma et al., 2015).

Inclusion criteria for the PD group were as follows: (1)
Fulfillment of the diagnostic criteria for PD (MDS Clinical
Diagnostic Criteria). (2) Age > 55years. (3) Willingness to
participate in the study, with written informed consent provided.
(4) Absence of other systemic diseases, such as malignancies,
infectious diseases, or gastrointestinal disorders. (5) Samples were
collected before the intake of food and Parkinsons-
related medications.

Inclusion criteria for the CON group were as follows: (1)
Confirmation of no neurodegenerative diseases. (2) Age > 55 years.
(3) Willingness to participate in the study, with written informed
consent provided. (4) Absence of other systemic diseases, such as

malignancies, infectious diseases, or gastrointestinal disorders.

10.3389/fmicb.2025.1621468

Exclusion Criteria for Both Groups: (1) Use of medications
affecting TC status (e.g., antibiotics, antifungal agents) within 2 weeks
prior to sampling. (2) Presence of diseases that influence TC status
(e.g., acute upper respiratory tract infection, oral ulcers, glossitis). (3)
Coexisting major illnesses, such as liver or kidney dysfunction, severe
infections, or malignancies.

2.2.3 Collection and processing of TC samples

To minimize interference from residual debris, participants were
instructed to avoid eating prior to TC collection. On-site, participants
rinsed their mouths three times to further eliminate potential residue
and saliva interference. Following rinsing, TC images were captured.
TC samples were collected by scraping the dorsal surface of the tongue
from left to right five times. The collected material was placed into an
Eppendorf tube prefilled with 500 pL of physiological saline. The
sample was then mixed thoroughly. Cell counting was performed
using the Countess II Automated Cell Counter (Thermo Fisher
Scientific), and the cell concentration was adjusted to ensure a
uniform count of approximately 1076 cells/mL for all samples. Finally,
the samples were stored at —80°C until further analysis.

2.2.4 Metabolomics processing procedure

After all samples have been collected, they are centrifuged at
1000 rpm for 4 min at 4°C. The supernatant is dried using
nitrogen gas (N,). The cell pellets are then re-suspended in 100 pL
of cold 90% acetonitrile, ensuring uniform suspension of the cells.
The samples undergo three freeze-thaw cycles at —80°C, each
lasting 10 min, to facilitate cell disruption. The remaining 90%
acetonitrile is added to bring the total volume to 200 pL for
extraction, followed by vortex mixing to ensure thorough
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FIGURE 1
Experimental flowchart.
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homogenization, resulting in 200 pL of acetonitrile extract. The
samples are then subjected to ultrasonic treatment for 10 cycles,
each lasting 30 s, to further enhance extraction. Finally, the
samples are centrifuged at 15000 rpm for 10 min at 4°C to remove
any residual solid material, and 150 pL of the supernatant is
collected for analysis.

2.2.4.1 UPLC-Q/TOF-MS instrument and conditions

Samples were analyzed using an Agilent 1,290 Infinity UPLC
system (Milford, MA, United States) equipped with a Waters UPLC
column (ACQUITY HSS T3, 3.0 x 150 mm, 1.8 pm). The mobile
phase consisted of (A) 10 mM ammonium acetate aqueous solution
with 0.1% formic acid and (B) acetonitrile. The flow rate was set at
0.3 mL/min, the column temperature was maintained at 35°C, and the
injection volume was 5 pL. Gradient elution was performed as follows
(Mu et al, 2019): 0-2 min, 10-50%B; 2-14.5 min, 50-95% B;
14.5-15 min, 95-10% B; 15-20 min, 10-10% B.

Mass spectrometry conditions: Mass spectrometry data were
obtained using an Agilent 6,545 Q-TOF MS/MS equipped with a dual
Agilent Jet Stream electrospray ionization (ESI) source operated in
positive ionization mode. The parameters were set as follows: scan
range of 100-1,000 m/z for MS and 50-800 m/z for MS/MS;
fragmentor voltage of 175 V; gas temperature of 320°C; sheath gas
temperature of 350°C; sheath gas flow rate of 11 L/min; nebulizer gas
flow rate of 8 L/min; nebulizer gas pressure of 35 psig; and collision
energy alternating between 10 and 30 eV.

2.2.4.2 Quality control

All enrolled samples were retrieved from the —80°C freezer and
allowed to reach room temperature. A 20 pL aliquot was taken from
each sample and pooled to create a quality control (QC) sample,
which underwent the same preprocessing and instrumental analysis
as the other samples. PD group samples were injected first, followed
by CON group samples. A QC sample was injected after every 10
samples to minimize errors arising from sample preprocessing
and detection.

2.2.5 Microbiome sample processing procedure
All enrolled samples were collected, and total DNA was extracted.

DNA

spectrophotometer, and DNA quality was assessed by 1.2% agarose gel

concentration was quantified using a Nanodrop
electrophoresis. The 16S rRNA gene V3-V4 region was amplified
using the following Forward
ACTCCTACGGGAGGCAGCA, Reverse primer:
GGACTACHVGGGTWTCTAAT. The amplified products were

purified using magnetic beads and then quantified via fluorescence

primers: primer:

using a Microplate Reader (BioTek, FLx800). The sequencing library
was prepared using Illumina’s TruSeq Nano DNA LT Library Prep Kit.
Library quality was assessed on an Agilent Bioanalyzer using the
Agilent High Sensitivity DNA Kit. After the library passed quality
control, it was subjected to sequencing.

2.2.6 Data analysis

The measurement data are expressed as mean + standard
deviation (X £ s), and categorical data are presented as frequencies and
percentages. Statistical analysis of the data between groups was
performed using SPSS (version 25) and R software (version 4.3.3). Age
was analyzed using a t-test, while gender, the presence of hypertension,
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and the presence of hyperlipidemia were analyzed using chi-square
()?) tests. TCS was analyzed using the Mann-Whitney U test.

The data obtained from UPLC-Q/TOF-MS were processed using
MassHunter Qualitative Analysis Software (version 10.0) and Mass
Profiler Professional (MPP) software (version 15.1) for the following
steps: quality control checks of the raw data, retention time variation
assessment, compound filtering and calibration, compound
identification, and differential analysis based on mass and retention
time. Identification was performed using the METLIN and HMDB
databases. The processed data from MPP were then imported into the
MetaboAnalyst 6.0 online platform' for differential analysis, principal
component analysis (PCA), partial least squares discriminant analysis
(PLS-DA), sparse partial least squares discriminant analysis (sPLS-
DA), orthogonal partial least squares discriminant analysis (OPLS-
DA), hierarchical clustering, and enrichment analysis. PCA is an
unsupervised method that aims to explain the main variations in the
data by reducing its dimensionality. PLS-DA is a supervised method
used to relate independent variables to categorical outcomes (i.e.,
class labels). OPLS-DA further enhances PLS-DA by separating
orthogonal components (unrelated noise) from the model, which
improves the distinction between categories. The advantage of
OPLS-DA lies in its ability to improve model interpretability while
reducing the influence of irrelevant data. R2Y is used to assess the
model’s ability to explain the Y variable (i.e., class labels), while Q2
reflects the model’s predictive capability, determined by the cross-
validation-based prediction correlation coefficient. A permutation
test with 2000 iterations was performed to evaluate the model’s
validity and statistical significance. In this study, compounds meeting
both FDR<0.05 and VIP>1 were considered differential
metabolites. The identified differential metabolites were submitted to
the MetaboAnalyst platform for enrichment analysis. Additionally,
the diagnostic capability of these differential metabolites was
evaluated using ROC curve analysis. The ROC curves were generated
and analyzed via the Extreme Smart Analysis platform,” and the ROC
data were further validated using SPSS (version 25). All the data
analysis was performed using the peak area of mass spectrometry for
relative quantification.

After performing an initial quality check on the raw 16S rRNA
sequencing data, the samples were demultiplexed based on index and
barcode information, and the barcode sequences were removed. The
data were processed using QIIME2 (2019.4) software, with the
DADA? plugin for quality control, denoising, merging, and chimera
removal. After denoising all libraries, the Amplicon Sequence Variants
(ASVs) feature sequences and the corresponding ASV table were
merged, and singleton ASVs were removed. The Greengenes database
(Release 13.8) was used for taxonomic assignment of each ASV’s
feature sequence in QIIME2 using the default parameters and a
pre-trained Naive Bayes classifier. Taxonomic classification results at
the phylum and genus levels were primarily presented. Alpha diversity
indices were used to characterize the species richness, diversity, and
evenness within habitats, while beta diversity indices were used to
assess the differences between samples and habitats. The LEfSe (LDA

Effect Size) analysis, which combines the non-parametric

1 https://www.metaboanalyst.ca/

2 https://www.xsmartanalysis.com
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Kruskal-Wallis and Wilcoxon rank-sum tests with linear discriminant
analysis (LDA) effect size, was used to identify robust differential
species between groups. Additionally, metabolic pathway analysis was
performed using the KEGG database.

TC images were primarily assessed using the TC Score (TCS)
(Aimetti et al., 2015). The TCS is calculated as the product of the TC
coverage area and thickness. Coverage area is scored from 0 to 3 as
follows: 0 (no TC), 1 (coating covers <1/3 of the tongue dorsum), 2
(1/3 < coating coverage < 2/3), and 3 (coating covers >2/3 of the
tongue dorsum). Thickness is also scored from 0 to 3: 0 (no TC), 1
(thin coating), 2 (moderate coating with papillae not visible), and 3
(thick coating).

The Mini-Mental State Examination (MMSE) is a widely used tool
to assess cognitive function. In our study, scores below 27 were
classified as the mild cognitive impairment (MCI) group, while scores
of 27 or above were classified as the Normal group. The Hoehn and
Yahr (H-Y) scale is a clinical rating system used to assess the severity
of Parkinson’s disease (PD) based on motor symptoms. The scale
ranges from 1 to 5, with stages 4 and 5 categorized as the severe group,
and stages 1, 1.5, 2, 2.5, and 3 categorized as the mild and moderate
group. The MMSE score and H-Y stage help categorize PD patients
into different stages of cognitive decline and disease progression,
providing a framework for understanding the relationship between
cognitive decline and disease severity.

Random Forest classification is a commonly used machine
learning method for developing predictive models in various research
environments (Speiser et al., 2019). It improves the accuracy of
classification or regression models by constructing multiple decision
trees and combining their predictions. We conducted Random Forest
analysis on the metabolomics data using R (version 4.4.4). In this
experiment, we first randomly selected 5 samples from the 36
Parkinson’s disease (PD) group samples as an independent validation
set, ensuring that the model could later be tested. Next, we constructed
a dataset using the remaining 31 PD group samples and 31 control
(CON) group samples, with the data randomly split into 70% training
set and 30% testing set for model training and evaluation. After the
model was established, we further validated its performance by
applying the model to the previously randomly selected independent
validation set consisting of the 5 samples.

TABLE 1 Demographic characteristics.

10.3389/fmicb.2025.1621468

3 Results
3.1 Demographic characteristics

The mean age of the CON group was (71.77 + 6.453) years,
while the mean age of the PD group was (72.81 + 7.398) years.
There was no statistically significant difference in the overall age
between the two groups (RD -1.031, 95% CI -4.446-2.383,
t=—0.603, p = 0.584). In terms of gender, 33.3% of the PD group
were female, and 54.8% of the CON group were female. No
statistically significant difference was found between the two groups
in terms of gender (RD 0.22, 95% CI — 0.0182-0.4483, y* = 3.138,
p=0.076). For hypertension, 58.3% of the PD group had
hypertension, while 51.6% of the CON group had hypertension.
There was no statistically significant difference between the two
groups regarding the presence of hypertension (RD 0.07, 95% CI
-0.1713-0.3057, y* = 0.304, p = 0.581). Similarly, 47.2% of the PD
group had hyperlipidemia, while 48.4% of the CON group had
hyperlipidemia. Again, no statistically significant difference was
found between the two groups regarding the presence of
hyperlipidemia (RD -0.01, 95% CI -0.2512-0.2282, y* = 0.009,
p = 0.924). Therefore, neither the age, gender, hypertension, nor
hyperlipidemia of participants had any impact on the experimental
grouping in this study. The median TCS score for the PD group was
3 (2, 6), while the median TCS score for the CON group was 2 (2,
3). A statistically significant difference was observed in the overall
TCS distribution between the two groups (Z = 2.507, p = 0.012)
(Table 1).

3.2 16S rRNA sequencing results

At the phylum level (Figure 2A), the microbial composition
between the CON and PD groups showed differences. Firmicutes and
Bacteroidetes were the dominant phyla in both groups, with the
relative abundance of Firmicutes increased in the PD group, while
Bacteroidetes showed the opposite trend. The relative abundance of
Proteobacteria and Actinobacteria slightly increased in the PD group.
Other phyla, such as Fusobacteria, also exhibited minor changes, but

Variable CON (n = 31) PD (n = 36) Test Statistic [RD (95% Cl)]
Age (Mean+SD) 71.77 + 6.453 72.81 +7.398 t=-0.603 -1.031(—4.446-2.383) 0.548
Gender [n (%)]
Woman 17(54.8%) 12(33.3%)
¥ =3.138 0.22(—0.0182-0.4483) 0.076
Man 14(45.2%) 24(66.7%)
TCS [M (P,s, Pys)] 2(2,3) 3(2,6) 7 =2.507 1(0-4) 0.012
BMI (Mean + SD) 22.72 +2.367 21.79 +2.985 t=1.39% 0.9282(—0.4015-2.2579) 0.168
Hypertension
Yes 16(51.6%) 21(58.3%)
¥ =0.304 0.07(—0.1713-0.3057) 0.581
No 15(48.4%) 15(41.7%)
Hyperlipidemia
Yes 15(48.4%) 17(47.2%)
x> = 0.009 -0.01(—0.2512-0.2282) 0.924
No 16(51.6%) 19(52.8%)

Frontiers in Microbiology

05

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Yang et al.

10.3389/fmicb.2025.1621468

Relative Abundance (%)

c_Erysipelotrichi {
1_Erysipelotrichaceae {
9_Bulleidia
o_Erysipelotrichales 1
p_Actinobacteria {
¢_Actinobacteria {
1_Lactobacillaceae {
9_Lactobacillus {
9_Bifidobacterium {
1_Bifidobacteriaceae 1
o_Bifidobacteriales {
f_Coriobacteriaceae {
©_Coriobacteriia {

o__ Coriobacteriales {
f_Flavobacteriaceae {
9__Capnocytophaga {
o_Flavobacteriales |
c_Flavobacteriia {
g_Olsenella

FIGURE 2

pathways predicted from functional analysis.

€
£
3
]
H
H

1 2 3 4
LDA Score (log 10) o oo
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relative abundance distribution of microbial communities at the genus level between the CON and PD groups. The relative abundance of the top 20
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their impact was minimal. At the genus level (Figure 2B), differences
were also observed among the top 20 dominant genera in the CON
and PD groups. For instance, Prevotella and Veillonella, which
dominated in the CON group, decreased in the PD group, while
Streptococcus and Actinomyces, which had higher proportions,
increased in the PD group. Other genera showed certain changes,
indicating notable inter-group differences. Through a-diversity
analysis (Figure 2C), no significant differences were observed
between the CON and PD groups in terms of the Chaol, Simpson,
Shannon, and Pielou_e indices (p > 0.05), suggesting that the overall
species richness, diversity, and evenness remained relatively stable
between the two groups. LEfSe analysis (Figure 2D) revealed
significant differences between the CON and PD groups across
multiple taxonomic levels, including phylum, class, order, family, and
genus. Specifically, populations associated with Erysipelotrichaceae
and Bulleidia were significantly enriched in the CON group, while
taxa related to Actinobacteria, Bifidobacterium, Coriobacteriaceae,
and Flavobacterium were notably enriched in the PD group. These
differential microbial populations may serve as important microbial
biomarkers that contribute to or reflect the pathophysiological
changes in PD. In the KEGG pathway enrichment analysis
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(Figure 2E), we observed that pathways related to metabolism
occupied a larger proportion.

3.3 Metabolomics data results

3.3.1 Data stability and reliability

In Figure 3, panels A and B show significant separation among the
three groups, with the QC results indicating that the samples were
stable throughout the preprocessing and analysis processes. Panels C
and D suggest that the R* and Q? values for the first two components
are both >0.7. After performing 2000 random permutations, the
statistic for each permutation was calculated, yielding a p-value of
0.002, which indicates statistical significance. This suggests that our
model has strong predictive power, high classification accuracy, and
low risk of overfitting. Four components are considered the optimal
choice, as this configuration balances model performance
and complexity.

The mass spectrometry TIC comparison between the PD group
and the CON group is shown in Figure 4A, where a noticeable
difference is observed between the two. In Figure 3, panels E and F
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FIGURE 3

Panels (A-D) represent the PCA score plot, sPLS-DA score plot, bar chart of model performance metrics (Accuracy, R?, Q?) under different component
numbers in PLS-DA, and the 2000-permutation test for PLS-DA, respectively, for the PD group, CON group, and QC group. Panels (E-G) show the
PCA score plot, OPLS-DA score plot, and the 2000-permutation test for OPLS-DA, respectively, for the PD and CON groups. Panel (H) displays a
hierarchical clustering heatmap of metabolites. Panel (I) shows the volcano plot of metabolites, where significantly upregulated metabolites are
located in the top-right corner [log2(FC) > 1 and -Log10(p) > 1.3], and significantly downregulated metabolites are located in the top-left corner
[log2(FC) < =1 and -Log10(p) > 1.3, with p-values adjusted using the Benjamini-Hochberg correction]. Panel (J) shows the KEGG enrichment analysis.
Panel (K) presents the ROC analysis of 31 potential biomarkers for PD diagnosis.

2001

suggest a clear separation between the two groups. Panel G shows R’Y
and Q* values > 0.8 for the model, indicating good fitting and
predictive performance. The permutation test effectively prevents
overfitting, further supporting the robustness and reliability of
the model.

3.3.2 Screening and Analysis of Potential
Biomarkers

After filtering through MPP software, a total of 1,037 metabolites
were identified, among which 294 were preliminarily annotated.
Hierarchical clustering analysis was performed on the annotated
metabolites to illustrate the similarities between different samples or
metabolites. The clustering of samples was based on standardized
metabolite data. Figure 3H highlights the top 150 metabolites with the
highest significance in the analysis.

Figure 31 illustrates the differential expression of metabolites,
with 35 upregulated and 116 downregulated metabolites identified
among the 294 compounds. The upregulated metabolites may
be associated with metabolic activation or promotion effects, while
the downregulated metabolites may reflect suppressed metabolism or
weakened activity in related pathways. Figure 3] depicts the KEGG
pathway enrichment analysis of the upregulated and downregulated
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metabolites identified in the volcano plot. The metabolites are
primarily enriched in pathways such as transmission across chemical
synapses, neuronal system, mercaptopurine metabolism pathway,
neurotransmitter clearance, azathioprine ADME, and methylation.
Compounds with FDR < 0.05 and VIP > 1 were identified as
differential metabolites, totaling 31 compounds, including:
2-Methylglutaric acid, Docosanamide, Palmitoylethanolamide,
2-Hydroxymyristic acid, Oleyl alcohol, (E)-Herclavine, Armillaripin,
Erythroskyrin, Methyl tetradecanoate, 1-Tridecene, Osmundalactone,
(Z)-Cinnamaldehyde, trans-2-trans-4-Nonadiene, 2-Acetylfuran,
Cinnamyl cinnamate, Withanolide A, Artabsinolide A, 6-Hydroxy-8-
pentacosanone, Phytal, Armillaricin, (3%,53,9'%,10'b)-O-(3-Hydroxy-
6-0x0-7-drimen-11-yl)umbelliferone, erythro-6,8-Tricosanediol,
Chlorhexidine,

10,16-Dihydroxy-palmitic

Indan-1-ol, 6-Mercaptopurine, Edrophonium,

Styrene, o-Xylene, acid, alpha-
Methylstyrene, and 13Z,16Z-docosadienoic acid. Among these, 9
compounds belong to Fatty Acyls, 5 to Benzene and substituted
derivatives, 3 to Prenol lipids, 2 to Cinnamic acids and derivatives, 2
to Unsaturated hydrocarbons, and the rest are classified into
Non-metal oxoanionic compounds, Carboximidic acids and
derivatives, Organic phosphoric acids and derivatives, Furofurans,

Pyrans, Cinnamaldehydes, Organooxygen compounds, Steroids and
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FIGURE 4
(A) shows the comparison of TIC chromatograms between the two groups. (B) illustrates the EIC chromatograms of PEA in representative samples
from both groups. (C) presents the MS/MS identification spectrum of PEA.

steroid derivatives, Lactones, Coumarins and derivatives, Indanes,
Imidazopyrimidines, and Hydroxy acids and derivatives. The specific
information is shown in Table 2. The mass spectrum of the
differentiated compound is shown in Figure 5.

The Receiver Operating Characteristic (ROC) curve is a widely
used method for evaluating the performance of binary classification
models. It assesses the model’s classification capability by examining
the relationship between sensitivity (true positive rate) and specificity
(1 - false positive rate) across different thresholds. The diagonal line
on the ROC curve represents random guessing, while curves closer to
the top-left corner indicate stronger classification performance.
Figure 3K indicates that in this study, ROC curve analysis revealed
that 31 metabolites possessed an AUC value greater than 0.75. This
indicates that these metabolites exhibit good accuracy and diagnostic
efficacy in distinguishing between PD and non-PD cases.

As shown in Figures 6A,B, the Mild and Moderate group and the
Severe group (20 vs. 16) within the PD samples are well-separated,
with the model demonstrating strong fit (R2Y > 0.9) and predictive
capability (Q2>0.6). Figures 6C,D illustrate the differential
metabolites between the two groups, revealing downregulation of
Hypoxanthine, Carnitine, Nitrite, and Proline betaine, alongside a
notable upregulation of alpha-CEHC. As shown in panels E and F of
Figure 6, the MCI and Normal groups in PD samples can be well
separated, with the model’s R2Y > 0.8 and Q2 > 0.5, indicating good
model fitting and predictive ability. Panels G and H display the
differential metabolites between the MCI and Normal groups (18 vs.
18), with downregulation of proline betaine, isoamyl nitrite,
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hypoxanthine, 1-nitroheptane, and carnitine, while phthalate
is upregulated.

3.3.3 Random Forest

In the Random Forest model constructed with 31 PD group samples
and 31 CON group samples, 44 samples were allocated to the test set, and
18 samples were assigned to the validation set. Figure 7A shows that, in
the validation set, our model correctly classified all 9 PD group samples.
Among the 9 CON group samples, 7 were correctly classified, while 2
were misclassified as PD group. Figure 7C presents the model’s
performance, revealing an accuracy of 88.9% on the validation set. This
result appears considerably higher than the baseline accuracy of 50%,
which may indicate the models potential utility, though further
validation is required given the exploratory nature and limited sample
size of this study. This further highlights the effectiveness and reliability
of our Random Forest model. Figure 7B presents the top 20 important
features, with the y-axis representing their HMDB IDs. The
corresponding compound names can be found in Table 2. These features
have a substantial contribution to the prediction results, suggesting that
they are the primary drivers of the models predictions. Figure 7D shows
the validation of the 5 randomly selected PD group samples, which were
independently tested before the model was constructed. All samples were
correctly predicted, demonstrating that our Random Forest model has
high generalization capability and stability. Even with independent
validation samples, the model can effectively identify key features and
make accurate predictions. This high accuracy further enhances the
model’s reliability in disease prediction.
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TABLE 2 The basic information of the 31 differential metabolites.

Compound

Name

Chemical

Formula

lon Species

HMDB ID

Sub Class

1 2-Methylglutaric acid C6H1004 1.407228369 147.0650 9.861286 [M +H]+ HMDB00422 Fatty Acyls Fatty acids and
conjugates
2 Docosanamide C22H45NO 1.271730991 340.3564 17.147444 M+ H]+ HMDB00583 Fatty Acyls Fatty amides
3 Palmitoylethanolamide C18H37NO2 1.409097251 300.2897 8.077143 [M +H]+ HMDB02100 Carboximidic acids Carboximidic acids
and derivatives
4 2-Hydroxymyristic C14H2803 1.409379563 262.2377 5.0424294 [M + NH4]+ HMDB02261 Fatty Acyls Fatty acids and
acid conjugates
5 Oleyl alcohol C18H360 1.408221254 286.3098 10.384477 [M + NH4]+ HMDB29632 Fatty Acyls Fatty alcohols
6 (E)-Herclavine CI9H21INO2 1.20291303 296.1645 5.23275 M+ H]+ HMDB30242 Cinnamic acids and -
derivatives
7 Armillaripin C24H3006 1.498546157 437.1935 9.857175 [M + Na]+ HMDB30404 Prenol lipids Sesquiterpenoids
8 Erythroskyrin C26H33NO6 1.474101452 473.2645 9.869257 [M + NH4]+ HMDB30464 Furofurans -
9 Methyl tetradecanoate C15H3002 1.215490157 260.2580 6.9075556 [M + NH4]+ HMDB30469 Fatty Acyls Fatty acid esters
10 1-Tridecene C13H26 1.200519194 200.2372 7.2188125 M+ H]+ HMDB30930 Unsaturated Unsaturated aliphatic
hydrocarbons hydrocarbons
11 Osmundalactone C6H803 1.406839683 129.0545 9.859429 [M +H]+ HMDB31303 Pyrans Pyranones and
derivatives
12 (Z)-Cinnamaldehyde C9H8O 1.406503366 133.0647 9.852 [M + H]+ HMDB32072 Cinnamaldehydes -
13 trans-2-trans-4- CI2H22 1.201197402 184.2057 15.880687 [M + NH4]+ HMDB32537 Unsaturated Olefins
Nonadiene hydrocarbons
14 2-Acetylfuran C6H602 1.302724524 111.0441 9.870579 [M +H]+ HMDB33127 Organooxygen Carbonyl compounds
compounds
15 Cinnamyl cinnamate C18H1602 1.261071761 265.1219 5.159588 [M + H]+ HMDB33832 Cinnamic acids and Cinnamic acid esters
derivatives
16 Withanolide A C28H3806 1.408047691 488.2994 9.872429 [M + NH4]+ HMDB34415 Steroids and steroid Steroid lactones
derivatives
17 Artabsinolide A C15H2005 1.407195665 281.1382 9.857573 [M + H]+ HMDB35620 Lactones Gamma
butyrolactones
18 6-Hydroxy-8- C25H5002 1.210803489 400.4151 14.007502 [M + NH4]+ HMDB35629 Fatty Acyls Fatty alcohols
pentacosanone
19 Phytal C20H380 1.538749089 312.3257 13.192042 [M + NH4]+ HMDB35654 Prenol lipids Diterpenoids

(Continued)
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TABLE 2 (Continued)

Compound Chemical lon Species HMDB ID Sub Class
Name Formula
20 Armillaricin C24H29ClO5 1.405564635 433.1773 13.334667 [M +H]+ HMDB38686 Prenol lipids Sesquiterpenoids
21 (3'%,57,9%,10'b)-O-(3- C24H2805 1.406902218 397.2007 9.855715 M+ H]+ HMDB39042 Coumarins and -
Hydroxy-6-oxo-7- derivatives
drimen-11-yl)
umbelliferone
22 erythro-6,8- C23H4802 1.129635003 374.3993 13.191354 [M + NH4]+ HMDB41070 Fatty Acyls Fatty alcohols
Tricosanediol
23 Indan-1-ol C9H100 1.407340829 135.0805 9.857572 M+ H]+ HMDB0059601 Indanes -
24 6-Mercaptopurine C5H4N4S 1.20230933 153.0215 4.81188 [M +H]+ HMDB0015167 Imidazopyrimidines Purines and purine
derivatives
25 Chlorhexidine C22H30CI2N10 1.25504509 253.1084 4.8078055 [M+H]+[2M+H]+  HMDB0015016 Benzene and Halobenzenes
substituted
derivatives
26 Edrophonium C10H16NO 1.13010143 184.1549 4.8068333 [M + NH4]+ HMDB0015145 Benzene and Aniline and
substituted substituted anilines
derivatives
27 Styrene C8H8 1.406734828 105.0696 9.859428 M+ H]+ HMDB0034240 Benzene and Styrenes
substituted
derivatives
28 o-Xylene C8H10 1.407586764 107.0857 9.857573 [M + H]+ HMDB0059851 Benzene and Xylenes
substituted
derivatives
29 10,16-dihydroxy- C16H3204 1.409150801 306.2635 5.0832863 [M + NH4]+ HMDB0037798 Fatty Acyls Fatty acids and
palmitic acid conjugates
30 alpha-Methylstyrene C16H3204 1.460029545 119.0865 9.862625 [M +H]+ HMDB0059899 Benzene and Phenylpropenes
substituted
derivatives
31 13Z,16Z-docosadienoic C22H4002 1.215573431 354.3358 12.466 [M + NH4]+ HMDB0061714 Fatty Acyls Fatty acids and
acid conjugates
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FIGURE 6
Panels (A,B) show the VIP, FC, and FDR visibility for metabolite comparisons between the mild-to-moderate and severe groups, and Panels (C,D)
display the model results for these two groups, representing the metabolites in the PD group categorized according to the H-Y staging. Panels (E,F)
show the VIP, FC, and FDR visibility for metabolite comparisons between the MCl and Normal groups, and Panels (G,H) display the model results for
these two groups, representing the metabolites in the PD group categorized according to the MMSE scale.
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the five randomly selected independent validation set samples in the model.
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(A) represents the confusion matrix of the Random Forest model on the validation set, displaying the number of true positives, false positives, true
negatives, and false negatives. In the matrix, 0 indicates the CON group, and 1 indicates the PD group. (B) shows the bar plot of feature importance in
the Random Forest model. (C) presents the overall accuracy, baseline accuracy, and accuracy ratio of the model. (D) illustrates the prediction results of
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Discussion

TCM has a long history in treating PD, and modern research in
this field is also progressing rapidly. For example, studies have
suggested that acupuncture holds significant promise as a
therapeutic approach for PD, showing potential benefits in
alleviating symptoms and improving patients’ quality of life (Zhuang
and Wang, 2000; Zuo et al., 2022). This provides valuable insights
into exploring TCM’s potential in diagnosing and treating PD. As a
vital part of TCM, TC can provide a micro - level explanation of
diseases through component research. Most studies by international
scholars on TC have primarily focused on its association with
halitosis (Roldén et al., 2005; Liu et al., 2006; Romano et al., 2020).
Moreover, it is quite common internationally to use the complete
removal of TC as one of the methods for treating halitosis (Kostka
etal., 2008). Additionally, some international studies have explored
the relationship between TC and systemic diseases beyond the oral
and digestive systems (Kim et al., 2013; Mu et al., 2019; Hao et al,,
2021; Xu et al,, 2021), such as early rheumatoid arthritis (Kroese
et al., 2021), pneumonia(Takeshita et al., 2010), lung cancer (Su
et al, 2011), chronic renal failure (Gulsahi et al., 2014; Hao et al.,
2019), coronary heart disease (Hao et al., 2019), perioperative
conditions (Funahara et al., 2018), osteoporosis (Pereira et al., 2018),
ischemic stroke (Huang et al., 2022), menstrual pain (Kim et al.,
2017) and so on. However, most of these studies focus on the visual
characteristics of TC, with limited investigation into its composition.
Compared to the superficial visual features of TC, studying its
composition offers deeper insights into disease mechanisms at the
molecular level. Therefore, in clinical practice, when observing
distinctive TC characteristics in outpatient cases, our team places
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greater emphasis on and interest in research focusing on
its composition.

Our experimental results suggested a significant difference in TCS
between the PD and CON groups, prompting us to focus on molecular
studies of TC composition to further explore the unique characteristics
of PD patients. To our knowledge, no studies have yet investigated the
microbial composition of TC samples from PD patients. However,
studies (Fan et al., 2022; Hu et al., 2024) on fecal samples from PD
patients have shown significant increases in the relative abundance of
Proteobacteria, Firmicutes, and Actinobacteria at the phylum level,
while Bacteroidetes exhibited a significant decrease. At the genus level,
Streptococcaceae increased, and Veillonellaceae decreased, with LEfSe
analysis showing significant enrichment of Bifidobacterium in PD
samples. These findings align with the microbial alterations observed
in TC samples from PD patients in our study. Compared to fecal
samples, TC sampling is more easily accepted by patients and is also
more convenient, clean, and safe for the operators. KEGG pathway
analysis in our study suggested that metabolism-related pathways
were notably enriched, which may reflect increased metabolic activity
within the microbial community. This has sparked further interest in
the metabolomics profile of the TC samples. So, we also opted for
non-targeted metabolomics due to its high sensitivity, comprehensive
nature, and ability to provide an intuitive reflection of biological states.
The UPLC-Q/TOF-MS system was selected for its advantages,
including high separation efficiency, exceptional mass resolution and
sensitivity, rich structural information, and strong stability and
reproducibility, making it highly suitable for analyzing a wide range
of metabolites in complex biological samples. Given that most PD
patients are elderly and often present with underlying conditions such
as hypertension and hyperlipidemia, these factors are unavoidable in
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clinical sample collection. To mitigate their potential influence on our
study, we selected family members accompanying patients for
follow-up visits, matched by age group, as the CON group. This
approach helped reduce the confounding effects of environmental and
lifestyle factors. Statistical analysis showed no significant differences
in the prevalence of hypertension and hyperlipidemia between the PD
and CON groups, further enhancing the reliability of our research. At
the same time, we combined image-based evaluation with
metabolomics assessment to fully leverage the advantages of TC
analysis. Our results suggested the robustness and reliability of our
model. In our study, we identified 31 significant differential
compounds. Some differential compounds, such as the upregulation
of Docosanamide, originate from external contamination, while
others, like the downregulation of Palmitoylethanolamide (PEA), are
primarily derived from the body itself. This suggests that the disease
state of Parkinsons patients is influenced by both external
environmental factors and internal factors. The utility of PEA has been
widely studied, particularly in the context of neurodegenerative
diseases. The mass spectrometry results of PEA are shown in

10.3389/fmicb.2025.1621468

Figures 4B,C. The Spearman correlation analysis between
metabolomics and microbiome data is shown in Figure 8.

The relationship between the oral-gut axis has been extensively
studied. Building on this, research on the oral-gut-liver axis has also
gained traction, leading to discoveries such as the connection between
periodontitis and cardiovascular diseases (Koren et al.,, 2011; Acharya
et al, 2017). This highlights the inseparable link between the oral
cavity and the gut while offering promising avenues for exploring the
oral-gut axis and its derivative pathways. For example, the oral-gut-
brain axis. The gut microbiota plays a key role in communication
between the brain and the gut (Aburto and Cryan, 2024). Increasing
evidence suggests that impaired gut barrier function is associated with
a wide range of central nervous system disorders, including
neurodevelopmental, psychiatric, and neurological diseases. This has
expanded the perspective of brain-related conditions to systemic
diseases, with PD being one of the most extensively studied
neurological conditions describing the relationship between the gut
barrier and brain barrier (Aburto and Cryan, 2024). Studies have
shown that one of the hallmarks of neurodegenerative diseases is
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alterations in the gut microbiota. PEA plays a role in several
physiological processes directly related to maintaining gut barrier
function, regulating inflammation and pain, and energy metabolism
(Russo et al., 2018). PEA is an endogenous cannabinoid ethanolamide
that acts as an “on-demand molecule” in the central nervous system,
produced and released from neurons and glial cells. It is known for its
analgesic, anti-inflammatory, and neuroprotective properties,
achieved through the activation of various receptors and ion channels
(Cordaro et al., 2018; Kiani et al., 2020; Cifelli et al., 2022). PEA
belongs to the N-acylethanolamine (NAE) family, a group of bioactive
lipids capable of modulating peripheral and central pathological
processes (Russo et al., 2018). Neuroinflammation plays a crucial role
in the pathogenesis of neurodegenerative diseases such as Alzheimer’s
disease (AD) and PD (Siracusa et al., 2015; Crupi et al., 2018; Cordaro
et al., 2020). PEA, with its potent neuroprotective and anti-
inflammatory  properties, is a key player in resolving
neuroinflammation (Skaper et al., 2015; Cordaro et al., 2020; Petrosino
and Schiano Moriello, 2020). Its primary target is the nuclear
peroxisome proliferator-activated receptor-a (PPAR-a). Additionally,
PEA can activate and regulate transient receptor potential vanilloid 1
(TRPV1) channels and indirectly activate cannabinoid receptors CB1
and CB2 (Esposito et al., 2012; Petrosino and Schiano Moriello, 2020;
Cifelli et al., 2022). Through the CB2-mediated anti-inflammatory
pathway, PEA modulates microglial polarization, reduces the release
of pro-inflammatory cytokines, and enhances migration and
phagocytic activity (Cifelli et al., 2022). By binding to GPR55
receptors, PEA enhances GABAergic transmission in the striatum and
increases the postsynaptic synthesis of endogenous cannabinoid

2-AG, thereby regulating GABA release via presynaptic CB1Rs (Cifelli

10.3389/fmicb.2025.1621468

etal,, 2022). This multifaceted mechanism endows PEA with exciting
potential in treating PD and controlling its progression, as supported
by various studies (Siracusa et al., 2015; Avagliano et al., 2016; Brotini
et al.,, 2017; Crupi et al., 2018; Brotini, 2021; Palese et al., 2022).
Moreover, PEA has shown promising effects in improving cognitive
decline and mild cognitive impairment (MCI), particularly in the
early stages of cognitive disorders (Calabro et al., 2016; Colizzi et al.,
2022; Landolfo et al.,, 2022). In our results, the PEA level in the PD
group is significantly downregulated, making it an important factor
distinguishing the PD group from the CON group. This further
supports previous affirmations regarding the effects of PEA. Our
findings indicate that the deficiency of PEA is a significant
characteristic of PD patients and may even be a potential underlying
cause of PD. This result is also evident at the level of TC, suggesting
the potential for further research. It suggests that TC plays an
important role in differentiating between individuals with or without
PD. Additionally, since TC is a convenient and non-invasive sample
type, it emphasizes its advantages and potential. Therefore, our study
indicates that TC could serve as a promising sample for distinguishing
PD, with PEA as a key biomarker for this differentiation. Given that
PEA is endogenous, it is a more accurate reflection of the host’s
condition. We have summarized the relevant routes of PEA based on
literature, as shown in Figure 9 (Costa et al., 2008; Ueda et al., 2013;
Aguilera et al., 2015; Musella et al., 2017; Lee et al., 2020; Mirzaei et al.,
2021; Cifelli et al., 2022; Cong et al., 2022; Ikeda et al., 2022).

In our study, PEA appeared to play a significant role in
differentiating between the PD and CON groups, but was not found
to be significantly correlated with cognitive (based on MMSE scores)
or disease progression (based on H-Y staging) groupings. This is
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because the difference in PEA levels between the CON and PD  MCI group (based on MMSE scores), which aligns with the
groups is substantial. In the CON group, the mass spectrometry  previously noted patterns. The mechanism of carnitine’s function in
peak value of PEA was relatively high, reaching hundreds of  the body is shown in Figure 10 (Longo et al., 2016; McCann et al.,
thousands, while in the PD group, the relative peak value was only ~ 2021; Virmani and Cirulli, 2022). However, the relatively small
1. Therefore, PEA could be clearly separated between these two  sample size in the PD group limits the scope of these findings and
groups, where it serves an important role. However, when the  warrants further investigation.

relative peak value of PEA is uniformly 1 in the PD group across all In addition, for the metabolomics data of the PD and CON
samples, it cannot be used as a marker for cognitive or disease  groups, we also used the Random Forest method to build a robust and
progression groupings based on H-Y staging or MMSE scores.  reliable model, which supported the predictive power of our
Despite this, we identified an interesting metabolite in the cognitive ~ biomarkers. This model suggested strong predictive performance
and disease progression experiments: carnitine. Carnitine is along-  under double validation, supporting the ability of our biomarkers to
chain amino acid synthesized in the brain from essential amino acids  predict the disease and indicating a potential for the effectiveness of
lysine and methionine, which undergoes acetylation in the  the biomarkers we identified.

mitochondria to form acetyl-L-carnitine (Sergi et al., 2018). Many The approach of combining microbiomics with untargeted
studies have focused on this compound, which has neuroprotective ~ metabolomics, using TC as a sample to identify biomarkers for
properties (Afshin-Majd et al., 2017; Gill et al., 2018). Some studies ~ neurodegenerative diseases, followed by validation through machine
have also found that carnitine can prevent neuronal loss in  learning models, offers a promising new methodology. Compared to
Parkinson’s rat models and improve memory function (Singh et al.,  traditional sampling methods such as CSE, blood, urine, or feces,
2018). Recent studies have suggested a specific deficiency of free  collecting TC is more convenient, less invasive, and more acceptable
carnitine in early-stage Alzheimer’s disease (AD) in women. Patients  to patients. Moreover, it has greater potential for widespread adoption
with lower levels of free carnitine exhibit higher accumulation of  in community healthcare settings. If the sampling and processing
p-amyloid (AP) and increased t-Tau levels in cerebrospinal fluid  procedures are thoroughly developed and standardized through
(CSF) (Bigio et al., 2025). In our results, carnitine levels were  research, patients could eventually collect samples themselves for
observed to be lower in both the severe H-Y stage group and the  basic testing. These findings suggest a potential foundation for future
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studies investigating the diagnostic and therapeutic role of TC in PD
and other neurodegenerative diseases.

5 Conclusion

In conclusion, our study underscores the potential of TC
samples as a non-invasive, cost-effective tool for diagnosing and
monitoring PD. Metabolomics and microbiome analysis
revealed differences between PD patients and controls, hinting
at potential metabolic and microbial alterations relevant to
PD. Key findings include reduced levels of palmitoylethanolamide
(PEA) in PD patients, as well as a correlation between specific
microbial phyla and differential metabolites. PEA deficiency
may contribute to PD pathogenesis, but further studies are
needed to fully elucidate its role. Moreover, the decreased
carnitine levels observed in the severe H-Y stage and mild
cognitive impairment (MCI) groups suggest a possible link to
PD progression and cognitive decline. The application of
machine learning techniques further supported the robustness
of these findings, yielding an accuracy of 88.9%. This suggests
that TC samples may hold potential as a tool for early PD
diagnosis, a possibility warranting further investigation. These
results suggest the clinical potential of combining metabolomics,
microbiome analysis, and machine learning in advancing PD
diagnostics and monitoring, which could lead to non-invasive,
reliable tools for PD management. Most importantly, it offers
new approaches and perspectives that could contribute to
advancing PD research.

In summary, our findings suggest that conducting
metabolomics and microbiomics studies using TC samples from
PD patients provides an efficient means to uncover disease
characteristics. However, the relatively small sample size and
single-source outpatient data may limit the generalizability of
our findings. A key aspect of our methodology was the
implementation of strict inclusion criteria in our outpatient
sampling. Our target population included PD patients
committed to regular four-week follow-ups, and post-sample
collection, any samples failing cell count standards were
excluded. Consequently, only patients who successfully
navigated all these rigorous screening and exclusion steps were
included in the final study. We hope that through these stringent
inclusion and exclusion criteria, our exploratory study, despite
its small sample size, can provide a more robust data foundation.
Our study supports the potential of TC samples as a non-invasive
tool for PD diagnosis, but further validation in larger cohorts
and multiple centers is required to confirm its clinical utility.
Additionally, the current limitations in metabolite databases
may have led to incomplete metabolite identification,
highlighting the need for more comprehensive and updated
reference databases to improve future research outcomes. The
complexity of microbiome data, coupled with the limitations in
functional inference, may result in the underrepresentation of
certain microbial components. Future improvements could
be achieved through more precise functional prediction models,
enhancing the accuracy of microbiome analysis. Furthermore,
variations in TC sampling methods across different research
teams highlight the need for standardized protocols to ensure
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scientific rigor and consistency. Currently, we are actively
strengthening our collaborations with neurologists and
specialists. We plan to expand the scope of our research by
conducting studies in multiple hospital environments. This
strategy is expected to significantly increase our sample size and
enhance the generalizability of our research findings. Future
studies should focus on further validating the use of TC as a
non-invasive sampling material, addressing standardization
and expanding its applicability

issues, in community

healthcare settings.

Data availability statement

The original contributions presented in the study are publicly
available. The raw microbiome data can be found at: https://www.ncbi.
PRJNA1259750. The raw
metabolomics data can be found at: https://www.ebi.ac.uk/
metabolights/ MTBLS12679.

nlm.nih.gov, accession number:

Ethics statement

The studies involving humans were approved by Ethics
Committee of Shanghai General Hospital (Approval no.
2024HS158). The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in
this study.

Author contributions

RY: Conceptualization, Data curation, Formal analysis,
Methodology, Writing - original draft. M]J:
Conceptualization, Data curation, Formal analysis, Investigation,

Investigation,

Methodology, Writing - review & editing. YX: Data curation, Formal
analysis, Methodology, Writing — original draft. ZW: Data curation,
Formal analysis, Methodology, Writing - review & editing. DW: Data
curation, Formal analysis, Methodology, Writing - original draft. YG:
Funding acquisition, Project administration, Resources, Supervision,
Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. The study was supported by
Shanghai Science and Technology Program/Natural Science
Foundation of Shanghai (22ZR1449800) Shanghai Hospital
Development Center/Technical standardization management and
promotion project (SHDC22024202).

Acknowledgments

We would like to express our sincere gratitude to Guorong
Fan for his invaluable guidance and continuous concern

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/metabolights/MTBLS12679
https://www.ebi.ac.uk/metabolights/MTBLS12679

Yang et al.

throughout this project. His insightful advice and steadfast
support were crucial to the successful completion of this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fmicb.2025.1721341.

References

Aamodt, W. W,, Waligorska, T., Shen, J., Tropea, T. E, Siderowf, A., Weintraub, D.,
etal. (2021). Neurofilament light chain as a biomarker for cognitive decline in Parkinson
disease. Mov. Disord. 36, 2945-2950. doi: 10.1002/mds.28779

Aasly, J. O., Shi, M, Sossi, V., Stewart, T., Johansen, K. K., Wszolek, Z. K., et al. (2012).
Cerebrospinal fluid amyloid p and tau in LRRK2 mutation carriers. Neurology 78, 55-61.
doi: 10.1212/WNL.0b013e31823ed101

Abbasi, N., Mohajer, B., Abbasi, S., Hasanabadi, P., Abdolalizadeh, A., and Rajimehr, R.
(2018). Relationship between cerebrospinal fluid biomarkers and structural brain
network properties in Parkinsons disease. Mov. Disord. 33, 431-439. doi:
10.1002/mds.27284

Aburto, M. R., and Cryan, J. F. (2024). Gastrointestinal and brain barriers: unlocking
gates of communication across the microbiota-gut-brain axis. Nat. Rev. Gastroenterol.
Hepatol. 21, 222-247. doi: 10.1038/s41575-023-00890-0

Acharya, C., Sahingur, S. E., and Bajaj, J. S. (2017). Microbiota, cirrhosis, and the
emerging oral-gut-liver axis. JCI Insight 2:¢94416. doi: 10.1172/jci.insight.94416

Afshin-Majd, S., Bashiri, K., Kiasalari, Z., Baluchnejadmojarad, T., Sedaghat, R., and
Roghani, M. (2017). Acetyl-L-carnitine protects dopaminergic nigrostriatal pathway in
6-hydroxydopamine-induced model of Parkinsons disease in the rat. Biomed.
Pharmacother. 89, 1-9. doi: 10.1016/j.biopha.2017.02.007

Aguilera, M., Cerda-Cuéllar, M., and Martinez, V. (2015). Antibiotic-induced
dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor
changes in mice. Gut Microbes 6, 10-23. doi: 10.4161/19490976.2014.990790

Aimetti, M., Perotto, S., Castiglione, A., Ercoli, E., and Romano, E. (2015). Prevalence
estimation of halitosis and its association with oral health-related parameters in an adult
population of a city in North Italy. J. Clin. Periodontol. 42, 1105-1114. doi:
10.1111/jcpe. 12474

Ali Mohammed, M. M., Al Kawas, S., and Al-Qadhi, G. (2021). Tongue-coating
microbiome as a cancer predictor: a scoping review. Arch. Oral Biol. 132:105271. doi:
10.1016/j.archoralbio.2021.105271

Armstrong, M. J., and Okun, M. S. (2020). Diagnosis and treatment of Parkinson
disease: a review. JAMA 323, 548-560. doi: 10.1001/jama.2019.22360

Ascherio, A., and Schwarzschild, M. A. (2016). The epidemiology of Parkinson’s
disease: risk factors and prevention. Lancet Neurol. 15, 1257-1272. doi:
10.1016/S1474-4422(16)30230-7

Avagliano, C., Russo, R., De Caro, C., Cristiano, C., La Rana, G., Piegari, G., et al.
(2016). Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity
and endoplasmic reticulum stress: in vivo and in vitro evidence. Pharmacol. Res. 113,
276-289. doi: 10.1016/j.phrs.2016.09.004

Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M., and
Tanner, C. (2024). The epidemiology of Parkinson’s disease. Lancet 403, 283-292. doi:
10.1016/S0140-6736(23)01419-8

Bigio, B., Lima-Filho, R. A. S., Barnhill, O., Sudo, E. K., Drummond, C., Assungdo, N.,
etal. (2025). Sex differences in mitochondrial free-carnitine levels in subjects at-risk and
with Alzheimer’s disease in two independent study cohorts. Mol. Psychiatry 30:1. doi:
10.1038/541380-024-02862-5

Bloem, B. R., Okun, M. S., and Klein, C. (2021). Parkinson’s disease. Lancet 397,
2284-2303. doi: 10.1016/S0140-6736(21)00218-X

Brotini, S. (2021). Palmitoylethanolamide/luteolin as adjuvant therapy to
improve an unusual case of camptocormia in a patient with Parkinson’s disease:
a case report. Innov. Clin. Neurosci. 18, 12-14. Available at: https://pubmed.ncbi.
nlm.nih.gov/35096476/

Frontiers in Microbiology

17

10.3389/fmicb.2025.1621468

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

Brotini, S., Schievano, C., and Guidi, L. (2017). Ultra-micronized
palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson’s disease. CNS
Neurol. Disord. 16, 705-713. doi: 10.2174/1871527316666170321124949

Calabro, R. S., Naro, A., De Luca, R., Leonardi, S., Russo, M., Marra, A., et al. (2016).
PEALut efficacy in mild cognitive impairment: evidence from a SPECT case study!
Aging Clin. Exp. Res. 28, 1279-1282. doi: 10.1007/540520-016-0533-6

Cifelli, P,, Ruffolo, G., Ceccanti, M., Cambieri, C., Libonati, L., Palma, E., et al. (2022).
Classical and unexpected effects of ultra-micronized PEA in neuromuscular function.
Biomolecules 12:758. doi: 10.3390/biom12060758

Colizzi, M., Bortoletto, R., Colli, C., Bonomo, E., Pagliaro, D., Maso, E., et al. (2022).
Therapeutic effect of palmitoylethanolamide in cognitive decline: a systematic review
and preliminary meta-analysis of preclinical and clinical evidence. Front. Psych.
13:1038122. doi: 10.3389/fpsyt.2022.1038122

Cong, J., Zhou, P, and Zhang, R. (2022). Intestinal microbiota-derived short chain
fatty acids in host health and disease. Nutrients 14:1977. doi: 10.3390/nu14091977

Cordaro, M., Cuzzocrea, S., and Crupi, R. (2020). An update of palmitoylethanolamide
and luteolin effects in preclinical and clinical studies of neuroinflammatory events.
Antioxidants 9:216. doi: 10.3390/antiox9030216

Cordaro, M., Siracusa, R., Crupi, R., Impellizzeri, D., Peritore, A. E, D’Amico, R,, et al.
(2018). 2-Pentadecyl-2-Oxazoline reduces neuroinflammatory environment in the
MPTP model of Parkinson disease. Mol. Neurobiol. 55, 9251-9266. doi:
10.1007/s12035-018-1064-2

Costa, B., Comelli, F, Bettoni, I., Colleoni, M., and Giagnoni, G. (2008). The
endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-
hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1
and PPARy receptors and neurotrophic factors. Pain 139, 541-550. doi:
10.1016/j.pain.2008.06.003

Crupi, R., Impellizzeri, D., Cordaro, M., Siracusa, R., Casili, G., Evangelista, M., et al.
(2018). N-palmitoylethanolamide prevents parkinsonian phenotypes in aged mice. Mol.
Neurobiol. 55, 8455-8472. doi: 10.1007/s12035-018-0959-2

Cui, ], Cui, H,, Yang, M., Du, S., Li, J., Li, Y, et al. (2019). Tongue coating microbiome
as a potential biomarker for gastritis including precancerous cascade. Protein Cell 10,
496-509. doi: 10.1007/513238-018-0596-6

Cui, L., Lu, H.,, and Lee, Y. H. (2018). Challenges and emergent solutions for LC-MS/
MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 37, 772-792. doi:
10.1002/mas.21562

Curry, K. D., Wang, Q,, Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., et al. (2022).
Emu: species-level microbial community profiling of full-length 16S rRNA Oxford
Nanopore sequencing data. Nat. Methods 19:845. doi: 10.1038/s41592-022-01520-4

Danser, M. M., Gémez, S. M., and Van der Weijden, G. A. (2003). Tongue coating and
tongue brushing: a literature review. Int. J. Dent. Hyg 1, 151-158. doi:
10.1034/j.1601-5037.2003.00034.x

Esposito, E., Impellizzeri, D., Mazzon, E., Paterniti, I., and Cuzzocrea, S. (2012).

Neuroprotective activities of Palmitoylethanolamide in an animal model of Parkinson’s
disease. PLoS One 7:¢41880. doi: 10.1371/journal.pone.0041880

Fan, T, Li, X., Zhang, X, Zhang, J., Sun, L., Chen, J., et al. (2022). Influence of aerobic
exercise training on mice gut microbiota in Parkinson's disease. Turk. J. Biol. 46:288. doi:
10.55730/1300-0152.2617

Foltynie, T., Bruno, V., Fox, S., Kithn, A. A,, Lindop, E, and Lees, A. J. (2024). Medical,
surgical, and physical treatments for Parkinson’s disease. Lancet 403, 305-324. doi:
10.1016/S0140-6736(23)01429-0

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3389/fmicb.2025.1721341
https://doi.org/10.1002/mds.28779
https://doi.org/10.1212/WNL.0b013e31823ed101
https://doi.org/10.1002/mds.27284
https://doi.org/10.1038/s41575-023-00890-0
https://doi.org/10.1172/jci.insight.94416
https://doi.org/10.1016/j.biopha.2017.02.007
https://doi.org/10.4161/19490976.2014.990790
https://doi.org/10.1111/jcpe.12474
https://doi.org/10.1016/j.archoralbio.2021.105271
https://doi.org/10.1001/jama.2019.22360
https://doi.org/10.1016/S1474-4422(16)30230-7
https://doi.org/10.1016/j.phrs.2016.09.004
https://doi.org/10.1016/S0140-6736(23)01419-8
https://doi.org/10.1038/s41380-024-02862-5
https://doi.org/10.1016/S0140-6736(21)00218-X
https://pubmed.ncbi.nlm.nih.gov/35096476/
https://pubmed.ncbi.nlm.nih.gov/35096476/
https://doi.org/10.2174/1871527316666170321124949
https://doi.org/10.1007/s40520-016-0533-6
https://doi.org/10.3390/biom12060758
https://doi.org/10.3389/fpsyt.2022.1038122
https://doi.org/10.3390/nu14091977
https://doi.org/10.3390/antiox9030216
https://doi.org/10.1007/s12035-018-1064-2
https://doi.org/10.1016/j.pain.2008.06.003
https://doi.org/10.1007/s12035-018-0959-2
https://doi.org/10.1007/s13238-018-0596-6
https://doi.org/10.1002/mas.21562
https://doi.org/10.1038/s41592-022-01520-4
https://doi.org/10.1034/j.1601-5037.2003.00034.x
https://doi.org/10.1371/journal.pone.0041880
https://doi.org/10.55730/1300-0152.2617
https://doi.org/10.1016/S0140-6736(23)01429-0

Yang et al.

Funahara, M., Yanamoto, S., Soutome, S., Hayashida, S., and Umeda, M. (2018).
Clinical observation of tongue coating of perioperative patients: factors related to the
number of bacteria on the tongue before and after surgery. BMC Oral Health 18:223. doi:
10.1186/512903-018-0689-x

Gill, E. L., Raman, S., Yost, R. A., Garrett, T. ], and Vedam-Mai, V. (2018). L-carnitine
inhibits lipopolysaccharide-induced nitric oxide production of SIM-A9 microglia cells.
ACS Chem. Neurosci. 9, 901-905. doi: 10.1021/acschemneuro.7b00468

Gulsahi, A., Evirgen, S., Oztas, B., Geng, Y., and Cetinel, Y. (2014). Volatile Sulphur
compound levels and related factors in patients with chronic renal failure. J. Clin.
Periodontol. 41, 814-819. doi: 10.1111/jcpe.12280

Guo, X.-J,, Jiang, T., Ma, X.-X,, Hu, X.-J,, Huang, J.-B., Cui, L.-T,, et al. (2022).
Relationships between diurnal changes of tongue coating microbiota and intestinal
microbiota. Front. Cell. Infect. Microbiol. 12:813790. doi: 10.3389/fcimb.2022.813790

Hao, Y., Yuan, X., Yan, J., Pham, M., Rohlsen, D., Qian, P, et al. (2019). Metabolomic
markers in tongue-coating samples from damp phlegm pattern patients of coronary
heart disease and chronic renal failure. Dis. Markers 2019:4106293. doi:
10.1155/2019/4106293

Hao, Y., Zhang, R., Morris, R., Cheng, E, Zhu, Z., Xu, Y,, et al. (2021). Metabolome
and microbiome alterations in tongue coating of gastric precancerous lesion patients.
Expert Rev. Gastroenterol. Hepatol. 15, 949-963. doi: 10.1080/17474124.2021.1850259

Hassler, H. B., Probert, B., Moore, C., Lawson, E., Jackson, R. W., Russell, B. T., et al.
(2022). Phylogenies of the 16S rRNA gene and its hypervariable regions lack
concordance with core genome phylogenies. Microbiome 10:104. doi:
10.1186/540168-022-01295-y

Hu, Y., Wang, H., Zhong, Y., and Sun, Y. (2024). Retrospective analysis of diet and gut
microbiota diversity and clinical pharmacology outcomes in patients with Parkinsonism
syndrome. Heliyon 10:¢38645. doi: 10.1016/j.heliyon.2024.e38645

Huang, Y.-S., Wu, H.-K,, Chang, H.-H,, Lee, T.-C., Huang, S.-Y,, Chiang, J. Y., et al.
(2022). Exploring the pivotal variables of tongue diagnosis between patients with acute
ischemic stroke and health participants. J. Tradit. Complement. Med. 12, 505-510. doi:
10.1016/j.jtcme.2022.04.001

Ikeda, T., Nishida, A., Yamano, M., and Kimura, I. (2022). Short-chain fatty acid
receptors and gut microbiota as therapeutic targets in metabolic, immune, and
neurological diseases. Pharmacol. Ther. 239:108273. doi:
10.1016/j.pharmthera.2022.108273

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol.
Neurosurg. Psychiatry 79, 368-376. doi: 10.1136/jnnp.2007.131045

Kapila, Y. L. (2021). Oral health’s inextricable connection to systemic health: special
populations bring to bear multimodal relationships and factors connecting periodontal
disease to systemic diseases and conditions. Periodontol. 87, 11-16. doi:
10.1111/prd.12398

Kiani, A. K., Miggiano, G. A. D., Aquilanti, B., Velluti, V., Matera, G., Gagliardi, L.,
et al. (2020). Food supplements based on palmitoylethanolamide plus hydroxytyrosol
from olive tree or Bacopa monnieri extracts for neurological diseases. Acta Biomed.
91:€2020007. doi: 10.23750/abm.v91i13-S.10582

Kim, J., Lee, H., Kim, H., Kim, J. Y., and Kim, K. H. (2017). Differences in the tongue
features of primary dysmenorrhea patients and controls over a normal menstrual cycle.
Evid. Based Complement. Alternat. Med. 2017:ECAM 2017, 6435702. doi:
10.1155/2017/6435702

Kim, J., Son, ], Jang, S., Nam, D.-H., Han, G., Yeo, L, et al. (2013). Availability of
tongue diagnosis system for assessing tongue coating thickness in patients with
functional dyspepsia. Evid. Based Complement. Altern. Med. 2013:348272. doi:
10.1155/2013/348272

Koren, O., Spor, A., Felin, J., Fak, E, Stombaugh, J., Tremaroli, V., et al. (2011). Human
oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci.
U. S. A. 108, 4592-4598. doi: 10.1073/pnas.1011383107

Kostka, E., Wittelkindt, C., and Guntinas-Lichius, O. (2008). Tongue coating, mouth
odor, gustatory sense disorder - earlier and new treatment options by means of tongue
scraper. Laryngorhinootologie 87, 546-550. doi: 10.1055/s-2007-995614

Kroese, J. M., Brandt, B. W., Buijs, M. J., Crielaard, W.,, Lobbezoo, E,, Loos, B. G., et al.
(2021). Differences in the Oral microbiome in patients with early rheumatoid arthritis
and individuals at risk of rheumatoid arthritis compared to healthy individuals. Arthritis
Rheumatol. 73, 1986-1993. doi: 10.1002/art.41780

Landolfo, E., Cutuli, D., Petrosini, L., and Caltagirone, C. (2022). Effects of
Palmitoylethanolamide on neurodegenerative diseases: a review from rodents to
humans. Biomolecules 12:667. doi: 10.3390/biom12050667

Lee, J., d'Aigle, J., Atadja, L., Quaicoe, V., Honarpisheh, P, Ganesh, B. P, et al. (2020).
Gut microbiota-derived short-chain fatty acids promote Poststroke recovery in aged
mice. Circ. Res. 127, 453-465. doi: 10.1161/CIRCRESAHA.119.316448

Li, Y., Cui, ], Liu, Y., Chen, K., Huang, L., and Liu, Y. (2021). Oral, tongue-coating

microbiota, and metabolic disorders: a novel area of interactive research. Front.
Cardiovasc. Med. 8:203. doi: 10.3389/fcvm.2021.730203

Liu, J., Geng, W,, Sun, H., Liu, C., Huang, E, Cao, J., et al. (2022). Integrative
metabolomic characterisation identifies altered portal vein serum metabolome
contributing to human hepatocellular carcinoma. Gut 71, 1203-1213. doi:
10.1136/gutjnl-2021-325189

Frontiers in Microbiology

18

10.3389/fmicb.2025.1621468

Liu, X. N,, Shinada, K., Chen, X. C., Zhang, B. X., Yaegaki, K., and Kawaguchi, Y.
(2006). Oral malodor-related parameters in the Chinese general population. J. Clin.
Periodontol. 33, 31-36. doi: 10.1111/j.1600-051X.2005.00862.x

Longo, N, Frigeni, M., and Pasquali, M. (2016). Carnitine transport and fatty acid
oxidation. Biochim. Biophys. Acta 1863, 2422-2435. doi: 10.1016/j.bbamcr.2016.01.023

Mao, S., Teng, X., Li, Z., Zu, J., Zhang, T., Xu, C,, et al. (2023). Association of serum
neurofilament light chain and glial fibrillary acidic protein levels with cognitive
decline  in  Parkinson’s  disease. = Brain  Res. 1805:148271.  doi:
10.1016/j.brainres.2023.148271

McCann, M. R., George De la Rosa, M. V., Rosania, G. R., and Stringer, K. A. (2021).
L-carnitine and Acylcarnitines: mitochondrial biomarkers for precision medicine.
Metabolites 11:51. doi: 10.3390/metabo11010051

Mirzaei, R., Bouzari, B., Hosseini-Fard, S. R., Mazaheri, M., Ahmadyousefi, Y.,
Abdi, M., et al. (2021). Role of microbiota-derived short-chain fatty acids in nervous
system disorders. Biomed. Pharmacother. 139:111661. doi: 10.1016/j.biopha.2021.111661

Mu, X, Ji, C., Wang, Q,, Liu, K., Hao, X, Zhang, G, et al. (2019). Non-targeted
metabolomics reveals diagnostic biomarker in the tongue coating of patients with
chronic gastritis. J. Pharm. Biomed. Anal. 174, 541-551. doi: 10.1016/j.jpba.2019.06.025

Musella, A., Fresegna, D., Rizzo, E R., Gentile, A., Bullitta, S., De Vito, E, et al. (2017).
A novel crosstalk within the endocannabinoid system controls GABA transmission in
the striatum. Sci. Rep. 7:7363. doi: 10.1038/s41598-017-07519-8

Ng, A.S. L., Tan, Y. ], Yong, A. C. W, Saffari, S. E., Lu, Z., Ng, E. Y,, et al. (2020). Utility
of plasma Neurofilament light as a diagnostic and prognostic biomarker of the postural
instability gait disorder motor subtype in early Parkinson’s disease. Mol. Neurodegener.
15:33. doi: 10.1186/s13024-020-00385-5

Palese, F, Pontis, S., Realini, N., Torrens, A., Ahmed, E, Assogna, E, et al. (2022).
Targeting NAAA counters dopamine neuron loss and symptom progression in mouse
models of Parkinsonism. Pharmacol. Res. 182:106338. doi: 10.1016/j.phrs.2022.106338

Pathak, J. L., Yan, Y., Zhang, Q., Wang, L., and Ge, L. (2021). The role of oral
microbiome in respiratory health and diseases. Respir. Med. 185:106475. doi:
10.1016/j.rmed.2021.106475

Pereira, 1. E, Brasileiro, C. B., Kleperon, N. P,, Nogueira, M. H., de Abreu, G., da
Silva, T. A, et al. (2018). Comparative study of oral and salivary parameters in patients
with and without loss of bone mass. Braz. Oral Res. 32:e54. doi:
10.1590/1807-3107bor-2018.vol32.0054

Petrosino, S., and Schiano Moriello, A. (2020). Palmitoylethanolamide: a nutritional
approach to keep Neuroinflammation within physiological boundaries-a systematic
review. Int. J. Mol. Sci. 21:9526. doi: 10.3390/ijms21249526

Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W,, Oertel, W, et al. (2015).
MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591-1601. doi:
10.1002/mds.26424

Roldén, S., Herrera, D., O’Connor, A., Gonzdlez, 1., and Sanz, M. (2005). A combined
therapeutic approach to manage oral halitosis: a 3-month prospective case series. J.
Periodontol. 76, 1025-1033. doi: 10.1902/jop.2005.76.6.1025

Romano, E, Pigella, E., Guzzi, N., Manavella, V., Campanelli, L., and Aimetti, M.
(2020). Etiology and characteristics of halitosis in patients of a halitosis center in
northern Italy. Minerva Stomatol. 69, 174-182. doi: 10.23736/S0026-4970.19.04186-4

Russo, R., Cristiano, C., Avagliano, C., De Caro, C., La Rana, G., Raso, G. M., et al.
(2018). Gut-brain Axis: role of lipids in the regulation of inflammation, pain and CNS
diseases. Curr. Med. Chem. 25, 3930-3952. doi: 10.2174/0929867324666170216113756

Seerangaiyan, K., Jiich, E, and Winkel, E. G. (2018). Tongue coating: its characteristics
and role in intra-oral halitosis and general health-a review. J. Breath Res. 12:034001. doi:
10.1088/1752-7163/aaa3al

Segawa, M., lizuka, N., Ogihara, H., Tanaka, K., Nakae, H., Usuku, K., et al. (2021).
Construction of a standardized tongue image database for diagnostic education:
development of a tongue diagnosis e-learning system. Front. Med. Technol. 3:760542.
doi: 10.3389/fmedt.2021.760542

Sergi, G., Pizzato, S., Piovesan, E, Trevisan, C., Veronese, N., and Manzato, E. (2018).
Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging
Clin. Exp. Res. 30, 133-138. doi: 10.1007/s40520-017-0770-3

Shao, Y, Li, T, Liu, Z., Wang, X., Xu, X,, Li, S., et al. (2021). Comprehensive metabolic
profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol.
Neurodegener. 16:4. doi: 10.1186/s13024-021-00425-8

Siderowf, A., Xie, S. X., Hurtig, H., Weintraub, D., Duda, J., Chen-Plotkin, A., et al.
(2010). CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease.
Neurology 75, 1055-1061. doi: 10.1212/WNL.0b013e3181f39a78

Simon, D. K., Tanner, C. M., and Brundin, P. (2020). Parkinson disease epidemiology,
pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 36, 1-12. doi:
10.1016/j.cger.2019.08.002

Singh, S., Mishra, A., Srivastava, N., Shukla, R., and Shukla, S. (2018). Acetyl-L-
carnitine via Upegulating dopamine D1 receptor and attenuating microglial activation
prevents neuronal loss and improves memory functions in parkinsonian rats. Mol.
Neurobiol. 55, 583-602. doi: 10.1007/s12035-016-0293-5

Siracusa, R., Paterniti, I., Impellizzeri, D., Cordaro, M., Crupi, R., Navarra, M., et al.
(2015). The association of Palmitoylethanolamide with luteolin decreases

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1186/s12903-018-0689-x
https://doi.org/10.1021/acschemneuro.7b00468
https://doi.org/10.1111/jcpe.12280
https://doi.org/10.3389/fcimb.2022.813790
https://doi.org/10.1155/2019/4106293
https://doi.org/10.1080/17474124.2021.1850259
https://doi.org/10.1186/s40168-022-01295-y
https://doi.org/10.1016/j.heliyon.2024.e38645
https://doi.org/10.1016/j.jtcme.2022.04.001
https://doi.org/10.1016/j.pharmthera.2022.108273
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1111/prd.12398
https://doi.org/10.23750/abm.v91i13-S.10582
https://doi.org/10.1155/2017/6435702
https://doi.org/10.1155/2013/348272
https://doi.org/10.1073/pnas.1011383107
https://doi.org/10.1055/s-2007-995614
https://doi.org/10.1002/art.41780
https://doi.org/10.3390/biom12050667
https://doi.org/10.1161/CIRCRESAHA.119.316448
https://doi.org/10.3389/fcvm.2021.730203
https://doi.org/10.1136/gutjnl-2021-325189
https://doi.org/10.1111/j.1600-051X.2005.00862.x
https://doi.org/10.1016/j.bbamcr.2016.01.023
https://doi.org/10.1016/j.brainres.2023.148271
https://doi.org/10.3390/metabo11010051
https://doi.org/10.1016/j.biopha.2021.111661
https://doi.org/10.1016/j.jpba.2019.06.025
https://doi.org/10.1038/s41598-017-07519-8
https://doi.org/10.1186/s13024-020-00385-5
https://doi.org/10.1016/j.phrs.2022.106338
https://doi.org/10.1016/j.rmed.2021.106475
https://doi.org/10.1590/1807-3107bor-2018.vol32.0054
https://doi.org/10.3390/ijms21249526
https://doi.org/10.1002/mds.26424
https://doi.org/10.1902/jop.2005.76.6.1025
https://doi.org/10.23736/S0026-4970.19.04186-4
https://doi.org/10.2174/0929867324666170216113756
https://doi.org/10.1088/1752-7163/aaa3a1
https://doi.org/10.3389/fmedt.2021.760542
https://doi.org/10.1007/s40520-017-0770-3
https://doi.org/10.1186/s13024-021-00425-8
https://doi.org/10.1212/WNL.0b013e3181f39a78
https://doi.org/10.1016/j.cger.2019.08.002
https://doi.org/10.1007/s12035-016-0293-5

Yang et al.

neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol.
Disord. 14, 1350-1366. doi: 10.2174/1871527314666150821102823

Skaper, S. D., Facci, L., Barbierato, M., Zusso, M., Bruschetta, G., Impellizzeri, D., et al.
(2015). N-Palmitoylethanolamine and Neuroinflammation: a novel therapeutic strategy
of resolution. Mol. Neurobiol. 52, 1034-1042. doi: 10.1007/s12035-015-9253-8

Speiser, J. L., Miller, M. E., Tooze, ., and Ip, E. (2019). A comparison of random forest
variable selection methods for classification prediction modeling. Expert Syst. Appl. 134,
93-101. doi: 10.1016/j.eswa.2019.05.028

Su, W,, Xu, Z.-Y., Wang, Z.-Q,, and Xu, J.-T. (2011). Objectified study on tongue
images of patients with lung cancer of different syndromes. Chin. J. Integr. Med. 17,
272-276. doi: 10.1007/s11655-011-0702-6

Takeshita, T., Tomioka, M., Shimazaki, Y., Matsuyama, M., Koyano, K., Matsuda, K.,
et al. (2010). Microfloral characterization of the tongue coating and associated risk for
pneumonia-related health problems in institutionalized older adults. . Am. Geriatr. Soc.
58, 1050-1057. doi: 10.1111/j.1532-5415.2010.02867.x

Tolosa, E., Wenning, G., and Poewe, W. (2006). The diagnosis of Parkinson’s disease.
Lancet Neurol. 5, 75-86. doi: 10.1016/S1474-4422(05)70285-4

Ueda, N., Tsuboi, K., and Uyama, T. (2013). Metabolism of endocannabinoids and
related -acylethanolamines: canonical and alternative pathways. FEBS J. 280, 1874-1894.
doi: 10.1111/febs.12152

Van Tornout, M., Dadamio, J., Coucke, W,, and Quirynen, M. (2013). Tongue coating:
related factors. J. Clin. Periodontol. 40, 180-185. doi: 10.1111/jcpe.12031

Vijiaratnam, N., Simuni, T., Bandmann, O., Morris, H. R., and Foltynie, T. (2021).
Progress towards therapies for disease modification in Parkinson’s disease. Lancet
Neurol. 20, 559-572. doi: 10.1016/S1474-4422(21)00061-2

Frontiers in Microbiology

19

10.3389/fmicb.2025.1621468

Virmani, M. A., and Cirulli, M. (2022). The role of l-carnitine in mitochondria,
prevention of metabolic inflexibility and disease initiation. Int. . Mol. Sci. 23:2717. doi:
10.3390/ijms23052717

Xu, Y., Zhang, R., Morris, R., Cheng, E, Wang, Y., Zhu, Z,, et al. (2021). Metabolite
characteristics in tongue coating from damp phlegm pattern in patients with gastric
precancerous lesion. Evid. Based Complement. Alternat. Med. 2021, 5515325-5515316.
doi: 10.1155/2021/5515325

Yang, L., Xiang, Z., Zou, J., Zhang, Y., Ni, Y., and Yang, J. (2022). Comprehensive
analysis of the relationships between the gut microbiota and fecal metabolome in
individuals with primary Sjogren’s syndrome by 16S rRNA sequencing and LC-MS-
based metabolomics. Front. Immunol. 13:874021. doi: 10.3389/fimmu.2022.874021

Yuan, L., Yang, L., Zhang, S., Xu, Z., Qin, ], Shi, Y., et al. (2023). Development of a
tongue image-based machine learning tool for the diagnosis of gastric cancer: a
prospective multicentre clinical cohort study. EClinicalMedicine 57:101834. doi:
10.1016/j.eclinm.2023.101834

Zhang, Y., Lo, K. L., Liman, A. N,, Feng, X. P, and Ye, W. (2024). Tongue-coating

microbial and metabolic characteristics in halitosis. J. Dent. Res. 103, 484-493. doi:
10.1177/00220345241230067

Zhao, E, An, R., Wang, L., Shan, J., and Wang, X. (2021). Specific gut microbiome and
serum metabolome changes in lung Cancer patients. Front. Cell. Infect. Microbiol.
11:725284. doi: 10.3389/fcimb.2021.725284

Zhuang, X., and Wang, L. (2000). Acupuncture treatment of Parkinsons disease--a
report of 29 cases. J. Tradit. Chin. Med. 20, 265-267. doi: 10.19852/j.cnki.jtcm.2000.04.007

Zuo, T, Xie, M., Yan, M., Zhang, Z., Tian, T, Zhu, Y., et al. (2022). In situ analysis of
acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice
of Parkinson’s disease. Cell Prolif. 55:e13213. doi: 10.1111/cpr.13213

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1621468
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.2174/1871527314666150821102823
https://doi.org/10.1007/s12035-015-9253-8
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1007/s11655-011-0702-6
https://doi.org/10.1111/j.1532-5415.2010.02867.x
https://doi.org/10.1016/S1474-4422(05)70285-4
https://doi.org/10.1111/febs.12152
https://doi.org/10.1111/jcpe.12031
https://doi.org/10.1016/S1474-4422(21)00061-2
https://doi.org/10.3390/ijms23052717
https://doi.org/10.1155/2021/5515325
https://doi.org/10.3389/fimmu.2022.874021
https://doi.org/10.1016/j.eclinm.2023.101834
https://doi.org/10.1177/00220345241230067
https://doi.org/10.3389/fcimb.2021.725284
https://doi.org/10.19852/j.cnki.jtcm.2000.04.007
https://doi.org/10.1111/cpr.13213

	Microbiome and metabolome integrated analysis: exploring potential diagnostic approaches for Parkinson’s disease using tongue coating samples
	1 Introduction
	2 Materials and methods
	2.1 Materials and reagents
	2.2 Sample collection and research methods
	2.2.1 Sample source
	2.2.2 Inclusion and exclusion criteria
	2.2.3 Collection and processing of TC samples
	2.2.4 Metabolomics processing procedure
	2.2.4.1 UPLC-Q/TOF-MS instrument and conditions
	2.2.4.2 Quality control
	2.2.5 Microbiome sample processing procedure
	2.2.6 Data analysis

	3 Results
	3.1 Demographic characteristics
	3.2 16S rRNA sequencing results
	3.3 Metabolomics data results
	3.3.1 Data stability and reliability
	3.3.2 Screening and Analysis of Potential Biomarkers
	3.3.3 Random Forest

	4 Discussion
	5 Conclusion

	References

